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1. CONCEPT OF DIFFERENTIAL EQUATION AND ITS SOLUTION

Differential equations arise in the study of various problems in science,
engineering, economics. In the language of differential equations are formulated the
most important laws of nature. In the process of solving various problems is not
always possible to establish a direct relationship between the quantities that describe
the process. However, in most cases we can establish a relationship between
quantities and their velocities of change relative to other variable quantities. This
means that will be found the equations in which unknowns are included under the
sign of the derivative. These equations are called by differential equations.

Definition 1.1. Equations in which the unknown function appears under the
sign of the derivative or the differential are called differential equations (DE).

There is one differential equation which is probably known by everyone. It is
the Newton’s Second Law of Motion. If an object with a mass m is moving with
acceleration a under the force F then Newton’s Second Law tells us

F=ma.

To see that this it is really a differential equation we have to rewrite it a little.
First, remember that we can rewrite the acceleration a, by one of two ways:

dv d’u
a=— or a=—r,

dt dr’
where v is a velocity of an object and u is a position function of an object at any
time ¢. At this point we should also remember that the force /' may also be a function
of time, velocity and position.

So, with all these things in mind the Newton’s Second Law can now be written

as a differential equation in terms of either a velocity v or a position of an object u
as follows:

dv
m—=F{(t,v),
o= F(y)
2
md—?—FEt,v,@j
dt dt

So, here is our first differential equation. We will see both forms of this in later
chapters. Here are a few more examples of differential equations:

2
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3) —+—=0; 4) x*dy + ydx =0.
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Definition 1.2. An ordinary differential equation is a differential equation in
which an unknown function (also known as a dependent variable) is a function of a
single independent variable.

Definition 1.3. A partial differential equation is a differential equation in
which an unknown function is a function of multiple independent variables and the
equation involves its partial derivatives. For example, the equations 1, 2, 4 are
ordinary differential equations and equation 3 is a partial differential equation.

The highest derivative that appears in a differential equation gives an order.
Thus, 1 and 4 — are the first order differential equations, and 2 and 3 ones are the
second order differential equations.

We will consider only ordinary differential equations.

General view of an ordinary 7 -th order differential equation is:

F(x,y,y',y",..., (”))=0, (1.1)

where x is independent variable; y is unknown function of x which is to be

(n)

determined; )',...,»" are derivatives of function, F is the given function of (n+2)

~

variables that changes in some area 3. The area 3J is called as a default domain of
the equations.
Definition 1.4. Solution to a differential equation i1s any differentiable function

y = gp(x) which satisfies the differential equation together with its derivatives.

For example let us consider the equation )" + y =0. It can be shown easily that
function y=sinx satisfies this equation. So it is a solution to the equation. But
following  functions  y=2cosx, y=3sinx—cosx and in  general
y=C,cosx+C,sinx (where C,, C, are arbitrary constants) are the solutions to

given equation as well. This is easily seen if we substitute the function in equation.
So in fact there are an infinite number of solutions of this differential equation.
Definition 1.5. To solve a differential equation means to find all its solutions.
A general solution of a differential equation is the most general form that the
solution can take. This solution is given in terms of »n independent parameters, in
other words it contains arbitrary constants C,,C,,...,C, where n is an order of a
differential equation.
Hence, a function y =¢(x,C) is a general solution to the differential equation

of the first order F(x,y,)")=0.

Respectively a function y =¢(x,C,,C,) is a general solution to the differential
equation of the second order F(x,y,)’,»")=0.

And finally a function y = (p(x, C,....C ) is a general solution to the 7 - order

differential equation F (x, ..., (”)) =0.

Definition 1.6. A particular solution of a differential equation (relative to a
general solution) is a solution which could be obtained from that general solution by
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simply choosing specific values of the parameters involved. To determine these
parameters we need some additional conditions which are, for example, some values
of a unknown function and its derivative(s) at specific points. The number of initial
conditions that are required for a given differential equation will depend upon the
order of the differential equation as we will see.

Graph of the particular solution is called an integral curve of equation.
Therefore, in terms of the geometry a general solution which includes all particular
solutions is a set of integral curves.

2. CAUCHY’S PROBLEM FOR THE FIRST ORDER DIFFERENTIAL
EQUATION

Let us consider the first order differential equation solved for the first
derivative

V'=f(xy), (2.1)

where f(x,y) is a function given at domain I on the plane xOy .

As we noted above in the Chapter 1 there are an infinite number of solutions to
this differential equation. But actually in practical problems we need not all solution,
1.e. not a general solution, but only that one satisfied some additional conditions.

So called Cauchy’s problem is one of such problem. It is formulated for the
differential equation (2.1) as following: to find among all solution of the differential
equation (2.1) the function y= y(x) which gives the value y, when the argument

has given valuex = x,, 1.e.
y(xo) =Y,- (2.2)

The valuesx,, y, are called initial date and the conditions (2.2) itself 1s called
initial conditions. Sometimes the solution cannot be obtained in explicit form as a
function waged relatively y. So an explicit solution is any solution that is given in
the form y = go(x). An implicit solution is any solution that isn’t in explicit form.

Cauchy’s problem for the differential equation (2.1) is not always solvable.
Cauchy’s problem has no solution if there is no function y = y(x) that would satisfy
the differential equation (2.1) on the interval (a,b) and the initial condition (2.2).

Cauchy problem has a number solutions if there are several functions that satisfy
(2.1) and (2.2).

Theorem 2.1 (Cauchy's theorem on the existence and unity of a solution). Let
a function f (x, y) is defined in some region J of the plane xOy. Let a point

(x5, ) € I and next conditions are satisfied for the function f(x,y) in J:

1) f (x, y) is a continuous function of two variables x, y;

of

2) f(x,y) has continuous partial derivatives =
y



Then there is an interval such that (x,—h,x,+#%) on the axis Ox where a
unique solution y =¢(x) of (2.1) exist and ¢(x,)=y,.
Let the Cauchy’s problem for the equation (2.1) in 3 has a unique solution.

Then only one integral curve passes through each point of the region (fig. 2.1).
Example 2.1.

y=xy+e”.

The right side of this equation f (x, y) =xy+e” and its partial derivatives
o _
5 =
Theorem 2.1 there is one integral curve of the original equation which passes through
each point (x,,y,) of the plane xOy.

x—e? are continuous at all points of the plane xOy. According to the

¥

Fig. 2.1. Cauchy’s problem

Example 2.2.
V' =37, (2.3)

The function f(x,y)=3y"" is continuous on the whole plane xOy . The partial

o %) 2 . : :
derivative g_2 is continuous at all points where y=#0. Therefore, the

8y_{/;

uniqueness may be violated at the points of axis Ox (y =0). So the function

y=(x-CY (2.4)

is a solution of the equation (2.3), C is an integration constant. Then at least two
integral curves pass through each point of the axis Ox. They are an integral curve of
the curve set (2.4) and the axis Ox itself. The uniqueness of the solution is violated at
the points on the axis Ox (fig. 2.2).

Both conditions of Cauchy’s theorem are satisfied in the region where y #0:
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D:{—oo<x<+oo,y¢0}.

Thus D is the region of equation (2.3) unity. Only one integral curve passes
through each point (x,,y,)€D.

Fig. 2.2. Uniqueness of the solution

Consider the n-th order differential equation which resolved with respect to the
highest derivatives

Y= (), 2.5)

The Cauchy’s problem means to find a solution y = y(x) among all solutions
of equation (2.5) for which

V(%) =20, V' (%) =Yoo " (x%0) = 28", (2.6)

where y,, i,..., y\"" are arbitrary real numbers. The numbers x,, y,, V),..., y""

are called the initial data of the equation (2.5).
For second-order differential equation

V'=f(xp.)). (2.7)

The Cauchy problem means finding solutions y=y(x) which satisfies the
initial conditions

y(xo):yoa y,(xo):y(,)- (2.8)
Consider the mechanical interpretation of Cauchy's problem for second order.
Let a body M moves rectilinearly along the axis Ox. Then at a moment of

time ¢ a value x gives the body position. Then % is the velocity of this body t and



d’x . : d. :

d—f is the acceleration. Let the force f (t,x,ij acting upon the body M
t

dependents on such variables as time, position and velocity. Let the mass of the body

is equal to 1. Then, according to the Newton's second law we obtain a second-order

differential equation
d’x dx
=flt,x,—|. 2.9

dr’ ( dtj (29)

It describes the displacement of the body along a line. Any solution of this
equation corresponds to some possible displacement. The Cauchy's problem for the
equation (2.9) means that among all possible displacement defined by the equation
(2.9), we need to find a displacement x = x(z‘) that satisfies the initial conditions

, d.
x(ty)=x,, x(to)zjtc =V,. (2.10)

It means to find such a displacement in which the moving body would have a
position x, and initial velocity v, at time ¢,.

Let us consider the 7 -th order equation.

Theorem 2.2. Suppose we have the equation (2.5) where the function

f (x, VoV s y("_l)) is defined in some region J of variables x,y,),...,y" " which

contains the point Mo(xo, Vs Vhse o y(()”‘”). For the function f in a region 3 such
conditions are performed:
D f (x, VoV s, y(”_”) is a continuous function of its arguments;

2) f (x, VoV s, y(”_”) has continuous partial derivatives

Jg o o
o o B

Then there is an interval (x,—/4,x,+%) of the axis Ox on which there is a
unique solution y = (o(x) of the equation (2.5) satisfying the initial conditions (2.6).
Consider the equation
y":siny'+e_x2y (2.11)

and 1nitial conditions
Y(x%0)=Y0» ¥V'(%) =¥} (2.12)



In this case f(x,y,y")=sin) + ey, Zi e, g _ cos )’ . The function f
Y

o
of of

and its partial derivatives —, ——
oy 0y
variables x,y,)". According to the Theorem 2.2 for any numbers x,,y,,y, there is

only one solution of the equation (2.11) that satisfies the initial conditions (2.12).

are the continuous functions for all values of its

3. GEOMETRIC INTERPRETATION OF FIRST ORDER
DIFFERENTIAL EQUATIONS

Differential equation

y'=f(xy) (3.1)

can be given a geometric interpretation. Let 3 is the domain of definition for the
equation (3.1). Let the graph of the solution y=¢(x) of the equation (3.1) passes

through the point (xo, yo)eS, 1.s. (p(xo)z ¥,- Tangent line equation at this point
looks like
y:f(xo’yo)(x_xo)"‘yo (3.2)

because (p'(xo) =f (xo,(p(xo)) =f (xo, yo). Hence, the differential equation (3.1) puts
a straight line (3.2) with a slope f (xo, yO) to each point (xo. yO) €.

Therefore, the equation (3.1) gives the directions of tangent lines for integral
curves. This interpretation shows a way to solve the equation graphically.

4. FIRST ORDER DIFFERENTIAL EQUATIONS WITH SEPARABLE
VARIABLES

Consider the individual types of first order differential equations.

A first order differential equation which is solved respectively the derivative
looks like

y=f(xy), x'=g(xy) (4.1)
or
M(x,y)dx+N(x,y)dy=O, 4.2)

where [, g, M, N are known functions. Variables x and y are included equally in

the form (4.2). It does not matter which variable is a function and which variable is
an argument.

Consider the concept of the equation with separated variables. The equation
(4.2) in which the coefficient of dx is a function depending only on x and the
coefficient of dy is a function depending only on y, such that

F(x)dx+F,(y)dy=0 (4.3)



is called the differential equation with separated variables.
Assume that a solution of the equation (4.3) is a function y =¢(x). We prove

an identity by substituting it into the equation (4.3):
F(x)dx+F, [¢(x)](p'(x)dx =0.

This identity is an identity of differentials. One side of the identity is expressed
directly through an independent variable, and another one contains a function. If
differentials are equal then their integrals can differ only with a constant. So

[F(x)dv+ [F(y)dv=C (4.4)

is a general integral of the equation (4.3).
For example xdx +e’dy =0 is an equation with separated variables. We obtain

2

dex+Ieydy=C, %+ey=C.

Consider the concept of the equation with separable variables. An equation of
the form

y'=£(x) () (4.5)

or
(pl(x)(pz(y)dx+l//1(x)l//2(y)dy=O (4.6)

is called the differential equation with separable variables. The right side of the
equation (4.5) and each of the differential coefficients in the equation (4.6) are a
product of two functions. One of these functions depends only on x and the second
one depends only on y.

To solve on the equation (4.5) or (4.6) we transform it the form (4.3) in which
a coefficient of dx depends only on x and a coefficient of dy depends only on y.

Then divide both part of equation by the product ¢, (), (x). Here it is assumed that
v, (x) #0 and ¢, ( y) # (. After dividing one can obtain

de + '7”2 (y)
4! (x ) ?, (y )

dy=0.

This equation is an equation with separated variables. Integrating one can
obtain

j%dﬁjwdy:c (4.7)

x) (v)
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This is a general integral of the equation (4.6). We should also separately
explore the values x and y at which the functions ¢, (y) and y, (x) are zero

¢2(y)=0, Wl(x):()-

Roots of these equations y=a =const and x=b=const are the solutions of
the equation (4.6) as well because of equalities:

@, (a)=0, da=0, y,(b)=0, db=0.

These solutions do not necessarily belong to the set of solutions defined by
(4.7).

To separate the variables in the equation (4.5) it should be divided by f, ()
and multiplied by dx:

sz = [fi(x)dx+C.

Here y =y, is a solution of the equation (4.5) if f, ( yo) =0.
Example 4.1. Integrate the equation

x(yz—l)dx+y(x2—l)dy20. (4.8)

Solution. The coefficient at dx x( yz—l) is the product of the function

?, (x) = x which depends only on x and the function ¢, ( y) =y —1 which depends
only on y. Similarly the coefficient at dy y(x2 —1) is the product of the function
w,(y)=y which depends only on y and the function y, (x)=x’ -1 which depends

only on x. So the equation (4.8) with separable variables of the form (4.6). Multiply
both sides of this equation by the function 1/ (x2 —~ 1)( V- 1). We obtain an equation

with separated variables

d. d
x)gfl yyi}lzo, (x2—1)(y2—1);t0.

By integrating we have

xdx ydy
= - j = (4.9)

11



Here C, is an integral constant. Let us compute the integral J. )gdxl . We make
x p—
a substitution x* —1=¢. Hence
[ fdx 1 ﬂzlln\z\ =11n\x2 -1].
x-1 29t 2 2

We put the result into the equality (4.9). Then

1 2 1 2 .

Eln‘x —1‘+§ln‘y -1=¢,

(x2 —1)()/2 —1)=ie2c‘ =C,, C,#0.

Considering (x2 — 1)( y - 1) # 0 we obtain a general integral

(¥*-1)(»*-1)=C,, C,=#0. (4.10)

We should find the roots of equations
x*-1=0, y*-1=0.

Hence x==1, y=+1 are particular solutions of (4.8). They are found from the
general solution (4.10) at C, =0. So it is not necessary to write them separately.
Hence a general integral of the differential equation (4.8) is

(¢ 1) -1)=c.

where C 1is an integral constant.
Example 4.2. Find a general integral of the equation

y' =33y (4.11)

Solution. This is an equation with separable variables of the form (4.5) where
fi(x)=3. £(n)=r".

: : d : : :
Rewrite the equation as d_y =33/y* . To separate the variables we multiply this
X

equation by dx/ 32/? . We obtain

=dx, y=#0.

Integrating we find



I dy2 =Idx+C, y1/3=x+C,
33y

y=(x+C)". (4.12)

We should verify that a solution y =0 is not lost (we divided both part of

equation by 33/y” ). The solution y =0 cannot be obtained from the general solution

(4.12) for any value of the integral constant C. Therefore a general solution of this
equation is written as follows:

y=(x+C)3, y=0.

Example 4.3. A physical body with temperature at the initial time is 7 is

placed in an environment with a constant temperature €. How the physical body's
temperature vary with time?

Solution. Denote by T (t) the physical body temperature at the moment of
time ¢. Note that 7(0)=7,. Known fact is that the rate of a body temperature

changes proportionally to the difference between the body temperature at a given
time and environment temperature. This means that

T'(t)=—y(T(2)-96), (4.13)

where y >0 1s a proportionality factor. The minus sign on the right side of the
equation corresponds to the experimental data. If T (t)—0>0 then a body’s

temperature decreases and therefore the rate of change is negative, and if 7'(¢)—6 <0

then body temperature increases, and therefore the rate of change is positive.

Thus a process of heating (cooling) of a body is modeled by the equation
(4.13).

The equation (4.13) is a one with separable variables. Let us solve it:

dT dT

T—_H__ydt, IT—_Q__-[ydt+Cl’
ln‘T—H‘:—yt+Cl, ‘T—H‘zec‘_”,
T—-0=+e7" =Ce ™ (Cziecl),

T(t)=0+Ce™. (4.14)

The formula (4.14) includes all solutions of the equation (4.13). Considering
the initial condition 7(0)=7, we obtain formula T,=6+C, hence C=T,-0.

Substituting C into the formula (4.14) we obtain the desired time-temperature
function

13



T(t)=0+(T,-0)e™".

The function T'(¢) increases when 7' (z)—6 <0 (a physical body heats up) and
decreases when T (t) — 6 >0 (a physical body cools). In both cases its value tends to

€ with increase of parameter ¢.
Example 4.4. Let a long horizontal excavation be driven in the homogeneous

rock mass at a depth H from a surface. The cross section of excavation has a circular
outline with R, radius. The internal distributed presser p, 1s applied to the excavation
contour. The specific gravity of rocks is y. The sk is to determine the distribution of
stresses around the excavation.

We suppose the stresses in the rock mass depends only on values H and y and
does not surpass rock strength, i.e. stress-strain state of rock mass is elastic. Assume

that the initial stress field 1s hydrostatic (fig 4.1).

Oy O:

Gr+(dor/d 1}/ oy

%
@_.

X 0 X

RRER
23
VY,

HERE!

RERE!

Fig. 4.1. The calculated scheme to determine the stress distribution around a long
horizontal excavation
In this case this problem is polar-symmetric in which all geometric parameters
and power elements depend only on a radius R and do not depend on a polar angle
€ . We use an equilibrium condition:

do, 0,79, _y, (4.15)

14



: : R .
where o, and o, are tangential and radial stress components, r:R— i1s a
0
dimensionless radius. We use the condition of compatibility:

o,+0 =2yH. (4.16)

The stress component o, can be found from (4.16). Substituting this
expression into (4.15) we obtain a differential equation
do. ,yH-o,

-2
dr r

=0.

This is an equation with separable variables which after separation of variables
takes the form

d(yH -
d(r-o,) ,dr_ 4.17)
yH—o, r

Let us solve this equation:

JUH=0)_ o

yH—o,
ln‘yH—O',,‘——Zln‘r‘
In|yH -o,|=In|—,
GVZQ/H—%, (4.18)
r

where C is a unknown constant of integration. Define it from the boundary
conditions
Zj/H at r — oo,

o =p0 at r—>1. (4.19)

The first boundary condition is met automatically, and from the second one we
obtain
C=yH-p,. (4.20)

Substituting (4.20) into (4.18) and using (4.16) we obtain an equation for the
corresponding expressions

15



o, =yH - : ,
" (4.21)
00=7/H+7/ ;po
r
or
7
o.=yH|1- 72/ ,
r
(4.22)
| Po
o,=yH| 1+ ZH
r

Stress distribution around the excavation is shown at fig. 4.2.

(ﬁlﬁr |
TH -

Fig. 4.2. Stress distribution around excavation in the rock mass

5.FIRST ORDER LINEAR DIFFERENTIAL. BERNOULLI'S
EQUATION

Definition. A type of the equation
y'+P(x)y=Q(x). (5.1)

is called a linear differential equation of the first order.
It is linear with respect to the unknown function y and its derivative y'. P(x)

and Q(x) are given continuous functions of the argument x in some interval. For
example the equation

16



- x o ax
Y l—xzy 1—x

5, a=const,

is a linear differential equation of the first order. Here

If the function Q (x) =0 then the equation (5.1) takes the form

d—y+P(x)y:O (5.2)
dx

and is called a linear homogeneous equation. The equation (5.1) in which Q(x) #0

called a linear inhomogeneous.

Consider two ways to solve the differential equation (5.1).

The method of variation of arbitrary constant (Lagrangian method). The
method consists in the following. First we find a general integral of the corresponding
homogeneous equation with separable variables (5.2). Separating the variables and
integrating, we have

d—yz—P(x)dx, y#0,

y
Id—jz—jP(x)dx+Cl, 1n‘y‘=—JP(x)dx+Cl,
‘y‘ = eCI_JP(x)dx , Y= Ce_IP(x)dx (C =+e4 ) .

We have obtained that a general solution of the homogeneous equation (5.2)
has the form

—IP(x)dx

y=_~Ce (5.3)

where C is arbitrary constant.
We will find a solution of the inhomogeneous equation (5.1) in the form (5.3).
Let C is not a constant but a function of the argument x:

e—JP(x)dx ,

y= C(x) (5.4)

where C is unknown function. To determine this function we find y' from (5.4) and
substitute y and y' into equation (5.1). We obtain

17



C'(x)=0(x)e " (5.5)

Hence

C(x)=[o(x)e M+, (5.6)
where C” is arbitrary constant. Substituting (5.6) in (5.4) we find
)= ( [o(x) 7 g C*) ¢ e (5.7)

Since (5.6) is a general solution of the equation (5.5) then (5.7) is a general
solution of the equation (5.1).

Method of substitution (Bernoulli's method). We seek a solution of equation
(5.1) as a product of two functions u(x) and v(x):

y(x)zu(x)v(x). (5.8)

Hence y'=u'v+uv'. We substitute y and y’ into the equation (5.1). Then we
have
u'v+uy'+ P(x)uv =0(x)
or

u'v+u(v'+P(x)v):Q(x). (5.9)

Let us choose the function v in such way that the expression in brackets would
be equal to zero, 1.e.

v’+P(x)v=O.

This is an equation with separable variables. We have:

Y px)y, Y= p(x)dx,
dx %
ﬂ:—J.P()c)a’x, lnv:—jP(X)dX,
,
N LOL (5.10)

18



(a general solution is v = Ce_I P(x)dx; we take a particular solution at C =1). This value
v 1is substituted into (5.9):

u,efjp(x)dx _ Q(x), - Q(x)ejP(x)dx,
usz(x)eJP(x)dxdx+C. (5.11)

Hence, we have found the expression for the functions v and u ((5.10) u
(5.11)). Since y =uv then the general solution is

(5.12)
P(x)dx
o(r)=e
Bernoulli's equation. First-order equation of the form
y+P(x)y=0(x)y*, a#0, a=#l, (5.13)

where P(x) and Q(x) are given continuous functions is called the Bernoulli's

equation. The equation (5.13) is a linear inhomogeneous equation
y'+P(x)y=0(x) at =0 and it is an equation with separable variables

y'+(P(x)-0(x))y=0 at a =1. Therefore we assume that & =0, a =1.

Bernoulli's equation can be reduced to a linear equation by replacing the
variable

l-a

z=y *, y=#0.
We have:

SRRV N
y:Za, y =

zla .z,

-«
Substituting y' and y into (5.13) we obtain

1 1 a

ze -Z'+P(x)zl‘“ =0(x)z"“.

l-a
Hence

Z+(1-a)P(x)z=(1-a)0(x). (5.14)
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This is a linear equation relatively to function z. For the obtaining the general
solution z(x) of the linear equation (5.14) we use the formula (5.12). Now we find

the general integral of the Bernoulli's equation

P (x) = e(afl)J‘P(X)dx (C+(1_a)]‘Q(x)¢(x)dx),

5.15
(1-a)[ P(x)ax ( )

o(x)=e
Note that at & >0 the Bernoulli equation has the obvious solution y=0. The

Bernoulli’s equation can be solved using the method of substituting y =uv where

one of the functions selected by arbitrarily (Bernoulli’s Method).
Example 5.1. Find the general integral of the equation

y' =2ye" = 2\/;6)‘ :
Solution. This is Bernoulli's equation (see (5.13)). Here

P(x)z—Zex, Q(x)=2ex, oa=—.

We use the formula (5.15):

JP(x)dx - _2j e‘dv=-2¢", @(x)= e%(‘ze")

J.Q(x)(p(x)dx = 2'[ e e dx= {—ex =t,e'dx= —dt} = —2'[ eldt=-2e" .

X
—e
=e )

The formula (5.15) takes the form

Jy = o) (C +%(—2e‘“ )] e (C-e)=Ce" -1, C>0.

Answer: \/;zCeex -1, y=0.

6. FIRST ORDER HOMOGENEOUS DIFFERENTIAL EQUATIONS

Definition. A function f(x,y) is called a homogeneous of dimension m if for
any x, y and 4> 0 performed an identity

f(lx,ly) = l”’f(x,y)

takes place.
Consider some examples.
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Example 6.1.
f(x,y) =5x" —8xy;
f(Ax,Ay)=5(Ax)" =84x-Ay=A"(5x"-8xy), then f(Ax,Ay)=2"f(x,y),

m =2, that is a homogeneous function of dimension 2.
Example 6.2.

f(x,y)=2x—3y+\/)c2+y2 ;
f(lx,ly)=2lx—3ﬁy+ﬂ,\/x2 +y° =lf(x,y), f(x,y) is a homogeneous

function of dimension 1.
Example 6.3.

S R ACROR

X— 2y%x —3x°
homogeneous functions of zero dimension.
Example 6.4.
sin(x+ y
£(xy)=Smrey)
sin(x— y)

If 1 (x, y) is a function of zero dimension then it can always be represented in

the form f'(x,y)=F (Zj For the example 6.3 we have
X

4y —5x
\/3x2 —2y* +xy

X’ —3x2y+4y3 are

, fi(x,y)=

— this function is not homogeneous.

1+~ . .
S i E AT -£(2)

Definition 6.1. An equation
M(x,y)dx+N(x,y)dy=O (6.1)

called homogeneous if M and N are homogeneous functions of the same dimension.
Homogeneous equation (6.1) which is solved relatively the derivative y’ has

the form

y’=f(1j. (6.2)
X

To solve the equation (6.2) we use the substitution
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R (¢ 1s a function of the variable x).
X

Hence y=xt, y'=t+xt' (t' = ﬁ] Then the equation (6.2) takes the form

dx

t+xt'=f (1)

or

dt:f(l‘)—l‘.

e x

This is an equation with separable variables. When

f(t)-t=0 (6.3)
we share variables and integrate
dt _dx
f(t)-t x°
dt
| =In|x|+C. (6.4)
f(t)=1
Substituting the values ¢ = 2 we obtain the general integral of equation (6.2)
X

under condition (6.3). If the equation f(¢)—7=0 has a root 7 =1, that apart from the
general integral (6.4) the differential equation (6.2) has another solution y =¢,x .
Example 6.5. Find the general integral of the equation

xy'=y+4y —xt. (6.5)

Solution. We write this equation in the form

=24 (Zj 1. (6.6)

X X

This is a homogeneous differential equation. In (6.6) we perform a substitution

Z:t, y=xt, Yy =t+uxt',
X

then

22



[ 42
t+xt'=t+ -1, xt'=+* -1, %: -1
X

X

Separating the variables, we obtain

Let us integrate expression:

d d.
I tzt_l :J‘%-i_cl’

t+J7 =1 =[x+ Inlc
‘t+\/t2—1‘:\c2x,

t+NE —1=+C,x,
t+N2—-1=Cyx, C,#0.

C,#0,

In

b

Now we substitute here ¢ = Z:
X
2
Ly (1) ~1=Cx, C,#0. (6.7)
X X

Separating the variables we assumed that x(t2 —~ 1) #0. Let x(t2 — 1) =0. Then

x=0 or t==1. But x=0 does not satisfy the equation (6.5). The solution y=x
corresponds to the root t=1. The solution y =—x corresponds to the root ¢=—1.
The solutions y =x, y =—x can not be obtained from the total solution (6.7) for any
value of the arbitrary constant C,. Therefore, the equation (6.5) has a general integral

2
S [lj —-1=Cx, C#0; y=x; y=-x.
X X

7. HIGHER ORDER DIFFERENTIAL EQUATIONS. REDUCING THE
ORDER OF EQUATIONS

One of the methods for solving the higher-order differential equation is a
method of order reducing. Its essence is that using a suitable change of variable this
differential equation reduces to a lower order equation.

Consider the types of such equations.
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I. An equation of the form

W= f(x). (7.1)

Knowing that y" = ( y(”_l)) this equation is solved by successive integration
n times:

Yy = Jf(x)dx+C1,
W= [([£(x)dx+C)dx+ G,

---------------------------

The last step: y = Jy'(x)dx +C,.

I1. Second-order equation that does not contain an unknown function. This is
an equation of the form

dy d’y
X,—, =0. 7.2
f( dx’ dx’ ) (7.2)

2
Let 4 = p then d )2) = d_p We obtain the equation
dx dx” dx

A (x, p,d—pj=0, (7.3)

dx

which is a first-order equation relatively the variable p. Let the general solution of

equation (11.3) has the form p =¢(x,C,). We have Z—y = p=¢(x,C,) whence
x

y=J¢(x,Cl)dx+C2.
III. Second-order equation which does not contain an independent variable.

This is an equation of the form
dy d’y
f =0. (7.4)

y’E’ dx’

Let Z—y = p and assume that p is a function of y. Then
X

d’y _dp _dp dv_dp
dx> dx dy dx dy P
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Substituting
d_ . dy_dp
ax o ay !

into the equation (7.4), we obtain the equation of the first order with respect to p

d
f(y,p,p—p] =0.
dy

Let p=¢(y,C,) is a general solution of this equation. By integration of an

equation with separable variables Z—y = go( y,C]) we find the general integral of the
X

equation (7.4).
Example 7.1. Find the general solution of the equation
/4 ! 2
w'=(")"
. c . ' " dp
Solution. This is an equation of the form (7.4). Let y'= p(y) then "= P
Y
We obtain an equation for p:
dp 2
yp dy =P -

This is an equation with separable variables. We have

dp _dy jd—p:j@w
p v p *y
1n‘p‘=ln‘y‘+lnC2, p=Cy.

Here C, is an integration constant. If C, =0 we obtain a solution p =0 that is
y" =0 which satisfies the original equation. We have

Jd—y:jC3xdx+C4, In|y|=Cyx+C,,
Y

‘y‘ — eC3x+C4 , y — ieC4 . eC3x )

Thus a function
Cyx

y=Ce
is the general solution of the original equation where C,, C, are the constants.
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8. ONE-DIMENSIONAL MOTION. LAW OF ENERGY
CONSERVATION

Consider the following problem of mechanics. Suppose that a body moves
along the axis Ox under the action of the force which depends only on the coordinate
x. Newton's second law gives the differential equation of motion:

d’x
1 —F(x). (8.1)

m

Let the motion has such initial conditions:

t=0,x=x,,
dx (8.2)
—=V,.
dt

Differential equation (8.1) is the second-order equation in which there is no
independent variable 7. Using the contents of the Chapter 7 paragraph III we reduce
the order of the equation. In our case, the unknown function is indicated by the letter
x and the argument is indicated by the letter . We have

dx
—=v 8.3
” (8.3)

(the derivative is denoted here by the letter v because it is a velocity). Then we can
write

d’x_dv_dvdr _ dv
df* dt dedt dx

(8.4)

Substituting (8.3) and (8.4) into (8.1) we obtain the first order differential
equation

dv
—=F(x).
my 0 (x)

This is an equation with separable variables and we have consistently:

mvdy = F(x)dx,
vadv = jF(x)dx :

Let us replace indefinite integrals on definite integrals with variable upper
limits. We choose these limits guided by the initial conditions (8.2):
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Imvdv=ij(x)dx+C.

Vo Xo
At t =0 we obtain from (8.2) v=v,, x = x,, that is

0=0+C,
whence C =0. Finally we obtain

mv__m, = [ F(x)dx. (8.5)

2
The value

is a kinetic energy of a body.

Here the force F' depends only on x. We introduce a characterization of the
force field called a potential energy

where a is an arbitrary point a € R. Physically, this means that when the force
F performs a work

Asz(x)dx

a

then a potential energy decreases by the same value. Now we have from (8.5):

jF(x)dx:jiF(x)dx—]gF(x)dx:—u(x)+u(x0),

that 1is
2 2
m2v — mzvo =—u(x)+u(x,).
Hence we obtain
2 2
mzv +u(x)= m2V° +u(x,) (8.6)

that is a law of the energy conservation. It means that the sum of kinetic and potential
energy does not change with time. This is the simplest form of the most important
laws of nature.

The equation (8.5) called "a first integral" of the equation (8.1). This means
that the equation (8.1) is not solved but gives a connection between an unknown

27



: : o dx L : :
function x and its first derivative v=?. This gives the valuable information
t

concerning the behavior of a body.

9. LINEAR 7n-ORDER EQUATIONS

Consider the basic concepts and Cauchy's problem for linear n-order
equations.
Definition 9.1. Linear #n -order differential equation has the form

y(") +a, (x)y("_l) +a, (x)y("_z) +...+a, (x)y = f(x) . (9.1)

This equation is linear respectively to function y and its derivatives. Here
f (x), a, (x),..., a, (x) are functions defined on the interval (a,b). Functions

a,(x), i =1,n are called the coefficients of the equation (9.1) and a function f(x) is

the right-hand side of the equation or a free member.
Definition 9.2. If f(x)=0 then equation

Y va (1)) (x) 07 v, (x) =0 ©:2)

is called homogeneous linear n -order equation. An equation (9.1) where f (x) #0 1s

called inhomogeneous linear # -order equation or the right-part equation.
Theorem 9.1 (the existence and uniqueness of the Cauchy’s problem of

solutions in terms the linear equation (9.1)). Let functions a,(x), i =11, and f(x)
are continuous on the interval (@,b). Then for any x, € (a,b) and for an arbitrary set
of numbers y,, vg,--- y(()"_l) equation (9.1) has a unique solution considering the initial
conditions

y(xo):y()a y’(xo):y(l)a cees y(n_l) (xo):y(()n_l)

on the interval (a,b).
Consequence 9.1. Let y(x) be a solution of a linear homogeneous differential
equation (9.2) which satisfies initial conditions

y(x)=0, y'(x)=0, ..., y("_l)(xo):O.

Then y(x) =0 Vxe (a,b) :
Proof of the Theorem 9.1. Equation (9.1) can be written in the form:

2= ()= (15" e, () 03
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or y(”) =F (x, 20 A y("_l)) where the right side of equation (9.3) is denoted by F'.

Partial derivatives of the function F with respect to variables y,y',..., "™
looks like

OF OF

L) L (). S (1),

They are continuous on the interval (a,b). Consequently, equation (9.1)
satisfies conditions of the Cauchy's theorem (Theorem 2.2) on the whole interval of
continuity of functions g, (x), i=1,n, f(x). The theorem is proved.

We introduce the notion of a linear differential operator.
Definition 9.3. Let us denote the left-hand side of equation (9.1) as L( y) :

L(y) = y(") +a, (x)y("_l) +a, (x)y("_z) +...+a, (x)y. (9.4)

This designation is called as a linear differential operator of the function y.
The operator L ( y) has the following properties:

L(Cy) = CL(y), C =const ; (9.5)
L(y1+y2):L(y1)+L(y2)' (9.6)

Proof. According to (9.4) we have

Formula (9.5) is proved. Similarly

L(yl +y2) = (yl +y2)(n) +aq, (x)(yl +y2)(n—l) +...+a, (x)(yl +y2):

:yl(n)+y2(")+a1 (X)(yl("_l)+y2("_1))+---+an(x)(yl +y2)=
= (yl(”) +a, (x)yl("_l) +...+a, (x)y1)+ (yz(") +a, (x)yz(”_l) +...+a, (x)yz) =
=L(»)+L(»,).

Formula (9.6) is proved.
On the basis of the properties of (9.5) and (9.6) we have

L(Cly1 +C,y, +...+Cnyn)=CIL(yl)+C2L(y2)+...+CnL(yn), (9.7)
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where C,,...,C, are constants.

Consider the properties of the linear equation solution.
Theorem 9.2.If functions y,(x),...,y,(x) are solutions of linear

homogeneous differential equation (9.2) then their linear combination

Cy+Cy,+...+Cy,

1s a solution of equation (9.2) as well. Here C,,...C, are constants.
Proof. Consider the equation (9.2) in the form L(y)=0. Since y,,...,y, are
solutions of (13.2) then L(»,)=0, L(»,)=0, ..., L(y,)=0. Using (13.7) we obtain

L(Cy+Cy,+..4C,y,)=0.

This means that the function C,y,+C,y,+...+C, y, satisfies the equation
(9.2).

Theorem 9.3.1f y (x) and y,(x) are solutions of the inhomogeneous
equation (9.1) then their difference y, (x)— Y (x) is a solution of the homogeneous
equation (9.2).

Proof. According to conditions of the theorem we have L(y )= f(x),
L(y,)=f(x). Using (9.7) we obtain

L(y1 _yz):L(y1)_L(y2):f(x)_f(x):0

that proves our assertion.
Theorem 9.4. If a complex function y(x) :u(x)+iv(x) is a solution of the

homogeneous equation (9.2) then its real part u(x) and a coefficient of the imaginary
part v(x) are solutions of this equation.

Proof. We write the equality (9.2) in the form L(y)=0. Putting y =u,
y,=v, C, =1, C, =i in the equality (9.7) we obtain

OEL(y) =L(u +iv) = L(u)+iL(v)
whence L(u)=0, L(v)=0.
Theorem 9.5 (a property of a superposition or imposing of solutions). Let an

equation be given:

Y 4, (x)y("_l) tota, (x)y=fi(x)+ o+ fi(x). ©-8)
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If functions y, (x), i =Lk are solutions of the equations

" 4, (x)y("_]) +...+a,(x)y=/(x), i=Lk, 9.9)

then the function
y(x) =y (x)+p, (x)+...+y, (x)

is a solution of the equation (9.8).
Proof. According to the theorem conditions L(y,)= f,(x),....L(y, )= f, (x).

Putting in the equation (9.7) C, =...=C, =1 we obtain

L(y] +...+)y,C :L(yl)+...+L(yk)=fl(x)+...+fk(x).
This 1s a statement of the theorem.

10. LINEAR DEPENDENCE AND INDEPENDENCE OF FUNCTIONS

Definition 10.1. Let functions y,,y,,...,y, defined on the interval (a,b) are

connected by expression
oy, +a,y, +...+ay =0, (10.1)

where ¢,,...,a, are some constants among which no one is equal to zero. Then these
functions are linearly dependent in the interval (a,b) :

If for a given system of functions the equality (10.1) is true only when
a,=a,=...=a,=0 then these functions are called linearly independent in the

interval (a,b).

A simpler definition of linear dependence and independence can be given for
two functions.
Definition 10.2. Functions y, (x) and y, (x) are linearly independent in the

interval (a,b) if

M cons
yz(x);:/ ‘.

then functions y, (x) and y, (x) are linearly dependent.

Consider criteria for linear dependence and independence of a system of
functions.
Consider a system of functions
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Y (%), 7, (x)see 0, (%) (10.2)

which are (n—1)-times differentiable. Construct a determinant of 7 -th order

¥y (x) »(x) .. oy (x)
()| M) ) 103
yl("_l) (x) ygn_l) (x) ... y,ﬁ”‘” (x)

This determinant is called the Wronskian for system of functions (10.2).
Theorem 10.1. Let functions y,,...,y, be (n—1) time differentiable in the

interval (a,b) and let these functions be linearly dependent. Then their Wronskian is

equal to zero.
Proof (for case n=3). Let functions y,(x),»,(x),y,(x) are linearly

dependent in the interval (a,b). Then for any x €(a,b)the equality is true
oy +a,y, +a,y; =0, (10.4)
where none of coefficients «¢,,«,,a; equals to zero. For example, suppose «a, #0.

Then from (10.4) we obtain
ai

Vs=Bn+ 5y, ,=——, i=L2. (10.5)
a3
Differentiating (10.5) we have
Vi=Byi+Bys, vi=Byl+ Byl (10.6)

Let us construct Wronskian for the system of functions using (10.5) and (10.6):

WY, vl v Ve ByitBy,
W=y y, »l=n ¥ Byi+By
Yooy, oy vy B+ By
So the third column of the Wronskian is a linear combination of the first two
columns. This determinant is equal to zero. The theorem is proved.

The sufficient condition for the linear independence of functions implies from
the Theorem 10.1.
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Theorem 10.1. If the Wronskian W(x) of a system of functions y,,...,y, 1is

not equal to zero at least at one point x, of the interval (a,b), W (x,) =0, then the

functions are linearly independent in (a,b) :
Example 10.1. A system of functions

Lx,x>,... x"" (10.7)

is linearly independent in the interval (—oo, +o0).
We prove this for the case n =4 i.e. we show that the system of functions

Lx,x*,x° (10.8)

is linearly independent on the interval (—oo,+).
Let us construct the Wronskian for the functions (10.8):

1 x x> x
W(x) _ 0 1 2x 3x°

0 0 2 6x

0 0 0 6

Since W (x)=1-1-2-6=12#0 Vxe(—op,+00) then according to the Theorem
10.2 system of functions (10.8) is linearly independent on (—oo,+oo).
Example 10.2. If £ ,k,,...,k, are different numbers then the system of

functions
k k- k
e, e, ..em (10.9)

is linearly independent in the interval (—oo, +oo).
We prove this for the case n =3 i.e. we show that the functions

e, e e (10.10)

are linearly independent in (—o0,+00) where k,,,,k; are different numbers.
Wronskian for the functions (10.10) looks like

et et et 1 1 1
k k k k k k
W(x)=|ke™ ke ke |=e" -k k, k;
2 kx 2 kyx 2 kyx 2 2 2
kie™ kye™ kje ki ki K
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11 1 0 0 1
ko k, k|=|k -k, k,—k k|=
B B B R
0 0o 1
= (k= k) (ky k)| 1 1 k= (k=) (ky =k ) (ky =)
ki +k, k+k Kk
Thus
w(x)=e"" ) (k=) (ky —ky ) (ky =k, ) % 0

since the function e” >0 and k, #k, # k,. According to the theorem 10.2 the system
of functions (10.10) is linearly independent in the interval (—oo,+oo).
Example 10.3. Functions

e xe™ x*e™, . x"e™ (10.11)
are linearly independent in the interval (—oo, +oo). Since ¢ #0 and
Ce” +Cyxe™ +...+C x""'e" =" (C1 +Cx+...+ Cnx”_l)

then the linear independence of these functions follows from the example 10.1.

11. GENERAL SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS

Theorem 11.1 (necessary and sufficient conditions for the linear independence
of a homogeneous linear equation solution). Let y,,...», are solutions of a linear

homogeneous differential equation (9.2) in the interval (a,b). Then

I. If the Wronskian of these solutions is W(x);tO at least at one point
x, €(a,b) then the solutions y, (x),...,», (x) are linearly independent in (a,b).

IL If the solutions y,(x),...,»,(x) of the equation (9.2) are linearly
independent in (a,b) then their Wronskian W (x)#0 Vxe(a,b).

Consider the structure of the general solution of a homogeneous linear
differential n -order equation.

Definition 11.1. A system of » linearly independent particular solutions
Y (x),..., v, (x) of the equation (9.2) is called a fundamental system of solutions.

Theorem 11.2 (concerning the structure of equation (9.2) general solution).
Fundamental system of solutions y,(x),...,»,(x) forms a basis of solutions

dimension. A general solution of this equation looks like

y(x)zClyl(x)+...+Cnyn(x), (11.1)
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where C,,...,C, are constants.
Proof. The sum (11.1) is a solution of (9.2) at any C,,...,C, (Theorem 10.1).

Let }(x) be an arbitrary solution of this equation. We prove that there is only one set

of constants C1,Cs,...,C, for ;/(x) such that

~

y(x)=61yl(x)+...+(~7nyn(x). (11.2)

This means that a fundamental system of solutions forms a basis of a solutions
dimension for the equation (9.2).
Let

~1 ~! ~(n—l

~ ~ ~(n-
5(5) =500 7 (%) =V o (x0) =30, (113)

and x, € (a,b). Let us consider the system of » linear algebraic equations relatively

unknown values C,,...,C :

n

Gy (xo)"'cz)’z (x0)+"'+Cnyn (xo) = J~’0>

Cly;(x0)+c2y;(x0)+"‘+cnyr’t(XO):}0’ (114)

n— n— ~\n- )
C"™ (5)+ Cod ™ () +e o+ 0 () = 0.

A determinant of this system is the Wronskian related to the system of
functions y,(x),...,y,(x) at the point x,, that is W(x,). The determinant

W (x,)#0 because the functions y,,...,y, are linearly independent solutions of the
differential equation (9.2) accordmg to Theorem 11.1. This means that the system

(11.4) has a unique solution C1,Cs,...,Ca. Substituting the values C,...,Cy in (11.1)
we obtain the solution of the equatlon in the form

y(x)=Ciy, (x)+Cayp, (x)+...+ Cuy, (x). (11.5)

Differentiating (11.5) (n—1) times, we find

¥'(x)=Ciy(x)+...+Cuyl (x),
y'(x)=Ciy/(x)+...+Cuyl (x),

W (x)=Cop™ (x) oot Cayy ™ ().
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Let us substitute the value x, into the obtained equations and (11.5). Then,

considering (11.4) we can conclude that the solutions y(x) and )~/(x) satisfies the

same 1nitial conditions:
~! ~(n-1)

y(xo):’Jv/oay'(xo):yoa-“ay(n_l) (xo):yo

Considering the Theorem 9.1 we obtain the identity )~/(x) = y(x) that is the

equality (9.2). Hence, the first assertion of the theorem is proved. This means that
formula (11.1) contains some solution of the differential equation (9.2) i.e. the
formula (15.1) defines a general solution of equation (9.2).

Let us examine the structure of a general solution of the inhomogeneous linear
differential equation.

Theorem 11.3. The general solution of the inhomogeneous linear differential

equation (9.1) y,  1s equal to the sum of any particular solution ; and the general
solution y  of the corresponding homogeneous equation (9.2):

Yy =y+y (11.6)

Proof. Let y,(x),...,y,(x) be a solution fundamental system of the

homogeneous equation (9.2). Let y(x) is an arbitrary solution of the inhomogeneous
equation (9.1) and y(x) is a particular solution of this equation. Consider the

difference y(x)—y(x). According to the Theorem 9.4 this difference satisfies the
equation (9.2), and hence, considering the Theorem 11.2 we obtain

y(x)=7(x)= 3 ().

where C; are constants (see the equality (11.2)). Hence for an arbitrary solution
y (x) of the inhomogeneous equation (9.1) we have

y(x)z;(x)+gayi (x). (11.7)

Thus a general solution of the inhomogeneous equation (13.1) has the form

Youn. :;(x)+ Zéiyi (x)
i=1

According to Theorem 11.2 the second member is the general solution of the
homogeneous equation (9.2). Equality (11.6) is proved.
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12. HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS OF
SECOND ORDER WITH CONSTANT COEFFICIENTS

A linear homogeneous second order differential equation with constant
coefficients has the form
y'+ay' +a,y=0, (12.1)

where a,,a, are real numbers. According to the Theorem 11.2 a general solution of

this equation looks like
y=Cy+GCy,, (12.2)

where y,,y, are two linearly independent particular solutions and C,,C, are

constants.
Let us find a solution of the equation (12.1) in the form

y=e™, (12.3)
where 4 is a some constant (real or complex). The derivatives look like
y':/lelx, y”:ﬂ.zeﬂx.

Substituting them and the function (12.3) into the left-hand side of the equation
(12.1) we obtain

e™ (12 +all+a2):O.

The multiplier e* # 0 therefore
A +ad+a,=0. (12.4)

Definition 12.1. Quadratic equation (12.4) with the unknown value A is called
the characteristic equation for the differential equation (12.1).

We know that three cases are possible concerning the roots of the equation
(12.4): T) roots are real and distinct; II) roots are real and equal; IIT) complex roots.
We consider each case separately.

I. If roots A, 4, of the characteristic equation (12.4) are real and distinct that is

A, # A, then particular solutions of the equation (12.1) are the functions
yl — e/llx , y2 — e/LZx )
These solutions are linearly independent:

2% (x) = "N = const,

¥, (x)
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so they form a fundamental system of solutions of the equation (12.1). A general
solution of this equation according to (12.2) has the form

y=Ce™ +C,e™. (12.5)

II. Let the roots of the characteristic equation (12.4) be real and equal, that is
A, =, =A. In this case the discriminant of the equation (12.4) is a; —4a, =0 and

A= —%. Therefore the differential equation (12.1) has a solution

y, =e". (12.6)

X

We can show that the function y, = xe™ is a solution of the equation (12.1) as

well. The solution y, (x) is linearly independent with respect to (12.6) because

()

»(x)

Therefore if the characteristic equation (12.4) has equal roots 4, =4, =4 then
a general solution of the equation (12.1) has the form

=X Z const.

y=Ce" +xC,e™. (12.7)

ITI. Suppose that the characteristic equation (12.4) has complex roots. This
case tares place if the discriminant a —4a, < 0. Here we have

Then
A=a+iff, AL =a-if.

Thus, the roots of the characteristic equation (12.4) are complex conjugates.

Substituting the values 4, and A, into the formula (12.3) we obtain such complex
solutions of the differential equation (12.1):
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5;1 _ e(a+i,8)x , 5;2 _ e(a—iﬂ)x .

Let us use the Euler's formulas

e™ =cos fx+isin Bx, e’ =cosfx—isinpfx.

Then partial solutions ;/1 and ;2 of the equation (12.1) can be written as

v, =e™ (cos fx +isin fx),

y, =e" (cos fx —isin Bx).

Denote the real part of these differences as y, (x) and a coefficient of the

imaginary part as y,(x). We have

;’1 =N (x)+iy2 (x)9 )72 =0 (x)—l'y2 (x)’
b2 (x):e“x cosfBx, ¥, (x) =e”" sin fx.

On the basis of the Theorem 9.4 the functions y =y, (x) and y =y, (x) are the

solutions of the differential equation (12.1). These solutions are linearly independent
because

(%)
»(x)

=tgfx = const.

So, in the case of complex roots 4, =a*iff of the characteristic equation
(12.4) a general solution of the differential equation (12.1) has the form
y=Ce” cos fx+C,e” sin fx. (12.8)
Example 12.1. Find a general solution of the equation
y'=3y"+2y=0. (12.9)
Solution. We write the corresponding characteristic equation
AP =31+2=0.

The roots of this equation 4, =1,4, =2 are real and different. Therefore a
general solution of the equation (12.9) has the form (12.5):
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y=Ce" +C,e*".
Example 12.2. Find a solution of the differential equation

y'=4y'+29y=0 (12.10)

satisfying the initial conditions
y(0)=1, »'(0)=7. (12.11)

Solution. We write the characteristic equation

AT —41+29=0.
The values

A =2+51, A, =2-5i

are the roots of this equation. Then a general solution of the equation (12.10) has the
form (12.8), where a =2, f=5:

y=¢e"(C cos5x+C,sin5x). (12.12)
Now we use the initial conditions (12.11). For this we find
y'=2e"(C, cos5x +C,sin5x)+ e (=5C, sin5x + 5C, cos5x).

To search for constants C, and C, we have a system of the equations:

C =1,
2C, +5C, =1.

Hence C, =1, C, =1. Substituting the constants C, =1,C, =1 in the (12.12) we
find a solution
y=e** cos5x + e’ sin5x

which satisfies the initial conditions (12.11).

Example 12.3. A body having a mass m moves along the Ox -axis under the
force ' which is proportional to the body x-position and directed unto the origin of
coordinates. Find the law of the body motion if at the time ¢ =0 the x-coordinate is
equal to x, and the body speed is equal to v,.
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Solution. Let us denote the body coordinate at the time ¢ as x(t). Then x'(t)

is the body speed at time ¢ and its acceleration is x"(¢). Based on Newton's second
law we can write
mx"=F.

According to the problem condition F =—yx(¢),y >0. Thus the function x(¢)
satisfies the equation

14

mx"=—yx.
We denote 2 as k> and write this equation in the form
m
x"+k*x=0. (12.13)

This is a linear homogeneous second-order differential equation with constant
coefficients. Let us find all solutions of this equation. We form a characteristic

equation A° +k* =0. Hence 4, , = *ik . The function
x(t)=C,sinkt+C, coskt

is a general solution of the equation (12.13), where C,, C, are constants. We select
from this set of solutions the solution that satisfies the initial condition

x(0)=x,, x'(0)=v,. (12.14)
Substituting the initial values =0, x = x,, x" = v, into equalities

x(t)=C,sinkt +C, coskt,
x'(t)=kC, coskt —kC, sinkt.

We obtain an algebraic system of equations relatively C, and C,:

x, =C,, € =%,
e Yo
voszl, 1:?.

So a solution of the equation (12.13) which satisfies the conditions (12.14) is
the function

Vv, .
x(t)=-"sinkt + x, coskt.
k
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Let us represent this function as

x(t):AOL;—josinktJr%coskt):Aosin(kt+90), (12.15)

where

and a value 6, 1s determined by equalities

: X v
sing, =—"-, cosf,=—".

K4,

The equation (12.15) gives that any movement (except x(#)=0) described by
the differential equation (12.13) is a simple harmonic oscillation with an amplitude

4, and angular frequency k. A period of oscillation is 7 = 27” (this is a period of the

function sin (k¢ + 6, )).

Returning to the problem we can say that the body performs harmonic
oscillations according to the law

x:Asin(\/Z-t+aj,
m

Ay = |x;+—5%, sina=-L, cosa=

y 4 Jra

where

Here the value 4 is an amplitude and T :27r\/E is a period of these
/4

oscillations.

13. SOLUTION BY VARIATION OF THE CONSTANT

The following fact was established in Chapter 11. A solution of the
inhomogeneous equation (9.1) can always be found if general solution of equation
(9.2) is known and some particular solution of equation (9.1) is known as well. There
is a general technics to find a particular solutions of the inhomogeneous equation
(9.1) called the method of variation of arbitrary constants or Lagrange's method. We
explain the essence of this method in terms of second order differential equation
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V'+a, (x)y'+a2(x)y:f(x). (13.1)

Let a fundamental system of solutions is known for corresponding
homogeneous equation

V'+a, ()c)y'—ka2 (x)yzO. (13.2)
Then
=Cy, (x)+C,p, (x) (13.3)

is a general solution of equation (13.2). Here C,,C, are constants. We seek a

particular solution ;(x) of the equation (13.1) in the form (13.3) considering that
values C,, C, are not constants but functions of x:

y=C, ()c)y1 ()C)+C2 (x)y2 (x) (13.4)

The functions C,(x) and C,(x) can be chosen in such way that the function

(13.4) will be a general solution of equation (13.1).
We obtain from the equality (13.4) by differentiating

=Cyn+Cy+ Gy, +Coy;. (13.5)

Now we need to define two functions C, and C,. One relation between them
can be taken in arbitrary manner. We require that C, and C, satisfies the equality

Cly,+Cyy,=0. (13.6)
Then (13.5) has the form
=Cy+Cy;. (13.7)

Differentiating this equality we obtain

V'=Cyi+Cy+ Gy +Cyy. (13.8)
We have:
C[y1+a )yl'+a2(x)yl]+
+C, [yz+a1 )y;+a2(x)y2]+ (13.9)
+Cly +Coyy = f(x).

Since y, and y, are the solutions of the homogeneous equation (13.2) then the

expressions in square brackets of (13.9) are identically equal to zero. So we have the
following relation:

Cly+Cyy, = f(x). (13.10)

43



Combining the equalities (13.6) and (13.10) we obtain the system of equations

Cly +Cly, =0,
{ 1)1 2V (13.11)

Ciyi+Coyy = f(x).

It is a system of two linear equations with two unknowns C/(x) and C,(x).
This system has a unique solution since the determinant

w= (13.12)
N N
is the Wronskian W (x)#0 Vx e (a,b). Solving the system (13.11) we find
Cl(x)=p(x), C(x)=y(x),
where
p(x)=-22 (V;)(f:)(x), p(x)=2" (V;)(i)(X) (13.13)

Integrating, we obtain
C(x)=[o(x)dx+C, G (x)=[p(x)dc+C;,

where C|,C, are arbitrary constants. Substituting the values of these functions in

(13.4) we find a general solution of the inhomogeneous differential equation (13.1) in
the form:

y=Cy (x)+Cy, (x)+y, ()C)J‘gz)()c)a’x—ky2 (x)jw(x)dx, (13.14)

where the functions ¢ (x),y (x) are defined by equalities (13.13), (13.12).

The first two summands gives a general solution of the equation (13.2) and the
rest summands

A2 (x)jgo(x)dx+ Y, (x)jl//(x)dx

represents a particular solution of the inhomogeneous equation (13.1).
Example 13.1. Find a general solution of the equation

3x

4 ! e
y'=3y'+2y= —.
l+e
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Solution. We obtain a fundamental system of solutions y, (x), v, (x) of the
corresponding homogeneous equation

y'=3y'+2y=0.

In the example 12.1 was have already obtained

2x

yl(x)ze ) yz(x):e

Wronskian of these solutions is

3x

We find the functions ¢(x) and y(x) ((13.13)), where f(x)= 1 ¢ —:
+e
o) = ()=
1+e™ 1+e™
Hence
J¢(x)dx=——ln 1+e jl// )dx =arctge”.
Substituting y, (x Jgp )dx, Jw(x)dx into (13.4) we obtain a general

solution of the given equatlon
1
y(x)=Ce" +C,e* —Eex In (1 +e’ ) +e*arctge”.

14. INHOMOGENEOUS LINEAR DIFFERENTIAL SECOND ORDER
EQUATIONS WITH CONSTANT COEFFICIENTS
Let a, and a, be real numbers, f(x) is given continuous function. An

equation of the form
y'+ay'+a,y=f(x) (14.1)

is called a nonhomogeneous linear differential second order equation with constant
coefficients.
The Theorem 11.3 asserts that a solution of this equation is a sum of one

particular solution ;(x) of the inhomogeneous equation (14.1) and a general solution

Voo (x) of the corresponding homogeneous equation

45



y'+ay'+a,y=0. (14.2)

The method of arbitrary constant variation described in Chapter 13 can be
applied to equation (14.1) in any case. But sometimes it leads to a quadrature which
is complex enough. To avoid this difficulties let us turn to so-called method of
undetermined coefficients. This method allows finding the particular solution without
quadrature at a certain structure of the equation (14.1) right-hand side.

We assume that the function f (x) in the right-hand side of equation (14.1) has
the form

f(x)=e” (Pm (x)cos Bx+Q, (x)sin fx), (14.3)

where P, (x) and Q, (x) are algebraic polynomials of degree m and n respectively,
a and £ are real numbers. Note that P, (x) and O, (x) can be constant and one of

them even equal to zero. Numbers ¢ and £ can be equal to zero as well.
A particular solution of equation (14.1) we seek in the form

y=xte™ (Rj (x)cosﬂx+Sj (x)sinﬂx), (14.4)

where R, (x) and S, (x) are algebraic polynomials with degree j = max{m,n}; k is

a multiplicity with which o =i/ is one of the roots of the characteristic equation
A +ad+a, =0 (14.5)

(if ¢ xif is not a root of the characteristic equation (14.5) then k£ =0).
Example 14.1. Find a general solution of the equation

y'+y' =12y =€ (x-1). (14.6)
Solution. We are looking for a general solution in the form

Y=y, +;, (14.7)

where y, (x) is a general solution of a corresponding homogeneous equation and

y (x) is a particular solution of the given equation (14.6).
The corresponding characteristic equation looks like

A+1-12=0

whence 4, =-4, 4, =3. So (formula (12.5))
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_ —4x 3x
yvo. - C]e + C2€ .

A right-hand side of equation (14.6) has the form (14.3). The number o =2 is
not a root of the characteristic equation. The polynomial P,(x)=x-1 is a

polynomial of first degree that is m =1. There are trigonometric functions so S =0.
The particular solution of (14.6) can be written in the form (14.4) where k=0,
R (x)=Ax+B, a=2, f=0. We obtain:

J
y=e*(Ax+B). (14.8)

Let us find the derivatives

; =2e> (Ax +B) +Ae™",

y =4¢e*" (Ax+B)+4Ae2x :

Substituting the function (14.8) and its derivatives into the equation (14.6) we
obtain

—6e** (Ax+B)+ 54e* = e** (x-1)
whence
—6Ax—-6B+54=x-1.

Let us equate the coefficients at the same powers of x. So a system of
equations is obtained

x’:|—6B+54=-1.

x! :{—6/1 =1,

Hence 4= —é, B= 3_16 . Then a particular solution (14.8) equals

and a general solution (14.7) can be written as

1 1
=Ce™+Ce" +e** (——x+—j.
Yy ] 2 6 36

Example 14.2. Find a general solution of the equation

y'=2y'+y=4xsinx. (14.9)
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Solution. We write the characteristic equation
A7 =22+1=0.

The roots are A =4,=1. A general solution of the corresponding
homogeneous equation has the form (12.7)

V,, =€ (C1 +C2x). (14.10)

Right-hand side of the equation (14.9) has a form (14.3) where ¢ =0, =1,
O,(x)=4x that is n=1, P,(x)=0. The number a+if=i is not a root of the

characteristic equation. A particular solution of the equation (14.9) we find in the
form (14.4) where k=0, R, (x) and S, (x) are polynomials of the first degree:

y:(Ax+B)cosx+(Cx+D)sinx. (14.11)

We find derivatives

;’ = Acosx—(Ax+B)sinx+Csinx+(Cx+D)cosx =
=(A+Cx+D)cosx+(C—Ax—B)sinx,

—n

y =Ccosx—(A+Cx+D)sinx— Asinx+(C— Ax - B)cosx =
= (2C—Ax—B)cosx—(2A+Cx+D)sinx.

Substituting the function (14.11) and its derivatives into the equation (14.9) we
find
(2C—Ax—B)cosx—(24+Cx+D)sinx —(24+2Cx+2D)cosx +

+(2C—2Ax—2B)sinx+(Ax+B)cosx+(Cx+D)sinx =4xsinx.

Equating the coefficients of the functions sinx and cosx in the left and right
sides of the equality we obtain a system of equations

—A-C+ Ax+ B =2x.

cosx:|[C—A-Cx-D=0,
sinx :

Equate the coefficients at equal degrees of x in the first equation. Similarly akt
in the second equation. We obtain a system of four equations with four unknowns
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x': [-C=0,
x:|C—A4-D=0,
x| A4=2,
x’:|-4-C+B=0.

Solving it we find C=0, 4=2, D=-2, B=2. Substituting these values
A, B, C, D into the equality (14.11) one can obtain a particular solution

y=(2x+2)cosx—2sinx.
A general solution of equation (14.9) y=y, +; has the form
y=¢"(C +Cx)+(2x+2)cosx—2sinx.

15. HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS OF 71 -
TH ORDER WITH CONSTANT COEFFICIENTS

Definition 15.1. An equation of the form

(n)

W ayt

+...+a, V' +a,y=0, (15.1)

where a,,...,a, are constants called homogeneous linear differential equation of n-th

order with constant coefficients.
To solve this equation a fundamental system of solutions

Y (x), 3, (x)s.0sp, (x).
must be found. Then by the Theorem 11.2 a function

y(x)=Cy+Cy,+..+C,y, (15.2)

1s a general solution of the equation (15.1). C,,...,C, are arbitrary constants.
Let us seek particular solutions in the form

y=e", (15.3)
where A 1s a constant. Then

yr:ieix,yn:/l2e/1x’“.,y(n) :ineix.

Substituting the values of the derivatives and the function into (15.1) one can
obtain
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elx(/1”+a]l"_' +...+an_l/1+an):O.

Since e™ #0 then
A"+a A"+ +a, A+a, =0. (15.4)

Thus if 4 is a root of the algebraic equation (15.4), then the function (15.3) is a
solution of the equation (15.1), and vice versa.

Equation (15.4) is a characteristic equation corresponding to the differential
equation (15.1) with constant coefficients

It is known that the equation (15.4) has n roots with multiplicities taken into
account for each of them. Without going into details of the theory, we formulate
necessary statements.

Theorem 15.1.

I. A particular solution y =e™ of the differential equation (15.1) corresponds
to each simple root A of the equation (15.4).

I1. Partial solutions

A A 1
e, xe”, ..., x" e

corresponds to each real root 4 of multiplicity m >1.
ITI. Two particular solutions

e” sin fx, e” cos fx

corresponds to each pair a £ fi of simple complex conjugate roots.
IV. To each pair o+ fi of complex conjugate roots of multiplicity m>1 2m
particular solutions of the form
e” sin Bx, xe* sin Bx, ..., x""'e** sin Bx,

m—1 _ax
e

e” cos fBx, xe“ cos fx,..., x cos fx.
correspond.

The total sum of all root multiplicities related to equation (15.4) is equal to ».
Therefore according to the Theorem 15.1 a number of partial solutions of the
equation (15.1) is equal to » that is coincides with the order of the equation (15.1).

We denote these partial solutions through y,,...,y, . It can be shown that the obtained

partial solutions are linearly independent and a general solution of equation (15.1) is
given by the formula (15.2).
Example 15.1. The numbers 4, =4,=4, A,,=2+i are the roots of the

characteristic equation. Write a general solution of a corresponding differential
equation.
Solution. In accordance with the statement II of the Theorem 15.1 two

particular solutions y, =e*, y,=xe' corresponds to the roots A,=4. In
accordance with the statement III of the Theorem 15.1 two particular solutions
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y,=e’*cosx, y, =e’*sinx corresponds to the roots A4 =2=%i. A general solution
of the equation is found according to the formula (15.2):

4 4 2 2 :
y=Ce" +Cxe"* +Ce" cosx+C,e”"sinx.

Example 15.2. Find a general solution of the equation

"

y(5)+6y +9y'=0.

Solution. The characteristic equation looks like

A +64°+91=0.
We have

A6 +92= (2" +64° +9)= (27 +3) =0.

This implies that the characteristic equation has a simple real root 4, =0 and

complex conjugate roots A,, =+3i of multiplicity 2. In accordance with the
statements I and IV this differential equation has the linearly independent solutions:

yl = eo‘x = 1, y2 = Sln '\/g-x, y3 = XSIH\/gx)
v, =cos ﬁx, Vs = Xsin \/gx.

A general solution of this differential equation has the form
y(x)=C+C, sin~/3x + C3xsin\/§x +C, cos/3x + Cix cos/3x.

16. SYSTEMS OF DIFFERENTIAL EQUATIONS IN NORMAL FORM

Definition 16.1. The system of differential equations

dx. :
%:fi(t,xl,xz,...,xn) (lzl,n) (16.1)

is called a system in normal form. Here the derivatives of the unknown functions
x, =x, () are represented explicitly.
Definition 16.2. A set of continuously differentiable on / functions x, = ¢, (¢),

i= I,_n such that for all r e/

%:ﬁ(z,col(t),...,(pn(f))
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is called a solution of the system of equations (16.1) in the interval / c R.

Consider one of the methods for solving the systems of differential equations in
normal form. It consists in bringing the system of equations to a single n-th order
equation or several equations of order less than 7.

The scheme is as follows: we differentiate for example the first of the

equations (16.1) successively (n—l) time. We substitute instead derivatives 7;

their values. We have:

%:Fl(t,xl,xz, X))

d;;l =F, (1,x,,%,,...,X,),

................................. (162)
d;;jfl = (6,200, ),

d;tfl =F, (t,x,%,,...,%,)

We define x,,x,...,x, of the first (n—1) equations of the system (16.2).

Substituting these expressions in the last equation, we obtain a differential » -th order
equation
d"x,
dt"

dx, d"'x, j

=F| t,x,, yeres T
dt dt"

Solving this equation we find a solution of the original system of equations.
Example 16.1. Solve the system of equations

dx

— =y’ —cost,
a
b_x

dt 2y

Solution. We differentiate both sides of the first equation:

d’x dy .
=2y—+sint. 16.3
dr’ Y dt (16.3)

From the second equation we have
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2yc;;—y =X. (16.4)
t
Substituting (16.4) into (16.3)one can obtain :
d’x :
i X +sint,
2
‘;f—x:smt. (16.5)
t

We received an inhomogeneous linear equation of the second order with
constant coefficients. Its solution has the structure (11.6). We form the characteristic

equation
A7 —1=0.

It has two real distinct roots A4, =1 and 4, =—1. Hence
x,, =Ce +Ce.
Right-hand side of the equation (16.5) corresponds to the form (14.3).

Therefore, a particular solution of equation (16.5) will be sought in the form (14.4),
where @ =0, =1, a+ fi==+i, k=0, R, and §, are first-degree polynomials:

x = Acost+ Bsint.

We calculate the derivatives:

—

x =—Asint+ Bcost,

—n

x =—Acost—Bsint.
Substitute the values of the function and its derivatives in the equation (16.5):

—Acost—Bsint— Acost— Bsint =sint,
—2Acost—2Bsint =sint.

Equate the coefficients of the trigonometric functions in the left and right sides

of the equation:
cost|—24=0,

sint|-2B =1.
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NN AW~

S O 0

Hence 4=0,B = —%. Therefore,

- l .
X =-——sint.
2

A general solution of the equation (16.5) has the form
t —t 1.
x=Ce +Cse —Esmt. (16.6)

From the first equation of the original system we have

, dx
y- =—+cost.

dt
Differentiating (16.6) we find

ax_ Ce' —Cye" —lcost.
dt 2

Then
1
y'=Ce' - Ce” —Ecost+cost,

|
Y =Ce —Ce + S cost.

QUESTIONS

. What equation is called a differential equation?

. How can we determine an order of a differential equation?

. What is a general solution of a differential equation?

. What is a particular solution of a differential equation?

. Specify Cauchy’s problem for a first order differential equation.

. Give the mechanical illumination of Cauchy’s problem for a second order

differential equation.

. Specify the differential equation with separable variables.

. Specify the linear first order differential equation.

. Specity Bernoulli's differential equation and display the solution techniques.

. Give a definition of the first order homogeneous equation and specify the solution

algorithm.

. How can we reduce an order of a differential equation f (x,)’,»")=0?
12.

13.
14.

How can we reduce an order of a differential equation f(y,y’,»")=0?

Specify an n -order linear homogeneous differential equation.
Specify an n -order linear inhomogeneous differential equation.
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15.
16.
17.
18.
19.
20.
21.
22.

23.
24.

25.
26.

What features have the solutions of a linear differential equation?

Give a definition of function linear dependence and independence.

Write down the Wronskian.

Specify the general solution of a n-order linear homogeneous differential
equation.

Specify the general solution of a nm-order linear inhomogeneous differential
equation.

How does a homogeneous second-order differential equation with constant
coefficients look like?

How can we write a characteristic equation for a homogeneous second-order
differential equation with constant coefficients?

Specify the general solution of a homogeneous second-order equation depending
on the roots of the characteristic equation.

Explain the method of a constant variation.

Specify the function in a right-hand part of an inhomogeneous second-order
differential equation for which we can select a particular solution.

Give a definition of a differential equation system in a normal form.

Specify a solution of a differential equation system.
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Appendix 1

TABLE OF DERIVATIVES

1| €=0 7a.| (€)=t

x'=1 (log u),zllog e-u' (a=const)
2. 8. a u °°

S N (lnu)lzl-u'

3 (u+v—w) =u'+v —-w Ra. »
4 (uv), =u'v+u' 9 (sinu)' =cosu-u'
Aa. (Cv), =Cv' 10, (cosu)l = —sinu-u'

wY  wv—uy r 1 T T
> [;j T 11. (tgu) Teostu oM

C , CV, '__ 1 Ll — 2
5a. (7j - 1 (ctgu) = U = —cosec u-u

u :”_, (arcsinu)lz ! u'
5b. C C 13. 1—1?

a\ _ a1 _ (arccosu)lz— ! u'

6. (u ) =Qu U (a—const) 14. |—

(\/;),= 1 u' (arctgu)lz ! u'
6a. 2 Ju 15, 11

1 ,— Lo (arcctgu)'z— ! u'

6b. ) 16. 1+u
7 (a” ), =a"lna-u' (a = const) 17 (uv ), =vu'" u'+u Inu-v'
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Appendix 2

TABLE OF INTEGRALS

du
du=u+C = |sec’udu=teu+C
1. '[ 9. '[coszu -[ 8
“du= “ C 1 [_du —Icoseczudu——ct u+cC
2. JH a+ e 10. | sin®u B
e du c du u
S =2Ju+C —In|te |+ C
2a.| 1 1. dsmn - %S
e du 1 u
—=——4C =Injtg| —+—|[+C
2b. | J 42 u 12. | ¥ cosu g(Z 4)
du 1 u
—=Inlu|+C =—arcte—+C
3.1 4 | | 1314w +a* a ga
u _ a” dl/l —
4 Ia du 1na+C 13a. Iu2+1—arctgu+C
du 1 u—a
“du=e"+C =—1I1 +C
4a. je u=e 14. '[uz—az 2anu+a
sinudu =—cosu+C I —arcsm +C
5. j 15. Ja?
d :
jcos udu=sinu+C ‘- arcsinu + C
6. 15a. 1— 2
c d
Itgudu:—ln|cosu|+C — % u+Nu'+ta*|+C
7. 16. | - *’uziaz
g Ictgudu:1n|sinu|+C 17 udv uv—J'vdu
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