Обработав представленное в работе однопараметровое изображение листа белой бумаги можно сделать вывод, что применение предложенного метода обработки позволяет улучшить качество зрительного восприятия результата.

Список литературы

- 1. Прэтт У. Цифровая обработка изображений. Кн.1, 2. / Претт У. [пер. с. англ. Д.С. Лебедева] М.: Мир, 1982. 790 с.
- 2. Гонсалес Р. Цифровая обработка изображений / Гонсалес Р., Вудс Р.; [пер. с англ. под ред. П.А.Чочиа]. М.: Техносфера, 2006. –1070 с.
- 3. Шапиро Л. Компьютерное зрение / Шапиро Л., Стокман Дж.; [пер. с англ. А.В. Назаренко, И. Ю. Дорошенко]. М.: Бином, 2006. 752 с.

ИНФОРМАЦИОННАЯ ТЕХНОЛОГИЯ ПРОГНОЗИРОВАНИЯ УРОВНЯ ГРУНТОВЫХ ВОД НА ОСНОВЕ МОДЕЛИ ДРОБНОЙ РАЗМЕРНОСТИ

Л.В. Сарычева

(Украина, Днепропетровск, ГВУЗ «Национальный горный университет»)

Предлагаемая информационная технология прогноза показателя уровня грунтовых вод (УГР) базируется на построении интегро-дифференциальной модели дробной размерности. Источником информации об УГВ являются данные измерений наблюдаемой величины y (в скважинах), сделанные в последовательные моменты времени:

$$y_i^s = y^s(t_i), t_i = i\Delta t, i = 1, 2, ..., N, s = 1, 2, ..., K,$$

где Δt — интервал выборки, N — длина ряда, K — число скважин наблюдения УГР.

Хотя математический аппарат дробного интегро-дифференцирования довольно развит [1, 2], использование его для создания моделей систем начато сравнительно недавно. Дробная производная, в отличие от производной целого порядка, — это нелокальная характеристика функции, она зависит не только от поведения функции в окрестности рассматриваемой точки t, но и от принимаемых ею значений на всем интервале (a, t). Наиболее употребительно интегро-дифференцирование Римана-Лиувилля [1]:

$$D_{a,t}^{\beta}f(t) = \frac{d^n}{dt^n} I_{a,t}^{\beta}f(t) = \frac{1}{\Gamma(n-\beta)} \frac{d^n}{dt^n} \int_a^t \frac{f(\tau)d\tau}{(t-\tau)^{\beta-n+1}},$$

где $I_{a,t}^{\beta}$, $D_{a,t}^{\beta}$ — интегральный и дифференциальный оператор β -го порядка соответственно; β , $a \in \mathbb{R}$, $n-1 < \beta < n$.

Так как временные ряды наблюдений УГВ обладают долговременной памятью, то для прогноза УГВ предлагается использовать дробный дифференциальный оператор.

Информационная технология прогнозирования УГВ включает следующие этапы.

1. Постулирование класса рассматриваемых моделей:

$$\widehat{y} = f(D_{a,t}^{\alpha_i} y, D_{b,T}^{\beta_i} Y),$$

где y(t), Y(t) — показатель УГР, локальный и трендовый соответственно, α_i , β_i — степени производной, i=1,2,...,m, α_i , $\beta_i \in R$. Для численного дифференцирования дробного порядка используется формула [1]:

$$D_{0x}^{\alpha}y(t) \approx \frac{x^{-\alpha}n^{\alpha}}{\Gamma(-\alpha)} \sum_{k=0}^{n-1} \frac{\Gamma(k-\alpha)}{k!} y_k(x), x > 0,$$

$$y_n(x) = y(0), y_{n-1}(x) = y(\frac{x}{n}), ..., y_k(x) = y(x - \frac{kx}{n}), ..., y_0(x) = y(x).$$

2. Структурная идентификация на основе метода группового учета аргументов конкретных подклассов выбранного типа моделей:

$$\widehat{y}(t+1) = \lambda_0 + \sum_{i=1}^m (\lambda_{iy} D_{a,t}^{\alpha_i} y(t) + \lambda_{iy} D_{b,T}^{\beta_i} Y(t)).$$

- 3. Оценка параметров идентифицированных моделей по методу наименьших квадратов, выбор модели минимальной сложности.
- 4. Проверка адекватности модели на реальных данных мониторинга УГВ Днепропетровской области.

Использование рассмотренной информационной технологии прогнозирования УГР на основе модели дробной размерности для большинства скважин наблюдений позволило сделать прогноз УГВ с удовлетворительной точностью, во многих случаях лучше, чем полученный другими методами прогнозирования.

Список литературы

- 1. Васильев В.В., Симак Л.А. Дробное исчисление и аппроксимационные методы в моделировании динамических систем. Киев. НАН Украины. 2008. 256 с.
- 2. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка. Минск: Наука и техника. 1987. 688 с.

ИССЛЕДОВАНИЕ ПРИМЕНЕНИЯ АЛГОРИТМОВ КЛАСТЕРНОГО АНАЛИЗА ДЛЯ ПОВЫШЕНИЯ КАЧЕСТВА МУЛЬТИСПЕКТРАЛЬНЫХ ИЗОБРАЖЕНИЙ

М.В. Толстова, Д.Д. Грищак

(Украина, Днепропетровск, ГВУЗ «Национальный горный университет»)

Кластеризация – это задача разбиения множества объектов на группы, называемые кластерами. Кластеризация является описательной процедурой, она не делает никаких статистических выводов, но дает возможность провести разведочный анализ и изучить "структуру данных".