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Introduction 

 

One of the main problems of the economic development of the state comprises 

underdevelopment, uncertainty and imperfection of the financial system. Current financial 
and economic situation in Ukraine is complicated and ambiguous. Particularly, this 

concerns small and medium enterprises as an important link in managing the state; for them 
the issue of choosing the ways of stabilization, promotion of competitiveness, solvability, 
financial persistence and profitability is still urgent.  

Under current conditions of the development of management concepts and formation 
of efficient technologies of financial management and financial analysis of enterprises, new 

approaches to the improvement of their organization forms, management systems and 
information instruments are of great interest. Every event which reflects inadequate 
changes of the external environment and does not coincide with the goals of an enterprise’s 

development, poses a threat for it and can turn into a management problem in some cases. 
Nowadays, most business process automation systems (OLAP-systems) allow 

obtaining certain analysis reports [9]. However, all of them feature one disadvantage: a 
report type is fixed and, as a rule, requires involving computer programmers and 
automation department employees to change it. 

Answers to the problems defined have been obtained partly in works on mathematical 
economics [1;2]. However, the approaches regarded are not complex and do not consider 

all the variety of market problems within one complex model. This has resulted in the fact 
that research in the economics faces a certain crisis [3;4]. To find a way out of the crisis, it 
is worth developing general mathematical models of the modern market economy and their 

computer simulation [5;6].  Renowned models of Leontiev and von Neumann considerably 

simplify the current reality where tasks of balanced economic growth are mainly solved for 

fixed technologies [10]. The number of market participants is limited and functions of its 
participants such as banks and the state definitely are not determined.   

Models of Valras [5] do not determine apparently strategy-preserving utility functions 

which are to be defined for each consumer. The volume of useful information for market 
participants regarding their developing efficient managerial decision is limited. Some 

modern research studies use optimal control models or game theory to simulate the market 
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economy, but their numerical implementation for the virtual amount of problem space is 
problematic. All this requires the development of new mathematical market models which 
would correspond to the current reality to a greater extent. 

 
 

Research analysis 
 

Section 1 Dynamic model of the market economy with all market participants  

 
Mathematical simulation is one of the main instruments of managing economic 

systems which involves developing methods of solving optimization problems and studying 
the results obtained.   

To consider this issue under conditions of today’s challenges in more detail, it is worth 

introducing a dynamic model of the market economy with all market participants:   raw 
material suppliers, manufacturers, consumers, banks and the state. As opposed to classic 

models, consumers are characterized by a market niche according to a product rather than by 
the strategy-preserving utility function [8]. 

The input data for the mathematical model are as follows: a market participant’s initial 

capital, an initial price, a market niche according to a product, technological matrix, interest 
rate on credits, deposits and securities, budget distribution proportion. The mathematical 

model describes an interaction of all the market participants within a specified amount of real 
time and appears as follows. It is necessary to maximize manufacturers’ returns: 

  

𝑚𝑎𝑥{∑ ∑ (𝑝𝑖𝑦𝑖𝑗 − 𝑠𝑖𝑥𝑖𝑗) + 𝐴1(𝑚) − 𝐵1(𝑚) − 𝐺1 (𝑚) + 𝐻1(𝑚)𝑚
𝑗=1

𝑛
𝑖=1 + 𝑉(𝑚) −

𝑊(𝑚) − 𝑄(𝑚)}                                                                                                     (1) 

under restrictions (suppliers’ income is non-deductible): 

∑ ∑ 𝑠𝑖
0 𝑢𝑖𝑗 ≤ 𝑄0 +𝑘

𝑗=1
𝑁
𝑖=1 ∑ ∑ 𝑝𝑖

0𝑧𝑖𝑗 +𝑘−1
𝑗=1

𝑁
𝑖=1 𝐴0 (𝑘) − 𝐵0(𝑘 − 1) − 𝐺0 (𝑘) +

𝐻0(𝑘 − 1) − 𝑄0 (𝑘)                                                                                                (2) 

manufacturers income is non-deductible 

∑ ∑ 𝑠𝑖𝑥𝑖𝑗 ≤𝑘
𝑗=1

𝑛
𝑖=1 ∑ ∑ 𝑝𝑖

𝑘 −1
𝑗=1

𝑛
𝑖=1 𝑦𝑖𝑗 + 𝐴1(𝑘) − 𝐵1(𝑘 − 1) + 𝑉(𝑘) − 𝑊(𝑘 − 1) −

𝐺1(𝑘) + 𝐻1(𝑘 − 1) − 𝑄1(𝑘)                                                                                   (3) 

consumers’ income is non-deductible 

∑ ∑ 𝑝𝑖𝑦𝑖𝑘 ≤ 𝑃 + ∑ ∑ 𝑜𝑠𝑖𝑥𝑖𝑗 − 𝐴2(𝑘) −𝑘
𝑗=1

𝑛
𝑖=1

𝑘−1
𝑗=1

𝑛
𝑖=1 𝐵2(𝑘 − 1) − 𝐺2 (𝑘) +

𝐻2(𝑘 − 1) + 𝑢(1 + 𝜎)𝑄(𝑘)                                                                                  (4) 

banks' income is non-deductible 

𝐾 + (1 − 𝛽)(−𝐴(𝑘) + 𝐵(𝑘 − 1) + 𝐺(𝑘) − 𝐻(𝑘 − 1) + ∑ ∑ 𝛾𝑠𝑖𝑥𝑖𝑗 +𝑘
𝑗=1

𝑛
𝑖=1

∑ ∑ 𝛾𝑝𝑖𝑦𝑖𝑗 − 𝑀(𝑘) + 𝑂(𝑘 − 1)) ≥ 0𝑘 −1
𝑗=1

𝑛
𝑖=1                                                           (5) 

budget income is non-deductible 

𝑉(𝑘) − 𝑊(𝑘 − 1) − 𝑀(𝑘) + 𝑂(𝑘 − 1) ≤ 𝑅 + 𝑣(1 + 𝜎)𝑄(𝑘)                 (6) 

throughout k = 1,..., m.  
The parameters of the model are:  

n is the number of types of merchandise,  
m is the number of manufacturing cycles,  



 

Q0 is raw material suppliers’ initial capital,  
Q is manufacturers’ initial capital,  
P is consumers’ initial capital,  

K is banks’ initial capital,  
R is the initial capital of the budget,  

xij is the volume of  i goods manufactured over a j period, 
yij is  the volume of i goods realized over a j period,  
si0 stands for expenditures on the production of i goods by suppliers,  

pi0 is the price of suppliers’ i goods,   
si stands for expenditures on the production of i goods,  

pi is the price of i goods,  
Ri is a market niche for i goods,    
A0(k) stands for loans obtained by suppliers from commercial banks over k periods,    

A1(k) stands for loans obtained by manufacturers from commercial banks over k 
periods,  

 
A2(k) stands for loans obtained by consumers from commercial banks over  k periods,  
B0(k) stands for suppliers’ reimbursed loans including the interest over  k periods,  

B1(k) stands for manufacturers’ reimbursed loans including the interest over  k periods, 
B2(k) stands for consumers’ reimbursed loans including the interest over  k periods,  

V(k) the central bank loans obtained by manufacturers over k periods,  
W(k) stands for manufacturers’ reimbursed loans including the interest over  k periods,  
G0(k) stands for deposits delivered to banks by suppliers over  k periods,  

G1(k) stands for deposits delivered to banks by manufacturers over  k periods,  
G2(k) stands for deposits delivered to banks by consumers over  k periods, 
H0(k) stands for deposits returned to suppliers including interest earned over k periods 

(the interest is charged at the end of every period),  
H1(k) stands for deposits returned to manufacturers including interest earned over k 

periods (the interest is charged at the end of every period),   
H2(k) stands for deposits returned to consumers including interest earned over k 

periods (the interest is charged at the end of every period),    

Q0(k) stands for supplier taxes over k periods,  
Q1(k) stands for business taxes over k periods,  

M(k) stands for securities sold by the central bank to commercial banks over k periods,  
O(k) stands for returned securities including interest earned over k periods (the interest 

is charged at the end of every period),       

α is a part of manufacturers’ expenses which return to the market as salaries and 
wages,  

β is a part of commercial banks’ assets which make expenses and reserves,  

 is a part of commercial banks' deductions from account activities,  

 is a part of business profits intended for investment,  

 is a part of the budget made of non-taxable income,  

u is the expenditure (social) budget,  
v is a part of the budget intended as investment. 

The market niche according to a product cannot be overfull during the planning period  

∑ 𝑦𝑖𝑗 ≤ 𝑅𝑖 ,   𝑖 = 1,2, … . . 𝑛𝑚
𝑖=1                                                 (7) 

The market economy operates during a series of m production intervals. The volume of 
goods manufactured regarding each from n goods is defined through a technological matrix A 

of an n×N order with the formula x= Az (or x= (I– А)z) [12]. 



 

The output parameters of the model considered within every production interval are: 
uij – volumes of raw products of i form over a j period,  zij – product supply  to 
manufacturers, production and disposal of goods (xij, y ij), volumes of loans, deposits, 

securities, budget income and expenditure.   
 

Section 2  Equilibrium in the system with limited resources  
 
Up to now we have considered the behaviour of two subjects of the economy, the 

consumer and the manufacturer, being isolated. Now it is worth analysing their interaction 
within a larger structure, namely, the market. The interaction of subjects leads to the concept 
of balance. To a wide extent, the equilibrium, when subjects with diverging interests interact, 

is the condition of the system (in politics or economics) which suits all its participants in the 
absence of better conditions. For particular cases, more specific definitions of equilibrium 
notion are given.  

Let us assume that the system has a few participants with diverging interests. The 
implementation of each participant’s objectives depends on both their activities and those of 
other participants. Moreover, the participants operate regardless of one another and do not 

exchange the information on predictable actions. As a result, each participant should assume 
that other participants of the process operate properly regarding themselves. In this case, the 
system state is balanced when deviation of any participant from the system with permanent 

behaviour of the others deteriorates their own state. This is the definition of equilibrium by 
Nash. A particular case of equilibrium for two participants with divergent interests according 
to Nash is saddle-node equilibrium. This concept is widely used in the game theory, which is 

within a range of interests of one of economic and mathematical disciplines, which is 
operations research [8]. 

If the participants of the process, whose interests do not coincide, can exchange the 

information on predictable actions, the equilibrium can emerge as a result of the following 
situation: one participant’s information on their predictable actions, which do harm to other 
participants, meets corresponding information on predictable counteracting and this makes 

the participant refrain from any actions. Such equilibrium often occurs in politics.                        
Regarding market models, equilibrium means equation of product demand D and 

supply S at a certain price p*. The corresponding price is called an equilibrium price. The 

mathematical expression of equilibrium is 

𝐷(𝑝∗) = 𝑆(𝑝∗)                                                                   (8) 

The graphic illustration of this definition (providing goods are regular) is given in 
Fig.1. 

 
Fig.1. Equation of demand and supply 

The equilibrium price р* is defined influenced by factors of production and 

consumption. On the part of the manufacturer, it is influenced by considerable production 
expenditures; on the part of the consumer, it is influenced by the consumer’s income and 

comparative utility of goods. To the widest extent possible, equilibrium is any condition 



 

when excess demand E = D – S is not positive: 
 

D - S ≤0.                                                                                 (9) 

The problem considered describes a process of manufacturing goods through the use of 

the supply functions upon which considerable constraints are imposed. To consider a more 

complex economic structure which takes limited resources of production into account, it is 

necessary to become acquainted with a new class of mathematical optimization problems. Let 

us consider a problem of convex programming. Its description is as follows. 

It is necessary to maximize a concave function of N variables 

𝑓(𝑥1,𝑥2,… . , 𝑥𝑗,… . , 𝑥𝑁) → 𝑚𝑎𝑥                                     (10) 

Under the following conditions: 

1) all variables xj ≥0; 
2) inequality gi(x1, x2, …, xN) ≥0, (i = 1, 2,…, М) is fulfilled; 

3) all the functions gi are concave. 
Let us remind that a function is concave if the second derivative is strictly negative 

almost everywhere (for functions with several variables, second derivatives are negative 
throughout all the arguments). 

Essential and sufficient conditions of solving this problem are defined by Kuhn-
Tucker theorem: 

To make the point (vector) x* = (x1*, x2*, …, xN*) the solution of the problem of 

convex programming, it is necessary and sufficient to have such a point (vector) u* = (u1*, 
u2*, …, ui, …, uM), that a couple of points x*, u* can create a nonnegative saddle point of 
the Lagrange function   

𝐿(𝑥, 𝑢) = 𝑓(𝑥) + ∑ 𝑢𝑖𝑔𝑖(𝑥)𝑀
𝑖=1                                                     (11) 

This means that provided deviation of any constituent of the vector x from the given 
point, the function L(x, u) decreases, while the deviation of any constituent of the vector x 
from the same given point increases: 

𝐿(𝑥, 𝑢∗ ) ≤ 𝐿(𝑥 ∗,𝑢∗ ) ≤ 𝐿(𝑥 ∗,𝑢)                                                   (12) 

To find a saddle point of the Lagrange function, various iteration algorithms are 
applied (algorithms of progressive approximation). The economic model applies the 
algorithm (model) of Arrow-Gurvits. The procedure is conducted through steps and at every 
(1+1)-step the values of unknown variables xj and parameters ui are defined through the 

previous values of these variables (at 1-step) through the formulas:  

(𝑥𝑗)𝑖=1 = 𝑚𝑎𝑥 {0; (𝑥𝑗)𝑖 + 𝛼𝑗 [(
𝜕𝑓

𝜕𝑥𝑗
)𝑙 + ∑ (𝑢𝑖)𝑙(

𝜕𝑔𝑖

𝜕𝑥𝑗
)𝑀

𝑖=1 ]}                (13) 

 
(𝑢𝑖)𝑙+1 = 𝑚𝑎𝑥{0; (𝑢𝑖)𝑙 − 𝛽𝑖𝑔𝑖(𝑥𝑙) }                                              (14) 

 

The positive parameters αj and βi are called adaptation parameters and should be 
selected as relatively small; otherwise the search process will lose its stability. The end of 
search occurs when the difference of the determined values of variables xj and parameters ui 
from the previous ones becomes sufficiently small. The main variants of the finishing 
condition are:  

∑ [(𝑥𝑗)𝑙+1 − (𝑥𝑗)𝑙]
2

< 𝜀𝑁
𝑗=1                                                             (15) 

or 



 

𝑚𝑎𝑥𝑗|(𝑥𝑗)𝑙+1 − (𝑥𝑗)𝑙| < 𝜀                                                             (16) 

where  is  a small quantity selected in advance. 
The vector x obtained in the course of evaluation determines the solution to the 

problem, while the vector components characterize relative importance of the problem 
restriction.  

It is worth mentioning that regarding the problem under analysis, the algorithm of 
Arrow-Gurvits is an algorithm of “trying” the optimal resolution [11].  

Let us consider a complicated economic system consisting of a consumer sector, a 

producing sector and a resource sector. 
We assume that N of goods (amenities) are traded on the market. The set of these 

goods х = (х1, х2, …, хj, …, xN) is described with a single strategy-preserving utility 
function 

𝑈(𝑥1,𝑥2, … 𝑥𝑗,… , 𝑥𝑁)                                                                      (17) 

The structure of the producing sector is as follows. Goods are produced by a certain 
manufacturer to the number of yj (j= 1, 2, …, N). The level of production is defined with the 
production function  

𝑦𝑗 = 𝑓𝑗(𝑟𝑗1, 𝑟𝑗2,… , 𝑟𝑗𝑘 ,… , 𝑟𝑗𝐾),    (𝑗 = 1,2, … , 𝑁)                   (18) 

where rjk stands for k-input requirements (k = 1,2, …, K) for manufacturing j-products 
(goods). 

The structure of the resource sector is described with volumes of Rk resources 
intended to be used in the producing sector. Obvious restrictions are imposed on the resource 
usage   

∑ 𝑟𝑗𝑘 ≤ 𝑅𝑘 ,   (for all 𝑘)𝑁
𝑗=1                                                (19) 

The equilibrium position (to a wide extent) is defined as the following proportion 
between demand x and supply y simultaneously for every product:  

𝑥𝑗 ≤ 𝑦𝑗 ,     (𝑗 = 1,2, … , 𝑁)                                                     (20) 

It is necessary to find such values of consumption xj with which the single strategy-
preserving utility function U(x) will be highest and both conditions of limited resources and 
equilibrium conditions (19) will be fulfilled. Considering (17) we get the following 
mathematical notation of the problem 

𝑈(𝑥1,𝑥2, … , 𝑥𝑁) → 𝑚𝑎𝑥                                                          (21) 

under the condition 

𝑓𝑗(𝑟𝑗) − 𝑥𝑗 ≥ 0, 𝑗 = 1,2, … , 𝑁, 

𝑅𝑘 − ∑ 𝑟𝑗𝑘 ≥ 0,

𝑁

𝑗=1

 𝑘 = 1,2, … , 𝐾 

𝑥𝑗 ≥ 0,    𝑟𝑗𝑘 ≥ 0                                  (22) 

It is easy to see that the given problem is a particular case of convex programming 

problem. The strategy-preserving utility function U acts as the target function f in this case, 
while the constraint function gi can be expressed as follows  

𝑔𝑗̅̅̅ = 𝑓𝑗(𝑟𝑗) − 𝑥𝑗                                                                 (23) 

and 

𝑔𝑘̿̿ ̿ = 𝑅𝑘 − ∑ 𝑟𝑗𝑘
𝑁
𝑗=1                                                          (24) 



 

Then the Lagrange function for this problem looks as follows  

𝐿(𝑥, 𝑝, 𝑤) = 𝑈(𝑥) + ∑ 𝑝𝑗[𝑓𝑗(𝑟𝑗) − 𝑥𝑗] + ∑ 𝑤𝑘(𝑅𝑘 − ∑ 𝑟𝑗𝑘)𝑁
𝑗=1

𝐾
𝑘 =1

𝑁
𝑗=1    (25) 

This function contains two vectors of the Lagrange multipliers. The components of the 
vector p = (p1, p2, …, pj, …, pN) have a meaning of optimum prices for different products. 
The components of the vector w = (w1, w2, …, wk, …, wK) correspond to the evaluation of 
the resources used in the production, namely, material, or raw material, resources (then wk is 
the price on a raw material item), labour, or human, resources (then wk is the rate of 
remuneration), financial (then the corresponding argument assigns evaluation of the cost of 
capital services – bank interest rate) etc. The rjk values – k-resource expenses for output of j-
products – make an extra group of the auxiliary unknown.  

The iterative formulas for search of the optimal market parameters in this case look as 
follows 

(𝑥𝑗)𝑙+1 = 𝑚𝑎𝑥 {0; (𝑥𝑗)𝑙 + 𝛼𝑗 [(
𝜕𝑈

𝜕𝑥𝑗
)

𝑙

− (𝑝𝑗)𝑙]}                          (26) 

(𝑟𝑗𝑘)𝑙+1 = 𝑚𝑎𝑥 {0; (𝑟𝑗𝑘)𝑙 + 𝛽𝑗𝑘 [(𝑝𝑗)𝑙 (
𝜕 𝑓𝑗

𝜕 𝑟𝑗𝑘
)

𝑙

− (𝑤𝑖)𝑙] }            (27) 

(𝑝𝑗 )𝑙+1 = 𝑚𝑎𝑥{0;  (𝑝𝑖)𝑙 − 𝛾𝑗 [(𝑓𝑗(𝑟𝑗))𝑙 − (𝑥𝑗)𝑙]}                           (28) 

(𝑤𝑘)𝑙+1 = 𝑚𝑎𝑥{0; (𝑤𝑘)𝑙 − 𝛿𝑘[𝑅𝑘 − ∑ (𝑟𝑗𝑘)𝑙
𝑁
𝑗=1 ]}                        (29) 

This iterative process quite precisely simulates the market mechanism of achieving the  

equilibrium by varying volumes of demand for goods (amenities) and resources as well as the 
values of corresponding prices. Certain steps of the iterative process correspond to selling 
days.  

    
Section 3. Neural networks – intensification of managing the process of decision 

making 
 
According to the foreign and domestic experts in the field of simulating financial 

markets, there are over 100 methods of forecasting the indicators of dynamics of the 
processes which occur in the financial market.   

The number of the basic prognostics methods which can be found in one form or 
another in other methods is much smaller. Many of these “methods” refer rather to particular 
techniques or procedures of forecasting, others present a set of particular techniques which 

differ from the basic ones or one from another in the number of special techniques and  
subsequence of their usage.  

The neural networks are mathematical models as well as their software 
implementation built on the principle of organization and functioning of biological neural 
networks – the networks of neuronal cells of a living organism. This concept appeared when 

the processes occurring in the brain were studied and an attempt was made to simulate these 
processes. The neural networks of McCulloch and Pitts became the first attempt of the kind 

[7;10]. Later after the development of learning algorithms, the models were used for practical 
purposes: in forecasting problems, pattern identification, in management problems, etc. Most 
concepts which refer to neural networks methods are best explained in terms of particular 

neural network software. Thus, it is worth considering the ЅТАТІЅТІСА Nеurаl Nеtwоrks 
package (abbreviated, ST Nеurаl Nеtwоrks, a neural-network pack of StаtSоft company), 

which is realization of all the range of neural-network methods of data analysis. The recent 
years have witnessed burst of interest in neural networks which are successfully implemented 



 

in various spheres including business, medicine, engineering, geology, physics, etc. The 
neural networks have come into practice almost everywhere where problems of forecasting, 
classifying or managing are to be solved. Such tremendous success is defined by a number of 

reasons: 
- neural networks are an exceptionally powerful method of modelling which allows 

simulating extremely complicated dependencies. In particular, neural networks are  nonlinear 
in their nature (this concept is explained in detail further in the section). Linear modelling is 
one of the main simulation methods in most areas, since procedures of optimisation have been 

well developed for it. In tasks where linear approximation is unsatisfactory (there are quite a 
lot of them), linear models work badly. 

- neural networks are studied via examples. A neural network user puts representative 
data together and then runs the learning algorithm which recognises the data structure 
automatically. At the same time a user is supposed to have certain heuristic knowledge of how 

to select and then prepare data, to choose required architecture in the networks and interpret 
the results; however, knowledge level required for successful implementation of neural 

networks can be lower than that required for the use of conventional statistical techniques.  
- neural networks are attractive a tentative point of view, since they are based on the 

primitive biological model of nervous systems. In the future, the development of such neural 

biological models can result in creation of virtually thinking computers. Meanwhile, “simple” 
neural networks, which the ST Nеurаl Nеtwоrks system develops, are powerful tools for an 

expert in applied statistics [7]. Apart from this, the network may have even more intermediate 
(hidden) neurons which fulfil internal functions. Input, hidden and output neurons are to be 
interconnected. The key question here concerns inverse relationship. 

 The simplest network has a structure of direct signal transmission: signals come from 
the inputs through the hidden elements and finally come to the output elements. This structure 
features stable behaviour. If the network is recurrent (i.e. it has connections that allow 

conveying information to the farthest neurons), it can be unstable and have complicated 
dynamics of behaviour [15]. The recurrent networks are of great interest for researchers in the 

field of neural networks; yet while solving practical problems, at least up to now, the 
structures of direct transmission have appeared to be the most useful and this particular kind 
of neural network is simulated in the ST Nеurаl Nеtwоrks package.  

The networks in which neurons are connected only with the neurons of the previous 
level could also be considered. However, the networks with a complete system of connections 

are better for most applications; thus, the ST Nеurаl Nеtwоrks package implements these 
networks. 

When the network is operating (being used), values of input variables are sent to the 

input elements and then, consequentially, the neurons of the intermediate and output levels 
work out. Each of them calculates its activation value taking the weighted sum of outputs of 

the elements of the previous level and subtracting the threshold value from it. Then, the 
activation values are converted by the activation function and, as a result, a neuron output 
occurs. After the whole network works off, the output values of the output level elements are 

assumed to be the output of the whole network. 
There is another important condition of implementing the neural networks: it is 

essential to know (or at least have a strong suspicion) that there is a certain connection 
between acquainted input values and unknown outputs.  

This connection can become noisy (hardly anyone can expect an absolutely accurate 

forecast to be developed based on data examples of stock price forecasting, since the price can 
be influenced by other factors not presented in the input data set; moreover, the problem has 

an element of randomness), but it is to be available.  



 

As a rule, the neural network is applied when the precise connection between inputs 
and outputs is unknown; if it was known, the connection could be simulated directly. Another 
essential peculiarity of the neural networks is the dependence between the input and output in 

the process of training networks. To train the neural networks two types of algorithms are 
used (different networks use different types of training): supervised learning (“learning with a 

teacher”) and unsupervised learning (“without a teacher”). Learning with a teacher is used 
more frequently [12;14].  

To apply to the supervised learning, a user should prepare a set of learning data. These 

data are examples of input data and corresponding outputs. The network trains to establish 
connections between them. As a rule, the learning data are taken from historical intelligence. 

Then the neural network is learnt through a particular algorithm of the supervised learning 
(the back propagation technique is the most well-known algorithm) when available data are 
used to correct demerits and threshold values of the network to minimize forecast errors.   

If the network is trained well, it gains an ability to simulate a (unknown) function 
which connects values of input and output variables and later this network can be applied for 

forecasting in situations when output values are unknown.  
If a problem is to be solved with a neural network, it is necessary to collect data for 

training. The training data set is a set of observations for which values of input and output 

variables are denoted. The first issue to be solved is which variables are to be used and how 
many (and which) observations to collect. 

The selection of variables (at least the initial one) is done intuitively. The relevant 
experience in this field helps to decide which variables are important. Working with the ST 
Nеurаl Nеtwоrks package, it is possible to select variables arbitrarily and deselect them. 

Moreover, the ST Nеurаl Nеtwоrks system itself is able to select useful variables by test. To 
begin with, it is worth including all the variables which, in an analyst’s point of view, can 
affect the result.  

The neural networks can work with numeric data which are within a certain limited 
range. This causes problems when the data are of non-standard scale, when they have missing 

values and when the data are non-numeric. The ST Nеurаl Nеtwоrks package has 
arrangements which allow coping with all these difficulties. The numeric date are scaled 
within the relevant range, and missing values can be replaced by average values (or by other 

statistics) of this variable according to all the instructional samples available.  
The issue concerning the number of observations required to train the network often 

appears to be a difficult one. A distinguished set of heuristic rules which connect the number 
of the observations needed with network sizes (the simplest one testifies that the number of 
observations should be ten times as great as the number of links in a network). In fact, this 

number also depends on (unknown in advance) the degree of complexity of denotation of an 
item which the network is trying to simulate. With quite a small (for instance, fifty) number of 

variables, an abundance of observations may be needed.  
For most real-world problems a few hundreds or thousands of observations provide a 

sufficient number. For especially difficult tasks, even a larger number can be required 

whereas tasks for which fewer than a hundred observations can be sufficient hardly ever occur 
(even trivial ones). If there are fewer data, there is not enough information to train the 

network, and the best thing that can be done is to adjust a certain linear model to the data. The 
ST Nеurаl Nеtwоrks package actualizes methods of adjusting linear models.   



 

 
Fig.2. Time forecast in months till market equilibrium advent  

 
In most real-world problems one has to deal with data which is not entirely 

indubitable. Values of certain variables can become noisy or partially missing. The ST Nеurаl 
Nеtwоrks have special methods of working with missing values (as it has been mentioned 
above, they can be replaced by average values of this variable or by its other statistics). If 

there are not so many data, cases with missing values can be taken into consideration. Apart 
from this, neural networks are usually resistant to noise. However, the resistance is limited 

[13].   
For example, drops, i.e. values which are far from the area of ordinary values of a 

certain variable, can misrepresent training results.  In such situations it is necessary to find out 

and remove these drops (either by removing relevant observations or converting drops into 
missing values). If it is difficult to find out drops, one can use the means available in the ST 

Nеurаl Nеtwоrks package to make the training process resistant to drops; however, such 
training which is resistant to drops is, as a rule, less efficient than ordinary training.     

 

 
Conclusions 

 

The article suggests a conception of a complex of mathematical simulations to 

evaluate instruments of regulating the development of small business and making 

management decisions regarding the issues of small business development.  

The functioning practice of small and medium-size businesses requires an efficient 

mechanism which will contribute to solving complicated business problems. That is why 

implementation of conceptual issues of the developed methods and recommended advanced 

information technologies which can assist in solving current issues is essential.  

The approach suggested regards simulation of functioning and development of small 

enterprises under conditions of uncertainty caused by factors of different nature. It is based on 

a system paradigm and considers rational and adaptive mechanisms of formation of 

enterprises’ expectations regarding future factors of market conditions and the process of 

making management decisions on the basis of system characteristics.  

The article substantiates practicability of applying a combination of fuzzy and 

stochastic measures of uncertainty in simulating the dynamics of key indicators of a small 

               actual data 

data obtained neural network     
simulation  



 

enterprise’s functioning under conditions of uncertainty which has a complicated structure. It 

will allow obtaining economic effect both at the regional and nationwide levels. 
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