УДК 553.493/494:622.7.017

А.А. ПЕРВУНИНА

(Украина, Днепропетровск, Национальный горный университет)

ЗАВИСИМОСТЬ ИЗВЛЕЧЕНИЯ ОСНОВНЫХ МИНЕРАЛОВ ОТ ИХ СОДЕРЖАНИЯ В ТИТАНОЦИРКОНИЕВЫХ РУДАХ МАЛЫШЕВСКОГО МЕСТОРОЖДЕНИЯ

В настоящее время филиал "Вольногорский горно-металлургический комбинат" ЗАО "Крымский титан" осуществляет добычу титано-циркониевых песков на Восточном участке Малышевского месторождения.

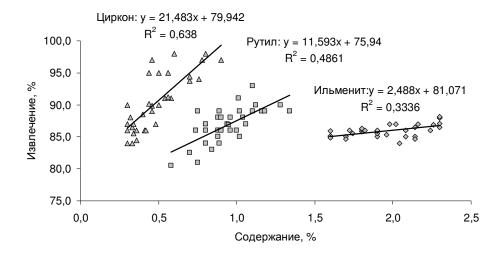
В настоящее время, в соответствии с проектом, обогатительная фабрика выпускает три основных концентрата – цирконовый, рутиловый и ильменитовый, попутные – ставролитовый и дистен-силлиманитовый.

Массовая доля минералов тяжелой фракции (минералы с удельным весом более 2.9 т/m^3) в руде в естественном залегании колеблется от 2 до 20% (чаще 5-6%). В состав тяжелой фракции входят: ильменит (35-45%); рутил и лейкоксен (13-18%), циркон (8-16%), дистен и силиманит (15-25%), ставролит (10-15%), турмалин (2-4%), хромит (1-3%) [1].

По геологическим данным известно, что ожидается постоянное уменьшение содержания тяжелой фракции и снижение крупности зерен минералов как на Восточном участке, так и на других, планируемых к разработке, участков Малышевского месторождения.

Вместе с тем, изменяющиеся условия добычи рудных песков, а в особенности их вещественный и гранулометрический состав, требуют изучения зависимости показателей извлечения основных минералов от их содержания в титаноциркониевых песках Малышевского месторождения.

Рассмотрим таблицу, в которой по данным технических отчетов обогатительного производства и результатам генеральных опробований показаны извлечения основных минералов от их содержания в рудных песках.


Циркон		Рутил		Ильменит	
Содержание,	Извлечение,	Содержание,	Извлечение,	Содержание,	Извлечение,
	%	%	%	%	%
1	2	3	4	5	6
0,3	90,0	0,6	80,5	1,6	85,0
0,3	87,0	0,7	82,5	1,6	85,9
0,3	86,0	0,8	81,0	1,6	85,1
0,3	84,0	0,8	89,0	1,6	84,8
0,3	88,0	0,8	87,0	1,7	85,0
0,3	86,5	0,8	86,0	1,7	84,7
0,3	84,0	0,8	84,0	1,7	86,0
0,3	87,0	0,8	83,0	1,7	85,5
0,3	85,5	0,9	88,0	1,8	85,8
0,4	86,0	0,9	86,0	1,8	86,1
0,4	84,5	0,9	85,0	1,8	86,0

Збагачення корисних копалин, 2011. – Вип. 47(88)

Загальні питання технології збагачення

		Продолжение таблицы			
1	2	3	4	5	6
0,4	88,5	0,9	89,0	1,8	86,3
0,4	86,0	0,9	84,0	1,9	85,0
0,4	86,0	0,9	86,0	1,9	85,5
0,4	90,2	0,9	88,0	1,9	85,9
0,4	95,0	0,9	87,0	1,9	86,0
0,5	89,0	1,0	86,0	2,0	85,3
0,5	87,0	1,0	86,0	2,0	87,0
0,5	90,0	1,0	89,0	2,0	87,0
0,5	91,0	1,0	88,0	2,0	84,0
0,5	97,0	1,1	87,0	2,1	85,0
0,5	89,9	1,1	89,0	2,1	86,0
0,5	95,0	1,1	90,0	2,1	86,5
0,6	91,0	1,2	89,0	2,1	85,0
0,6	95,0	1,2	89,0	2,1	84,7
0,6	98,0	0,7	86,0	2,2	87,0
0,6	91,2	1,0	91,0	2,2	86,0
0,7	93,7	1,0	88,0	2,3	86,5
0,7	94,4	1,1	93,0	2,3	87,1
0,8	97,0	1,0	85,0	2,3	86,9
0,8	94,0	1,3	90,0	2,3	88,0
0,8	98,0	1,3	89,0	2,3	87,9
0,9	97,0	0,9	86,9	2,3	88,1

На рисунке представлена зависимость извлечения основных минералов от их содержания в рудных песках (по данным технических отчетов и опробований).

Извлечение основных минералов от их содержания в рудных песках (по данным технических отчетов и опробований)

Обработка представленной в таблице информации позволила установить количественную взаимосвязь извлечений основных минералов в соответствующие концентраты от их содержания в рудных песках:

Збагачення корисних копалин, 2011. – Вип. 47(88)

- извлечение ZrO₂ в цирконовый концентрат:

$$\varepsilon_{\scriptscriptstyle uup\kappa o ha} = 21,483\alpha_{\scriptscriptstyle uup\kappa o ha} + 79,942\;,\;\%;$$

– извлечение TiO₂ в рутиловый концентрат:

$$\varepsilon_{pymuna} = 15,593\alpha_{pymuna} + 75,94, \%;$$

– извлечение TiO₂ в ильменитовый концентрат:

$$\varepsilon_{u,b,m} = 2,488\alpha_{u,b,m} + 81,071, \%,$$

где α – содержание минералов в рудных песках, %.

Выявленные закономерности показывают устойчивую тенденцию снижения извлечений циркона, рутила и ильменита при уменьшении содержания указанных минералов в рудных песках [2].

Для обеспечения и в дальнейшем надлежащей эффективности технологии обогащения на Вольногорском ГМК необходимо иметь алгоритм адаптации технологических режимов к изменениям, происходящим в составе титаноциркониевой руды при ее добыче.

Чтобы поддержать производство хотя бы на достигнутом уровне необходимо определить закон изменения сепарационных характеристик процессов обогащения и технологической схемы в целом на основе создания их математических моделей с учетом состава материала, что проходит разные стадии перечистки. Полученные математические зависимости дадут возможность спрогнозировать качественно-количественные показатели обогащения выпускаемых концентратов на ВГМК – выход, содержание и извлечение.

Обоснование топологии схемы обогащения в зависимости от технологических задач, усовершенствование технологии обогащения титаноциркониевых песков даст возможность расширить сырьевую базу ВГМК и продлить срок его работы.

Таким образом, результаты исследовательской работы позволят адаптировать функционирование обогатительной фабрики к условиям изменения состава и свойств руды вследствие освоения новых участков Малышевского месторождения, в частности Матроновского участка.

Список литературы

- 1. Полькин С.И. Обогащение руд и россыпей редких и благородных металлов: Учебник для вузов. 2-е изд., перераб. и доп. М.: Недра, 1987. 428 с.
- 2. Пилов П.И., Вершинина Н.М., Краснопер В.П. Взаимосвязь показателей обогащения титано-циркониевых песков с содержанием тяжелых минералов // Збагачення корисних копалин: Наук.-техн. зб. -2009.— Вип. 38(79).— С. 3-9.

© Первунина А.А., 2011

Надійшла до редколегії 08.12.2011 р. Рекомендовано до публікації д.т.н. І.К. Младецьким