УДК 622.7

В.Ф. НЕЛЕПОВ Л.Г. ШЕВЧЕНКО (Украина, г. Луганск, ГП «Укрнииуглеобогащение») П.П. НОВИКОВ (Украина, Донецк, ЦОФ «Киевская»)

РЕЗУЛЬТАТЫ РАЗРАБОТКИ ТЕХНОЛОГИЧЕСКОГО РЕГЛАМЕНТА ЦОФ «КИЕВСКАЯ»

Технологические регламенты углеобогатительных фабрик разрабатываются на основании утвержденного Министерством угольной 10.1-00185755-004:2006 СОУ «Типовой стандарта промышленности технологический регламент углеобогатительного предприятия» и является нормативной технологической документацией, в соответствии с которой регламентируется технология обогащения угля на данной обогатительной фабрике и подтверждается целесообразность принятых технических решений, повлекших за собой отклонения действующей технологической схемы от проектной.

Исходя из вышеизложенного, головной институт отрасли по технологии обогащения и брикетирования углей Укрнииуглеобогащение совместно с ЦОФ «Киевская» АП шахты им. А.Ф. Засядько разработал в 2007 году технологический регламент фабрики. В основу разработки технологического регламента использованы данные комплексного опробования технологической и водно-шламовой схем фабрики и ее сырьевой базы, проектная и действующая технологическая документация, режимные карты оборудования и технические условия на выпускаемую продукцию.

Анализ работы фабрики показал, что ее сырьевая база и технологическая схема за период эксплуатации изменялись и в настоящее время существенно отличаются от проектной. Изменения сырьевой базы фабрики связаны с уменьшением или увеличением добычи угля на шахте им. А.Ф. Засядько.

Изменения гранулометрического и фракционного составов рядовых углей сырьевой базы ЦОФ «Киевская» за весь период ее работы представлены в

16,55% (в 2007 г.).

Таблица 1 Гранулометрический состав рядового угля

Класс	1959 год		1967 год		1986 год		1994 год		2007 год	
крупности, мм	Выход ү, %	Зольно сть A ^d , %	Выход ү, %	Зольно сть A ^d , %	Выход ү, %	Зольно сть A ^d , %	DITTO	Зольно сть A ^d , %	Выход ү, %	Зольно сть A ^d ,
13-100	48,3	13,4	49,2	19,5	25,4	60,7	31,0	57,8	25,4	60,02
1-13	45,2	12,4	37,9	17,2	51,0	27,8	49,5	24,1	49,3	35,45
0-1	6,5	22,0	12,9	14,3	23,7	15,3	19,5	18,2	25,3	16,55
ИТОГО	100,0	13,5	100,0	18,0	100,0	33,2	100,0	33,4	100,0	36,91

Фракционный состав рядового угля

Таблица 2

Плотность	1959 год		1967 год		1986 год		1994 год		2007 год	
фракций	Выход ү, %	Зольно сть A ^d , %	Выход ү, %	Зольно сть A ^d , %	Выход ү, %	Зольно сть A ^d , %	Выход ү, %	Зольно $\text{сть } \mathbf{A}^{\mathbf{d}},$	Выход ү, %	Зольно сть A ^d , %
-1500	80,2	3,8	78,6	4,7	41,7	4,0	46,1	4,8	36,68	4,73
1500-1800	2,0	39,9	2,9	33,0	1,6	32,9	2,1	30,9	2,04	29,75
+1800	11,3	72,9	15,1	76,4	33,0	83,0	32,3	83,5	35,98	84,45
ИТОГО	93,5	12,9	87,1	18,5	76,3	38,8	80,5	37,1	74,70	43,81
Класс 0-1 мм	6,5	22,0	12,9	14,3	23,7	15,3	19,5	18,2	25,30	16,55
ВСЕГО	100,0	13,5	100,0	18,0	100,0	33,2	100,0	33,4	100,00	36,91

Из табл. 2 видно, что выход легких фракций (-1500 кг/м 3) в рядовом угле уменьшился и составил 80,2% по проекту и 36,7% в 2007 г., при незначительном увеличении зольности с 3,8% по проекту и 4,7% в 2007 году.

Выход промежуточных фракций остался на том же уровне в пределах 2,0%, при этом зольность уменьшилась с 39,9% по проекту до 29,75% в 2007 г.

солержание тяжелых фракций (+1800 кг/м³) увеличилось и составило

стоимости флотореагентов и электроэнергии, а также на отделение обогащения первичных шламов методом сепарации. Для сокращения дополнительных нагрузок мелких классов и их влияние на отсадку, связанное с засорением и потерями их с отходами, был предложен отсев класса 0-3 мм при сухой подготовительной классификации на 1-ой секции фабрики.

Из класса 0-3 мм контрольной классификацией выделен класс +2 мм, в качестве исходного продукта на мелкую отсадку и класс 0-2 мм направленный на обогащение в конусные сепараторы.

Аналогичные реконструктивные работы проводятся по предварительной сухой классификации по 2-ой секции фабрики и установки дополнительных гидроциклонов ГЦ-630 для сгущения первичных шламов конусных сепараторов, обезвоживающих центрифуг и другого вспомогательного оборудования.

В процессе разработки технологического регламента на основе данных комплексного опробования технологической схемы, проведенного в апреле 2007 года сотрудниками ГП «Укрнииуглеобогащение», был выполнен расчет сводного баланса продуктов обогащения (табл. 3) и качественно-количественной и водно-шламовой схемы фабрики (рис. 1).

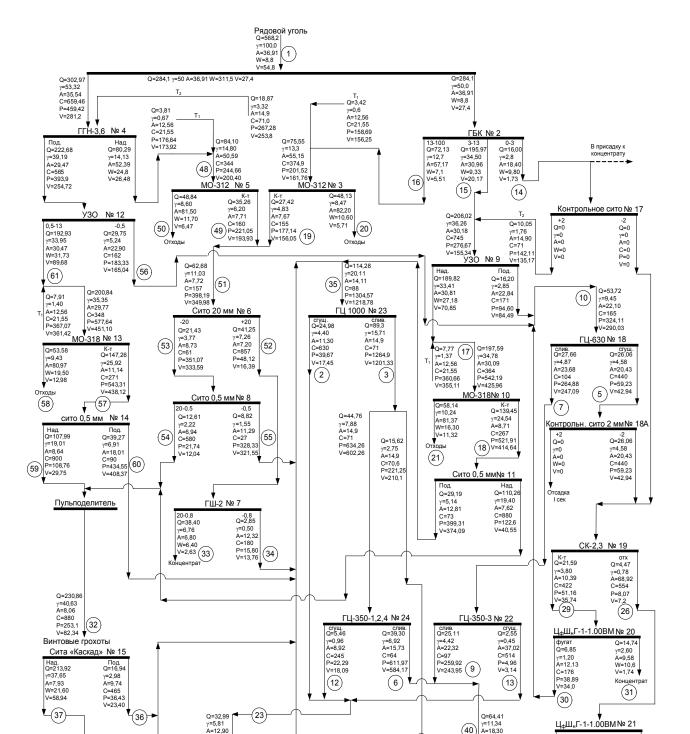

Сводный баланс продуктов обогащения

Таблица 3

	Показатели					
Наименование продукта	Нагрузка Q , т/час	Выход к рядовому углю $^{\gamma}$ $_{p.y.}$, $\%$	Зольность A ^d , %	Общая влага W ^r _{, %}		
Концентрат кл.+20 мм	38,4	6,76	6,8	6,4		
Концентрат кл.0-20 мм	205,77	36,21	7,81	7,55		
Концентрат сепарации	14,74	2,60	9,58	10,6		
Вторичный шлам	23,93	4,21	11,8	11,8		
Флотоконцентрат	46,27	8,14	6,8	25,2		
Отсев рядового угля						
кл.0-3 мм	16,0	2,82	18,4	9,8		
ИТОГО концентрата	345.11	60.74	8.40	10.32		

влажности (до 7,55%) при отсутствии сушки.

Зольность мелких отходов отсадки при этом составила, соответственно, по 1-ой и 2-ой секциям 81,37% и 80,97% аналогично по крупной 82,2% и 81,5%.

счет отсева класса 0-3 мм в рядовом угле при сухой классификации, а, следовательно, и засорение меньше в отходах мелкими классами в процессе отсадки.

Рассматривая первичный шлам, проходящий перед обогащением контрольную классификацию на сите щелью 2 мм (условия по технологии), и затем класс 0-2 мм обогащается на сепараторе, с которого получаем жидкие продукты - концентрата и отходы, после обезвоживания которых зольность и влажность определились, соответственно, 9,6-10,6% и 72,5-16,5%.

Класс +2 мм в качестве исходного продукта направляется на отсадку.

При комплексном опробовании класс 0-3 мм (отсев) был направлен в присадку к мелкому концентрату, поскольку его зольность (18,4%) и влажность (9,8%) в смеси с концентратом выходил на нормативные показатели.

Вторичный шлам (сгущенные продукты гидроциклонов ГЦ-1000 и ГЦ-350) после обезвоживания по анализам зольности и влажности составил на уровне 11,8% при содержании твердого в фугате 215 г/л.

Влажность флотоконцентрата, структура осадка которого содержит повышенное количество тонких классов, после обезвоживания составила 25.2%. повышенное содержание влаги компенсировалось составляющими продуктами мелкого концентрата с меньшей влажностью.

Показатели отходов флотации после сгущения и обезвоживания на фильтр-прессах по зольности и влажности составили, соответственно, 74,6% и 27,3%, а осветленная вода и чистый фильтрат этих процессов направляются в оборотную воду.

По данным комплексного опробования технологической схемы при нагрузке на фабрику 568,2 т/час и зольности 36,91% получен выход концентрата 60,74% с зольностью 8,4%, общие отходы, соответственно 39,26% 81,01%.

В сравнении с проектными данными за последние годы произошло значительное изменение состава рядового угля, содержание машинных классов в нем, повышение их зольности предопределило перераспределение массопотоков по машинным классам, в частности уменьшение выхода крупного машинного класса в 2 раза и в 4 раза увеличился выход класса 0-1 мм. Такие изменения грансостава значительно увеличили нагрузку на водно-шламовую схему, изменились ее качественно-количественные показатели.

В соответствии с существующей схемой фабрики институтом

нормированы режимные параметры работы основного и вспомогательного оборудования, а также качество продуктов технологических процессов. Показатели технологических процессов представлены в табл. 4.

Таблица 4

Технологически й процесс	Режимные параметры основного оборудования	Режимные параметры вспомогательного оборудования	Качество продуктов технологического процесса
Подготовка машинных классов	Сухое грохочение по граничной крупности 3 мм и 13 мм на барабанном грохоте ГБК по 1-ой секции производительностью по исходному 300 т/час	Отсутствуют	По граничным показателям качества содержание класса 0-13 мм в надситном продукте 10%, содержание класса +13 мм в подситном продукте второй стадии грохочения 8%
	Мокрое грохочение. Гидрогрохот ГГН-3,6 производительностью 700 т/час 2-ая секция. Уд. расход воды 1,8 м ³ /т	Отсутствуют	По граничным показателям качества содержание класса 0-13 мм в надситном продукте 15%, содержание класса +13 мм в подситном продукте 3%.
Обогащение крупного машинного класса	Гидравлическая отсадочная машина МО-312. Расход подситной воды 2,2 м 3 /т. Производительность: по исходному углю 1-ой и 2-ой секций, соответственно: 75,6%; 84,1%. Эффективность разделения E_{pm} не более 80 кг/м 3 .	Предварительная классификация на сите 20 мм (1+2 секции). Производительнос ть по исходному до 70 т/ч, влажность - не более 10%. Производительнос ть по надситному	Назначение продукции: -концентрат для коксования, зольность и влажность полученных продуктов, соответственно, 7% - 7,5%. Предельное засорение концентрата с порога фракцией +1800 кг/м³ - 0,5%.

197,6 -200,8 т/ч. Расход воды не более $3 \text{ м}^3/\text{т}$ Значение вероятностных показателей разделения не более: эффективность разделения $E_{pm} - 130 \text{ kg/m}^3;$ коэффициент погрешности разделения -Обогашение Обогащение методом крупнозернистог разделения твердых частиц разной плотности в потоке о шлама пульпы на конусных сепараторах СК-2,3. Исходный шлам - класс 0-2 мм, плотностью 350-450 г/л. Производительность по твердому 20-25 т/ч, расход воды $15-25 \text{ m}^3/\text{ч}$ минимальное давление воды 0.1 МПа. Плотность продуктов с сепаратора:

> концентрата370-420 г/л; отходов 480-550 г/л.

 0.16 kT/m^3 .

содержание твердого в фугате - не более $200 \, \text{кг/м}^3$, влажность обезвоженного концентрата не более 12%

Сгущение первичного шлама в гидроциклоне ГЦ-630 производительн остью 260-390 м³/ч. Содержание твердого в питании не более 250 г/л. Давление на вводе 0,08 МПа. Контрольное сито со щелью 2 мм. Производительн остью до 30 т/ч. Обезвоживание концентрата и отходов на центрифугах ЦфШнГ-1.00ВМ. Производительность, соответственно: до 25 т/ч; до 5 т/ч,

при содержании

мелкого концентрата не более: фракциями 1500-1800 $K\Gamma/M^3 - 3\%$; фракциями 1800 кг/м^3 -1,7%. Нормы потерь горючей массы с отходами не более: с фракциями $1500 \, \text{кт/м}^3$ -0.6%: с фракциями 1500-1800 $KT/M^3 - 2\%$

Зольность обезвоженного концентрата не более 12%, влажность не более 15%. Зольность обезвоженных отходов не менее 72%. Влажность не более 25%.

	шлама на угольную и	пенного	питании флотомашины	
	породную составляющие.	флотоконцентрата на	80-120 г/л.	
	Флотомашины МФУ-12.	дисковых	Зольность питания	
	Производительность по	вакуум-фильтрах	14-25%.	
	твердому 80 т/ч, по пульпе до	DOO-160-3,75-OY-01	Содержание крупности в	
	$700 \mathrm{m}^3/\mathrm{H}$.	, площадью	питании классов:	
		фильтрования $160 \mathrm{m}^2$,	- 0,074-0,2 не менее	
		вакуум в зоне	98,0%;	
		фильтрования и	- 0,2-0,5 не менее 2,0%	
тонкозернистого		просушки 0,082 МПа,	Зольность пенного	
шлама		давление воздуха при	флотоконцентрата до	
		отдувке 0,03-0,07.	9,0%.	
		Производительность	Влажность осадка не	
		по сухому осадку при	более 35,0%.	
		содержании твердого	Содержание твердого в	
		в исходной	фильтрате не более 50	
		суспензии 350 кг/м ³	г/л.	
		при влажности		
		23-25% - 40-44 т/ч.		
	Сгущение отходов флотации в	Отсутствует	Зольность отходов после	
	цилиндроконических		пресс-фильтров до 80%.	
	сгустителях с добавлением		Влажность осадка не	
	флокулянта и последующим		более 30%.	
	обезвоживанием сгущенного			
	продукта методом			
	пресс-фильтрования;			
	с получением смеси чистой			
	воды С-10 и пресс-фильтров.			
	Производительность			
	С-10 - 350 м ³ /ч, площадь			
	осаждения 78 м ² .			
Осветление	Содержание твердого в:			
оборотной	исходном 50 г/л;			
воды	сливе 0-1 г/л;			
7.1	сгущенном 400-700 г/л			
	Фильтр-прессы			
	PF-ROW-1/570.			
	Общая площадь фильтрования			
	570-2			

шламов с учетом гранулометрического состава и разработки классификации по их граничной крупности с расчетом получения конечных шламовых продуктов с нормированной зольностью и влажностью.

Предлагается осуществить выделение машинного класса крупностью 0.2-1 мм сливов гидроциклонов ГЦ-1000 и ГЦ-630 в гидроциклонах ГЦ-350 с последующим обогащением сгущенного продукта в конусных сепараторах СК-2,3. Сливы ГЦ-350, крупностью менее 0,2 мм направляются на флотацию. Обезвоживание концентрата СК-2.3 осуществляется в центрифугах ЦфШнГ-1.00ВМ со щелью сита 0,35 мм или может быть направлен в присадку к пенному флотоконцентрату с целью улучшения структуры осадка дисковых вакуум-фильтров. В первом случае увеличение влажности флотоконцентрата до 30-32%, связанное с уменьшением его крупности компенсируется снижением влажности осадка крупностью класса 0,2-1 мм на центрифуге ЦфШнГ-1.00Вм СК-2,3) до 14% и осадка крупностью 1-2 мм этого типа (концентрат центрифуги со щелью сита 0.5 мм, обезвоживающей концентрат конусного сепаратора СК-2,3 (обогащающего первичный шлам) до влажности 11%. Во втором случае присадка концентрата конусного сепаратора (кл.0,2-1 мм) позволит снизить влажность осадка дисковых вакуум-фильтров. Исходя из предлагаемых мероприятий, присадка тонкозернистого шлама позволит улучшить нормативные показатели шламовых продуктов по влаге и зольности, а, следовательно, и всего выпускаемого мелкого концентрата.

© Нелепов В.Ф., Шевченко Л.Г., Новиков П.П., 2008.

Надійшла до редколегії _	
Рекомендовано до публікації	