УДК 622.625.28

В.В. Проців, д-р техн. наук, О.Є. Гончар (Україна, Дніпропетровськ, Національний гірничий університет) А.І Самолов (Україна, Донецьк, НВК «Гірничі машини»)

МОДЕЛЮВАННЯ ДИНАМІЧНОГО ГАЛЬМУВАННЯ ШАХТНОГО ПОТЯГУ ДВИГУНАМИ

Вступ. Головним видом транспорту на горизонтальних гірничих виробках шахт України є локомотивний. Істотне підвищення показників його роботи можливе, перш за все, за рахунок використання важких багатовісних локомотивів, здатних надійно працювати в умовах шахтної колії з легким баластним шаром і суттєвою недосконалістю в плані та профілі [1]. При цьому найбільш перевіреним є гальмування через колеса в точці їх контакту з рейками. Для цього використовують колісно-колодкові гальма, дискові осьові (розташовані на осі колісної пари) і трансмісійні (на валу тягового двигуна), а також динамічне гальмування двигуном. Найбільш перспективний з нині існуючих шахтних локомотивів – шарнірнозчленований електровоз Е10 [2], що оснащений всіма вище переліченими системами гальмування, а також має сучасну систему керування тяговими двигунами постійного току. Але можливості динамічного гальмування тяговими двигунами використовуються недостатньо.

Метою даної роботи є обгрунтування можливості найбільшого використання динамічного гальмування двигунами. Завдання роботи – теоретичне визначення можливості динамічного гальмування двигунами.

Виклад матеріалу дослідження. Розрахункова схема динамічної моделі гальмування локомотива Е10 зі складом навантажених вагонеток на рейковій колії з подовжнім ухилом наведена на рис. 1.

До другої за ходом руху тягової секції 1 прикладена сила на зчепленні від складу навантажених вагонеток. Середня секція 2 з'єднує її з першою тяговою секцією, а її рама має вигляд пружнодисипативного стрижня, що працює на стиснення. Колеса з піввісями і зубчасте колесо другого ступеня осьового редуктора (зі зведеними до нього масами і моментами інерції решти елементів трансмісії) мають обертання навколо власних осей.

Короткий карданний вал у тягових секціях, що з'єднує вал тягового двигуна з осьовим редуктором найближчої колісної пари, а також довгий карданний вал, що з'єднує перший осьовий редуктор з осьовим редуктором другої колісної пари, являють собою пружно-дисипативні зв'язки, що працює на кручення. Тут і далі для позначення змінних прийняті такі основні і додаткові нижні індекси, що визначають приналежність змінної до об'єкта математичної моделі: k - до середньої секції; i - до тягових секцій (i = 1, 2), $де 1 позначена перша за ходом руху у напрямі осі <math>\tilde{O}x$ секція. Вона оснащена циліндровим шарніром для спирання середньої секції на тягову. Секція 2 з'єднана з середньою секцією локомотива сферичним шарніром; *in* – до колісних пар (осьових редукторів) *i*-ї секції (*n* = 1, 2), де 1 позначена ближня до голови потягу колісна пара; *inj* – до коліс *in*-ї пари, пружних та дисипативних елементів (*j* = 1, 2), де 1 позначені ліві ві у напряму до голови потягу колеса; *ins* – до колісно-колодкового гальма, встановленого на *n*-й колісній парі (*s* = 1, 2), де 1 позначені ліві у напряму до голови потягу колодки; *ind* – до дискового гальма, встановвленого на *n*-й колісній парі (*d* = 1, 2) при цьому 1 позначені ліві у напряму до голови потягу колодки; *id* – до дискового гальма, встановленого в трансмісії *i*-ї секції, при чому 1 позначені ближні у напрямку до голови потягу колодки; *it* – до вала тягового двигуна, встановленого на *i*-й тяговій секції.

Для опису руху локомотива по реальній рейковій колії виберемо нерухому систему координат $\tilde{O}xhz$, а для кожного твердого тіла екіпажа по дві рухомі системи координат – природну Oxyz в полюсі обертання тіла і O'x'y'z' в його центрі мас. Тому O'x', O'y', O'z' – головні центральні осі інерції тіла. Всі системи координат вибрані правими. Осі природної системи координат направлені відповідно по дотичній, нормалі та бінормалі до осі колії, а її положення щодо нерухомої системи координат характеризується дуговою координатою уздовж осі колії S, кутом c між осями Ox та $\tilde{O}x$, а також кутом поперечного ухилу колії q_h , який дорівнює arctg i_s або i_s в радіанах, оскільки цей кут малий (не більше 3°).

При складанні математичної моделі гальмування шахтного локомотива гальмами, що реалізовують гальмівну силу в точці контакту колеса з рейкою, прийняті такі припущення: а) пружні переміщення рейкових ниток колії та їх пружно-в'язкі характеристики не враховуються; б) деформації в гумометалевих шарнірах системи підвішування виникають лише при подовжніх переміщеннях колісної пари щодо буксових вузлів; г) вертикальні, поперечні, а також кутові коливання елементів локомотива і причіпної частини відсутні (за винятком обертального руху коліс, елементів трансмісії та роторів тягових двигунів).

Рис. 1. Розрахункова схема гальмування локомотива E10 гальмами, що реалізують гальмівну силу в точці контакту колеса з рейкою

При визначенні гальмівного шляху шахтного локомотива зі складом вагонеток розглянуті такі основні способи гальмування: 0) без гальмування (вибіг); 1) тільки трансмісійним дисковим гальмом; 2) тільки осьовим дисковим гальмом; 3) тільки колісно-колодковим гальмом; 4) тільки двигуном; 5) комбіноване трансмісійним і осьовим дисковими гальмами; 6) комбіноване трансмісійним дисковим гальмом і двигуном; 7) комбіноване трансмісійним дисковим та колісно-колодковим гальмами; 8) комбіноване осьовим дисковим і колісно-колодковим гальмами; 9) комбіноване трансмісійним і осьовим дисковими, а також колісно-колодковим гальмами; 10) комбіноване осьовим дисковим, колісноколодковим гальмами та двигуном. Додаткове гальмування двигуном у способах 5, 7 та 9 можливе, але при цьому гальмівний момент двигуна розраховується у сукупності з гальмівним моментом дискового трансмісійного гальма.

За узагальнені координати q_i (i = 1, 2, ..., u) вибрані такі незалежні між собою величини: $x_i, x_{inj}, j_{it}, j_{in}, j_{inj}, x_c$. Рівняння Лагранжа другого роду складені із 25 диференціальних рівнянь другого порядку, тобто мають вигляд системи

$$\begin{split} g_0 m_1 \sin i_{p1} + \frac{1}{2} g_0 m_k \sin i_{p1} + (c_k + 4c_x) x_1 + (b_k + 4b_x) \, \& + 4m_1 \& + 4m_c \& + \\ &+ 2m_k \& = c_k x_2 + c_x x_{111} + c_x x_{112} + c_x x_{121} + c_x x_{122} + b_k \& + b_x \& + b_x \& + 1 + b_x \& + \\ &+ b_x \& + 2m_{k11} + b_x \& + 2m_{k11} + m_{k112} \& + m_{121} \& + m_{122} \& + \\ &+ b_x \& + 2m_{k11} + b_x \& + 2m_{k11} + m_{k11} \& + m_{k11} \& + m_{k12} \& + \\ &+ m_{k111} + c_x x_{111} + b_x \& + m_{k11} + m_{k11} \& + m_{k12} \& + \\ &+ m_{k111} + c_x x_{111} + b_x \& + m_{k11} + m_{k112} \& + m_{k12} \& + \\ &+ m_{k112} + c_x x_{112} + b_x \& + 2m_{k12} + m_{k12} \& + m_{k12} \& + \\ &+ m_{k121} + c_x x_{121} + b_x \& + 2m_{k12} + m_{k12} \& + m_{k12} \& + \\ &+ m_{k122} + w_{k122} + c_x x_{122} + b_x \& + 2m_{k12} \& + m_{k12} \& + \\ &+ m_{k122} + w_{k122} + c_x x_{122} + b_x \& + 2m_{k12} \& + m_{k12} \& + \\ &+ m_{k122} + 2m_k \& + 2m_k \& + 2m_k \& + 2m_k \& + \\ &+ m_{k122} + m_{k122} + b_x \& + 2m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} + b_x \& + \\ &+ m_{k122} + m_{k122} \& + \\ &+ m_{k122} &+ \\ &+ m_{k122}$$

$$\begin{split} F_{211} + W_{x211} + c_x x_{211} + b_x x_{211} + m_{211} x_{211} = c_x x_2 + b_x x_2; \\ F_{212} + W_{x212} + c_x x_{212} + b_x x_{221} + m_{221} x_{111} = c_x x_2 + b_x x_2; \\ F_{221} + W_{x221} + c_x x_{221} + b_x x_{221} + m_{222} x_{122} = c_x x_2 + b_x x_2; \\ F_{222} + W_{x222} + c_x x_{222} + b_x x_{222} + m_{222} x_{222} = c_x x_2 + b_x x_2; \\ F_{222} + W_{x222} + c_x x_{222} + b_x x_{222} + m_{222} x_{22} = c_x x_2 + b_x x_2; \\ \hline \\ \frac{1}{u_t^2} \begin{pmatrix} -c_{f11} u_{f11} - c_{f12} u_{f12} + c_{f11} u_{f11} + c_{12} u_{f11} - u_{t} b_{f11} u_{f11}^2 \\ -u_t b_{f12} u_{f22} + b_{f12} u_{f12} + c_{f12} u_{f11} + c_{12} u_{f11} - u_{t} b_{f11} u_{f11}^2 \\ -u_t b_{f22} u_{f22} + b_{f12} u_{f22} + c_{f12} u_{f11} + c_{f112} u_{f11} \\ -u_t b_{f111} x_{f11} - u_t b_{f112} u_{f11} - c_{f111} u_{f111} - c_{f112} u_{f112} - u_{f12} u_{f12} \\ -u_t b_{f111} x_{f11} - u_t b_{f112} u_{f11} - c_{f112} u_{f11} u_{f11} + u_{f112} u_{f12} \\ -c_{f12} u_{f11} + u_{f112} u_{f11} - u_{f112} u_{f12} - c_{f122} u_{f12} u_{f12} \\ -u_{f12} u_{f12} u_{f212} - u_{f12} u_{f12} u_{f12} - c_{f122} u_{f12} u_{f12} \\ -u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} \\ -u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} \\ -u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} u_{f12} \\ -u_{f12} u_{f12} \\ -u_{f12} u_{f12} \\ -u_{f12} u_{f12} \\ -u_{f12} u_{f12} \\ \\ M_{111s} + c_{f111} u_{f11} u_{f1} \\ -c_{f21} u_{f1} \\ \\ M_{112s} +$$

де m – маси відповідних елементів локомотива та причіпної частини складу, кг; I – моменти інерції коліс і елементів трансмісії, кг·м²; u_t – передавальне число осьового редуктора; c – коефіцієнти подовжньої або крутильної жорсткості елементів локомотива і причіпної частини складу із відповідними нижніми індексами, Н/м або Н/рад; b – коефіцієнти в'язкого внутрішнього опору (подовжньої або крутильної дисипації) елементів локомотива і причіпної частини складу із відповідними нижніми індексами, Н/м або Н/рад; b – коефіцієнти в'язкого внутрішнього опору (подовжньої або крутильної дисипації) елементів локомотива і причіпної частини складу із відповідними нижніми індексами, Н·с/м або H·c/рад; g_0 – прискорення вільного падіння; W_x – сили подовжнього ковзання коліс в точці контакту з рейкою, пов'язані з подоланням тертя кочення коліс по рейках та моментів тертя в частинах, що обертаються (підшипниках буксового підвішування, осьового редуктора, карданних валів і тягового електродвигуна), приведених до доріжки катання коліс, Н; M – моменти гальмування на відповідному гальмі, Н·м (задаються машиністом); F_c – сила на зчепленні від складу вагонеток, що гальмуються, Н; F – гальмівні сили, що виникають у точці контакту доріжок катання рейок та коліс із відповідними нижніми індексами, H, визначають як

$$F_{inj} = y_{inj} N_{inj}$$
,

де N_{inj} – нормальна реакція рейки під відповідним колесом, Н; **y**_{inj} – коефіцієнт зчеплення відповідного колеса з рейкою [3], обчислюється як

$$\mathbf{y}_{inj} = k_{\Pi} \frac{\mathbf{y}_{2}}{\mathbf{y}_{0}} \times \left[-0.016935 \left(\sqrt[11]{100 \, e_{inj}^{5}} \right) + 0.195576 \, \text{th} \left(100 \times 1.5 \, e_{inj} \right) \right],$$

де $k_{\rm n}$ – коефіцієнт угрупування приводу, дорівнює одиниці для індивідуального приводу локомотива (коли кожна колісна пара приводиться у рух окремим двигуном) [4], приймає значення від 1,0 до 1,2 для групового приводу (коли всі колісні пари тягової секції приводяться у рух одним двигуном); y_0 – коефіцієнт зчеплення коліс локомотива з рейками на сухих чистих рейках, за експериментальними даними для вугільних шахт приймають 0,17; y_e – коефіцієнт зчеплення коліс локомотива на прямій для фактичної забрудненості доріжок катання рейкових ниток. Його приймають рівним наступним значенням: 0,21 на посипаних піском рейках; 0,17 на сухих чистих; 0,13 на мокрих чистих; 0,08 на покритих вугільнопорідним брудом; e_{inj} – відносне ковзання колеса по рейці, у даному випадку воно дорівнюе відносному

ковзанню в подовжньому напрямі $e_{x inj}$, що визначається як

$$\varepsilon_{x inj} = \frac{\mathscr{K}_{inj} - r \mathscr{K}_{inj}}{\mathscr{K}_{inj}}.$$

Одержана система розв'язувалася за допомогою програми Wolfram Mathematica 8. Динамічна модель дозволяє задавати не лише можливі геометричні, кінематичні, масоінерційні та пружно-дисипативні характеристики локомотива і вагонів, але й моделювати часові інтервали, необхідні для прийняття машиністом рішення про початок гальмування, час холостого ходу (спрацьовування) гальмівних механізмів і функції перехідних процесів прикладання гальмівних моментів до дискових осьових та трансмісійних гальм, колісно-колодкових, а також виконувати динамічне гальмування двигуном.

Кінетичні та динамічні характеристики процесу динамічного гальмування тяговими двигунами електровоза E10, що рухається зі швидкістю 1,5 м/с із чотирма навантаженими вагонетками типу BГ3,3 по максимально дозволеному [2] ухилу в 50 ‰, розглянуті на рис. 2, коли час дійсного гальмування складає 35,0 с, а гальмівний шлях дорівнює 34,3 м. До ротора двигуна прикладали гальмівний момент величиною у 206 H·м, який залишався постійним протягом усього гальмування (див. рис. 2, *a*), в точці контакту колеса та рейки виникало відносне ковзання (див. рис. 2, δ), яке не перевищувало 1,5 %. Сила подовжнього опору руху при переході в гальмівний режим зростала (див. рис. 2, *s*) і коливалася синхронно з ковзанням. За рахунок подовжнього прискорення передні за ходом руху колісні пари довантажувалися, а верти-кальні реакції рейок під ними збільшувалися (див. рис. 2, *г*).

У точці контакту колеса з рейкою виникала гальмівна сила (див. рис. 2, ∂), величина якої визначається вище переліченими чинниками. Зупиняючись, потяг проходив шлях (див. рис. 2, *e*), залежний від зміни швидкості руху (див. рис. 2, \mathcal{R}) і прискорення (уповільнення) (див. рис. 2, *s*).

Локомотив зупинився, не перевищивши максимально допустимий гальмівний шлях у 40 м, що регламентується [5]. Однак по досягненню швидкості у 0,03 м/с замість гальмування двигунами було увімкнене гальмування дисковими трансмісійними гальмами, оскільки на менших швидкостях збільшується загроза загоряння обмоток двигунів через критично великі значення електричних токів у них.

Збільшення гальмівного моменту навіть на один ньютоно-метр зробить зупинку потягу неможливою, як це видно з рис. З. Тут прийняті такі самі позначення, як і на рис. 2, а графіки побудовані в тих самих координатах із вищепереліченими. Але вони виконані для випадку прикладення гальмівного моменту величиною 207 Н·м (більше на 1 Н·м). Відразу після зростання гальмівного моменту до максимального значення відбувся зрив зчеплення коліс другої, а потім і першої за ходом руху тягової секцій через їх блокування занадто великим гальмівним моментом. Відносне ковзання різко зросло до значення 100 %, спровокувавши зростання подовжнього опору, перерозподіл навантаження на колеса та реакцій рейок, а також зменшення гальмівної сили.

Практично увесь час локомотив рухався з нерухомими колесами, тому він і склад вагонеток не вклалися б у дозволений гальмівний шлях [5] і зійшли з рейок. Це привело би до людських жертв і матеріальних витрат на ремонт рухомого складу, а також відновлення рейкової колії та кріплення гірничих виробок.

Рис. 2. Криві залежності параметрів гальмування від часу без зриву зчеплення: *a* – гальмівний момент; *δ* – відносне ковзання; *в* – сила опору руху; г – реакція рейки під колесом; *д* – гальмівна сила на колесі; *e* – переміщення тягової секції; *ж* – швидкість тягової секції; *з* – прискорення тягової секції

Але навіть за відсутності аварії колісні пари другої за ходом руху тягової секції потрібно було б замінювати, оскільки на них утворилися б лиски неприпустимо великих розмірів.

Висновки. Теоретично доведено, що у разі прикладення постійного гальмівного моменту шахтний потяг з чотирьох навантажених вагонеток можливо пригальмувати на ухилі в 50 ‰ до швидкості 0,03 м/с, а потім зупиняти іншими гальмівними приладами, оскільки далі токи в обмотках двигунів зростають до неприпустимо великих значень. Тормозний шлях при цьому не перевищує дозволений.

Рис. 3. Криві залежності параметрів гальмування від часу зі зривом зчеплення (див. позначення на рис. 2)

Список літератури

1. Ренгевич А. А. Основы теории тяги рудничных поездов / А. А. Ренгевич. - К.: УМК ВО, 1989. - 40 с.

2. Транспорт шахтний локомотивний. Перевезення людей і вантажів в виробках з ухилом колії від 0,005 до 0,050: СОУ 10.1.001.85790.007:2006. – Затв. Мивуглепромом України 06.10.2006. – Вид. офіц. – К. 2006. – 47 с.

3. Проців В. В. Визначення сил опору руху та направляючих зусиль шахтного шарнірно-зчленованого локомотива в режимі гальмування / В. В. Проців // Збірник наукових праць НГУ. – 2009. – № 33. – Т. 1 – С. 96 – 102.

4. Мишин В. В. О характеристиках переходного режима движения шахтного локомотива с упругими звеньями привода и ходовой части / В. В. Мишин, А. Л. Жупиев, Э. М. Шляхов // Известия вузов: Горный журнал. – 1994. – № 1. – С. 85 – 59. 5. Правила безпеки у вугільних шахтах. НПАОП 10.0-1.01-10. – К.: Ред. журн. «Охорона праці», 2010. – 430 с. *Рекомендовано до друку: проф. Блохіним С.Є.*