В общем, предложенная технология может быть использована и при креплении сталебетонной крепью. Главным отличием будет необходимость навески дополнительного оборудования и снабжения подвесного проходческого полка подвижным этажным перекрытием, позволяющим качественно выполнять сварочные работы.

Применение данной технологии позволит:

- обеспечить качественное ведение сварочных работ;
- снизить трудоемкость укладки бетона;
- монтировать крупноразмерные секции стальной обечайки параллельно с ведением проходческих процессов на забое и в благоприятных условиях.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Масленников С.А.* Перспективы совершенствования двухслойной чугунно-бетонной крепи вертикальных стволов / Тезисы докладов 2-й междунар. научн.-пр. конф. "Перспективы освоения подземного пространства". Д.: Национальный горный университет, 2008. С. 37-40.
- 2. *Масленников С.А.* Методика определения рационального модуля деформации бетона в комбинированной чугунно-бетонной крепи / Горный информационно-аналитический бюллетень. М.: МГГУ, 2009. №4 С. 205-210.
- 3. *Масленников С.А.* Обоснование рациональных параметров комбинированной чугуннобетонной крепи вертикальных стволов / Горный информационно-аналитический бюллетень. – М.: МГГУ, 2009. - №4 – С. 210-214.
- 4. Состояние и перспективы строительства вертикальных стволов в Российской Федерации / Перспективы развития Восточного Донбасса: сб. науч. тр. / Шахтинский ин-т (филиал) ЮРГТУ (НПИ). Новочеркасск: УПЦ «Набла» ЮРГТУ (НПИ), 2008. Ч. 1. С. 174 191.
- 5. Пат. 2433269 РФ, МПК Е21 D Конструкция крепи вертикальных стволов с регулируемым режимом работы / Сстраданченко С.Г., Масленников С.А., Шинкарь Д.И. Опубл. 10.11.2011.

УДК 622.28

Масленников С.А., доц., к.т.н., Шинкарь Д.И., асп., Шахтинский институт (филиал) ЮРГТУ(НПИ), г. Шахты, Россия

РАСЧЕТ ПАРАМЕТРОВ КРЕПИ С РЕГУЛИРУЕМЫМ РЕЖИМОМ РАБОТЫ

В работе [1] авторами было показано, что в настоящее время в России шахтное строительство в условиях роста глубины отработки полезных ископаемых и усложнения гидрогеологической обстановки на реконструируемых и строящихся горных предприятиях столкнулось с отсутствием эффективных способов поддержания основных вскрывающих выработок. Одним из возможных вариантов решения возникшей проблемы является применение разработанной и запатентованной авторами [2] конструкции трёхслойной сталебетонной крепи, включающей (см. рис. 1) внутреннюю металлическую обечайку (3), слой высокопрочного фибро-бетона (2) с искусственно улучшенными водопроводящими свойствами, внешний слой из полимербетона повышенной плотности (1), контрольно-регулирующие элементы (4), а также систему отвода воды.

По сравнению с трехслойной сталебетонной крепью, преимуществом предлагаемой конструкции является существенное снижение стоимости за счёт исключения внешней стальной оболочки, упрощение технологии работ по возведению крепи, снижение рисков, связанных с возможностью нарушения сплошности внешнего стального слоя и восприятия внутренним полного гидростатического давления.

Рисунок 1 — Конструкция гидроизолирующей сталебетонной крепи вертикальных стволов с регулируемым режимом работы

Для расчета напряжений, возникающих в трехслойной крепи с регулируемым режимом работы под воздействием давления подземных вод, воспользуемся формулой приводимой в [3], представив ее в следующем виде [4]:

$$P_{\Gamma} = \left(n \times H_{e} \times \gamma_{B} \times lg \frac{r_{l}}{r_{0}} \right) / \left(lg \frac{r_{l}}{r_{0}} + \frac{k_{\phi}^{\kappa p}}{k_{\phi}^{T}} \times lg \frac{r_{T}}{r_{l}} + \frac{k_{\phi}^{\kappa p}}{k_{\phi}^{\pi}} \times lg \frac{R(t)}{r_{T}} \right)$$
(1)

где n - коэффициент перегрузки; H_e - напор в данном горизонте, м; $k_{\delta}^{\hat{e}\delta}$ - коэффициент фильтрации крепи; k_{ϕ}^{T} , k_{ϕ}^{n} - соответственно коэффициенты фильтрации породы и затампонированной зоны, м/сут.; \mathbf{r}_{0} , \mathbf{r}_{1} , \mathbf{r}_{T} - соответственно внешний, внутренний радиус крепи и радиус затампонированной зоны, м; $\mathbf{R}(t)$ - радиус влияния дренажа выработки, м; \mathbf{r}_{0} - удельный вес волы, к $\mathbf{H}/\mathbf{m}^{3}$.

Анализируя формулу, приходим к выводу:

1. Давление подземных вод при их фильтрации через многослойное кольцо распределяется между каждым из составляющих слоев пропорционально его геометрическим и фильтрационным характеристикам. Т.е. при двухслойном кольце $P_{\Gamma o \delta \iota \iota \iota} = P_{\Gamma 1} + P_{\Gamma 2}$, при трехслойном кольце $P_{\Gamma o \delta \iota \iota \iota} = P_{\Gamma 1} + P_{\Gamma 2} + P_{\Gamma 3}$, где $P_{\Gamma 1}, P_{\Gamma 2}, P_{\Gamma 3}$ - давление, воспринимаемое 1-3-м слоем. 2. $P_{\Gamma} = f\left(k_{\phi}^{\kappa p}, k_{\phi}^{\Gamma}, k_{\phi}^{\Gamma}, r_{1}/r_{0}, r_{T}/r_{1}, R(t)/r_{T}\right)$.

Из положения 2 заключаем, что, если рассмотреть трехслойное кольцо, с характеристиками $\mathbf{k}_{\phi 1}^{\kappa p}, \mathbf{k}_{\phi 1}^{\pi}, \mathbf{r}_{01}, \mathbf{r}_{11}, \mathbf{r}_{T1}, \mathbf{R}(t)_1$ и двухслойное, с характеристиками $\mathbf{k}_{\phi 2}^{\kappa p}, \mathbf{k}_{\phi 2}^{\pi}, \mathbf{r}_{02}, \mathbf{r}_{12}', \mathbf{R}(t)_2$, в которых фильтрационные характеристики слоев 1 и 1', 3 и 3' идентичны $(\mathbf{k}_{\phi 1}^{\kappa p} = \mathbf{k}_{\phi 2}^{\kappa p}, \mathbf{k}_{\phi 1}^{\pi} = \mathbf{k}_{\phi 2}^{\pi} = \mathbf{k}_{\phi}^{\pi})$, а также выполняется условие $\frac{\lg r_1}{r_0} = \frac{\lg r_1'}{\lg r_3}$, то нагрузка, вос-

принимаемая слоем 2 в трехслойном кольце, перераспределяется в двухслойном между слоями 1' и 3', и при этом сохранится пропорция $\frac{P_{\Gamma 1}}{P_{\Gamma 3}} = \frac{P'_{\Gamma 1}}{P'_{\Gamma 3}}$

Составим систему уравнений, связывающую показатели обоих случаев:

$$\begin{cases}
P_{\Gamma} = P'_{\Gamma 1} + P'_{\Gamma 3} \\
P_{\Gamma} = P_{\Gamma 1} + P_{\Gamma 2} + P_{\Gamma 3} \\
\frac{P_{\Gamma 1}}{P_{\Gamma 3}} = \frac{P'_{\Gamma 1}}{P'_{\Gamma 3}}
\end{cases} (2)$$

зная величину $H_e\cdot\gamma_{\hat{a}}$ и имея возможность определить $P'_{\Gamma 1}$, $P_{\Gamma 1}$ по формуле (1) найдем $P_{\Gamma 2}$:

$$P_{\Gamma 2} = P_{\Gamma} - \left(P_{\Gamma 1} \times P_{\Gamma} / P_{\Gamma 1}'\right) \tag{3}$$

Находя частное от деления обеих частей формулы (3) на $\, P_{\Gamma 1} \,$ получаем:

$$\frac{P_{\Gamma 2}}{P_{\Gamma 1}} = \frac{P_{\Gamma}}{P_{\Gamma 1}} - \frac{P_{\Gamma 1} \times P_{\Gamma}}{P'_{\Gamma 1} \times P_{\Gamma 1}} = P_{\Gamma} \times \frac{P'_{\Gamma 1} - P_{\Gamma 1}}{P_{\Gamma 1} \times P'_{\Gamma 1}}$$

подставляя соответствующие значения и выражая $\mathcal{D}_{\tilde{A}2}$ получаем:

$$P_{\Gamma 2} = \left(P_{\Gamma 1} \times k_{\phi}^{\kappa p} \times lg \frac{r_2}{r_1}\right) / \left(n \times k_{\phi}^{T} \times lg \frac{r_1}{r_0}\right)$$
(4)

Аналогичным образом из системы уравнений (2) получаем:

$$P_{\Gamma 3} = \left(P_{\Gamma 2} \times k_{\phi}^{\mathsf{T}} \times lg \frac{r_3}{r_2}\right) / \left(n \times k_{\phi}^{\mathsf{T}} \times lg \frac{r_2}{r_1}\right)$$
 (5)

Отметим, что при n=1 значение, рассчитанное по формуле (4) совпадает с результатом, полученным по формуле 5.46, приводимой проф. Булычевым Н.С. [4].

Давление воды на внутренний слой (стальную обечайку) в сталебетонной крепи с регулируемым режимом работы может быть меньшим либо равным давлению сброса (P_{c6}). В первом случае крепь функционирует как обычная водонепроницаемая, во втором, как крепь с управляемым режимом работы. Учитывая, что $P_{\Gamma 1} = P_{c6}$ найдем мнимый коэффициент фильтрации стальной обечайки k_{δ}^1 :

$$k_{\phi}^{1} = \left(lg \frac{r_{l}}{r_{0}} \times \left(\frac{n \times H_{e} \times \gamma_{B}}{P_{c\delta}} - 1 \right) \right) / \left(\frac{1}{k_{\phi}^{2}} \times lg \frac{r_{2}}{r_{l}} + \frac{1}{k_{\phi}^{3}} \times lg \frac{r_{3}}{r_{2}} + \frac{1}{k_{\phi}^{4}} \times lg \frac{r_{4}}{r_{3}} \right)$$
(6)

Примем, что давление сброса должно быть не выше критического $P_{cr}^{}^{} P_{c\delta}^{}$, которое может быть найдено по методике E. Амштутца, подробно изложенной в [4]. В этом случае $P_{c\delta}^{}$ является функцией 21 переменной, подбор рациональных значений которых, на начальном этапе проектирования крепи, требует рассмотрения более 2 млн (2 21) вариантов уже при двух уровнях варьирования.

Для сокращения количества факторов используемых при определении P_{c6} воспользуемся методами планирования эксперимента. С этой целью зададимся условием P_{cr} $^3P_{c6}$ 3D , где $D \to P_{cr}$ при количестве влияющих факторов для D стремящихся к минимуму, определяемому необходимой точностью вычислений. С учетом количества факторов, характера зависимости от них целевой функции используем план Плакетта-Бермана для отсеивающего эксперимента [5]. Анализируя литературные источники, выделим из 21 влияющего фактора ос-

новные 13, варьирующие свои величины в наибольшем диапазоне значений и существенно влияющих на результат см. табл. 1. Отброшенные 8 факторов выставим в качестве границ области применения результатов проводимого исследования.

Таблица 1 Основные факторы, влияющие на величину критического давления

	Факторы	Знач	ения	Выявленный эф- фект
		min	max	
	1	2	3	4
1.	Радиус ствола в свету r_1 , м	2	4,5	-9,6281183
2.	Толщина слоя стали t2, м	0,008	0,16	15,70291
3.	Толщина слоя бетона t4, м	0,35	0,5	-0,17131
4.	Удельный вес пород γ _i , МН/м ³	0,015	0,035	-0,11405
5.	Коэффициент Пуассона ν ₁ бетона (поз. 2 рис.1)	0,14	0,22	0,08292
6.	Коэффициент Пуассона v2 бетона	0,13	0,22	0,133972
7.	Коэффициент Пуассона v ₃ пород	0,13	0,36	0,061196
8.	Модуль упругости E_1 бетона (поз. 2 рис.1), МПа	15000	23500	-0,11444
9.	Модуль упругости Е2 бетона, МПа	23000	40000	0,070444
10.	Модуль упругости Е ₃ пород, МПа	1000	25000	-0,08267
11.	Предел текучести стали σ_y , МПа	225	390	9,513008
12.	Глубина рассматриваемого участка, м	20	2000	0,137065
13.	Расстояние от забоя до введения крепи в работу,	0,5	4,5	-0,07433

Применяя 15-ти факторный отсеивающий план с N=16 экспериментами, и обрабатывая результаты по методике, описанной в [5] видим, что при уровне значимости 95% (α =0,05) существенными являются факторы: радиус ствола в свету r_I , толщина слоя стали t_2 , предел текучести стали σ_y . Полученные результаты представлены на рис. 2 в виде нормального вероятностного графика.

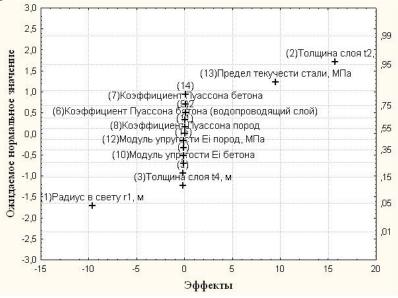
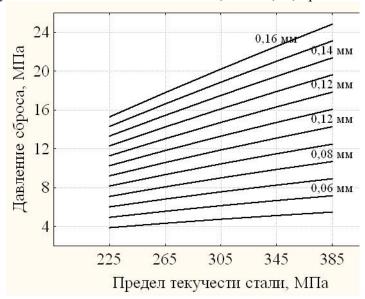



Рисунок 2 – Нормальный вероятностный график критического давления

Далее, с учетом выявленных эффектов (см. столбец 4 табл. 1), задаваясь значениями факторов 3-10, 12,13, минимизирующими величину P_{cr} находим значения давления сброса как функции основных влияющих факторов $P_{co} = f(t_2, r_1, \sigma_y)$. Результат в виде графика, для диаметра ствола в свету 4 м и толщины слоя стали от 0,05 до 0,16, приведен на рис. 3.

Pисунок 3 — Зависимость давления сброса P_{co} от предела текучести стали и толщины стального листа

Выводы:

- 1. Напряжения, возникающие в трехслойной сталебетонной крепи с регулируемым режимом работы, могут быть рассчитаны по методике, используемой для фильтрующей крепи. При этом сброс воды через регулирующие элементы учитывается введением мнимого коэффициента фильтрации металлической обечайки, определяемого по формуле (6).
- 2. Давление сброса $P_{c\bar{0}}$, используемое для расчета мнимого коэффициента фильтрации стальной обечайки, определяется как функция $P_{c\bar{0}} = f(t_2, r_1, \sigma_y)$ по разработанным графикам (см. рис. 3).
- 3. Величины давлений на 1-3-й слои предлагаемой конструкции крепи находятся по формулам (2), (4), (5).

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. *Страданченко С.Г., Масленников С.А., Шинкарь Д.И.* Конструкция гидроизолирующей сталебетонной крепи вертикальных стволов с регулируемым режимом работы // Известия высших учебных заведений. Горный журнал. Екатеринбург, 2010 №2, с. 29 32.
- 2. Пат. 2433269 РФ, МПК Е21 D Конструкция крепи вертикальных стволов с регулируемым режимом работы / Сстраданченко С.Г., Масленников С.А., Шинкарь Д.И. Опубл. 10.11.2011.
- 3. СНиП 2.94-80. Подземные горные выработки/Государственный комитет СССР по делам строительства. М.: Стройиздат. 1982. 30 с.
- 4. *Булычев Н.С.* Механика подземных сооружений в примерах и задачах: Учебное пособие для вузов. М.: Недра, 1989. 270 с.
- 5. *Хартман К.*, *Лецкий Э.*, *Шеффер В*. Планирование эксперимента в исследовании технологических процессов. М.: Мир. -1977.-552 с.