ИССЛЕДОВАНИЕ И РАЗРАБОТКА РАЦИОНАЛЬНЫХ СХЕМ ФЛОТАЦИИ ТОНКОДИСПЕРСНЫХ УГОЛЬНЫХ ШЛАМОВ

С.О. Федосеева, ГП «УКРНИИУГЛЕОБОГАЩЕНИЕ», Украина

Рассмотрены и проанализированы различные варианты схем флотации тонкодисперсных угольных шламов, применяемые в промышленных условиях. Предложена более совершенная двухстадиальная схема флотации с выводом тонкодисперсного шлама из объема флотируемой пульпы после его предварительного обогащения в головных камерах флотомашины при создании специального реагентного режима.

Проблема и ее связь с научными и практическими задачами. Во флотационных отделениях обогатительных фабрик Украины ежегодно обогащается около 7 млн. тонн углей всего метаморфического ряда в очень широком диапазоне их свойств. Преобладающей тенденцией в сырьевой базе фабрик является непрерывное повышение зольности и дисперсности углей, сопровождаемое ухудшением качества флотируемых шламов. Среднее значение их зольности только за последнее 5-летие повысилось с 28,6 до 32,6%, т.е. на 4,0%, а содержание тонкого шлама менее 0,045 мм увеличилось в 1,2-1,4 раза. Удельное участие тонкого шлама в исходном питании флотации и его состав оказывают существенное влияние на технологические показатели обогащения и требует применения специальных режимов флотации. Переход фабрик на флотацию высокозольных и тонкодисперсных пульп, особенно при наличии размокаемого глинистого материала, обусловливает необходимость дальнейшего совершенствования технологии, режимов и схем флотации для удовлетворения возросших требований промышленности к качеству получаемой угольной продукции.

Анализ исследований и публикаций. Флотация тонкодисперсных угольных шламов в течение многих лет является проблемным вопросом и объектом многочисленных отечественных и зарубежных исследований [1-5]. Анализируя их, можно выделить две основные группы работ, посвященных вопросу ослабления вредного действия на флотацию тонких высокозольных классов.

- 1. Исследования, связанные с удалением илистого материала из процесса флотации.[6-8] Сюда относятся схемы флотации с предварительным сбросом необогащенного шлама перед флотацией и селективная флокуляция-дешламация как подготовительная операция перед флотацией.
- 2. Исследования и разработка методов повышения селективности разделения флотируемого шлама с высоким содержанием тонкодисперсных илов без их удаления из процесса [9-12]. К ним следует отнести применение разбавленных пульп; схемы с включением перечисток продуктов флотации; раздельную подготовку пульпы и раздельную флотацию зернистого и тонкого шлама.

Постановка задачи. Целью данной работы является разработка усовершенствованного варианта технологической схемы флотации тонкодисперсных угольных шламов, обеспечивающего снижение потерь угля с отходами и уменьшение зольности флотоконцентрата за счет повышения селективности процесса разделения.

Изложение материала и результаты. При разработке рациональной схемы флотации необходимо учитывать такие характеристики исходных шламов, как содержание тонкодисперсного класса <0.045 мм и его зольность. В табл. 1 приведены технологические показатели работы флотоотделений, обогащающих угли марок Γ , K, K и K и K0 основные характеристики их шламов.

Как видно из приведенных данных, наиболее высокозольные и тонкодисперсные шламы газовых углей III группы являются одновременно и самыми труднофлотируемыми. Выделение из них малозольных концентратов и отвальных отходов представляет наибольшие трудности.

Таблица 1

Показатели работы флотоотделений фабрик в 2012 г.

	Monree	Зольность, %			Виход		
Фабрики	Марка	исходного	флотоконцен	отходо	флотоконцентр		
	угля		трата	В	ата, %		
1 група шламов – зольность исходного < 30 %							
ЦОФ «Колосниковская»	К	13,1	8,9	73,2	93,4		
ЦОФ «Пролетарская»	Г, Ж, К, ПС	15,4	9,0	70,7	89,7		
ОФ «Дзержинская»	Д, ДГ,Г, Ж, К, П	19,7	8,0	68,6	80,7		
ЦОФ «Дуванская»	Ж	22,3	8,6	68,0	77,0		
ГОФ «Самсоновская»	Ж, К	27,3	10,0	72,3	72,3		
ОФ «Свято-Варваринская»	К	28,6	11,3	72,3	71,6		
2 група шламов – зольность исходного 30 – 40 %							
ЦОФ «Краснолиманская»	Ж	38,2	8,3	70,1	51,6		
ЦОФ «Киевская»	Ж	40,0	8,3	75,4	52,8		
3 група шламов – зольность исходного > 40 %							
ЦОФ «Селидовская»	ДГ, Г	47,7	22,6	70,6	47,7		
ЦОФ «Чумаковская»	К	48,5	19,8	70,2	43,0		
«Добропольская ЦОФ»	ДГ, Г	57,7	22,7	64,5	16,4		
«Октябрьская ЦОФ»	ДГ, Г	58,5	46,7	67,4	42,8		
«Павлоградская ЦОФ»	ДГ, Г	64,7	36,7	68,7	12,5		

Таблица 2 Характеристики шламов обогатительных фабрик (по данным лабораторних исследований)

		`		· · · · · · · · · · · · · · · · · · ·		
Фабрики	M	Зольность	Кл.0-0,045 мм			
	Марка	исходного	виход	зольность,		
_	угля	шлама,	%	%		
1 группа шламов – зольность исходного < 30 %						
ЦОФ «Колосниковская»	К	15,3	49,52	21,5		
ЦОФ «Киевская»	Ж	18,3	72,78	23,35		
ГОФ «Самсоновская»	Ж	19,3	49,50	28,7		
ЦОФ «Пролетарская»	Г, Ж, К, ПС	19,4	77,60	23,0		
ЦОФ «Дуванская»	Ж	21,6	51,27	30,4		
ОФ «Дзержинская»	Д, ДГ,Г, Ж, К, П	22,9	51,16	39,4		
	д, ді ,і , ж, к, іі	26,5	63,73	37,9		
ОФ «Свято-Варваринская»	К	23,2 (песковая)	26,04	55,3		
ЦОФ «Чумаковская»	К	28,4	71,54	36,2		
2 группа шламов – зольность исходного 30 – 40 %						
ЦОФ «Краснолиманская»	Ж	31,8	69,06	43,8		
ОФ «Свято-Варваринская»	К	38,1 (сливная)	72,77	47,3		
3 группа шламов – зольность исходного > 40 %						
«Добропольская ЦОФ»	ДГ, Г	44,5	73,99	56,7		
ЦОФ «Селидовская»	ДГ, Г	53,3	86,53	59,8		
«Октябрьская ЦОФ»	ДГ, Г	54,5	89,41	59,6		
«Павлоградская ЦОФ»	ДГ, Г	65,7	90,35	71,76		

В процессе разработок рассматривались и исследовались следующие варианты схем флотации:

1. Схемы с предварительным "сбросом" (обезыливанием) необогащенного тонкого

шлама перед флотацией.

- 2. Схемы с классификацией необогащенного шлама перед флотацией на узкие классы 0-0,045 мм и 0,045-0,2 мм в гидроциклонах малого диаметра.
 - 3. Схемы флотации с включением перечисток пенных продуктов
- 4. Схемы флотации шламов с различными реагентными режимами в I и П стадиях флотации.
- 5. Схемы флотации шламов с выводом отвального тонкодисперсного шлама из объема флотируемой пульпы после предварительного его обогащения в головных камерах флотомашины.

Рассмотрим эти схемы подробнее.

- 1. Схема с предварительным обезвоживанием необогащенного тонкого шлама перед флотацией является наиболее простым и экономичным вариантом, не требующим значительных капитальных затрат, позволяющим уменьшить фронт флотации. Такая схема применяется на ПАО «ДТЭК Павлоградская ЦОФ», обогащающей высокозольные газовые угли и может быть рекомендована для фабрик, где зольность шлама крупностью менее 0,045мм составляет более 70,0%. В противном случае неизбежны потери угля со сбрасываемым тонким шламом в сливе гидроциклонов
- 2. Схемы с классификацией необогащенного шлама перед флотацией по узким классам 0-0,045 и 0,045-0,2мм в гидроциклонах малого диаметра. Ввиду низкой селективности флотации наиболее тонких частиц (крупностью менее 0,04-0,05мм) в последние годы на ряде ОФ, построенных по технологии СЕТСО (ОФ Свято-Варваринская в Украине, ОФ Северная г. Березовский, ОФ Бочатская-Коксовая г.Белово и др.), предусматривается классификация необогащенного шлама перед флотацией в гидроциклонах малого диаметра с целью выделения тонких частиц [7]. Такой подход может способствовать улучшению показателей флотации, однако, создаёт проблему переработки шламовой воды, содержащей тонкие частицы, и увеличивает потери угля.

Имеется опыт раздельной флотации песков и шламов после классификации. Так, на ОФ Северная и ОФ Свято-Варваринская применены схемы раздельной колонной флотации тонкозернистых (0,04-0,2 мм) и тонких шламов (0-0,04 мм). На ОФ установлены колонные аппараты, что позволяет подбирать соответствующие оптимальные расходы флотореагентов и аэрогидродинамические режимы для частиц различной крупности. Тем не менее, полученные результаты не обнадеживают: эффективность разделения частиц тонкого класса 0-0,04мм низкая. При этом нельзя не отметить, что проблеме совершенствования колонных аппаратов и в частности аэраторов для них посвящено значительное число исследований [7, 9]. Однако, полностью проблема обогащения этих тонких угольных шламов все еще требует решения.

3. Схемы флотации шламов с включением перечистных операций пенных продуктов. Известно, что эффективность перечистных операций зависит в первую очередь от содержания тонкого шлама в питании флотации, его состава и степени раскрытия угольной и минеральной составляющих в нем [3]. В зависимости от этих факторов снижение зольности флотоконцентрата составляет при перечистке всего пенного продукта в лабораторных условиях 6-12%, а при перечистке более зольного флотоконцентрата только последних трех камер зольность общего концентрата снижается на 2-3% (табл. 3). Это связано с тем, что количество флотоконцентрата из последних трех камер значительно меньше, чем из первых трех. Зольность отходов при включении перечисток концентрата редко остается на одном и том же уровне [12], как правило, она снижается на 1-3%, что влечет за собой потери горючей массы.

Поскольку процесс перечистки концентрата протекает почти исключительно в самых тонких классах <0.045~(0.063) мм, а малозольные крупнозернистые классы не снижают своей зольности в этой операции, то более эффективной представляется схема флотации с перечисткой не всего пенного продукта, а выделенного из него тонкодисперсного класса менее 0.045~(0.063) мм.

Таблица 3 Эффективность перечистных операций в технологических схемах флотации высокозольных углей в лабораторных условиях

Наименование шлама	Марка угля	Зольность исходного шлама, %	Содерж. кл.< 0,045 в исход- ном, %	Сниже зольнос флото- концентрат а	ти, %	Схема флотации
питание флотации ПАС «ДТЭК «Октябрьская ЦОФ»	Γ	54,5	89,4	10-12	0,5-1	с перечисткой всего флото- концентрата
питание флотации ЗАО ЦОФ «Селидовская»	Γ	53,3	86,5	8-10	1-2	с перечисткой всего флото- концентрата
титание флотации ПАС «ДТЭК «Павлоградская ЦОФ»	Γ	64,7	87,4	6-8	2-3	с перечисткой всего флото- концентрата
питание флотации ПАС «ДТЭК «Добропольская ЦОФ»	Γ	44,5	74,0	2-3	1,5-2,0	с перечисткой флотокон- центрата только последних трех камер

Для этого могут быть использованы гидроциклоны (например ГЦ-350) или радиальные сгустители, слив которых направляется в перечистную флотацию. Однако реализация таких схем в промышленности связана с капитальными затратами и рядом технологических недостатков. Опыт работы ОФ Череповецкого и Магнитогорского металлургических комбинатов с применением радиальных сгустителей для выделения тонкодисперсного шлама из концентрата основной флотации показал, что главным недостатком таких схем являются постоянные нарушения процесса из-за обильного пенообразования [13]. Большое количество пены скапливается в желобах флотомашин, в сборниках флотоконцентрата. По этой же причине невозможно направить в циркуляцию или возвратить на флотацию малозольный слив радиального сгустителя концентрата перечистки, который часто сбрасывается в илонакопитель. Запенивание процесса приводит к вынужденному снижению нагрузки на машины, отключению подачи вспенивателя и потерям угля с отходами флотации. Применение схемы позволяет в 1,5-2 раза снизить зольность концентрата, но зольность отходов не достигает 70%.

Таким образом, рассмотренные варианты схем флотации с перечистками пенных продуктов позволяют улучшить качество флотоконцентрата, но не сокращают потерь угля с отходами.

4. Схемы флотации шламов с различными реагентными режимами в I и II стадиях флотации. Принципиальная схема непрерывной двухстадийной флотации шлама с различным расходом реагентов в I и II стадиях, осуществляемая в одной и той же машине, приведена на рис. 1.

Особенностью этой схемы, отличающей ее от общепринятой с дробной дозировкой реагентов, является то, что в ней в "голову" процесса подается не основная часть реагентов, а небольшое его количество — 25-50% от общего расхода. Назначение І стадии процесса в условиях "голодного" реагентного режима обеспечить выделение в пенный продукт преимущественно тонкого шлама и за счет этого повысить эффективность флотации крупнозернистого материала во ІІ стадии флотации. Эта схема позволяет снизить потери крупнозернистого угля в отходах флотации, снизить расход реагентов и значительно

уменьшить объем пены при флотации высокозольных тонкодисперсных углей. В табл. 4 приведены данные лабораторных флотоопытов, поставленных на промышленных шламах обогатительных фабрик, подтверждающие преимущество исследуемого варианта.

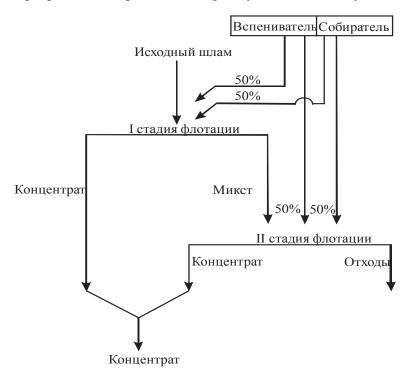


Рисунок 1 – Принципиальная схема двухстадиальной флотации

Сопоставляя их с полученными при флотации по общепринятой одностадиальной схеме с единовременной подачей реагентов можно отметить, что в данном случае достигается значительное повышение зольности отходов, но при этом снижается качество концентрата за счет высокой зольности пенного продукта II стадии. Зольность тонкодисперсного шлама <0,063 (0,045)мм в камерном продукте может колебаться в значительных пределах в зависимости от реагентного режима в I стадии флотации.

5. Схемы флотации углей с выводом тонкодисперсного шлама из объема флотируемой пульпы после его предварительного обогащения в головных камерах флотомашины. В предыдущем варианте схемы была показана принципиальная возможность получения высокозольного тонкого шлама в камерном продукте I стадии флотации при подаче ~50% реагентов от общего их количества. Для повышения скорости и селективности процесса целесообразно вывести отвальный тонкий шлам из камерного продукта I стадии, подвергнув его гидравлической классификации по определенному граничному зерну. Исследуемый вариант схемы прерывной двухстадийной флотации с включением гидравлической классификации представлен на рис. 2.

Для определения качественно-количественных показателей флотации по данной схеме были поставлены лабораторные флотоопыты с выделением тонкого шлама крупностью менее 0,045 мм. Отсеянный тонкий шлам в виде отходов I стадии соединялся с флотоотходами II стадии и удалялся в отвал. Крупнозернистый камерный продукт с нижним пределом крупности 0,045 мм являлся исходным питанием опытов П стадии и флотировался с оставшимся количеством реагентов.

Таблица 4

Технологические показатели флотации шламов

	Одностадийная флотация		Непрерывная флотация с				
Продукты флотации	(базовый	і вариант)	дробной подачей реагентов				
	выход, %	зольность,%	выход, %	зольность,%			
ООО «УП ЦОФ «Чумаковская»							
Исходный шлам	100,0	27,7	100,0	27,8			
Концентрат I стадии			61,5	11,5			
Концентрат II стадии			18,1	18,8			
Общий концентрат	72,4	13,1	79,6	13,2			
Отходы II стадии			20,4	85,2			
Общие отходы	27,6	65,9	20,4	85,2			
	ПАО «ДТЭК С	Октябрьская ЦОФ	»				
Исходный шлам	100,0	53,8	100,0	53,8			
Концентрат I стадии			16,1	19,8			
Концентрат II стадии			21,2	24,1			
Общий концентрат	32,4	22,4	37,3	22,4			
Отходы II стадии			62,7	72,5			
Общие отходы	67,6	68,8	62,7	72,5			
ЗАО ЦОФ "Селидовская"							
Исходный, шлам	100,0	46,7	100,0	46,8			
Концентрат I стадии			23,8	18,7			
Концентрат II стадии			30,8	25,1			
Общий концентрат	48,6	20,4	54,6	22,3			
Отходы II стадии			46,4	76,3			
Общие отходы.	51,4	71,6	46,4	76,3			

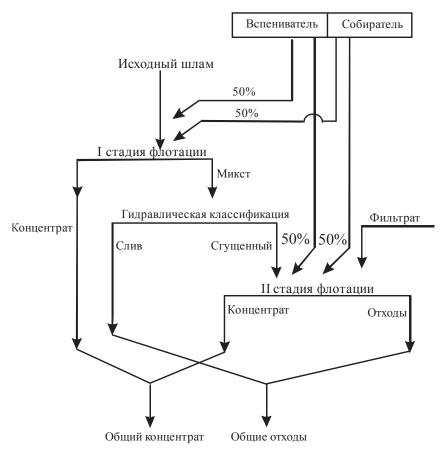


Рис 2 Принципиальная схема флотации с гидравлической классификацией

Качественно-количественные показатели, полученные при флотации шламов по исследуемому варианту схемы, приведенные в табл. 5, свидетельствуют о высокой технологической эффективности новой схемы. Применение данной схемы позволит не только значительно снизить потери угля (зольность отходов повышается на 2-6%), но также улучшить качество концентрата, снизив его зольность на 2,5-6,5% без увеличения расхода реагентов. При этом на 20-30% может увеличиться производительность флотоотделения за счет сокращения фронта флотации. Кроме того, вывод из цикла флотации и фильтрации илистого материала повысит эффективность обезвоживания флотоконцентрата. Такая схема может быть применена и при флотации окисленных труднофлотируемых углей.

Предложенная технология флотации шламов рекомендуется к проверке в опытнопромышленных условиях фабрик, обогащающих высокозольные тонкодисперсные угли, особенно марок Γ и Π .

Таблица 5 Технологические показатели, полученные при флотации по двухстадийной схеме с выводом предварительно обогащенного тонкого шлама

Продукты флотации	Одностадийная флотация (базовый вариант)		Двухстадийная флотация при диаметре граничного зерна гидроклассификатора 0,045 мм					
	выход, %		выход, %	зольность,%				
ООО «УП ЦОФ «Чумаковская»								
Исходный шлам	100,0	27,7	100,0	27,6				
Концентрат I стадии			64,1	10,7				
Концентрат II стадии			7,6	8,9				
Общий концентрат	72,4	13,1	71,7	10,5				
Отходы II стадии			2,1	72,3				
Отходы I стадии (слив гидроклассиф.)			26,2	70,9				
Общие отходы	27,6	65,9	28,3	71,0				
	ПАО «ДТЭК Октябрьская ЦОФ»							
Исходный шлам	100,0	53,8	100,0	53,2				
Концентрат I стадии			17,9	21,1				
Концентрат II стадии			13,9	9,2				
Общий концентрат	32,4	22,4	31,8	15,9				
Отходы II стадии			7,4	73,7				
Отходы I стадии (слив гидроклассиф.)			60,8	70,2				
Общие отходы	67,6	68,8	68,2	70,6				
ЗАО ЦОФ "Селидовская"								
Исходный, шлам	100,0	46,7	100,0	47,0				
Концентрат I стадии			32,5	19,8				
Концентрат II стадии			21,8	15,2				
Общий концентрат	48,6	20,4	54,3	18,0				
Отходы II стадии			7,6	76,6				
Отходы I стадии (слив гидроклассиф.)			38,1	78,4				
Общие отходы	51,4	71,6	45,7	78,1				

Выводы.

1.Технологические режимы и схемы флотации высокозольных тонкодисперсных угольных шламов действующих обогатительных фабрик не являются совершенными и не обеспечивают современных требований к качеству продуктов флотации.

2. В качестве новой стадии в развитии технологии флотации тонкодисперсных угольных шламов предложена более совершенная двухстадийная схема с выводом тонкодисперсного шлама из объема флотируемой пульпы после его предварительного обогащения в первых камерах флотомашины. В первой стадии флотации – в голове процесса – создаются условия для флотации преимущественно тонкого шлама и вывода илов со сливом малых гидроциклонов, что обусловливает более эффективную флотацию во второй стадии крупнозернистого шлама.

Такая схема флотации позволяет снизить потери угля с отходами флотации за счет повышения их зольности и снизить зольность концентрата без увеличения расхода реагентов. Вследствие сокращения фронта флотации может быть увеличена производительность флотоотделения, а за счет выведения илистого материала из цикла фильтрации повышена эффективность обезвоживания флотоконцентрата.

Список литературы

- 1. Raspadskaya Coal Preparation Plant: Selektive Slime Flocculation Instead of Flotation Vadim I. Novak, Vladimir V. Dolmatov, International coal preparation congress 2010 conference proceedings, Edited by Rick Q. Honaker, USA XVI ICPC P. 811 2010
- 2. Белюгу П. и др. Некоторые аспекты проблемы флотации углей. IV Международный конгресс по обогащению углей. Харровейт (Великобритания) 1962 г. Пер с англ. М., Недра, 1964.
- 3. Рожнова Е.Е. Флотация углей с высоким содержанием тонких шламов. Научные труды Укрнииуглеобогащение, т.5, М., Недра, 1968
- 4. Особенности флотации и обезвоживания тонкодисперсных углесодержащих материалов / Гарковенко Е.Е., Назимко Е.И., Самойлов А.И., Папушин Ю.Л. Донецк: НОРД-ПРЕСС, 2002. 266 с.
- 5. Назаренко В.М. Самылин В.Н., Ямпольский М.Н. Влияние гранулометрического состава шлама на результаты флотации. Научные труды Укрнииуглеобогащение, т. 7, М., Недра, 1971.
- 6. Нікітін І.М., Сергєєв П.В., Білецький В.С. Селективна флокуляція вугільних шламів латексами. Донецьк «Східний видавничий дім», 2001 152 с.
- 7. Новак В.И. Автореферат диссертации «Обоснование и разработка рациональной технологии флокуляционного разделения тонкодисперсных угольных шламов // ИОТТ МГУ, Москва, 2012.
- 8. Полулях А.Д. Пути снижения потерь угля при обогащении // Збагачення корисних копалин: Наук.-техн. зб. 2008 Вип. 34(75), с 7-19.
- 9. Козлов В.А., Новак В.И. Применение колонной флотации в угольной промышленности. ГИАБ, №4. МГГУ, 2011.
- 10. Морозова Л.А., Морозов О.А., Мавренко Г.А. Анализ технологии флотации углей на обогатительных фабриках Украины // Збагачення корисних копалин: Наук.-техн. зб. 2010 Вип. 41(82) 42(83)
- 11. Золотко А.А., Морозова Л.А., Морозов О.А., Мавренко Г.А. и др. Опыт и перспективы развития техники и технологии разделения шламов методом флотации //Збагачення корисних копалин: Наук.-техн. зб. -2005– Вип. 23(64)
- 12. Ферт Б.А. и др. Схемы флотации углей. International Journal of Mineral Processing, 1979, 5, c.321-334
- 13. Разработать и внедрить методы повышения эффективности и скорости флотации малометаморфизированных углей и антрацитов: Отчет. Ворошиловград, Укрнинуглеобогащение, 1982, с. 145.