И.К. МЛАДЕЦКИЙ, д-р техн. наук, **С.Н. ДАЦУН** (Украина, Днепропетровск, Государственное ВУЗ "Национальный горный университет")

МИНИМАЛЬНАЯ МАССА ПРОБЫ ПРИ ПОКУСКОВОМ ОПРОБОВАНИИ РУДНОГО МАССИВА

Введение. Покусковое опробование производится путем отбора отдельных кусков полезного ископаемого подряд из массива. Если потребное количество кусков значительно и составляет некоторый объем, то естественно, необходимо разработать правила отбора, например, лопатой, в некоторый стандартный объем — ведро. Рассмотрим, каким образом следует отбирать куски массива с целью формирования представительной пробы.

Анализ предыдущих публикаций и постановка задачи. К настоящему времени опубликован ряд работ [1-5], содержащих различные аспекты определения минимальной массы пробы. Они позволяют выбрать направление уточнения методики расчета минимальных масс.

Изложение материала. Полезное ископаемое, например, магнетитовые кварциты, имеют полосчатую текстуру и после четвертой стадии дробления имеют некоторое раскрытие. В результате среди отобранных кусков могут оказаться такие, которые имеют содержание ценного минерала $\alpha > \alpha_{uex}$ и $\alpha < \alpha_{uex}$.

В дробленом материале весьма незначительное количество частиц класса крупности d меньших размеров вкрапления $d_{e\kappa}$ ($d < d_{e\kappa}$), а в разных частицах могут быть открытые зерна, у которых $\alpha = 0$ или $\alpha = 1$. Но в силу незначительности этого класса крупности можно считать, что крупные сростки ограничены содержанием ценного минерала $\alpha_{min} \le \alpha \le \alpha_{max}$, что обусловлено содержанием ценного минерала в богатых и бедных прослоях текстуры руды. Таким образом, функция фракционного состава имеет вид, как показано на рис.1

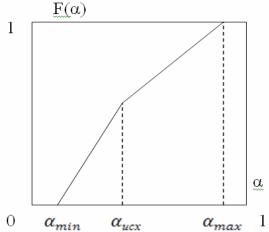


Рис. 1. Функция распределения сростков в дробленом продукте В зависимости от класса крупности эта функция видоизменяется: чем Збагачення корисних копалин, 2014. — Вип. 57(98)

Випробування та контроль

меньше размеры кусков, тем больше α_{max} и меньше α_{min} . А когда $d \to \infty$, то $\alpha_{max} \to \alpha_{min} \to \alpha_{ucx}$. При условии, что $d \to 0$, $\alpha_{max} \to 1$, а $\alpha_{min} \to 0$.

Рассмотрим влияние на массу пробы текстурных признаков руды.

Например, железную руду характеризуют рудные прослои, мало рудные та нерудные. Каждый прослой численно характеризуют его толщиной т.е. L_P , L_{MP} , L_H ; в которых содержится рудный минерал в количестве α_P , α_{MP} , α_H . Среднее содержание минерала в руде составит:

$$\alpha = \frac{\alpha_P L_P + \alpha_{MP} L_{MP} + \alpha_H L_H}{L_P + L_{MP} + L_H}.$$
 (1)

Когда руда измельчается, то в кусках сосредотачивается различное количество всех прослоев, поэтому содержание ценного минерала в них теоретически разное. В конце концов, существует кусок такого размера, больше которого качественные характеристики рудных кусков будут практически одинаковыми. Минимальное содержание в кусках будет таким, что кроме набора всех прослоев будет еще один нерудный, а максимальное содержание, когда включают еще один рудный прослой.

Отбор кусков из массива — это последовательность случайных событий. В каждом из испытаний с вероятностью P_{pc} отбирается богатый сросток, а с вероятностью P_{nc} — бедный т.к.

$$P_{p\varepsilon} + P_{H\varepsilon} = 1, (2)$$

то этот процесс подчиняется закону Бернулли. И необходимое количество испытаний п (количество кусков) может быть определено по формуле Бернулли

$$\underline{P}_{nm} = C_n^m * \underline{P}_{pc}^m * P_{Hc}^{n-m}, \qquad (3)$$

где C_n^m — количество сочетаний из n по m; m-желаемое количество благоприятных исходов.

Но так как

$$m = n * P_{pc} M m + (n - m) = n,$$
 (4)

TO

$$P_{PC} = C_n^{nP_{PC}} P_{PC}^{nP_{PC}} (1 - P_{PC})^{n(1 - P_{PC})}.$$
 (5)

В результате осуществляется поиск общего количества испытаний и поэтому функция (10) будет убывающей от 1 при n=0. P=1, т.к. показатели степеней необходимо будет округлять до ближайшего целого.

Ожидаемое количество богатых сростков составляет:

$$P_{PC} = 1 - \alpha_H. \tag{6}$$

Поэтому задавшись погрешностью определения P_{PC}

$$\varepsilon = P_{PCi} - P_{PC(i+1)} \tag{7}$$

в области ожидаемого значения P_{PC} и при надежном изменении функции принимаем значение n.

Приняв значение $\alpha_{U} = 0.35$ имеем количество кусков около n = 15.

Однако, содержание ценного минерала в этих кусках будет различное и достоверной оценки качества руды не будет осуществлено, поскольку неизвестна дисперсия содержания ценного минерала в этих кусках.

В богатой фракции будут находиться куски руды образованные из богатых прослоев, а в бедной те частицы, которые образованы из нерудных и малорудных прослоев. Таким образом, смешанные и нерудные прослои объединены в малорудные прослои:

$$l_{MP} = l_C + l_H. (8)$$

С целью установления связи крупности частиц и возможного в них содержания магнетита выполнены такие рассуждения. По мере увеличения размера кусков в них может быть несколько рудных или нерудных прослоев. По этой причине куски $d > l_P$ и $d > l_H$ уже не могут принадлежать к открытым фракциям они обязательно являются сростками.

Когда размер куска $d = l_P$, то максимально возможное содержание магнетита в нем α_P .

Когда размер куска $d=l_H$, тогда минимально-возможное содержание магнетита в нем составляет α_H .

Когда размер куска $l_P < d < l_H$, то максимально возможное содержание магнетита в нем будет

$$\alpha_{MK} = \frac{l_P}{l_P + l_{MP}} \alpha_P. \tag{9}$$

Увеличение размера куска приводит к тому, что кусок может включать 2 рудных прослоя и один малорудный, тогда

$$\alpha_{MK} = \frac{2l_P \alpha_P}{2l_P + l_{MP}}. (10)$$

Аналогичные дальнейшие рассуждения показали, что богатый кусок руды **Збагачення корисних копалин, 2014.** – **Вип. 57(98)**

Випробування та контроль

общем случае включает на один рудный прослой больше по сравнению с бедным (максимально возможное содержание ценного минерала). А бедный кусок содержит на один нерудный прослой больше по сравнению с богатым (минимально возможное содержание ценного минерала):

Таким образом, при изменении размера кусков наблюдается зависимость предельных значений содержания в них магнетита. Таких предельных показателей два:

- минимально-возможное:

$$\alpha_{MIH} = \frac{nl_p\alpha_p + (n+1)l_H\alpha_H}{nl_p + (n+1)l_H}; \tag{11}$$

– максимально-возможное:

$$\alpha_{MAKC} = \frac{nl_H \alpha_H + (n+1)l_P \alpha_P}{nl_H + (n+1)l_P}.$$
 (12)

Разность между этими двумя величинами уменьшается по мере увеличения размера кусков. Размер кусков выражен в количестве прослоев: чем больше прослоев (величина n), тем больше размер куска. Моделирование с помощью выражений (11) и (12) при условии, что $l_P = 5$ мм, $l_H = 13$ мм, $\alpha_P = 0.7$, $\alpha_H = 0.2$ дало зависимость, приведенную в табл. 1.

Как видно из табл. 1, после n=3 зависимость резко снижает чувствительность и только куски размером d=10 $l_H=130$ мм могут иметь различие в содержании магнетита около одного процента.

 Таблица 1

 Предельные значения содержания магнетита в кусках в зависимости от их размера

n=d/l	0	1	2	3	10	∞
α_{MUH}	0,2	0,28	0,3	0,31	0,33	0,35
α_{MAKC}	0,7	0,42	0,38	0,36	0,34	0,35

Для определения размера куска, в котором оценка содержания магнетита будет не хуже заданной погрешности, было составлено уравнение:

$$\alpha_{MAKC} - \alpha_{MHH} = \varepsilon, \tag{13}$$

где є – заданная точность оценки содержания магнетита в куске руды.

Тождественные преобразования этого уравнения относительно n дало квадратное уравнение:

$$an^2 + bn + c = 0, (14)$$

где

$$a = \mathcal{E}(l_P^2 + l_H^2 + 2l_P l_H), \tag{15}$$

$$b = 2l_P l_H (\varepsilon - (\alpha_P - \alpha_H)), \qquad (16)$$

$$c = \mathcal{E}(l_P^2 + l_H^2 + 2l_P l_H) - l_P l_H (\alpha_P - \alpha_H).$$
 (17)

Таким образом, в кусках руды, размер которых меньше мощности нерудного и рудного прослоев максимально-возможное содержание магнетита может быть таким, которое содержится в этих прослоях: $\alpha_{MAKC} = 0.7$ и $\alpha_{MIH} = 0.2$. По мере увеличения размера куска эти значения уменьшаются и стремятся к одному значению — содержанию магнетита в монолите.

Для расчетов раскрытия нерудных прослое принято $n_{\Gamma} = 3$.

Итак, общее количество каждой из четырех фракций по всем классам крупности кусков руды определяется путем суммирования приращений и составит:

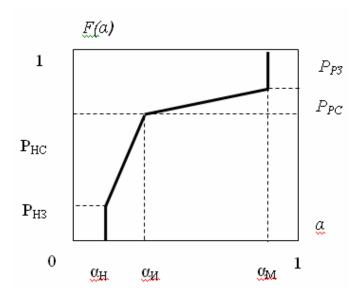


Рис. 2. Интегральная функция распределения кусков по содержанию в них магнетита

– открытых кусков из рудного прослоя (рудных зерен):

$$P_{P3} = \frac{l_P}{l_{MP} + l_P} \sum_{i=1}^{k} (1 - \frac{d_i}{l_P}) \Delta F(d_i);$$
 (18)

– открытых кусков из нерудных прослоев (нерудные зерна):

Випробування та контроль

$$P_{H3} = \frac{l_{MP}}{l_P + l_{MP}} \sum_{i=1}^{k} (1 - \frac{d_i}{l_{MP}}) \Delta F(d_i);$$
 (19)

- промежуточных фракций:
- богатых (рудных сростков)

$$P_{PC} = \frac{l_P}{l_P + l_{MP}} \left(\sum_{i=1}^k \frac{d_i}{l_P} \Delta F(d_i) + (F(3l_P) - F(l_P)) \right) + (1 - F(3l_P)); \quad (20)$$

- бедных сростков

$$P_{HC} = \frac{l_H}{l_P + l_{MP}} \left(\sum_{i=1}^k \frac{d_i}{l_H} \Delta F(d_i) + (F(3l_{MP}) - F(l_{MP})) \right), \tag{21}$$

где $\Delta F(d)$ – приращение функции распределения кусков руды по крупности.

По этим показателям была построена функция распределения кусков руды по содержанию в них магнетита $F(\alpha)$ – кривая обогатимости, характерный вид которой, показанный на рис. 2, а также зависимости максимального и минимального содержание ценного минерала в сростках от их размера (рис. 3).

Как следует из рис. 3 при увеличении крупности материала содержание ценного компонента в нем стремится к единственному значению – α_U .

Кроме того, расстояние между максимальным и минимальным значениями определяет дисперсию содержания ценного минерала в частицах.

$$\sigma_{\alpha} = \frac{\alpha_{\text{MAKC}} - \alpha_{\text{MUH}}}{4}.$$
 (22)

Известно, что количество кусков, отбираемых в пробу, зависит от отношения дисперсии содержания в классе крупности к требуемой дисперсии измерения – σ_3 . Тогда

$$n = \frac{\sigma^2}{\sigma_3^2}. (23)$$

Для средней крупности дробленой руды 10 мм дисперсия содержания составит

$$\sigma_{\alpha} = \frac{0.45 - 0.2}{4} = 0.063. \tag{24}$$

И если требуемая точность 0,05, заданная дисперсия будет

$$\sigma_3 = \frac{0.05}{4} = 0.012. \tag{25}$$

Тогда
$$n = \frac{\sigma^2}{\sigma_3^2} = \frac{0.063^2}{0.012^2} \approx 29$$
 кусков.

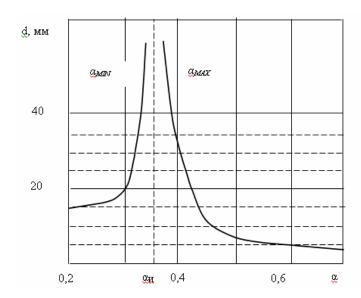


Рис. 3. Зависимости изменения содержания ценного компонента во фракциях дробленого продукта.

Для определения общего объема пробы необходимо определить объем для каждого класса крупности.

Допустим для кусков размером d_1 необходимо n_1 штук кусков;

- для d_2 необходимо n_2 штук;
- для $d_3 \rightarrow n_3$;
-
- для $d_n \rightarrow n_n$.

Соотношения $\frac{n_i}{\sum n_i}$ должны быть не менее содержания соответствующего класса в массиве, т.е.

$$\frac{n_i}{\sum n_i} \ge p_i. \tag{26}$$

Это условие формирование количества кусков из заданного класса крупности.

Объем пробы будет складываться в соответствии с выражением:

$$W_T = \sum d_i^3 n_i \,. \tag{27}$$

Масса пробы

$$P_T = \delta_T W_T \,. \tag{28}$$

Определим массу пробы при условии, что $\sigma_3 = 0.0025$.

Расчеты сведем в таблицу 2.

Таблица 2

Расчет массы прооы										
d, mm	5	10	15	20	25	30				
$\Delta \alpha$	0,4	0,25	0,22	0,12	0,1	0,08				
σ_{lpha}	0,1	0,06	0,51	0,03	0,025	0,02				
n	1600	576	400	144	144	64				
nd^3	200	576	1348	1152	2246	1728				

Doguer Macci I Hoofi I

$$\sum nd^3 = 7252 \,\mathrm{cm}^3$$
.

При плотности руды 3,5 г/см³ имеем массу пробы около 25 кг.

Объем пробы составляет около 7 дм³, что соответствует пробе, которая отбирается для рудоразборки.

Выводы

Для теоретического определения минимальной массы пробы при покусковом опробовании необходимо предварительное определение текстурноструктурных признаков опробуемой массы.

Список литературы

- 1. Козин В.З. Контроль технологических процессов обогащения. Конспект лекций. Екатеринбург, 2003. – 161 с.
- 2. Козин В.З. Универсальная формула минимальной массы пробы // Известия вузов, Горный журнал. 2004. №1. С. 102-106.
- 3. Локонов М.Ф. Опробование на обогатительных фабриках. М.: Госгортехиздат, 1961. 270 с.
- 4. Младецкий И.К., Пилов П.И., Лысенко А.А., Левченко К.А., Попова О.Г. Требуемая точность контроля параметров технологии обогащения полезных ископаемых // Збагачення корисних копалин: Наук.-техн. зб. 2013. Вип. 53(94). С. 200-205.
- 5. Младецкий И.К., Куваев Я.Г., Левченко К.А., Лысенко А.А., Павленко А.А. Минимальные массы проб для анализа показателей качества сырья// Збагачення корисних копалин: Наук.-техн. зб. 2013. Вип. 52(93). С. 135-145.

© Младецкий И.К., Дацун С.Н., 2014

Надійшло до редакції 19.09.2014 р. Рекомендовано до публікації д.т.н. П.І. Піловим