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ABSTRACT

Purpose. The main purpose is solving transportation problems using some methods of transportation modeling by
linear programming. Linear programming has already demonstrated its value as an aid to making decisions in min-
ing, business, industry, and governmental applications. This paper discusses how to solve transportation problems
using manual solution method and computer software solutions. The transportation model deals with a special case of
linear programming problems whose objective is to “transport” a single commodity from various “points of depar-
ture” to different “destinations” at minimum total cost.

Methods. In this paper, we used manual and computer software to solve many problems in mining engineering.

Findings. The optimum solution for the problems occurring in the mine site, which will apply for future problems in
different conditions, has been obtained. It was proved that results are identical because they produce the same effect
when solving the problem using the following five methods: northwest corner method; minimum cost method; row
minimum cost method; column minimum cost method, and Vogel’s approximation method.

Originality. The new trend is how to use computer application in solving all mining problems and obtain the opti-
mum solution for any problem considering the constraints.

Practical implications. All the suggested solutions are optimum ways to solve mining problems which can be
applied to any problem beyond the studied field.

Keywords: transportation problem, linear programming, Microsoft Excel solver, Lindo software

1. INTRODUCTION programming is used either to maximize or to minimize a
given objective function (Loomba, 1964).

The transport, as a special case for linear program-
ming problems, is one of the most important and success-
ful applications of quantitative analysis to solve business
problems in production and transportation. Basically, the
purpose is to minimize the cost of shipping goods from
one location to each arrival area within its capacity.
Transport represents high percent of the mining operating
costs, especially in building construction materials (Reeb
& Leavengood, 2001). The aim of this work is to set up
transport problems and solve them using the simplex

The main purpose is solving transportation problem
using some methods of transportation model by linear
programming (LP). Linear programming has already
demonstrated its value as an aid to making decision in
business, industry, and governmental applications (Ilich,
2008; Qi, Tian, & Shi, 2012; Antipin & Khoroshilova,
2015; Astola & Tabus, 2016). Determination of facility
or machine scheduling, distribution of commodities,
determination of optimum products mix, and allocation
of labor and other resources are few examples of the
problems that can be solved by linear programming.

Linear programming is a subclass of allocation mod-
els. It is a method of allocating scarce resources to com-
pete activities under the assumption of linearity (Da
Gama, 2012). In linear programming problem (LPP),
both the objective function and the constraints are as-
sumed to be linear. In other words, linear programming
deals with problems whose structure is made up of varia-
bles having linear relationships with each other. Linear

method applied to any linear programming problem.

2. MANUAL SOLUTION

The transport model deals with a special case of line-
ar programming. The objective “transport” is a single
commodity from various “points of departure” to differ-
ent “destinations” with minimum total cost. Transport as
a linear-programming problem can always be solved by
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the simplex method. This problem consists essentially of
three components.

1. Linear Objective Function. Every linear program-
ming problem has objective function (maximization or
minimization) in the form:

fx)=%eyx; (1)
where:

i=1,2...m;

j=12..n

x; — set of structural variables;

c;j — set of the so-called “price coefficients”;
Sx)= 11+ 21202 + e ComXnn - 2

2. Linear Structural Constraints. Every linear pro-
gramming problem contains a set of linear constraints:

22xp>bis Y x<a, 3)
where:

i=1,2...m;

j=1,2...n.

The embodied technical specification and resource
capacity of the problem structure are therefore called
structural constraints. These constraints in the form of the
linear structure are given below:

X1 +X12 +...+x1n Sal

Xo1 +Xpp t...t Xy, < a

)
Xy + X ot Xy S Ay
and
Xt X+t x, <q
Xyl +Xpp +..t Xy, Sy )
Xl + X2 oo+ X Sy,

3. Non Negativity Constraints. The structural varia-
bles, slack and artificial slack variables of all linear pro-
gramming problems are restricted by nonnegative values.
This is accomplished by imposing nonnegative con-
straints in the form — x;>0, where (i=1,2..m,
j=1,2,3..n) (Saul, 1957).

There are five methods solving transportation prob-
lem manually.

1. Northwest Corner method. According to this meth-
od, first allocation is made to the cell occupying the up-
per left-hand (Northwest) corner of the matrix. Further,
this allocation of the individual elements of the array
appears in cells and represent a solution. An empty cell
denotes the value of zero.

Step 1. Start with the cell in the upper left-hand corner.

Step 2. Allocate the maximum feasible amount con-
sistent with row and column sum requirements involving
that cell. At least one of these requirements will then be met.

Step 3. Move one cell to the right if there is any re-
maining row requirement (supply).
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Otherwise, move one cell down. If all requirements
are met, stop; otherwise go to step 2 (Loomba, 1964).

2. Minimum cost method. Here we search the whole
matrix for the smallest element and allocate accordingly.
We repeat this procedure until all the units are shipped.

3. Vogel’s approximation method.

Step 1. For each row of the transportation table, iden-
tify the smallest and the next-to-smallest costs. Deter-
mine the difference between them for each row. Display
them alongside the transportation table by enclosing
them in parenthesis against the respective rows. Similarly
compute the differences for each column.

Step 2 identifies the row or column with the largest dif-
ference among all the rows and columns. If a tie occurs,
use any arbitrary tie breaking choice. Let the greatest dif-
ference correspond to i row and the minimum cost be c;.
Allocate a maximum feasible amount x; = min (a;, b;) in
the (i, /)" cell, and cross off the i row or j” column.

Step 3. Recompute the column and row differences
for the reduced transportation table and go to step 2.

Repeat the procedure until the entire rim require-
ments are satisfied.

4. Row Minimum Method. Let the minimum element
in the first row be ci. If there are more than one mini-
mum element, select the one with the smallest index ;.

Let x1x = ay, if a1 < by or x1 = by of a; > by.

In the first case, we have shipped all the a; units and
go on to the second row after changing by to by — ai. Next,
we find the minimum elements in the second row and
repeat the process. In the second case, we have allocated
only b units of the a; to a; — b and by to zero and find the
next smallest @;; in the first row and repeat the process.

5. Column Minimum Method. Here the calculations
are similar to that using the row minimum. But in this
case, we start with the first column and proceed to the
next column.

3. COMPUTER SOLUTION

First let us formulate the transportation problem and set
it up as “regular” linear programming problem using two
LP Softwares (premium solver platform (PSP) and Lindo).
The solution of both linear programs is optimum. In this
paper, the solution with manual and programming methods
is compared in terms of time and difficulty (Rao, 1978).

4. CASE STUDY

4.1. Case study 1

The first example is the xyz sawmill company trans-
portation problem, as shown in Table 1.

Table 1. Sawmill transportation problem (Example 1)

Sie/ Ml y\pa Mt mine Al
name bility
Site 1 90 100 130 20
Site 2 100 140 100 15
Site 3 100 80 80 10

Requirements 5 20 20 45

This example, solved by the two manual solutions
mentioned above, gives the same solution by the two
computer methods used here. It is found that the manual
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solution consumes more time than the computer solution.
It is found also that Lindo program takes more time to
solve Example 1 than the premium solver platform. The
solution steps for the four mentioned methods
(2 manual + 2 computerized) are summarized as follows.

4.1.1. Solution of Example 1
by the Northwest Corner Method

To solve the problem using the northwest corner
method, it takes five stages to distribute the availabilities
with requirements by the given steps (1, 2, 3, 4) of the
method mentioned before. Table 2 presents the solution.

Table 2. The final solution of Example 1, by Northwest

Corner Rule
Dressing .
plants  MillA  Mill B Mmic  Aval
. lability
mines
Site 1 5 %0 15 100 130 20
Site 2 100 5 140 10 100 15
Site 3 100 80 10 80 10
Require- 5 20 20
ments

The solution in Table 2 is not necessarily optimum.
So, we have to check it up to know if it is optimum or
not. The check is repeated, until the optimumity is
achieved. Five stages are required for this simple prob-
lem to reach the optimum condition. It means that this
method needs long time to calculate the optimum solu-
tion (Abdelkhalik & Mostafa, 1977; Waqar Ali Asad &
Dimitrakopoulos, 2012).

4.1.2. Solution of Example 1
by Vogel’s Approximation Method

Example 1 is solved by Vogel’s approximation meth-
od. It also incorporates five stages. The comparison be-
tween this method and the North-west corner rule shows
that the solution of Vogel’s approximation method testi-
fies that the optimum solution found by the North-west
corner rule is close to the optimum solution (Reeb &
Leavengood, 2001).

4.1.3. Solution of Example 1 by Lindo Software

To solve the previous problem by Lindo Software
(version 6), the following steps must be performed:

—put in the objective function like this (min
90x1; + 100x12 +...);

—put in constraints as follows: (x1; +x12 + x13 > 20),
(21 +x02+x23>15), (31 +x32+x33 > 10), (x11 +x21 +231 <5),
(12 +x22 + x32 <20), (i3 +x23 +x33<20), as shown in
Figures 1, 2 (Abdelkhalik & Mostafa, 1977).

4.1.4. Solution of Example 1 by using
Premium Solver Platform Method

This program is operated under Excel software. The
parameters of linear programming can be easily written
through the cells of Excel worksheet as shown in Ta-
ble 3. The objective function and constraints are put in
the same worksheet because all cells must be linked
with all cells.
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4% LINDD
File Edit Solve Reports Mindow Help
I 3 = = N e = =
B
Min 20X11+100X12+130X13+100X21+140X22+
100X23+100X31+80X32+80X33
ST X11+X12+X13>=20
X21+X22+X23>=15
X31+X32+X33>=10
X11+X21+X31<=5
X12+X22+X32<=20
X13+X23+X33<=20
END

Bl O] LI EE

Figure 1. The objective function and constraint

2% LiNDO

File Edit Solve Reports window Help
EEIRIEIE = ] =lE

2= Reports Window

LP OPTIMUM FOUND AT STEP s

OBJECTIVE FUNCTION VALUE

1) 4250.000
VARIABLE VALUE REDUCED COST

xX11 5.000000 0.000000
xX12 15.000000 0.000000
xX13 0.000000 30.000000
x21 0.000000 10.000000(
x22 0.000000 40.000000
xX23 15.000000 0.000000
xX31 0.000000 30.000000
X32 5.000000 0.000000
X33 5.000000 0.000000

Figure 2. Final results after the software run

This program gives a dialogue indicating the type of
solution (feasible, infeasible, and optimum) (David, 1984;
Shalaby, 2000; Peter, 2005). The data input, constraints
and results are in the same worksheet as in Table 3.

Table 3. Excel worksheet indicates Example 1 data and the
results obtained

. Transportation cost Availabi-
Site / Cost to center to Ic):en ter (¢) lities (bi)
Plant 1 2 3
1 90 100 130 20
2 100 140 100 15
3 100 80 80 10
Requirements (di) 5 20 20
Decision variables
Variables (x;)
1 5 15 0
2 0 0 15
3 0 5 5
Constraints
0
0
0
Constraints
0 0 0
Objective Function
Total cost 4250
4.2. Case study 2

Sun Ray Transportation Company ships truckloads of
grain from three silos to four mills. The supply (in truck-
loads) and the demand (also in truckloads) together with
the unit transportation costs per truckload on different routes
are summarized in the transportation model in Table 4.
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Table 4. Transportation model of the example (Sun Ray

Table 6. The optimum solution according to premium solver
platform software

Transportation)
Site / Supply 1 2 3 4 Supply
1 10 2 20 11 15
2 12 7 9 20 25
3 4 14 16 18 10
Demand 5 15 15 15

The model seeks for the minimum-cost shipping
schedule between the silos and the mills. This is equiva-
lent to determining the quantity x; shipped from silo 7 to
millj (i=1,2,3;j=1, 2, 3, 4) (Abdelkhalik & Mostafa,
1977; Gomah & Samy, 2009).

4.2.1. Solution of Example 2 by the Northwest
Corner Method (manual method)

The application of the procedure to the model of the
example gives the starting basic solution in Figure 3.

1 2 3

Supply
|10 2 2 1
mE—) 15/10/0
2 |12 7 v |9 2 50
5 15 s [~
\
3 [4 14 16 18 4 00
10
=50

Demand 30 15/5/0 1570 15/10/0

Figure 3. Northwest corner method (manually)

The starting basic solution is given as: xj; =35,
X12 = 10, X2 = 5, X23 = 15, X24 = 5, X34 = 10.

The objective function value is: F(x)=5-10+10 -2+
+5-7+15-9+5-20+10- 18 =3520

But this solution is not optimum because the objec-
tive function is not the minimum, so after that the opti-
mum solution is given in Table 5.

Table 5. The optimum solution for Example 2
Site /

supply 2 3 4 Supply
1 10 0 2 5 20 0 11 10 15
2 12 0 7 10 9 15 20 O 25
3 4 5 14 0 16 0 18 5 10
Demand 5 15 15 15 Total 50

The objective function value is: F(x)=5-4+5-2+
+10-7+15-9+10-11+5 - 18 =15§435.

This is the optimum solution according to premium
solver platform as shown in Table 6 as the same in objec-
tive function, but the computer solution is faster than the
manual solution.

Also Lindo software is the same objective function
but it is slower than premium solver platform. Fig-
ures 4, 5 illustrate how to solve transportation problem
input objective function and constraints. After you press
solve from the tool bar, you can see the final solution as
shown in Figures 4, 5.
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Site / Cost Transportation cost A.V .al.la-
bilities
to center to center (cy) (b))
Plant 1 2 3 4
1 10 2 20 11 15
2 12 7 9 20 25
3 4 14 16 18 10
Requirements
(d) 5 15 15 15
Decision
variables
Variables (x;)
1 0 5 0 10
2 0 10 15 0
3 5 0 0 5
Constraints
0
0
0
Constraints
0 0 0 0
Objective
Function 435
(Total cost)
£
([CEEE] ][l e =] EE=] (2
S

min 10x114+2x12420x13+11x14+12x21+7x22+9x23+
20x24+4x31+14x32+16x33+18x34
st

x114+x124+x13+x14>=15
X214+x224+x23+x24>=25
x314+x32+x33+x34>=10
x114+x21+x31<=5
x12+x22+x32<=15
x13+x23+x33<=15
x14+x24+x34<=15

end

Figure 4. The objective function and constraints

2= LINDO

Fil=  Edit Solve Reports “Window Help
[(CEEEE] CTEETeEE (m E1 0 CT00 &

LP OPTIMUM FOUND AT STEP 0

OBJECTIVE FUNCTION VALUE

1) 435.0000
VARIABLE VALUE REDUCED COST
X11 0.000000 13.000000
X1z 5.000000 fb.000000
X13 0.000000 16.000000
X14 10.000000 0.000000
X21 0.000000 10.000000
X22 10.000000 0.000000
X23 15.000000 0.000000
xX24 0.000000 4.000000
X31 5.000000 0.000000
X32 0.000000 5.000000
X33 0.000000 5.000000
X34 5.000000 0.000000

Figure 5. Final results after software run

5. RESULTS

Gomah & Samy (2009) have given an optimum solu-
tion for the case study 2 and estimated the objective
function at $475. This is not the optimum solution be-
cause as we proved in this paper, there are two software



Mahrous A.M. Ali. (2018). Mining of Mineral Deposits, 12(1), 48-53

methods which give the optimum solution and minimum
for objective function at the amount of $435. So the solu-
tion in this article is optimum and faster than others as
mentioned in Ali, 2007; El-Beblawi, Mohamed, El-
Sageer, & Mahrous, 2007; Ali & Sik, 2012.

6. CONCLUSIONS

From the results obtained in this study, it is found that:

— the transportation problems can be solved by using
the simplex methods, which is a time-consuming solu-
tion. Linear programming computer software is set up to
solve both simplex and transportation problems. When
the problem is introduced, the computer algorithm can
solve it much faster and better;

— Lindo software is a tool which allows to use few
manual methods, but much care should be taken in the
input of the data and their constraints and solves linear
programming problems for transportation with limited
dimensions;

— Premium Solver Platform is used to solve (linear,
non linear programming) large scale transportation prob-
lems as a special case. PSP is easier to use than Lindo
software in terms of data input.
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3ACTOCYBAHHA ITPOT'PAMHOI'O 3ABE3IIEYEHHSA Y BUPIIIIEHHI
TPAHCIIOPTHHUX MPOBJEM INNPHUYOBUIOBYBHOI I'AJIY3I

Marpoyc A.M. Amni

MeTa. BusiBnieHHs 1 BUPILIEHHS TPAHCIIOPTHUX MPOOJIEM TipHUYUX HiIIPUEMCTB HAa OCHOBI MOJeJeil IepeBe3eHs,
no0y/I0BaHUX METOZOM JIIHIHHOTO MPOrpaMyBaHHs Y KOMII IOTEPHUX NporpaMHuX npoaykrax LP Softwares.

MeToauka. /[ist BUpilIEeHHS] TPAHCHIOPTHHUX 1 TEXHOJIOTIYHHUX 3aBAaHb y TIPHUYOJO0YBHIN rajiy3i 3aCTOCOBaHI Ipo-
rpamHi npoaykTu Lindo Software ta Premium Solver Platform.

PesyabraT. Y crarti pos3risiHyTI CHOCOOM BMpILIEHHS TPaHCHOPTHHX 3aBAaHb “BpY4HY~ Ta 3a JONOMOTOIO
KOMIT IOTepHUX IporpaM. OTpUMaHO ONTUMAaJIbHI PIlICHHS 111 IpoOJieM, SKi € 200 MOXYTh BUHUKHYTH Ha TipHHYOMY
MIITPUEMCTBI B MaOYTHBOMY TP pi3HMX yMoBaX. OTpHMaHO aHAJOTIUHI pe3yNbTaTH IPH BHUPIMICHH] 3a/1a4 HACTYII-
HUMH II'IThMa CII0COO0aMHU: METOJ MiBHIYHO-3aXiTHOTO KyTa, METOJ MiHIMaJlbHOI BapTOCTi, MiHIMampHHN Tapud 3a
pAOKOM, MiHIMaTbHUH Tapud 3a CTOBIIEM i MeTox anpokcumartii dores.

HaykoBa HoBu3HA. [[pHHIIMTIOBO HOBHM € 3aCTOCYBaHHs KOMIT IoTepHUX nporpam LP Softwares y ripaudomo0ys-
Hill raiy3i Ta OTpUMaHHS Ha iX IiJCTaBl ONTUMAJIBHOTO PE3yJbTATy y BUPILICHHI NPHUYOTEXHIYHUX MPOOJIEM 3 ypaxy-
BaHHAM OOMEXYIOUHX YMOB.
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IpakTnynaa 3HAYAMICTB. BCi 3anponoHoBaHi MiIX0H JO3BOJISIFOTh ONTUMAIBHO BUPIIIYBATH 3aBJaHHS HE JIUIIE Y
ripHUY000yBHIH rany3i, a ¥ y IHIINX Taxy3sX IPOMHCIOBOCTI.
Kniouosi cnosa: mpancnopmua 3adaua, ninitine npoepamyeanis, “‘noutyk piwenns” 6 Microsoft Excel, npoepama Lindo

INPUMEHEHHWE TPOI'PAMMHOI'O OBECIIEYEHUS B PEHTEHUAX
TPAHCIIOPTHBIX ITIPOBJIEM I'OPHO/IOBBIBAIOIIENA OTPACJIA

Marpoyc A.M. Anu

Hean. BeisiBiienue 1 pelieHre TPaHCIOPTHBIX MPOOJIEM TOPHBIX MPEANpPHUATHHA HAa OCHOBE MOJIEINIEH MepeBO3OK,
MTOCTPOEHHBIX METOAOM JIMHEWHOTO MPOTPaMMHUPOBAHHs B KOMITBIOTEPHBIX IPOrpaMMHBIX npoaykTax LP Softwares.

Metoauka. [ pemieHnst TpaHCIIOPTHBIX M TEXHOJIOTHYECKHUX 33/1a4 B TOPHOIOOBIBAIONIEH OTPaciy MPUMEHEHBI
nporpamMMHEIe TpoaykThl Lindo Software u Premium Solver Platform.

Pe3yabTaThl. B cTaTthe paccMOTpeHBI CIIOCOOBI PEIIeHUsT TPAHCIOPTHBIX 3a7ad “BPYYHYIO” M HPH ITOMOIIN KOMIIh-
IOTEpHBIX MporpamM. [lomydeHsl onTUManbHbIE PEMICHUs AT TPOOIIeM, KOTOPBIE MMEIOTCS HIIM MOTYT BO3HHKHYTH Ha
TOPHOM TMPENNPHUITUN B OyAyIIeM HpPU pa3lUuHbIX yCIOBHAX. [lomydeHbl aHAIOTWYHBIE PE3yJbTAThl NPHU PELICHUN
3a7ja4 CJIEAYIOLUIMMH MSTHIO CIOCO0aMHU: METO]] CEBEPO-3aMaHOTO yIla, METOJ MUHUMAIbHOW CTOMMOCTH, MUHUMAJIb-
HBII TapuQ 10 CTPOKe, MUHUMAJIBHBIN Tapud 1mo cTondiy u MeTox annpokcumaryn doresns.

Hayunasi HoBu3Ha. [I[pUHIMIHAIIEHO HOBBIM SIBJISIETCSI IPMMEHEHUE KOMIBIOTEpHBIX npuiiokenuid LP Softwares B
TOPHOJOOBIBAIONIEH OTPACc/iM U TIOJIyYeHHE Ha UX OCHOBAHUM ONTHUMAaJbHOTO Pe3ysibTara B PELICHUH FOPHOTEXHHYE-
CKHX MPOOJIEM C yYETOM OIPAaHUYMBAIOIIUX YCIOBHH.

IIpakTnyeckas 3HaYMMOCTh. Bee npearaeMble NOAXOABI MO3BOJSIOT ONTUMAIBHO PElaTh 337a4d HE TOJIBKO B
TOPHOJO00BIBAOLIEH OTPACIIH, HO U B IPYTHX OTPACISIX MPOMBIIUICHHOCTH.

Knroueewvie cnosa: mpancnopmuas 3a0aua, JuHeliHoe NPopamMmuposanue, “‘nouck pewenus” 6 Microsoft Excel,
npoepamma Lindo
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