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IIpucsauyemwca 120-piuuio
Hayionanvnozo mexuiunozo ynigepcumemy
«/[HinposcbKa NOIIMexHiKa»

[TepeamoBa 1o BUIAHHS aHTTIHCHKOIO MOBOO

VYBa3i ynTaya MpOIMOHYETHCS TPETE BUAAHHS HABYAJIBHOTO MociOHuka “Mogeni Ta
METOJIM TPUUHATTS PIIIEHb , OPIEHTOBAaHE HA CTYAEHTIB — I1HO3EMHHUX T'POMAJSH
3aKJIaJliB BHINOI OCBITH YKpaiHW, a TaKOXX Ha TUX, XTO, OMAHOBYIOYH CIICHIAIBHICTh
«CucTeMHHIA aHami3», IUIAHYE TPOJOBXKUTH HAaBUYaHHS 3a KOpAOHOM Ta/abo Oparu
y4yacThb y TIporpamax axajeMmigHoro oOmiHy. [lociOHMK Moke OyTH KOpHUCHUM
nepekiiagadaM HayKOBO-TEXHIYHOi iHpopMamii Ta BHKIagadaMm, SKi YUTAIOTh
JTUCIMIUTIHU aHTIIHCHKOI0 MOBOIO Ta iH.

Merta nociOHuka — (opMyBaHHS 3HaHb 1 PO3BUTOK yMiHb MPUWHATTS PIlIEHb HA
OCHOBI CydacHHUX TEOpil Ta iX 3aCTOCYBaHHS Ha MPAKTHIN Y MOJECIbOBAHUX CUTYAIIisIX
[UISIXOM PO3B’sI3yBaHHS HaBEJACHUX MPUKIATHUX 3a7au.

MinimManbHa MiATOTOBKA, HEOOXITHA JIT OCBOEHHSI HABYAJILHOTO MaTepialy — I1e
3HAaHHS OCHOB MAaTEMaTHUYHOTO aHaJI3y 1 JiHIHHOI anreOpH.

Benuka yBara y mOCIOHMKY NpUIUISIETbCS 3a7adyaM OaraTOKpUTEpidHOI
ONTHUMI3allll, BUBUAIOTHCA MUTAHHS, MOB’SA3aH1 13 MPUUHATTSIM pIlIeHb 332 HasBHOCTI
HEYITKUX BUXIJHUX JaHUX, B YMOBaX PU3UKY Ta HEBU3HAYEHOCTI.

Buknan 3MmicTy IUCHUIUIIHM BiIOYBAa€ThCS SK Y TEOPETUYHOMY, TaK 1 B
MPAaKTUYHOMY acrekTi. 3 oJlHOro OOKy, MaTepiaj HaIllJIeHO Ha 3aKpilyIieHHs 0a30BHX
TEOPETUYHUX MHUTaHb. TYT BIAMPAIbOBYIOTHCSA HABUYKH TOOYIOBH MaTEMaTHYHUX
MoJieJiel 3aaad, ifei Ta aNnrOpUTMH METOMIB iX pO3B'A3aHHs. 3 1HIIOTO OOKY, HABUYKU
IPaMOTHOTO MPAKTUYHOTO BUKOPHCTAHHA HAOyTOro Marepialy pO3BHBAIOTHCS TpU
BUKOHAHHI PaKTUYHUX 3aB/IaHb, IEPETiK AKX HABEJACHO Yy KOXKHOMY PO3/IiTi.

HaBuanbuuii mociOHMK HamucaHo (PaxoBOIO AHTIIHCHKOI0 MOBOIO 3 OIVIALY Ha
PIBEHb MOBHOI MIATOTOBKH IUIbOBOI aynuTopii — ctyaeHtiB 3BO. Jlns monermeHHs
PO3YMIHHS TEOPETUYHOTO MaTepialy aBTOPU MPOMOHYIOTh aHTTIO-YKPaTHChKUM Tiocapiit
TEPMIiHIB Ta IHIITY IOBIJIKOBY JITEPATYPY.

Bunanus moxe OyTu KOpUCHHUM AJisi pi3HMX KaTeropii uuraui. [lo-mepiue, 1e
CTYJICHTU BUIWX Ta IHIMUX 3aKJIaJiB OCBITH, SIKI BUBYAIOTh NHUCIMIUIIHUA, TIOB'SI3aH1 3
Cy4yacHUMH 1H(GOPMAIIHHUMHU TEXHOJOTISIMU 1 KOMIT'IOTEpHUM MojeitoBaHHsAM. [lo-
Jpyre, 11e BXXe AUIIOMOBaH1 (paxiBIll, K1 0aXarTh OI[IHUTA MOXKJIUBOCTI KOMITHOTEPHOT
HNIATPUMKH IS BUPIMICHHS BHYTPINIHIX MpoOJeM Ha CBOEMY poOOYOMY MiCIIi.
Hapermri, e cydacHi KepiBHUKH, SKi TIParHyTh 3aCTOCYBAaTH y CBOil pOOOTI JOCSITHEHHS
y chepi CHUCTEMHOro aHamizy i MaTeMaTHYHOTO MOJEIIOBaHHS. 3HAHHS OCHOBHHX
pe3yNbTaTiB 1 MPUHIUIIB TEOpii MPUHHATTS pilIEeHb Ta ONTHMI3aIlii JO3BOJUTH HE
TIJIBKA 0COOMCTO KEpyBaTHCS HUMH, a ¥ CTAaBUTH OOTPYHTOBaHi 3aBIaHHS CUCTEMHOMY
aHaITUKY a00 BIAJAUTY CHCTEMHOTO aHami3y ¢gipmu. KpiM TOro mociOHMK MOKe CTaTu B
NPUro/l TMepekiIazadyaM HayKOBO-TEXHIUHOI 1H(opMalii Ta megaroram, siKi YMUTalOTh
MUCIHUIUIIHA aHTJIINHCHKOK MOBOIO.
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INTRODUCTION

One should not only hope that it is
possible to make an error-free decision, on
the contrary, one should agree in advance
with the fact that every decision is doubtful,
because it is an ordinary thing when having
avoided one trouble, you fall into another.
Wisdom consists of knowing how to
distinguish the nature of trouble, and in
choosing the lesser evil.

N. Machiavelli

The objects of modern mining: mines, collieries, ore quarries, concentrating
factories and processing plants equipped with powerful mining equipment, are
complicated complex enterprises. Managing such objects and planning their
operations require a managing officer at any level to be able to make correct
decisions quickly. In the conditions, when it is necessary to take into account many
external factors, internal capacities and connections between the components of the
objects under the investigation, the decisions made on the basis of personal
experience and engineering intuition may be ineffective, if they haven’t taken into
account a number of contradictory conditions. Moreover, modern production is
characterized by high cost consumption that raises sharply the losses from errors in
forecasting and managing. This situation requires the use of a decision-making
technology based on quantitative evaluation of options, which eliminates or reduces
the values of subjective factors, while taking into account the influence of various
inaccurate or undefined parameters. Only application of the systematic approach
allows us to study decision-making problems in a situation where the choice of
alternatives requires the analysis of complex information characterizing the real state
of affairs.

Theory of decision-making is one of the most important sections of the system
analysis which encompasses a set of methods based on the use of computer
information technology. It is focused on the study of complex systems: technical,
economic, social, environmental, software ones etc. The usual result of such studies is
the choice of a certain alternative: a plan of the company or corporation development,
the design parameters, project management strategies etc.

The essence of decision-making as a process is the internal relatively stable
logical basis which determines the meaning, role and place of a particular managing
decision for organization functioning and/or its development. The essence of
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decision-making is usually manifested through the implementation of the variety of
external connections and actions, accompanying the process. Following this, one can
determine a subject of study of the decision-making theory.

The main aim of any management decision is to provide a coordinating
(regulatory) impact on the entire management system when making its tasks and
achieving the goals of the organization. The main tasks, which make up the content
and sequence of actions of decision-makers in carrying out their immediate duties,
are creating the appropriate information base; defining its limitations and decision-
making criteria; organising management system activities. Decision-making is a
creative and responsible process. It aims to determine the tactics of further actions in
a particular area of production of goods or services in accordance with the
circumstances; to outline the functions of the structural units in the system of the
organization's activities, the order of their interaction, provision and management.

For making decisions in-time, it is necessary to have a management system
which ensures the implementation of complex systematic activities of decision-
makers and to organize the work of the firm (corporation) on the scientific basis by
using effective methods and automated control systems. At the same time, the quality
of the decisions made largely depends on the coherence of the team-work, the
inherent organizational culture, the relationships between executives and performers,
and on the successful use of decision-making support systems. The substantiated
practical recommendations made on the basis of the decision-making theory with the
account of objective laws and achievements of the related sciences can be of great
use, especially with dealing with these issues.

The subject of the study of the decision-making theory is the laws (regularities)
of the actions of the people who make decisions, organizational forms, technologies
and methods of this activity, the principles of management and organization of work,
the nature and content of the decisions.

The object of the decision-making theory is referred to as the systematic
activity of a head or leader and their teams in the process of developing, adopting and
implementing decisions.

Consequently, the decision-making theory is the sum of knowledge of the
preparation, acceptance and implementation of management decisions, the laws and
principles, organizational forms, methods and technologies for providing this process
within the subject of entity.

The decision-making theory like any scientific theory performs both cognitive
and predictive functions. The cognitive function is fulfilled by revealing the nature of
the decision-making processes, the regularities and principles they are subjected to,
explaining their theoretical foundations at different historical stages, highlighting the
main properties and interrelations of the subject of the research, substantiating
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technology and decision-making system. The predictive function includes identifying
trends in the further development of processes and decision-making systems, ways of
choosing the organizational forms and methods of the management object operations.
The main tasks of the decision-making theory are following:
— to study and generalize the experiencies of finding solutions in the certain
situations, under conditions of uncertainty and risk in particular;

— to detect and study objective laws in decision-making processes, form on
their bases the principles of organizing the activities of decision-makers,
organizational forms involved in them, and development methods and technologies;

— to develop practical recommendations for decision-making to be used by
linear managers and for operations of the CEOs who manage them in the real life
situations as well as recommendations for the use of technical facilities and
automated control and management systems;

— to develop the research methods for studying problems of a decision-making
system, principles and methods for evaluating their effectiveness as well as measures
to improve the decision-makers' activities.

Currently, the development of the decision-making theory is significantly
influenced by other sciences, including methodology, in particular methodology of
thinking, theory of management, cybernetics, psychology, sociology and political
science. In this aspect, fundamental significance is also acquired by natural sciences:
biology, psychophysiology. But, of course, mathematics plays a decisive role, in
particular the methods of quantitative evaluation of options in making decisions and
predicting the development of situations, while developing the most rational solution.

This coursebook contains the detailed description of mathematical models and
methods which are used for formalization and substantive justification of a decision.

In dependence on what concepts are taken as the key ones to formalize the
problem there are different approaches to decision-making.

For example, if to assume that decision-making is the choice of the most
successful alternative from the set of available ones, then the task is described by a
pair (QQ, C), where Q is the set of possible alternatives, C is the principle of
optimality. This approach corresponds to the situation when the external environment
does not influence the decision-making result.

In the statistical approach, the situation of the decision-making is described by
a triple: (®,0, F), where ®@ is the set of possible decisions of the control management
body, ® — the set of states of the environment, F'is the estimated functional.

In this edition, decision-making is considered primarily within the first
approach.
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The basis of the coursebook is made of the materials of Theory of Decision-
making Course of Lectures delivered to the students specialized in "System Analysis
and Management". The authors of the course aim is to develop students’ ability to
formalize the tasks of planning, organizing and managing in the field of mining, to
construct economic and mathematical models of production situations and to make
decisions based on the calculation of optimal variables of changed in the terms of
certainty and uncertainty.

To be a success in learning the coursebook materials, a student needs to have
knowledge in mathematical analysis, linear algebra, matrix theory, mathematical
programming and optimization methods. The students who have already mastered
standard finite-level optimization methods can apply some of their specific
evaluations and possible alternative approaches to solving practical problems.

The coursebook is divided into six sections. Each section contains theoretical
part and self-study part, wherein the latter is focused on self-assessment of
understanding theoretical issues and putting theory into practice by solving proposed
tasks.

The first section deals with general approaches to formulating and solving
decision-making tasks (DMT). There one can find the classification of these tasks,
the types of uncertainties that may arise in the decision-making process and the ways
of their formalization.

The second section describes the basics of the theory of choosing options from
a given set of alternatives. Here the basic concepts of the theory of binary ratios are
determined, and their use in decision-making tasks is considered. In addition, the
function of choice and some elements of the theory of usefulness are described.

The third section focuses on the characteristics of decision-making tasks of
many criteria, in particular multi-criteria optimization tasks. The methods of solving
these tasks and problems as well as methods for taking into account the criteria of
priorities and normalization are given there.

In the fourth and fifth sections, the content of decision-making tasks in the
fuzzy conditions, including tasks of fuzzy mathematical programming, is determined.
Their classification is given, and the methods of solution are described (section 4),
and the selection problems are considered on the basis of fuzzy preferences
(section 5).

The sixth section includes an outline of the theory of choice of the options from
a given set of alternatives in the presence of various types of uncertainty. In
particular, the problem of choice in conditions of "environment" uncertainty
(decision-making under conditions of risk, complete uncertainty, in game situations
of choice) 1s considered.
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To easify understanding of the coursebook materials the authors provide
English-Ukrainian, Ukrainian — English Glossaries of the main terms that make the
coursebook useful for translators.

Although references to the various sources are limited in the text, the list of
references given in the end of the coursebook provides a complete list of sources
used, which may be useful as an additional source for Ukrainian students when
solving practical tasks, and the list of sources in English to be used while self-study.
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SECTION 1

DECISION-MAKING TASKS AND THEIR CLASSIFICATION

By the end of this section you will:

o become familiarized with problems for making decisions, their typical
tasks and the existing approaches to their solving;
o have studied basic concepts of the theory of decision-making.

1.1 Examples of decision-making tasks and their classification

Consider some of the tasks, the purpose of which is to make decisions.

e The position of the Chief Engineer has been resigned at an enterprise. The
director should appoint a new manager, choosing one of the possible applicants for
this position, taking into account the data about their education, professionalism,
work experience, authority in a team, age, communication skills, health and other
factors, each of which has a different significance in the selection procedure.

e Some mines and quarries should ship the mined coal to consumers at several
locations. It is known, how much coal is produced at each of the enterprises and the
needs of each of the consumption points. It is necessary to organize the delivery of
the raw material in such a way which minimizes the costs of mileage and freight.

e Assume that at the quarry there is a possibility to use several types of
transport for goods transportation. It is necessary to divide the amount of coal
extracted in each lava by dumps, by types of transport and reloading points, i.e. to
determine how much coal and what type of transport should be used to transport coal
from each lava to each point of reception (dump, transshipment point).

e When designing a quarry, it is necessary to choose the kind of quarry
transport which will provide minimal expenses on transportation processes provided
by using automobile and rail road transport or their combinations. In addition, it is
necessary to take into account the amount of rock mass that must be transported, the
cost and transportation volumes of each mode of the transport, and location of the
transshipment point when using their combination.

e The mine needs to load a certain amount of ore during the given period,
providing a minimum number of impurities in the raw material, meeting the
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requirements for raw material conditions, and uniform loading of the equipment and
minimal transportation costs.

This task includes the following sub-tasks: planning of mineral resource
production aimed to meet the necessary requirements to its conditions and volume;
planning loading of the equipment: optimizing transportation procedure(s).

e Developing the construction plan of an open pit aimed at putting it into
operation as soon as possible.

e Choosing the location of a concentrating plant serving a group of mines and
quarries, taking into account minimization of transportation costs and the social and
environmental requirements.

e Determining the optimal plan for using various resources.

e Planning and managing mining works in averaging mode. The task of this
type can be formulated as follows:

Minerals that are extracted in separate sites of a mining enterprise have
different content of useful and harmful components, while the processing plants
(concentrators, smelters, power plants) impose strict requirements to the quality of
raw materials. Therefore, it is necessary to plan the mining process on each of the
sites in such a way that the overall quality of the products meets the requirements of
consumers with the manufacturing process being the most effective.

e Allocate tasks among the faces taking into account the plan of production,
capacity of the transport routes, the power of lava, necessary repair and preparation
works.

e Determine the plan for supplying the central coal processing plant with coal
from different mines, the implementation of which will provide the minimum costs
for transportation, smooth functioning of the plant and the proper quality of raw
material.

e Develop an optimal plan for ore extraction from several mines, at one
concentrating plant.

o Assume that there are several types of equipment that can be used at
different production sites. The number of equipment of each type and its capacity (in
each site of its own) are known. So, it is necessary to allocate the equipment in such a
way that the total time spent on the task is minimal.

e Mining machine factories produce a variety of equipment that is used in coal
industry associations for extracting of coal of various grades. The production of each
type of product requires a certain amount of resources (financial, labour, raw
material, material), and consequently each kind of anch products has its own cost and
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price. In the conditions where the maximum possible and the minimum required
quantity of equipment of each type is known, it is necessary to make the best plan for
its release.

e Transportation of goods at the enterprises of mining industry takes a
significant place in the country's cargo turnover. It is necessary to plan the
transportation and/or construction of new mining enterprises in order to minimize the
shipping costs.

e There are several faces in the quarry. The volumes of work on each of them
are known. There are also a few dumps the reception capacity of which is also
known. It is necessary to plan the transportation of rock mass from the faces to the
dumps in such a way that transport costs are minimal.

e [t is necessary to choose the routes of coal's transportation (each route is
characterized by the following parameters: length, load, safety level, availability of
maintenance, filling stations etc.) and distribute transport units between routes, taking
into account the existing fleet of equipment, the possibility of attracting additional
funds, the need to complete the order within a specified period etc. (tasks of optimal
organization of transportation).

e Choose the equipment for carrying out works, taking into account its cost,
productivity, ecological requirements, qualifications of personnel etc. (tasks of
choice)

e Develop a mining company project.

e Determine the optimal conditions of the technological processes in mining
enterprise.

e Develop an optimal mining plan for the company.
e Distribution tasks may be as following:

— distribute excavators among working places (faces, categories of rocks) in
order to minimize freight costs;

— distribute cars within the routes;

— distribute employees by type of work;

— distribute machine tools among workers;

— distribute motor vehicles by excavators.

All of these tasks like many others are characterized by the fact that making
decisions in them is a conscious choice one of the possible alternatives (depending
on the specific content, they are called strategies, plans, options) done on the basis of
a certain principle (criterion) of optimality.
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This choice is made by a decision maker (DM). The role of a decision-maker
can be performed by individual people or groups of people, who have the right to
make a choice and choose and who are responsible for the consequences. It may be a
supervisor, a dispatcher, a manager of the shift, workshop or a head of the
department, CEO, a Director General or a Board of Directors. Based on the available
data, including mathematical calculations and studies, DM chooses the final solution
option within their competences.

Consequently, any decision-making process can be characterized by the
following elements:

1. The person who makes a decision.

2. A set of variables which values are chosen by a DM: alternatives,
strategies, plans, guides.

3. A set of variables, the values of which depend on the decision made:
results, output variables of the decision-making situation.

4. A set of variables which values DM doesn’t regulate (parameters and the
environment).

5. The time interval during which decisions are being made.

6. Mathematical model of the task for decision-making on a problem, which
is a set of correlation between parameters, guiding/managing actions and output
variables.

7. Restrictions which describe the requirements caused by the decision-
making situation in relation to the output variables of the task and the
guiding/managing actions.

8. The target function or the criterion of optimality with the help of which the
quality of the chosen solution is evaluated.

Each of these elements can be characterized by a different degree of
uncertainty. Depending on this, different classes of decision-making tasks can be
formed.

If the parameters and external perturbations (i. e. the environmental impact)
remain unchanged over time, the mathematical model will be static. Otherwise, the
model of the decision-making situation will be dynamic. The description of the static
model can be presented as a graph, table, functional dependence or an algorithm for
calculating the output variables. Dynamic models are described using various classes
of differential or difference equations.

When the external perturbations are non-random, we have a deterministic
decision-making model, but if they are random, then we obtain a stochastic model.
Under this condition, the output variables will also be random, and their distribution
will depend on the distribution of external perturbations.
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In the case where the set of possible alternatives and the optimality criterion
are fully defined, the problem of decision-making is reduced to the optimization
problem.

When a situation requires several criteria to be considered, it is described with
the help of the multicriteria optimization problem.

If the set of alternatives is defined, the optimality criterion is unknown, but
relations of preference defined on the set of alternatives are known, then we are
dealing with the task of making choice. This is a fairly common situation since it is
not always possible to quantify each alternative, but it can often be determined which
of these two alternatives has advantages over the other or several other pairs. At the
same time, when some or all of the elements of the task have uncertainty such as
"fuzzy", then we have decision-making tasks in fuzzy conditions. In particular, these
are the tasks of fuzzy mathematical programming, the tasks of choice in fuzzy
conditions etc.

Depending on the class of the task, an appropriate approach to its solution is
chosen. These may be methods of optimization, linear or non-linear programming,
statistical methods, analytical or numerical methods for solving equations of different
classes.

Thus, in the decision-making process, there are situations which have one or
another degree of uncertainty That is why the quality of the decision depends on the
completeness of the consideration of all the factors influencing the consequences of
the decision made. These factors are often subjective, and this true both for DM and
for the decision-making process itself. Moreover, a managing body does not always
have all the information that is necessary for its substantiated actions.

So, the main difficulties which arise in the decision-making process can be
distinguished, namely:

1. The presence of a large number of criteria that are not always consistent, i.e.
correlated with each other. For example, during the process of designing a new
device for the aircraft the requirements to minimizing its mass are specified as well as
maximum reliability and minimum cost. These criteria are contradictory. Therefore,
the task of finding a compromise solution that takes into account all the requirements
arises.

2. A high degree of uncertainty caused by the lacks in the information taken for
a well-founded decision-making.

Such situations require a special mathematical apparatus for their description
that would provide the possibilities of taking into account such uncertainties.

The methods of probability theory, game theory, statistical decisions, fuzzy
sets, or qualitative methods of system analysis may be appropriate and used. Scheme
of the decision-making tasks classification by the number of their criteria,
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dependence on time, random factors as well as data of the corresponding
mathematical apparatus is given in Figure 1.1. The scheme is presented in the
manual [4].

1.2 Uncertainty in the decision-making tasks

Uncertainty in decision-making is caused by the lack of reliability and the
amount of information on the basis of which DM makes his/her choice.

Here is a classification of uncertainty made by types and causes of its
occurrence.

1. Principal uncertainty caused by the impossibility to obtain information in
principle. For example, at this level of development of scientific knowledge.

2. Uncertainty caused by the total number of objects or elements of the system.
For example, when their number exceeds 10’

3. Uncertainty caused by lack of information or its uncertainty due to the
technical, social or other reasons.

4. Uncertainty generated by the too high or inaccessible price necessary for
establishing certainty.

5. The uncertainty created by a decision maker due to their incompetence, lack
of experience and knowledge of the factors that influence the process.

6. Uncertainty as a consequence of constraints in the decision-making system
(time and space constraints of parameters that characterize decision-making factors).

7. Uncertainty caused by non-antagonistic behavior of the opponent, which
has an influence on the decision-making process.

Another classification of types of uncertainty involves:
— obscurity;

— incompleteness;

— insufficiency;

— inadequacy;

— underdetermination.

Schematic correlations between these types is shown in Figure 1.2.
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1.3 Theoretical-game approach to decision-making

Decision-making theory encompasses several approaches, depending on the
elements considered to be the main when analyzing the process of decision-making.

According to the theoretical game concept, decision-making is a choice of the
better alternative made from the set of available ones.

Consequently, the integral components of such model will be the set of
alternatives and the description of the considerations of a decision maker. It should be
noted that in real-life tasks alternatives have many properties that influence the
solution.

Let some property of alternatives from a plural QQ be described by a number,
1.e. there is a mapping ¢:Q — R,. Then, such property is called a criterion and the

number ¢ (x) is an estimate of the alternative x by the criterion ¢.

In the decision-making tasks, the criteria serve to express the "intensity" of the
essential properties (signs) of solutions. They are divided into quantitative and
qualitative by their nature. Each criterion is associated with a set of permissible
transformations & and then we say that this criterion has a scale of type @&.

The criteria which have a scale that is not less perfect, than the interval (i. e,
their permissible additions are multiplication to a positive number and the addition of
an arbitrary number r) are called quantitative.

The criteria with a sequence scale (all monotonically increasing functions are
assigned to them) are called qualitative. The meaning of a qualitative criterion makes
sense to compare with others only by the ratio of "more", "less", "equal".

The simultaneous consideration of individual properties of alternatives may be
a complex process. Thus, groups of properties that aggregate in the form of aspects
are identified.

Aspect is a composite property of alternatives which simultaneously takes into
account all the properties belonging to a certain group. In a particular case, an aspect
may be a criterion.

Example 1.1. The transport agency needs to transport a specified volume of
cargo. A dispatcher must determine the route of transportation.

In this task, alternatives are different routes. The dispatcher must consider the
following properties: extent (length), load capacity, safety level, all the expenses
related to transportation process, specifity of maintenance etc.

The term "maintenance" includes the number and location of service stations,
their capacity, load capacity and the period of repair works. Thus, this characteristic
1s an aspect that aggregates all the listed properties.

The length of the route is measured in kilometers, i.e. expressed by the number
and therefore it can be considered as a criterion.

22



In the general case, the value of the criterion depends on two groups of factors

— controlled (guided) factors which depend on DM and represent their strategy
(choice);

— uncontrolled factors, the ones which 1s DM cannot influence, are referred to
as parameters of the decision-making task. They may be determined, stochastic or
indefinite (see above).

The value of managed factors is usually limited to a number of natural
conditions, for example, constraints of the resources. These conditions are the basis
for the formation of constraints for the task for decision-making.

If during the process of decision-making, it is necessary to take into account
several properties of alternatives, a problem of multi-criteria choice appears.

Assume all the properties ki, &, ..., k,, of the alternatives taken into account
when solving a problem, are the criteria. So, put the £; criterion in accordance with
the j axis of the space R,, (j = 1, ..., m) and represent a plural Q2 in this space, putting
in correspondence with each alternative x € Q the point: @(x) = (@i(X), ... , Pu(x)),
space R,,, where ¢, is the estimate for the criterion k; (j = 1, ..., m).

The criterion space is called the space R,, which point coordinates represent
estimates for the corresponding criteria.

Thus, in the multicriteria task of comparing alternatives in favour of the
advantages is carried out by using the set of numeric functions ¢;(x), ... , @,(x) given
on the set Q.

For each criterion ¢; on a numerical line (the R; axis) a subset Y; from which it
acquires values is described. Practically, the set Y; 1s determined according to the
meaning of this criterion.

The criteria of ¢; (.) are called partial or local. They form a vector criterion:
Px) = (@1(x), ..., Pul(X)).

We will assume that every alternative x is completely described by the
corresponding vector estimate, i.e. the vector ¢ (x). That is why the choice of the
optimal solution is reduced to the definition of the optimal estimate from the set of

the achievable: ¥ = Y(x) = {y € Rm‘y = (o(x), X€E X} :
In real problems, a set Y cannot often be constructed; therefore, a wider set
Y'e R, 1s considered, the vectors of which can be given a certain content.

In the situation, where the available information is not enough to quantify
estimate of each alternative, but there is a possibility in respect to some (or all) pairs
of alternatives to determine which one is better, for their comparing the apparatus of
binary relations is used.
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Conclusions

The decision-making problem is one of the key issues in human activities. The
main difficulties encountered during the decision-making process are the presence of
a large number of mutually uncoordinated criteria and a high degree of uncertainty
rooted in the lack of information necessary for a well-founded decision-making.

There are different approaches for decision-making: game theory, optimization,
statistics, and others, according to what elements are considered to be the principal in
the analysis of this process.

The methods, used in decision-making depend on the nature of the task, the
available information and the chosen approach to its solution.

SELF-STUDY

Questions for assessment and self-assessment

1. Give some examples of decision-making tasks.

2. Give a definition of the criterion, aspect, principle of optimality, limitations
in the theory of decision-making.

3. What problems arise in the decision-making process?

4. What factors determine the quality of the decision-making process?

5. What are the characteristics of the classification of decision-making tasks?

6. What mathematical apparatus is used for solving decision-making
problems?

7. What types of uncertainty exist?

8. What approaches are used in solving non-classical decision-making
problems?

9. What provisions include theoretical-game approach to decision-making?

Hands-on practice
Task A
Describe the set of feasible alternatives, options, constraints and criteria for the
following tasks:

1. The head of the company has to decide which program for accounting from
those on the market (for example, 1C, "Parus", C2, "Accountant-3", a custom-made
program) must be purchased, taking into account the following factors: cost,
information security, possibility and flexibility of setting, resource requirements etc.
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2. It is necessary to determine among the clients of the company the most
promising person(s) for signing long-term contracts.

3. CEO (managers) of the factory examines promising projects for the
development of an enterprise, each of which requires some resources and takes into
account certain factors (funds, raw materials, terms of realization, personnel
potential, etc.). You need to choose one or more projects to be implemented.

4. Taking into account the information of existing fixed assets of an enterprise,
its personnel potential, raw materials, infrastructure as well as the information about
partners, competitors, market conditions, influence of state regulation, financial
support, it is necessary to make a choice of the direction of the enterprise activities:
development of basic production, re-profiling, increase in exports, the possibility of
entering or refusing from the markets etc.

5. Determine the minerals which are expediently to extract in the region
(recommended variants: coal, iron ore, phosphates, calyx), taking into account the
efficiency and cost of their extraction.

6. Every day passenger and fast trains go from point A to point B. Information
about the existing fleet of different types of railcar, from which trains can be
completed, and the number of passengers that can be carried by each type of a railcar
is given in Table 1.1. Determine the optimal number of fast and passenger trains
which provide the maximum number of passengers transported.

Table 1.1

: Fleet of Train Number of

Type of railcar )
railcars fast passengers | passengers

Luggage 12 1 1 —
Post 18 1 — —
Solid 89 5 8 58
Compartment 79 6 4 40
Soft 35 4 2 32

7. Three types of coal-plow machine I, II, and III which are able to perform
three types of works A, B, and C can be used in the operations of a quarry. The
resources of working time of each longwall, their capacity during performing various
tasks and the cost of one hour of work (in UAH) is given in Table 1.2. Determine the
optimal load of combines, which provides the maximum total volume of work
performed and their minimum cost.
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Table 1.2

Type of Productivity, Specific cost, )
Time
coal-plow m3/h UAH per year LeSOUTCe
machine A B C A B C
I 30 20 40 2 4 2 400
II 20 30 50 3 2 5 300
111 60 40 20 5 3 6 280

8. At mine "Dobropilska" there are three extraction sites. The coal extracted
on each of them has a different sulfur content, different indexes of moisture and ash
content (see Table 1.3). For each of the sites, the values of the maximum possible
and the minimum required amount of extraction are known as well as the cost of
extraction of one ton of raw materials (Table 1.3). Due to the characteristics of the
coal produced at each site, it is necessary to draw up a plan of work in such way, that
the extraction costs are minimal, its volume is maximal, and all the requirements of
the consumers to the quality of raw materials are fulfilled (see in Table 1.4).

Table 1.3
Characteristics of coal, % and Site number

performance indicators of the site 1 5 3
Ash content 49 37 23
Moisture 7 8 10
Sulfur content 1.8 2.1 3
Costs, UAH 1184.210 1381.777 1083.515
Maximum volume of extraction, 1650 1090 1270
ths. tons
Minimal amount of raw material 1200 600 530
extraction, ths. tons

Table 1.4

Quality of coal | Ash content, % | Moisture, % Sulfur content, %

Operational 39.5 — —
Average — 8.2 2.16
No more 47.4 9.8 2.6

9. The airline company for the organization of passenger transportation

between the center C and four cities M1, M2, M3, M4 has three groups of airplanes.
The first group consists of 10 four-engined airplanes, the second — of 25 twin-engined
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planes of the new model and the third — of 40 two-engined aircraft of the old model.
Data on the number of passengers that can be transported by one aircraft of this type
for each route within one month and associated operating costs per 1 aircraft (ths.
UAH) is given in Table 1.5. The number of passengers to be transported for each
route within a month is respectively 40, 50, 40, and 30 thousand of people, and the
cost of one ticket is 200, 150, 180 and 300 UAH respectively. It is necessary to
distribute aircrafts among the routes, proceeding from the condition of achieving the
maximum airlines revenue and the maximum number of the transported passengers.

Table 1.5
Number of passengers / operating costs,
Type of ths. UAH
airplane C-Ml C-M2 C-M3 C-M4
I 320/1.2 300/0.8 190/1.5 250/1.6
11 200/1.4 250/1.5 170/2.0 260/2.9
111 225/1.0 300/1.1 200/1.8 320/1.7

10. The processing plant receives 4 types of coal in the following quantities:
400, 250, 350 and 100 thousand tons. As a result of mixing these four components in
different proportions, three grades of concentrate are formed: A (1: 1: 1: 1), B (3: 1:
2: 1) and C (2: 2: 1: 3). The cost of 1 thousand tons of concentrate is 120, 100 and
150 UAH, respectively. Determine the optimal production plan to achieve its
maximum total cost and maximum quantity.

11. The company received two batches of plywood, with the volume of the first
batch — 400, and the second — 250 sheets. 4 details of type 1, 3 details of type 2 and 2
details of type 3 are made from these sets. One sheet of plywood from the first batch
can be cut in three ways: R1, R2, R3; the plywood from the second batch can be cut
in four ways: R1, R2, R3, R4. The data on the number of details of each type, which
can be cut from one sheet in one way or another, is given in the Table 1.6. It is
necessary to cut the existing material in such way so to ensure the production of the
maximum number of sets.

Table 1.6
Type of Number of details, mT.
details The firts batch The second batch
R1 R2 R3 R1 R2 R3 R4
Ist 0 6 9 6 5 4 0
2nd 5 3 4 5 3 2 6
3rd 12 14 0 7 4 5 7
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12. Five technological processes (T1, T2, T3, T4, TS) can be involved in the
enterprise operations and the number of product units produced with the use of each
of them per unit time which is equal to 300, 260, 320, 400 and 450 pcs, respectively.
The following factors are taken into account in the technological process: amount of
raw materials, energy consumption, wage costs and overhead costs. Their values
when working for a unit of time in applying to various technologies are summarized
in Table 1.7.

Task: Identify a production program that maximizes product output.

Table 1.7
Production Costs for different technologies Resource
resources T1 T2 T3 T4 T5 | limit
Raw materials,
ton 15 20 15 14 18 2000

Electricity, kW 0.2 0.3 0.15 0.25 0.3 300
Overhead costs,
UAH 4 5 6 3 2 1000
Salary, UAH 6 3 4 6 3 1600

13. The mechanical factory uses turning, milling and planing lathes for
manufacturing parts of I, II and III types. The processing of the parts of each type
can be carried out in three different technological ways T1, T2 and T3. Table 1.8
gives the time limits for the processing of a part on the corresponding machine by
each of technological methods as well as the time resources (in machine-hours) for
each group of machine tools. Profit from the sale of each type of the product is
respectively 22, 18 and 30 UAH. Make the optimal plan for boosting production
capacity, which ensures maximum profit with the minimum use of lathes.

Table 1.8
Type of IStandards for proIcIessmg parts, yeaIrI 1 Time
machine tool N T T Il 71 o 7| resource
Lathe 1 (09|11 |12]15| — |09 | — | — 200
Milling 0810813709 |1.1|13]1.1|08]| — 400
Planing - 107107107 — [13]13]06| — 300

14. For producing an alloy from lead, zinc and tin of the certain percentage
content raw materials in the form of five alloys of the same metals having different
composition and cost are used (see Table 1.9). Determine the amount of alloy of
each type to be taken to produce an alloy containing tin - from 40 to 60% and zinc -
from 20 to 30% with a minimum cost.
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Table 1.9

Type of Metal content, % Specific cost,
an alloy Lead | Zinc | Tin UAH / kg
I 25 30 45 8
11 10 80 10 17
111 30 30 40 10
1\ 40 25 35 12
\Y 10 70 20 15

15. Solve the task 14, taking into account additional conditions necessary to
make the maximum amount of an alloy, whith the available reserves of alloys [ -V
are 20, 25, 15, 30, 20 kg, respectively.

16. Details 4, B, C can be processed on three machines: I, I, III. The rates of
time spent on the processing a corresponding part with the machine, the cost per hour
of the machine work and and the maximum time of its operation are given
Table 1.10. Assuming that any part can be processed on any of the machines,
determine the optimal production program according to one of the following criteria:
the maximum of commodity products; minimum production cost.

Table 1.10
Machine Rate of Processing Expenses Operating time of the
tools tme per hour of machine, h
A B C | work, UAH ’
| 03 | 0,1 | 0,2 30 50
11 05102 04 20 60
111 04 1] 05|03 15 40

17. Using data of Table 1.10 and assuming that every detail is consistently
processed on all of the machines, make a production program that ensures the
maximum output of marketable products at a minimal cost.

Task B
For tasks 6 — 17 make the mathematical models of linear programming (models
can have one or several criteria).
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SECTION 2

CHOICE PROBLEMS

By the end of this section you will:

e become aware of the apparatus of binary relations and its use in decision-
making systems;

e have studied methods of making decisions on the basis of the given
relations of preference, functions of choice and utility functions;

e have developed skills of implying these methods in practice.

2.1 Concepts of binary relation

The simplest situation where it is possible to make a selection or reasonable
choice of several objects occurs when one "quality criterion" is given that allows to
compare any of two objects, to specify exactly which one of them is the best, and to
select the one (or more) for which this criterion reaches the maximum value.
However, in most real situations, it is difficult to determine this one criterion and
sometimes impossible at all. But considering some pairs of objects, it is possible to
name the best of them. In such cases, it is said that these two objects are in binary
relation. This concept allows us to formalize operations of pairwise comparison of
alternatives therefore, it is widely used in the theory of decision-making.

Let's consider some of the statements that express the interrelationships
between objects.

1. Tatiana is older than Igor.

2. Companies A and B are loss-making.

3. Kyiv 1s located more to the South than Moscow.

4. Ivan is Peter’s brother.

5. Iron is heavier than water.

As we see, these statements describe the relations of different types:

For example, statements 2 and 4 mean that two objects are assigned to the
same class; statements 1, 3, 5 reflect the order of objects in the system. In addition,
all five examples clearly identify the names of the objects and the names of relations.
It is easy to see that when one object is replaced by another one, the following
situations are possible:

1) the relation will be fulfilled, i.e. true, again (Kyiv is located more to the
South than Murmansk);
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2) the relation will not be fulfilled, i.e. wrong (Kyiv is located more to the
South than Odessa);

3) the relation will not make any sense (Iron is located more to the South than
water).

So, we can talk about the relation only when we are able to allocate the set of
objects on which it is defined.

Mathematically, the definition of a relation can be formulated as follows:

Definition 2.1. The relation R in the set Q is referred to as a subset of the
Cartesian product QxQ, i.e. R c Q%

Setting a subset R in set QxQ determines which pairs of elements are in
relation R.

The relation R given in set Q is denoted by the (R,Q). Hereinafter: x R y or

(x,y)e R, means that the elements x and y of the set Q are in relation R.

2.2 Ways of representation relations

In order to determine a relation (R,Q), it 1s necessary to specify all pairs of
elements (x, y)e Q x Q that are included in set R. In addition to the complete list of

all pairs, there are three ways of setting relations: using a matrix, a graph and cuts.
The first two methods are used to determine the relation on finite sets; the relation
with cuts can also be applied to infinite sets.

The detailed description of the named methods of assigning relations is given
in the subsections given below.

2.2.1 Assigning relation using a matrix

Let set Q be composed of n elements, R is the binary relation given in this set.
Number the elements of the set O by integers from 1 to »n. In order to establish a
relation, construct a square table of nxn size. Its i-th line corresponds to element x;

of set €2, the j-th column is an element x; of set Q2. At the intersection of the i-th row
and the j-th column, put 1, if element x; is in relation R to element x Iz and zero in

other cases, namely:

1, xinj,

0 in other case.

a,,.(R):{
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Example 2.1. Let X = {1, 2,..., 5}, R — the relation "is greater than" in set X.

Then it can be described as a matrix in the following way:

0 00 0O
1 0 0 0O
R=1 1 0 0 0|
I T 1 00
1 1T 1 1 0

2.2.2 Assigning a relation using a graph

In order to assign a relation by means of a graph, we put the vertices of the
graph Xxi,...,x, (of any numbering) in a mutually unambiguous match the elements of

the finite set QQ which defines the relation.
Make an arc from vertex x; to x;, only in the case if the element x; is in

relation to element R. When i = the arc (xl., X j) becomes a loop at vertex x;.

Example 2.2. Assign the relation from Example 2.1 using a graph (see

Figure 2.1).
//\
IW |
2

455
Fig. 2.1. Assigning relation ‘more” in the set: X = {1, 2,3,4, 5}, using a graph

So, when any directed graph G with n vertices is given and the numbering in
set Q is chosen, where the set consists of n elements, that is in such a way, a certain

relation is given on this set: R = R(G), namely, the statement x, R x ; will be valid
only when there is an arc (xl.,x j) in graph G. Consequently, the graph acts as a

geometric representation of the relation.
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2.2.3 Setting relations using cuts

Consider relation R on set Q.
Definition 2.2. The upper cut of the relation (R,Q) in element x denoted by

R*(x), is referred to as a set of elements y € Q for which the condition: (y,x)e R

is being satisfied, that is
R*(x)={yeQ(y,x)eR}. (2.1)

Definition 2.3. The lower cut R_(x) of the relation (R,Q) in element x 1s

referred to as a set y € Q of elements for which (x, y) €R , namely:

R_(x): {y eQ(x,y)eR}. (2.2)

Consequently, the upper cut (set R") is a set of all such elements y that are in

relation to R with a fixed element x (y R x). The lower cut (set R ) is a set of all

elements y such that the fixed element x is in relation to R(x R y) :

Thus, in order to assign a relation with cuts, it is necessary to describe all upper
or all lower cuts. In other words, relation R will be defined if for each element x € Q
a set is given, or a set is given for each element x € Q..

Example 2.3. Let a set be defined: Q2 = {1, 2, 3,...,10}. Relation R means "to be
a divisor", i.e. xRy, if x is a divisor of y. This relation can be assigned in the

following ways:

using the upper cuts:

R*(1)= {1}, R*(5)={1;5},R"(6)=1{1;2:3;6} R*(8)={;2;4:8},
R*(2)=1{2}, R*(7)=1{7}, R*(9)={;3;9},
R*(3)=1{13}, R*(10)={1;2;5;10};
R (4)={:2:4},

using the lower cuts:

R‘(l) {;2,....10}, R (5)=1{5;10}, R (8)={8},
R™(2)={2:4,...,10}, R™(6)= {6}, R™(9)=19},
3)= {369} R™(7)=1{7}, R~(10)= {0}

R
R™(4)=14:8},
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Consider the relations of a special form and the methods described above for
their assignment.

A relation is referred to a called empty or null (denoted by O) if it is not
executed for any pair (x, y) < QxQ.

For the empty/null relation the following statements are true:

1. In matrix 4 (&) the values a;; () = 0 for all values of 7, ;.

2. The graph G (&) has no arcs.

3.R"(x)= R (x)=@ for each element x € Q.

The relation is called full or universal (denoted as U) if it is executed for all
pairs (x, y) < QxQ. For the full relation the following features are true.

1. In matrix A(U) the values a;;(U) = 1 for all values of 7, ;.

2. In the graph G( U) arches connect any pair of vertices.

3.Cuts R'(x) = R (x) =Q for all elements is x € Q.

The relation 1s called diagonal or identity relation, or the relation of equality
(denoted by E) when it is true for all pairs (x, y) < QxQ, which consist of equal
elements. That is x £ y, if and only if x = y. For the diagonal relation E, the following
statements can be used.

1. In matrix 4 (E)

0 1in other case.

a,j(E)Z{l,if =],

2. In graph G (E) the loops are only at the vertices; the other arcs are absent.
3. The cuts R" (x) = R (x) =x for all elements x € Q.

The relation is called anti-diagonal (denoted E ) when it is true for all pairs
(x, y) < QxQ, which consist of non- equal elements. The following features are valid

for the relation E :
1. In matrix A(E)

a,-,-(E):{l’ if i# ],

0 in other case.

2. There are all arcs (x;, x;) in graph G (E ) if i #j (there are no loops only at
the vertices y).

3. The cuts R (x) = R~ (x)=Q \{x} for all elements x € Q.
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2.3 Operations on binary relations

Definition 2.4. The relation R, is included in relation R, (written as R, < R,)
when the set of pairs, for which the relation R, 1s performed, is included in the set of
pairs, for which R, is true.

We will say that the relation R, is strictly included in R, (R, <R,), if
R, < R,and R, # R,. Equality of relations is realized in the same way as the equality
of sets.

For a matrix assignment of relations, the following rule will apply: if R, <R,,

then a,(R))<a,(R,), i,j=Ln.
Example 2.3. R,- the relation "<" in the set of real numbers, R, — the relation

"<"1s in the same set, then R, < R,.

Definition 2.5. Relation R is called an complementary relation to R, if only
it holds those pairs of elements for which the relation R is not true.
Obviously, that

R=0Q*\R. (2.3)
Given this in a matrix record a; (E): l-a,; (R), i,j= I,_n

In graph G(ﬁ) there are those and only those arcs that are not in graph G(R).

The following statements are true for the cuts of relation R:
R (x)=Q\R*(x),

R (x)=Q\R (x).

Example 2.4. Let R be the relation "2 " given in the set of real numbers, then
R — the relation "<" given on the same set.
Definition 2.6. The infersection of relations R, and R, (written as R, R,)

is the relation determined by the intersection of the corresponding subsets of set Q.
In matrix record, this means that

a,(R NR,)=min{a, (R ).a,(R,)}, i.j=Ln.

>y

Definition 2.7. The union of relations R, and R, (denoted by R, UR,) is the

relation obtained by merging or combining the corresponding subsets of set Q7
In matrix record, this can be applied as follows:
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a, (RUR,) :max{al.j (Rl),aU.(Rz)}, i,j=1n.

Definition 2.8. A converse relation R is the relation R~! that satisfies the
following condition:

xR'y & yR x. (2.4)
For matrices of relations R and R ', the following formula will be true:
a; (R*1 )= aj (R)

Example 2.6. Let relation R be given in the set X = {x,, x,, x5, x,, x5} by

such a matrix:

=

I
_—0 O =
S = = =
- o = O
O O = -

The task is to construct the correspondent converse relation and possible
additions.

Solution

According to Definition 2.5, relation R can be specified by the following
matrix:

- o O O
S = O =
—_— e O O

We construct a converse relation in accordance with Definition 2.8. Hence,

—_— = = O
o O = O
S = O =

Definition 2.9. The product (or composition) of relations R, and R, (denoted

by R, - R,) is called the relation which 1s constructed according to the following rule:

36



x (R, - R,) y when there is an element z € Q that satisfies the conditions x R, z and
ZRy y-

Example 2.7. Consider relations R, and R,, given in the set of real numbers.
Moreover, R, is the relation "less than", R, is the relation "greater than". A pair of
numbers (x,y)c R -R, when a z number exists, for which the following
requirements are met: x <z and z > y. Obviously, this condition is fulfilled for all
numbers x, y, and therefore, R, - R, is a complete relation, 1.e. such a relation where

all the elements of the given set are connected).

Example 2.8. The set X = {xl, Xy, x3,x4,x5} has two relations R, and R,,

namely:

O = =
_— O =
S O = o=
S = O =
—_ o O O
S O = =

Determine their composition.

Solution
According to Definition 2.9, x(R, -R,)y, if there is an element zeQ that

satisfies the conditions x R, z and z R, y . In matrix record, this means that

a; (Rl ‘R, ) = fgﬁ%‘ min{aik (Rl ), ay (Rz )} )

where n — is the order of the matrix.
In other words, the composition of relations is calculated as the maximinum

product of the corresponding matrices.
Then we get the following result:

(e} f— f— f—
—_ O =
S O = o=
oS O O O
S = O =
- o O O
S O = =
I
oS O O O
—_ O =
S O = =
e e T

Definition 2.10. The relation (RI,QI) 1s called the restriction of the relation
(R,Q) to set Qp, if Q, cQand R, =RNQ, xQ,. The restriction of the relation
(R, Q) to the set €2 is also called as the relation R on the set Q;.
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Example 2.9. The relation «>» in the set of positive integers is a restriction of
the relation «>» on the set of real numbers.

2.4 Features and properties of relation

Definition 2.11. The relation R is called reflexive , if x R x for any element
xeQ.

For example, the relation of "to be alike", "not to be older", "less or equal" is

"nn

reflexive; "To be a brother", "to be older", "more" — not reflexive.

Units are placed on the main diagonal of a reflexive matrix that the matrix
element a; =1, if i=.

A graph of a reflexive relation obligatory has a loop at the vertices. For the
upper and lower cuts, the following statements are true: x € R*(x), x € R™(x) for all
elements x € Q.

Definition 2.12. Relation R is called irreflexive, when the statement x Ry
means that x # y for Vx €Q.

In a matrix of irreflexive relation, the elements of the main diagonal are zero,
thatis a; =0, if i=j.

A graph of an irreflexive relation does not have loops at the vertices, and the
upper and lower cuts satisfy the following conditions: x¢& R*(x), x ¢ R™(x) for all

elements x € Q.
Irreflexive relations will be the relations of "more", "less", "to be older".

Definition 2.13. Relation R is called symmetric if R=R™ (x Ry = yR x).
The matrix of symmetric relation is symmetric that is a; =a for all values of

i, j. In the graph of this relation, all arcs are paired, and the upper and lower cuts

coincide for all elements x € Q, i.e. R*(x)=R (x) Vx €Q.

The symmetric relations are relations of equality: "to be similar", "to study in
one group' are symmetric.

Definition 2.14. Relation R is called asymmetric if RNR' =@, i.e. from
two expressions x R y and y R x at least one does not correspond to reality.
In the matrix of asymmetric relation a; Na; = 0 for all values i, j, that is from

two symmetric elements a; and a;, at least one necessarily equals 0.

For example, asymmetric relations are the relations of "more" and "less".
Note that irreflectivity is an obligatory condition for asymmetry.
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Definition 2.15. The relation R is called antisymmetric if the statements x R y
and y R x can be valid simultaneously only if x = y.
The matrix has an antisymmetric relation a; Aa; =0 when i# ;.

"non:

Examples of antisymmetric relations will be "more or equal", "is not more", "is
not worse."

Definition 2.16. The relation R is called transitive if R* <R i.e. when xRy

follows from the assertions that R* <R and zR y .

Transitive relations are the relations: "more or equal", "less", "to be older",
"study in one group".

Condition: R* <R ,provides a convenient way to check the transitivity of the
relation in the case when the relation is given using the matrix. To do this, it is
necessary to calculate a matrix of the relation R , i.e. to bring the square of the
matrix of the output relation, and verify the condition. If g, (RZ)S a; (R) for all

values of 7, j, then the relation is transitive. If this condition is violated at least for
one pair of indices i, j, then the relation will not be transitive.

Definition 2.17. The relation R is called acyclic , if R* NR™'=@, i.e.the
conditions xRz, z, Rz,, ..., z;_, Ry leadsto x# y.

This means that the graph of this relation does not contain cycles.

Definition 2.18. The relation R is called a negative transitive if its complement

R is transitive.

Definition 2.19. The relation R is called highly transitive if it is
simultaneously transitive and negative transitive.

Properties of acyclicity and transitivity play a special role in the theory of
decision-making, because they express the natural interrelations between objects.
Indeed, if object x 1s in some sense not worse than object y, and the object y 1s in the
same sense not worse than the z object, then it is natural to expect that the object x
will not be worse than the object z (transitivity), and in any case the object z is not
better than the object x (acyclicity).

Example 2.10. Determine the properties of this relation:

1 1 1
R=/0 1 0.
1 0 1

Solution
This relation is a reflexive one since its matrix contains only units on the main
diagonal. It won’t be symmetric since there are elements that are not equal to
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symmetric elements, e.g. elements a;; and a,,. Since element a3 = a;;, then the
relation will not be asymmetric or asymmetric.
To verify its transitivity, multiply this relation by itself:

1 1 1) (1
R*=|0 1 0]|x|0
1 0 1) (1

O =

1 1 11
O[={0 1 0].

1 1 11
Since R* & R, therefore, the outgoing relation is not transitive.

2.5 Relations of equivalence, order, dominance and preference

Definition 2.20. A relation R is the relation of equivalence or equivalnce, if it
is reflexive, symmetric and transitive. Let's denote it with R, or the ~ character.

Examples of equivalence relations will be such as:

"to take one course", i.e. “to study at one course”, "to study in one group"
are given in the set of students of the faculty;

"have the same remainder when dividing by 3"- in the set of positive
integers;

— the relation of similarity in the set of triangles, and others.

Equivalence is characterised by distribution of the elements into classes. In the
first example, these are courses or groups of the faculty students, in the second there
are sets of numbers having the same remainder when dividing by 3, in the third, the
set of similar triangles. Consequently, the problem of equivalence in a set is closely
related to its partition in non-intersect subsets. Let’s consider this feature of
equivalence in detail.

Let some partition of the set is €, i.e. its subsets are known as Q, ), ... Qy,

which satisfy the condition: Q= Lj\jQi and also Q,NQ, =, when
i=1
i#j, i,j,=12,...N.We introduce the relation R in the set Q as follows: x R y if
and only there is a set Q  corresponding to the following conditions: x e, and
vell..
Task. Prove that the relation, which is introduced in this way, is equivalence.
As we see, the equivalence problem in a certain set €2 is equivalent to the

division of this set into classes of elements equivalent to each other. Conversely, any
partition of the set defines the equivalent of it.
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Definition 2.21. The relation of the non-strict order «<» is the relation that
has the properties of reflexivity, antisymmetry and transitivity.

Definition 2.22. The relation of the strict order «<y» is called the relation
which has the properties of irreflexivity, asymmetry and transitivity.

If the relation «<» is given in a set 2, i.e. there is some non-strict order, then
it can be placed in correspondence with the strict order of «<» which is defined by
the following rule: x < y if and only if x<y and x# y. Conversely, if «<» is the

relation of the strict order given in the set (), then it can be matched to the relation
«<» 1n this way only if x < y or x = y. Consequently, by a non-strict order we can

determine the corresponding strict order and vice versa.

Assume that in a certain set the relation of order (for all or some pairs of its
elements) is given, then it 1s said that a partial order is given in this set.

Partial order in a set €2 is called a linear order, if for any elements one of three
statements: x <y, x =y or x > is valid, i.e. we can compare any two elements of the
set Q).

Definition 2.23. The relation of dominance is a relation that has the properties
of antireflexivity and asymmetry.

We will say that element x dominates element y if x in some sense is better
than y.

Thus, the relation of strict order is a separate case of the relation of dominance,
for which transitivity is also a characteristic. In general sense, with dominance both
transitivity and acyclicity may not take place.

Definition 2.24. Two elements can be compared by a relation R, whenx R y or
v R x. In other cases, the elements are not comparable.

If R 1s a complete relation in a set Q, then any two elements of this set can be
compared.

Let us consider what orders can be set in m-dimensional space E,,;:

l.azb ifand only ifa, 2 b,, i=12,...m;

2.a2b ifandonlyifa, >2b,,i=12,..m, and a # b;

3. a>b ifand only ifa, > b,, i=12,...m;

4.a>b 1if and only if a=b abo a,>b, or at least for one value

iefl,2,...m};

5.a=bifandonlyif a,=b,,i=12,...m.

Relation 1 is a partial order, it is reflexive, antisymmetric and transitive.

Relations 2 and 3 are strict partial orders. They are irreflexive, asymmetric and

transitive.
Relation 4 is reflexive, but it will not be either symmetric or transitive.
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The interrelation between these relations is schematically illustrated in
Figure 2.2.

Fig. 2.2. Scheme of interrelation between relations in space £,

In order to describe preferences, the following binary relations are usually used
in the set of alternatives €2: strict preferences, indifference and non-preferential
preferences.

The relation of the strict preferences R° means that one object (strictly)
prevails over another that is, one object is better than another.

The relation of indifference R’ means that the preferences of objects are the
same, and when limiting the choice by these two objects, it does not matter which one
is selected.

The relation of non-strict preferences means that one object is not less
important than the other, that is one object 1s not worse than another.

Assume that with the help of DM or experts, the relation of non-strict
preference R in the set of admissible alternatives X was determined.

This means that one of the following situations is possible with respect to any
pair of alternatives:

1) the object x is not worse than the object y, that is x > y, in other words

(x.7)e R;

2) the object y is not worse than the object x, 1.e. y > x or ab6o (y, x)e R;

3) objects x and y are not comparable with each other, ie (x,y)e Rand
(y, x) ZR.

This information allows us to narrow the class of alternatives of rational choice

by including only those alternatives over which no other alternative of set X
dominates.

To explain this concept, we will determine the strict preference R® and the
relation of indifference / which correspond to preference relation R .

We will say that the alternative x is strictly better than the alternative y (has a
strict superiority over the alternative y) if at the same timex > y and y # x that is

(x,y)eR 1 (y,x)e‘ R.
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The set of all such pairs is called the relation of the strict preference R® in the
set X.

It's easy to make sure that this relation meets the following properties:

1) irreflexivity;

2) asymmetry.

For a more compact relation R® we use the definition of the relation R
converse to R, we take into account, that (x,y)e R~ < (y,x)e R, namely.

Then the relation of the strict preference can be written in the following way:
R*=R\R".

The relation of indifference, corresponding to the preference relation R can be
defined as follows: (x, y)e R' if only either of the following conditions: x>y or
y > x 1s not fulfilled or both occur at the same time: x> y and y > x. In other words,
(x,y)e R" when the information we have is insufficient for a reasonable choice
between alternatives x and y.

Mathematically, the relation R’ can be written by the following formula:
R =|(xx )\ RURJU(ROR™).

It's easy to make sure that the more information about a real situation or
process, the closer the relation of indifference is revealed.
The introduced relations will be placed in Table. 2.1.

Table. 2.1
Property/Feature
>l 2| »l 2| 5 2
Neo Relation name E E g 2 g E
o = g =, Z
= 0= = 4 o =
(] o >\ [75) 'S e
= E | 9| < = | &
<
1 | Preference +
2 | Strict preference + +
3 | Similarity + +
4 | Equivalence + + +
5 | Strict order + + +
6 | Non-strict order + + T
7 | Domination - +
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Example 2.11. Let the set be Xz{xl,xz,x3,x4}, the relation of non-strict

preference is given in this set, i.e.

=
Il
—_—0 O
() ) f— p—
—_— = O O
) (e f— —

Construct the corresponding equivalence relation, strict preference,
indifference.
Solving

According to the definition RezRﬂR_l, we firstly construct a converse

relation, namely

1 00 1
e |1 110
00 1 1
110 1

Now we are finding the relation of equivalence

R°=R(R'=

—_ 0 O =
oS o = O
oS = O O
—_ 0 O =

As it can be seen from this matrix, the elements x,,x, are equivalent.

Now, in accordance with the definition, we will find the relation R’ in the
following way:

01 0 0
RS=R\R‘1:0001.
01 0 0
00 1 0

This means that the element x, strictly prevails the element x,, the element x,
in its turn 1s more important than x,, the element x, prevails x,, and x, is better
than x, respectively.

The relation of indifference can be found by the following formula:
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R =|(xxx)\(RURJU(ROR™).

The matrix of this relation takes the following form:

o O = O
S = O =
_—0 O =

This relation means that among the elements {x,,x;}, {x,,x,}, {x;,x,} one
can choose anyone, that the information is not enough in order to make a reasonable
choice between the elements of each pair.

When (x,y)e R®, then we will say that the alternative x dominates the
alternative y (x > y).

Definition 2.25. We call the alternative x € X non-dominant for the set X by
the relation R, if (y,x)eé RS, Vy e X . That s, if the alternative x is non-dominant,
then in the set X there is no alternative that would dominate the alternative x.

In the above shown example, an alternative x, has been found to be non-
dominant.

If some alternatives are in a certain sense non-dominant, then their choice in
decision-making tasks is appropriate to be considered rational within the available
information.

Thus, information in the form of a preference relation allows us to reduce the
class of rational solutions in the set X to the set of non-dominated alternatives, which
has this form:

XN':{x‘ xelX, (y,x)eR\R_l,VxeX}.

2.6 Concepts of R-optimality, of the best, the worst, the maximum and the
minimum elements

The discussed above material was intended to give a formal description of the
pair comparison of alternatives, which is a prerequisite for the selection of the best
element (or several best ones) from the whole set of alternatives X. Now we formalize
the concept of "the best" by using the apparatus of binary relations.

Definition 2.26. Element x~ of the set X will be called the best with respect to
the relation R if x* R x is true for each element y ¢ X .
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Definition 2.27. An element x, € X will be called the worst with respect to
the relation R, if x R x. forall xe X .

It's easy to make sure that the best and the worst elements do not always exist.
In particular, they will not exist when the relation is not complete, as in the following
example.

Example 2.12. Consider the set: B = {a,b,c}, and the relation R in it, which 1s

given as following: R = {(a,a), (a,b),(b,b), (b,c)}. Determine the best and the worst

elements in the set B, if such exists.
Let's depict the relation described using the graph (see Figure 2.3)

QD (o

a b

av

Fig. 2.3. Graph of relation R (for Example 2.12)

As we see, this relation does not have the best and the worst elements, because
the elements a and ¢ are incomparable.

Let us introduce the concept of the maximal element.

Definition 2.28. An element x_, 1is called maximal with respect to the

relation R® in the set X if for any element x € X there is a statement x__ R®x or

X,.. lncomparable with x.

max

In other words, there is no element (alternative) x € X that would be better
than the alternative Xpax .
The set of maximal relations R of elements of the set X is denoted by maxz X .

Definition 2.29. An element x, is called minimal relatively to R® in the set

X, if for all xe X or x RSx

element x € X that would be worse than x_. : There is no element x over which the

min

n

or x will be incomparable with it. S,o there is no

min

element x,_, dominates.

In the example above, the element a will be maximal, and the element ¢ will be
the minimum.

The set of minimum values of R of elements of the set X is denoted by
min , X .

Note that when the best elements exist, they will be maximal, and the opposite
situation will not be fair.

Consequently, if one has to choose the best alternative in a certain sense, then it
will be natural to choose it from a set of maximum (nondominated) alternatives.
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Example 2.13. Let a relation R be in the form of graph G (Figure 2.4). Find
the best, worst, maximal and minimal elements.

o Solution

There is no the best elements since the
element e is not comparable with the others.

C
‘ > The worst elements also do not exist. The
d elements a, d and e are maximal with the
respect to the relation R’ . Minimal elements
are ¢, d, e.
" Note that the elements d e are

maximal and minimal at the same time. This
1s due to the fact that they are not comparable
to others, 1.e. we do not have information on
the benefits of these elements.

Fig. 2.4. Graph relation R
(Example 2.13)

Definition 2.30. The set maxz X of maximal objects of the set X in relation to
R 1s internally stable in sense that when a,b € max , X , then none of the statements
can be fulfilled: a Rb and bR a.

Definition 2.31. A set is called an externally stable if for each non-maximal
element a € X there is a more preferred element of it among the maximal, i.e. there

will be a fair statement: 4°R 4 for some element ¢° € max 2 X

An internally and externally stable set max , X 1is called the kernel of the
relation R in the set X.

The notion of stability has great importance because if the set max , X 1is
externally stable, then the optimal element must be chosen from this set. If it is not
externally stable, then there is no reason to restrict its choice.

When there is a need to choose more than one best elements or to arrange all

objects against their advantages, then the notions of the maximal element and the
kernel of the relation lose their meaning.

Example 2.14. Assume that the set B = {a,b,c}, and i1t has the relation:
R={(a,c)}. Here is the set of maximal elements max , B = {a,b}. However, when
choosing two of the best elements, one should not take into account the presence of
element ¢, because if information appears it is more preferable than b, then elements
a and c will be desired.

Definition 2.32. The numeric function ¢ defined in the set X is called
increasing (non-decreasing) by the relation R, when the condition a R b implies that
p(a)> p(b) [respectively p(a)> ¢(b)] for all elements a,be X .

There is the following statement:
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Lemma 2.1. Let the set B — A and element a” € B give a non-decreasing by
relation R in the set B of the function ¥ of the largest value in it. Then, in order for an

object @ to be maximal in relation to the R relation in the set of B, one of the
following conditions is sufficient:
1. ¥increases by the relation R in the set B.

2. a° € B is the unique point of the maximum of function ¥ in the set B.

Proof

Assume that the element ¢ is not maximal in relation R, then, in set B there is
an element a, which prevails ¢’ over the relation R that is a R ¢°. But in this case,

there must be a strict inequality: Y’(a) > Y’(ao) since function ¥ increases by the

relation R in the set B. But the strict inequality contradicts the fact that the element

a’ is the point of the maximum of function ¥ and the non-uniform inequality:

‘P(a)z S”(ao) because a’ represents a single point of maximum ¥ in the set B. The
proofis complete.

When simulating real systems, there may be the situations where DM or
experts have no clear picture of the benefits between alternatives, but they definitely
need to make specific conclusions about which of the alternatives is the best. In this
case, experts are forced to somehow "coagulate" their knowledge and representation,
and the corresponding mathematical model will be less adequate to the actual
situation.

A more flexible way of formalizing such representations is the ability for
experts to determine their degree of belief in the superiority of the alternative using
numbers from the interval [0;1], that is to describe their arguments with the help of a
fuzzy preference relation, when each pair of alternatives (x, y) corresponds to the

number from the interval [0,1], which reflects the measure of the correctness of the
benefit: x> y. Methods of decision-making based on fuzzy preference will be

discussed later in Section 5.

Note that the characteristic feature of the "language" of binary relations is the
assumption that the result of the comparison of the merits of the two elements does
not depend on the composition of the whole set. However, in some cases, such an
addiction takes place, and for its inclusion a more rich "language" of the description
of the benefits is required, based on the use of the choice functions.

2.7 Concept of choice function. Classes of choice functions

In real situations of choice in the set of alternatives Q, a decision-maker
chooses an alternative guided by their personal opinion about the best alternatives.
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Different people have different ideas about the same situation. However, it is logical
to assume that under similar conditions one and the same person will act in the same
way. Therefore, it is possible to formulate a rule with the help of which a choice will
be made.

Let us consider the following situation: let Q2 be the set of alternatives among
which the choice is made, and the set of alternatives X represent its subset.

Let’s denote the set of alternatives that DM allocates from the set X by C(X).

For example, Q is the set of all groups in a higher educational institution, and X
is an arbitrary subset Q, which may be a set of third-year groups, a set of faculty
groups etc. Let's consider that C (X ) is the best group in the set of groups X.
Regardless of who is a decision maker (a person who chooses the best group), it is
naturally to consider that the best group in the institution will be the best group of its
year of study, its faculty etc.

Mathematically this can be written as following: if X'c X and
xeC(X)N X', then xe C(X").

Consequently, all sorts of choices in a particular situation can be considered
logically grounded, if in other situations associated with this one, solutions are
known. This means that the sets C(X') are dependent on different sets X if the choice
is made by the same DM. For formalization of this dependence, the concept of the
choice function is used.

Definition 2.33. The choice function C(X) is called the mapping which sets its
subset C(X)c X to each of sets X c Q.

The set C(X') will be interpreted as the most preferred alternatives from the
set X.

It is necessary to note that in this definition there are no prior restrictions of a
choice function, in particular, the possibility of an empty choice that is, a situation
when C(X) = @ is not excluded. This situation is called a rejection of choice. An
example of the rejection of choice can be the case, when a buyer leaves a shop,
having bought nothing.

In a particular case, especially, when the known relation R of the strict
preference in the set of alternatives is known, the choice function can be defined by
the following equality:

C(X)=max,X.

Example 2.15. Let the preference relation R be given in the set:
X ={x,,x,,x;,x, | by the matrix, namely:
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p—np—no;_m
p—np—no;_m

1
0
ol
1

Op_np_n;_m

To construct a selection function corresponding to this relation.
Solution
We construct a relation of strict preference: R® = R\R™', which corresponds

to this relation:

01 00
0 0 0O
R = :
01 00
0 010

Now we will set the choice function, applying the following rule:
C(X)=max,X. For this purpose we consider all possible subsets of the given set

{x,,x,,x;,x,} and define the maximal elements by narrowing the relation R to the

corresponding subset.
Firstly, let's consider one-element subsets. The choice from one element will be
the element exactly. Therefore,

Next, we consider the two-element subset. The narrowing of this relation to the
set {x,,x,} gives an opportunity to conclude that element x, is more prevalent than

x, , therefore, the maximum element for this set will be x,, and then
C({xl,xz}) =max {x,,x,} = x;.
Similar to other two-element sets:

C({xl,x3}) =max, {xl,x3} :{xl,x3} , C({xl,x4})=maxR {xl,x4} = {xl,x4},
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C({xz,x3}) =max, {x,, %} ={x}, C({xz,x4}) =max , {x,,x,} ={x,,%,},

C({x3,x4}) =max  {x;,x,} ={x,}

and the same to:

C(X) = C({XI,XZ,X3,X4}) =max, {x17x29x39x4} = {xl’x4} .

So, the choice function has been given.

Note that there are other ways to specify the choice function.

Thus, in terms of the relation of preference, we can construct the choice
function, but there are no corresponding preference relation for any choice function,

Example 2.16. The choice function is given as follows:
C({xl }): X1 C({xz }): X35 C({x3 }): X35
C({xl’xz}): Xy C({x17x3}):{x19x3}9

C({xz,x3}): {xz} ) C({xl,x2,x3})= {x1’x3}'

As we see, the last two conditions contradict each other. So, it is impossible to
construct a relation.

Example 2.17. The choice function is given as follows:
C({xl }): X1 C({xz }): X35 C({x3 }): X35
C({xl’xz }): X1 C({xl’x3 }’) == {xl’x3}9 C({xz,x3 }): {x3},

C({xl,xz,x3})= {xl,x3}.

The following strong-preference relation will correspond to this function:
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The choice functions are conveniently to categorize according to the conditions
that are commonly used during their study.
Examples of such conditions are given in Table 2.2.

Table 2.2.
Classification of choice functions

1. Condition of independence from neglected alternatives

If C(X)c X' X, then
C(x)=c(x’).

The condition is interpreted as
follows: when considering an arbitrary
setX' containing all the alternatives
selected from the set X, then the choice X'
is the same as the choice from the set X.

For example, when during the
competition a project x was not included in
the best ones, then the list of winners will CE}{}:C Elj
not change in the other competition, where
all the projects which participated in the
previous one with the exception of x take
part..

2. Condition of agreement

gete)=dlyx)

This condition means that the
alternatives which have been selected from
each set X, will also be selected from their

association.
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Continuation the Table 2.2.

3. The condition of imitation

If X'< X, then
C(x)oc(x)Nx’

The meaning of this condition is
following: if we consider the choice from
an arbitrary set and choose from a subset CI:':}
of it, then all the alternatives which have
been selected from the initial set and are
included in the subset being considered
will also be selected from this subset.

For example, if the project from
Bulgaria was the winner, at an
international competition, then it should be C E':}
among the winners of a Bulgarian
competition of projects.

4. Plott’s condition (independence from path selection)

C(X1 U Xz): C(C(XI)U C(Xz))
Plott's condition implies that the
choice of alternatives from the union of
choices, which in their turn are made from
each set, exactly corresponds to the choice
from choice associations, which are made
from each set separately

For example, to conduct an
international competition, you can first
select the winners of the national
competitions, and then arrange
competitions among them.
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Continuation the Table 2.2.

5. The condition of futility

C(Xl UXZ):C(XI)U C(Xz)

This condition means that the choice
of aggregation of sets equals the
combination of choices from each set
separately.

For example, people from the
different  organizations  have  been
honoured on the district board of honour

7

(X

6. The multiplicity condition

C(Xl ﬂXz):C(Xl)ﬂC(Xz)

Under this condition, the selection
from the intersection of the two sets will be
equal to the intersection of the choices.

6. Multiplicity condition

C(Xl ﬂXz):C(Xl)ﬂC(Xz)

Under this condition, the choice
from the intersection of the two sets will
be equal to the intersection of the choices.




End of the Table 2.2.

7. Conditions of monotony

If Xl - Xz,then C(XI)CC(Xz)a

i.e. a choice from a wider set will be
wider.

C(X1) C(X2)

2.8 Utility functions

To compare different alternatives and choose the best of them, you can also use
some quantitative measure of their properties, with the meanings of which one can
compare alternatives with each other and choose the best one. The decision rules
(procedures) based on this measure use the utility hypothesis developed by J. von
Neumann and O. Morgenstern [26]. The mathematical basis of this hypothesis is the
axioms system, which asserts the existence of some degree of value that allows to
streamline alternatives (results of decisions). This measure is called the utility
function, or the usefulness of the results.

The practical application of the utility theory is rooted in the following axioms:

1. The result (alternative) x; is better than the alternative x; (written as x; > x;
only if u(x;) = f{x;) > u(x;), where u(x;) 1 u(x;) is the utility value of the alternatives x;
and Xx;, respectively.

2. If x; > x; and x; > x;, then x; > x; and u(x;) > u(x;) (transitivity).

3. If xy, x, are some alternatives, then u(x;, x;) = u(x;) + u(x;) (additivity).

Similarly, when there are »n results x;, x;, ... Xx, which are achieved
simultaneously, then

U(xl, Xy, x”) = Zus(x).
i=l

In other words, the usefulness of several results that are achieved
simultaneously equals to the sum of their utility values.
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With application of the notions of utility function (objective function) f(x) we
define the following relations in the set of alternatives X:

— the relation of the weak (non-strict) preference is "not worse", which is
indicated by the symbol « > »;

— the equivalence relation denoted by the « ~ » symbol;

— the relation of the strong preference, which is indicated by the symbol « > ».

Definition 2.34. For two alternatives x,, x, it can be stated that
X1 > X, only if fx;) > f(x,);
x1 ~xz, only if flx)) =flxy);
X1 > x5, only if fix;) > f(x,).

The symbols «>» and «>» when comparing the values of the functions for
different alternatives are taken depending on whether the best alternative is
considered to be with a greater or lesser value of the objective function.

The method of determining usefulness of possible results is developed in the
Manual [1].

Let's consider several variants of application of this method in different
situations.

I. Only two results are available.

In this case, the utility calculation methodology is:

1. Determine which result is the best for the decision-maker. Assume that
X1 > x,, that 1s, the alternative x, is better than the alternative x,.

2. Then, we define the probability a in which the achievement of the result x;
will be equivalent to the result x,, obtained with probability 1.

3. Evaluate the relation between the utility values of the results x; and x..

For this we assume that the utility u(x;) =1,

then au(x,) = u(x,); u(x;)=1/a.

I. There are n possible alternatives xi, x;, ... x,, among which there are
preferences: x; > x, > ... > x,,.

In this case, the method of determining the usefulness is:

1. Determine the value of a; from the condition that a;u(x;) = u(x,).

2. Similarly calculate that

oLu(xy) = u(x3);

an-lu(xn-l) = u(xn)
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3. Assuming that the usefulness of the least significant result is 1, we find the
value of utility for other results, namely:

u(x,) = 1;
u(x,1) = /0,15

1

Oy 10y y ... Oy

u(xy) =

III. Available qualitative criteria. Under these conditions, we have information
about the benefits of individual alternatives and their groups. Then, a methodology
based on the algorithm proposed by R. Acoff and R. Churchman [1] can be applied.

Assume that there are n alternatives: xy, x,, ... x,. The method of determining
the utility involves the following steps:

1. Arrange all alternatives for diminishing utility. Let x; be the alternative that
has the greatest preference, and x, is an alternative, the preference of which is the

smallest.

2. Make a table of possible combinations of the results that are achieved
simultaneously, and then set their preference over individual results x;, x;, ... x,
(Table 2.3).

Information about the benefits of results is usually obtained from experts.

Table 2.3
1 X1 0rx, +x3+...+x, n+1 X, Or X3+ X4 +... T X,
2 X 0rx, +x;3+... + X, n+2 X, 0rx3+xa+ ...t X,
3 X10rx, +x3+ ... +X,, n+3 X, 0rx3+Xx4+...7X,3
n X,0rxs+tx;+...+x, N X, OF X,.1 T X,
3. Assign individual results uy(x,), ug(xz), ... , uo(x,) to the initial estimates of

the utility. Then the initial estimates are subjected to the last correlation Table. 2.3. If
it is satisfied, the estimates do not change.

In the opposite case, carry out a correction of utility so that this relation is
satisfied.

After that, proceed to the next relation. The correction process continues until a
system of estimates u (x1), 1 (x2), ... u (x,) is obtained, that satisfies all the relations
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listed in the table. The correction should be made in such a way that it would be
necessary to change the minimum number of evaluations of the results.

Example 2.18. Let an expert to arrange five results xj, xp, ... x5, assigning
them the following estimates: uy(x;) = 7; uo(xz) = 4; uo(x3) = 2; ug(xs) = 1,5; uo(xs) = 1.

Having considered the possible choices, s’/he expressed the following thoughts
on the value of a combination of options:

1) x1 <xy+x; tx4 + x5

2) x1 <xytx;txg

3) x1>x; +x3 +Xxs;

4) x1>x + xs;

5) Xy <x3+ x4+t Xs;

6) Xo > X3+ X4

7) X3 > x4 + Xs.

It 1s necessary to evaluate usefulness of the results so as to satisfy all the
inequalities.

To solve this problem, we substitute the initial estimates for inequality 7 that is

Mo(.X3) =2< Mo(X4) + Mo(.X5) = 2,5
Consequently, inequality 7 is not satisfied.
Let’s change the utility of the result x3: u;(x3) =3 and check the inequality 6.

So,
Mo(Xz) =4 <M1()C3)+M0(X4) = 4,5

This inequality is also not satisfied.
We assume that u;(x,) = 5, then inequality 5 is satisfied.
We turn to inequality 4:

uo(x1) = 7 <uy(xp) + ui(x3) = 8.

It doesn’t work, i.e. is not executed, so let us assume that u;(x;) = 8,5. Now the
inequalities 3, 2, 1 are satisfied.
Check again the inequalities 6 and 7 with changed values of utility alternatives:

5>3+1,5,
3>1,5+1.

Thus, both inequalities are fulfilled.
So, let's write down the final estimates of the usefulness of the results:

ui(x1) = 8,5; u1(x2) = 5; uy(x3) = 3; uy(x4) = 1,5; uy(xs5) = 1.
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Note that the described utility method can be used when the number of results
is limited, namely n < 6 or 7.

In cases where n > 7, a modified method of correction of estimates [1] is
proposed.

The set of alternatives i1s divided into subsets, which consist of 5 — 7
alternatives and have one common result, for example x;. Then the initial values of
utility are assigned to all the alternatives, and the usefulness of the common result x;
must be the same in all subsets. Next, the method of correction of utility evaluations
is applied separately to each of the subsets, taking into account the constraints:
u(x;) = const. As a result, a system of utility with one measure for all subsets u(x;) is
obtained.

Once, the utility function of all alternatives is defined in accordance with the
described methodology, the deciding rule for choosing the best of them in terms of
certainty is written as follows: find an alternative x, so that f{x) = max f{x).

Obviously, the objective function, on the basis of which the desired alternative
is chosen, can be constructed in different ways.

Definition 2.35. Objective functions f(x) and f;(x) that characterize the same
feature of a being chosen solution, which are defined in one set of valid alternatives,

will be called equivalent if they specify the same relation of weak preference that is,

h
when for any two alternatives x; and x, from the statement: x, >x, brings to that

/2 /2 N
X, 2 x,, and on the contrary, when the statement: x, >x, turns out that x, >x,. Here

the index f; over the sign of a weak preference indicates the function by which this
relation is given.

From this definition it turns out that the equivalent objective functions set in set
X are the same relations of strict preference and equivalence. The simple theorem
shown below determines which features/properties must satisfy the equivalent
objective functions [22].

Theorem 2.1. To ensure that the objective functions fi(x) and f(x) are
equivalent, there is a sufficient existence of a monotonic transformation w(z) capable
of transferring the value domain of the function f,(x) to the domain of the values of
the function f(x), ie fi(x) = w(f2(x)) for the whole set of admissible alternatives. In
this case, if both objective functions are maximized, then the transformation w(z)
must be a monotonically increasing function, and if not, w(z) must be a
monotonically decreasing function.
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Proof
Consider the case when the criteria are maximized and the transformation w(z)

1s monotonously increasing since the other cases are proved in the same way. Then, if
Ho f
X2 xy, 18 f5(x,)2 f5(x,), then w(f,(x,))=w(f;(x,)). So, x,>x,.

/2 N
The statement: x, >x, follows that x, >x, of the monotony of the converse

transformation.
The theorem has been proved.
Here are examples of equivalent maximized objective functions:

filx) = afa(x) + b, where a > 0,

fi(x) = In f(x) + b, if f(x)>0.
Conclusions

The concept of a binary relation allows formalizing operations of pairwise
comparison of objects and mathematically substantiating the choice of one or more
objects in the event that it is impossible to set a criterion on the set of alternatives, but
one can evaluate the preferences of one alternative over another.

Binary relations can be define using matrix, graph, or cuts. They are used for
crossing, union, complementary and others.

In the decision-making theory, the following features of relations are important
as reflexivity, symmetry (asymmetry), transitivity.

The choice functions are used to specify the rules for choosing alternatives.
Depending on the nature of the task, these functions may have different properties
and features. Using this relation of preferences, one can construct the corresponding
choice function, but not vice versa.

Utility functions represent a quantitative measure by which alternatives can be
compared.

SELF-STUDY

Questions for assessment and self-assessment

Give a definition of a binary relation.
What are the ways of setting up a relation?
How to set up a matrix relation?

=

How to set a graph as a relation?
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5. How the relations are determined by cuts?

6. Formulate the definition of the upper (lower) cuts of the relation.

7. Which methods of assigning relations can be used in an infinite set of
elements?

8. What mathematical operations are performed on relations?

9. What relation is called reflexive (irreflexive)?

10. What relation is called symmetric, antisymmetric, asymmetric?

11. What relations are called transitive, highly transitive, negative transitive?

12. How to calculate the transitive closure relation?

13. What properties are the characteristics of the relation of preference?

14. Give the definition of the best (worst) element of the set.

15. What element of the set is called the minimal (maximal) for this relation of
preference?

16. What is the meaning of the decision-making theory in terms of the best, the
worst, the maximal and the minimal elements? Where are they used?

17. Give the definition of equivalence, indifference, dominance.

18. How the given relation of the non-substantial preference can be used to
construct the corresponding relations of strict preference, indifference, equivalence?

19. What do the features of the external and internal stability of the set mean?

20. Give the definition of the choice function.

21. How can we construct the choice function with given preference relation?

22.1s 1t always possible to construct an appropriate preference relation
according to the choice function?

23. Which features and properties contribute to choice function classification?

24. Give examples of the conditions under which the choice functions are
classified.

25. What does a condition of imitation mean? Summary? Plott?

26. What is a utility function?

27. How is the utility of alternatives determined against the given benefits?

28. Formulate an algorithm for constructing a utility function in the set of
alternatives when qualitative criteria are present.

29. What objective functions are called the equivalent ones?

30. What properties or features should satisfy the equivalent objective
functions?

31. Give examples of equivalent transformations of the objective functions.
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Hands — on practice

Task A.
1. The relation is given in the form of a matrix. Define it with: a) a graph;
b) the upper cuts; c¢) the lower cuts.

S O o =
_— O =
_—= = O
—_ = =

2. The relation is given as a matrix. Define it with: a) a graph; b) the upper
cuts; ¢) the lower cuts.

0 1 01

1 01 0
Rz_ .

0 0 0O

01 10

3. Define the relation "less than or equal" in the set of integers from one to ten
using a matrix.

4. In the set: X = {a, b, c, d}, the relation R is given by the graph (Figure 2.5).
Define it with: a) a matrix; b) the upper cuts; c) lower cuts.

Fig. 2.5. Graph of the relation R

5. In the set: X = {a, b,c,d }, the relation R is given by the graph (Figure 2.6).

Define it with: a) a matrix; b) the upper cuts; c) lower cuts.

Fig. 2.6. Graph of the relation R
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6. Check the properties of the relations listed below.

1 0 0 1 1 0 00
o) R- 0 1 1 1; b) R = 1 1 0 O;
01 11 1 1 10
01 01 I 1 1 1
0 0 0 1 1 0 I 1
)R- 1 00 O; )R~ 0 0 1 1
0 1 0 1 1 1 0 0
01 00 1 1T 0 1

7. Using the conditions of task 6, a - d, determine complementary and
converse relations.
8. Determine the intersection and union of the following relations.

1 0 0 O 1 0 1 1

1 1T 0 O 0 0 1 1
Ry = ; R, =

1 1T 1 O 1 1T 0O

1 1T 1 1 1 1T 0 1

9. Using the conditions of task 6, a — d, construct a relation of strict
preference, equivalence, indifference.

10. Find the largest, smallest, maximal and minimal elements by relation from
task 6, a - d (if any exist).

11. Constuct a choice function using given relation of preference.

1 0 0 1 1000
01 11 110 0
a) R= : 6) R= .
01 11 1110
01 01 111 1

12. Evaluate the utility of the results according to the preferences, if
X1 >x,>...>xs and give the preferences of the results: o =2, a,=3, o3 =2,
Oy = 1,5
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13. Construct a preference relation corresponding to the option selected below
(if possible).

S
N
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—~—
——
SN——"
I
)
——
Q
—
S
N——
SN——"
I
—~—
S
N——
Q
—_
—~—
o
N——
SN——"
I
—~—
®)
N——
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~—
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I
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14. Let an expert arrange five results x;, x,, ... xs, assigning them the following
estimates: u(x;) = 10; uog(x2) = 5; uo(x3) = 3; up(xs) = 2; up(xs) = 1.

Having considered the possible choices, s’/he expressed the following thoughts
on the value of a combination of options:

X1 < Xxp +x3 x4 T X5,

X| 2 X T Xx3 + X4

Xp 2 Xy T x5+ X5

X1 2 X, + X3,

X2 2 X3 T X4 +X5;

%) > X3 + X4,

X3 < X4 + Xs.

Evaluate the benefits of the results.

15. Let an expert arrange five results x;, x,, ... xs, assigning them the following
estimates: uy(x;) = 8; ug(xz) = 6; ug(x3) = 2; uo(xs) = 1,5; up(xs) = 1.

Having considered the possible choices, s’/he expressed the following thoughts
on the value of a combination of options:

X1 S X T X3 T x4 +X5;
XS X+ X3 Xy

X1 < Xy +x3 + Xs;

Xy 2 Xy T X35

Xy 2 X3 TX4 + X5

X7 > X3 +X4;

X3 < X4 +X5.

Evaluate the usefulness of the selection results.
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Task B

1. Describe with the help of a matrix the relation "object x consumes the
object y " in the set: 4 = {man, tiger, gooseberry, pike, ram, gazelle, wheat, wild boar,
clover, field mice, snake, acorn, crucifix}. What properties are specific for this
relation, i.e. its feature(s) or property? Could it be called a superiority? Equivalence?
Relation to the order?

2. With the help of the matrix or the graph the relation specifies "operation x
should be performed after the operation )" in a set of repairs. What properties
characterize this relation? Could it be called a preference? Equivalence? Relation to
the order?
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SECTION 3

MULTI-CRITERIA OPTIMIZATION PROBLEM

In this section you will:

e study the features of decision-making problems in the presence of many
criteria;
e learn and practice methods of multi-criteria optimization.

3.1 General statement of multi-criteria optimization problem

As it was mentioned above, one of the problems in decision-making is the
presence of many criteria which are not always consistent with each other that leads
to the construction of appropriate mathematical models and the usage of certain
mathematical methods. One way of formalizing such problems is the usage of multi-
criteria optimization models.

In this section, we discuss finite-dimensional multi-criteria tasks, 1.e. those in
which the set of alternatives X belongs to finite-dimensional space E,,, and set vector
criterion

f ) = (h), ... fu ().

The set X usually stands out from wider set D with the help of special
constraints, which is often served in the form of inequalities, namely:

X = {x € D‘gl(x)z 0,..., g, (x)> O},

where g; (i =1, 2,... k) is numerical functions defined in the set D, forming a vector-
constraint function.

Depending on the structure of the set X (or D) and the properties of the
objective functions f; (x) (and g;)) for the convenience of the study, different classes of
multi-criteria tasks are distinguished. If the set X is finite, then the problem is called
finite, but when this set is finite or read, then the problem is referred to as discrete, if
all the components of x; alternatives x € X are integers — the problem is called
integer. Boolean, linear, concave and other multi-objective optimization problems are
defined accordingly.

For example, consider this problem:

Imagine you are given a set of alternatives X which properties are described by
the set of objective functions: /= {fi(x)}, i € I, xe X, where [ is the set of indices
I={1,2,...,M}. We assume that m of the first objective functions are maximized
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and the other (M — m) ones are minimized. Let us denote by /; the set of indices for
which the objective functions are maximized, so [, = {1, 2, ..., m}; I, is the set of
indices for which the objective function is minimized: I, = {m+1, m+2, ... M}. Then,
a multi-objective problem can be written as follows:

fi(x)>max, iel,

fi(x) > min, ie1,, (3.1)
xelX.

3.2 The concept of an effective alternative

Consider the problem of multi-criteria optimization (3.1). Given the objective
functions, alternatives x; and x, can be compared in this way:
— alternative x; is not worse than alternative x, (x; > x,), when

{f;‘(xl)zfi(xz)a iel,
Ji(x) £ fi(xy), i€ ly;

— alternative x; is equivalent to alternative x; (x; ~ x»), if
fi(xl): fi(xz)r Viel;
— alternative x; is strictly dominated by an alternative x, (x; > x,), when

{f,-(xl)zfi(xz),iell,
Ji(x) < fi(xy), i€ 1y,

and at least one inequality is performed as strict.

Obviously, not every pair of alternatives can be compared with each other.

Example 3.1. Let f(x) = (fi(x), f2(x)), where the function fi(x) is maximized
and the function f£(x) is minimized on the discrete set X = {x|, x,, X3, X4, X5}.
The values of the objective functions on the set X are presented in Table 3.1.

Table 3.1

Function value: f(x) = (fi(x), f2(x))

Si(x) Sa(x)
X 7 5
X, 6 2
X3 5 4
X4 6 6
X5 4 1
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Definition 3.1. The alternative x, is called efficient if there is no alternative X
in the set of admissible alternatives x, that satisfies the following inequalities:

fi(x) 2 fi(xo), i€l
S filx), i€l

and at least one of them is performed as a strict.

In other words, no other alternative can "improve" any value of the objective
function without worsening the value of some other. That is why sometimes an
effective alternative is called non-improved for the set of purposes or Pareto optimal.

So, there is a need to search the solution of a problem of multicriteria
optimization among the set of Pareto optimal alternatives. However, we cannot say
which alternative to choose as the further research is needed.

It follows from the definition of effective alternatives that they may not be
comparable. In this regard, the following statement is true:

Lemma 3.1. Two effective alternatives are either equivalent or incomparable.

Proof
If x( is an effective alternative, then for any alternative x', comparable to x, in
the set of objective functions, or n equalities are fair: f;(x") = f.(x,), Vi € I, and then

the alternative x’ is equivalent to xo or an index se€/ can be found, for which
fs(x0)= fo(x') when sel,,or fi(x,)< fg(x") if 5 €l,, then the alternative x',
cannot be effective.

The Lemma is proved.

From this Lemma it turns out that when there is only one effective alternative,
it gives an optimum to each of the criteria.

If there are two or three criteria, the set of effective alternatives can be graphed.

For example, consider a problem that includes two criteria, each of which is
maximized, and the set of valid alternatives in the criterion space has the form shown
in Figure 3.1. The Pareto set in this case (if m =2) is figuratively spoken as the
North-Eastern boundary of the set of feasible solutions without those parts of it that
are parallel to the coordinate axes or lie in sufficiently deep and steep dips (this set is
shown by a thick line in the Figure 3.1).
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Fig. 3.1. Graphical representation of the set of valid solutions and Pareto set

Definition 3.2. The alternative (solution) is referred to as weakly effective, and
also weakly optimal in Pareto, or optimal in Slater when there is no other alternative
(solution) for which:

Ji) > fi(x), i€l
Ji(0) < fi(xo), i€l

Weakly effective alternative is an estimate of the maximum with respect to
relation " >" in contrast to effective alternatives that are maximal with respect to
relation " > ".

Note that any effective alternative is weakly effective and accordingly the set
of effective alternatives P(Y) is contained in the set of weakly effective alternatives
S(Y).

Many effective alternatives P(Y) [weakly effective alternatives S(Y)] is called
externally stable if for any element of yeY\(P(Y) [yeY\S(Y)], such estimate as
3" € P(Y) [accordingly 1’ e S(Y)], for which »° >y (3° > y) exists.

If the set Y consists of a finite number of estimates, then the sets P(Y) and S(Y)
will be externally stable. When the set Y is infinite, the sets of effective alternatives
P(Y) and S(Y) may not be externally stable. However, these sets will be externally
stable under usual assumptions for optimization problems (X — compact, the function
f— semi-continuous from above).

Example 3.2. Let Y be the unit square from which the upper right vertex has
been "removed " (Figure 3.2).

For such a set 7, the set P(Y) is obviously empty, and the set S(Y) is formed by
the right and upper sides of the square [without the point (1; 1)]. The set S(Y) is
obviously externally stable since each point yeY in which y;, y, <1 can be put in
correspondence. For example, the point yo, = ((y; + 1)/2,1) and y, > y.
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The definition of an effective (weakly

4 effective) solution is static in the sense
that it is based on a pairwise comparison

70 Q of acceptable solutions and does not have

a commonality with the question of
whether it is possible to "smoothly" move
¥ from one solution to another, better, at a
positive rate, increasing each criterion.
Under such conditions the possibility of

Y1 such a transition in some models is

considered very interesting.

Fig. 3. 2. Graphical representation of a _
An economic model of net

set of Slater-optimal alternatives
exchange, @ where each  consumer

participates in the exchange seeking for

acquiring a set of goods of the greatest utility, i.e. to maximize its value function, can
serve as an example.

This kind of model was explored in the nineteenth century by F. Echart and
V. Pareto. What effective in this model is the state (distribution of goods among
consumers), which cannot be improved by redistributing goods between exchange
participants without "defeating the interests" of some of them.

Thus, Pareto optimality reflects the idea of economic equilibrium: when the
state of the economy is not effective, an exchange will occur, which will lead to the
transition to an effective state.

3.3 Theoretical and practical value of an effective solution

The concept of an effective solution is a direct generalization of the notion of
the maximum point of a numerical function to the case when several functions are
considered.

As a rule, in applied problems a set of such alternatives is not empty and
moreover, externally stable. Therefore, the optimal solutions should be chosen among
the effective alternatives.

However, if for a single-criterion problem any solution can be taken as the
optimal one that leads to the criterion reaching its maximum (since the optimal
solutions are equivalent), then in a multi-criterion problems a set of effective
alternatives is very rich in non-equivalent (and substantially different in content)
solutions, as a rule. Therefore, a meaningful choice of the optimal solution is
impossible without involving more complete information about the advantages of
alternatives.
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Nevertheless, the concept of an effective solution plays an important role in the
theory of multi-criteria optimization.

Although an effective solution is usually not the only one, but a set of effective
alternatives are still much narrower, than the original set of all the solutions. Taking
this into account, the construction of a set of effective solutions (or their estimates) is
the first step in the implementation of a large number of procedures and methods of
multi-criteria optimization.

As 1n the case of only two or three criteria, a set of effective estimates can be
represented graphically, then the analysis of two- and sometimes three-criteria tasks
is often more convenient to do by choosing the optimal solution(s) directly from the
graph of effective estimates.

For example, this approach forms the basis for a “cost — effectiveness” method.

One alternative of this method encompasses the following:

— each sample is evaluated against two criteria: production cost B and
effectiveness of implementation the tasks put E. The values of these criteria are
calculated by the methods have been specially applied;

— a graph of estimates is constructed corresponding to all these samples, and
the samples are highlighted, among which the optimal one is selected;

— the final selection is done by a decision-maker on the basis of the graph
analysis as the graph demonstrates the costs necessary for achieving effectiveness
increase.

Example 3.3. There is a need to compare 6 projects against the criteria of
cost and efficiency. A graphical representation of project evaluations is shown in
Figure 3.3. Since it is desirable the criterion B (cost) to be minimum and the criterion
E

(efficiency) — maximum, then, the graph

E1 demonstrates the advantageous
3 projects 1, 4, 3.

Narrowing the choice set to the set

o of effective solutions (or a subset of

them) 1s important not only for itself, but

for the reason that a narrower subset

N ©

allows to make various assumptions
simplifying further analysis. In addition,

»
»

B effective solutions can have interesting

Fig. 3.3. Graph of project evaluations in and practically important properties that
the “cost — effectiveness method” the other solutions lack.
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Example 3.4. Suppose there are n industries engaged in the production of »
products (items) of consumption. Each industry can produce only one product,
through multiple production processes.

Let's denote the set of production processes available to the i-th industry by A..
Consider the set A, 1s the final one.

If take the total number of labour resources as a unit, then intensity of the i-th
industry work can be characterized by the value: u; >0, that shows the share of
available labour resources used in this industry. Thus, vector u = (uy, uy, ..., u,)
describes the performance of all industries. It is clear that with the full use of labour

n
resources, Z u, = 1. If the components of the vector u are positive and their sum is
i=1

equal to one, it is referred to as feasible.
Let the quantity of the j-th product which the i-th industry produces when it

operates at a unit intensity level (u; = 1) and the process 4, € A; applied.
2

We assume that al.j" <0, when i#j, but a;* >0. Negative values a;.k are

interpreted as the amount of materials (products) that are spent in production.
The expressed assumption about signs indicate that every industry can use all

kinds of materials, however, it produces only one product.

A

b . ﬂ‘k — ﬂ’k k ﬂ’k . .
Let’s call vector: a;* = (a;*, a,', ... a;*) ai-th industry process vector.

Each production process x; has its own process vector.

When activities of each sector of the selected production process, and more
specifically, if the defined set of production processes are fixed as
A=A, A, ..., A,), then the output of pure product j produced by the whole system is

n
— /,Li
;= Zuiaij .
il

. A
We denote a square matrix, where rows are vector processes, a *,

I=1,2, ... n, with 4*. Then, the j - th component of the vector: ¢ = ud* is the output
of pure product j as a result of a fixed set of processes 4 and a feasible vector u.

Let 4 be the set of matrices 4%, each of which corresponds to a certain set of
processes: A= (A, Ay, ..., A,), where A, € A;. Vector (the vector estimates):
c=(c1,Ca ..., c,) is called realized (or achievable), if ¢ = ud” for some matrix 4* and
a feasible vector u.

The special attention should be drawn to vectors: ¢ = (¢y, ¢; ..., ¢,) which have
positive components. Indeed, there is an implemented vector ¢, where c¢;>0,
j=1,2,... n that gives an evidence of possibility to organize the production of all
products in such a way that each of the industries will produce a product in a quantity
more than there is a need of its consumption by all other industries.

72



Consider the geometric interpretation of this model.
Each process vector al;.t" can be represented as a point in space E”. Matrix 4”

corresponds to n of such points (one per each industry).

n n n
4t = z Aoyt e it is a o
Vector ¢=uA —(Zuiail peees QU j—Zuiai , i.e. it is a point of convex hull
i=1 i=1 i=1

of n process vectors.

Thus, the set of realized vectors ¢ is an association of convex hulls of vectors

al,ap,...a"

e Uy

which make up matrices At e 4.

To 1llustrate this, consider a simple example with numerical data.

Example 3.5. Suppose that n =2 in the above problem;
Ar={1;2}; A= 1{1;2;3};
a)' =(2;-1); a” = (3/2; -2);
@' =(=1;172); ar” =(=2;3); ar’ = (- 4; 4).

The task of determining the best options of production and labour resources is
to ensure the largest possible output of all products produced by industries.
Solving
Draw the points which satisfy

A
vector processes a;' on a graph (see

Figure 3.4) In our example, they are:
a' =(2;-1); a’=(3/2;-2);
@' = (- 15102); @’ =(-2;3);
ary =(—4; 4).

The segments connecting these
points correspond to the convex hulls
of these vectors, 1.e. vectors.

The realized vectors ¢ are shown
by those segments which are located in
the first quarter of the coordinate plane.

It is obvious that the maximum

product output will be achieved if
Fig. 3.4. Graphical interpretation of A’=(1;2) that

1s the first industry
example 3.5

uses the first process, and the second
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industry — the second. Then any efficient production plan can determine the pair
(A%, u), here u=(uy,u;), 0,5<u;<0,75, u,=1—u,; These conditions ensure the
feasibility of vector).

Thus, the plan: x = {4, u}, where A is production processes, and u is an
implemented vector), is characterized by the vector criterion: c(x) = (¢ (x),..., c,(x)),
where ¢;1s the output of pure j-th product.

The plan x" is called effective if there is no feasible vector u and matrix 4~ for
which ¢/(x) = cj(x*) at least one of these inequalities is strict. Vector c(x"), which
corresponds to the effective plan x is also called effective.

The structure of the effective vectors with positive components is characterized
by the following statement:

If there is a realized vector with positive components, then all efficient vectors

with positive components lie in the convex hull of the vectors of the processes a;"

which form the matrix A'€ A, and each point in this convex hull, located in the
positive octant is the effective vector.

In other words, when there is a valid plan that ensures the excess output of each
of the products, there is a certain production process for each industry included in the
set A" which allows you to determine all the effective vectors with positive
components only for the sake of redistribution of labour resources.

Thus, any effective plan that provides an excess output of each product has the
form of (A’ u), where u is a feasible vector, or it is an equivalent plan of the named

type.

3.4 Effective alternatives: properties and the ways of their finding

Consider a problem of multi-criteria optimization:

fi(x) > max, i €1,
Jfi(x)—>min, iel,,
xelX,

and investigate properties of a set of effective alternatives. Let’s formulate them not
in respect to the primary vector criterion, but keep in mind a dimensionless vector
criterion which consists of monotonic transformations of individual functions, which
bring them to a dimensionless form and lead to the problem of minimization.
Methods of such a transformation will be discussed below in this paragraph and in
paragraph 3.6. So, we have the following initial problem:
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W.(x)—> min, i e,
xelX,

where all the functions of W,(x) >0 are reduced to a dimensionless form.

Theorem 3.1. If the set of admissible alternatives X is convex and the objective
functions W,(f(x)),i e I, are concave in the admissible set X, then for any effective

1

alternative x there is such a numerical vector:

c=(c;,¢psennncy )y € 20, Zci =1,

iel
where the linear criterion, having the following form:

F(x)= Z Wi (x), (3.2)

iel
. . . %
reaches a minimum in the set X, when x = x .

Theorem 3.2. Let x be an effective alternative to the set of objective
functions: W = {W,(x)}, W.(x)>0, iel. Then, there is a numerical vector:

c=(c;,¢ys..0scy )s €; 20, > c; =1, for which the criterion is of the following form:

iel

F(x)= max Wi (x), (3.3)

reaches a minimum in the set of valid alternatives X if x = x .

A
For the component c¢;, you can, for example, take the numbers —- , here

P I A p—

-
iel Wi(x )

Theorem 3.3. Ifx  is an effective alternative to the set of objective functions f;
then for any index / € [,

f (x*): mfxfl (x),

7 )2 £ (x), Vien, ixl,
fi(x*)éfi(x), Viel,,

or for any index / € I,

75



min f, (x),

X

£
fl(x*) f( ) Viel,
f,(x*) < fi(x), Viel,,i#l

In connection with the described properties, three ways of determining
effective alternatives can be constructed.
Consider these methods.

The first method (based on Theorem 3.1)

The search for the whole set of effective alternatives X is reduced to solving of
such parametric programming problem:

mch W.(x), (3.4)

xeX

yl.eF+:{yi:yi20,‘v’ie],Zyi=1}, (3.5)

iel

where for all indices i € I the functions Wj(x) are concave and continuous, and the
zone of admissible alternatives X 1s a convex closed set.

In the case where the functions are not concave or the set of valid alternatives
is not convex, the problem (3.4), (3.5) does not allow to find the whole set of
alternatives.

Example 3.6. Let the scope of valid alternatives be given by constraints of
the following form:

X={x20,i=1205<x<3%05<x, <5x,24-x7 |

and the objective function
X; — min,
X; —> min.

In this problem, set of the effective alternatives are the 4B arc (see Figure 3.5).
However, since the region is not convex, in the result of minimizing the criterion
F(x) = nix; + ppx;onthe set X, V vy, v2 > 0, y; + v, = 1, no more than two effective
alternatives will be found.
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Fig. 3.5. Graphical illustration of example 3.6

The second method (based on Theorem 3.2)
The search for the whole set of alternatives X is reduced to solving such
parametric programming problem:

mi)? max y, W, (x), (3.6)

xe iel

yieF+={yi:7i20,VieI,27i:1}, (3.7)
iel

where Wj(x) is monotonic transformations of the objective function f;(x).

In this case, the requirements of concavity and continuity of the objective
functions as well as the convexity of the set of acceptable alternatives are not put
forward, but it should be noted that in the case of a lot of solutions to the problem
(3.6), (3.7) not all alternatives found can be effective.

Example 3.7. Imagine you are given a discrete set of alternatives:
X = {x »J=1.5 } The values of the objective functions w;(x), w,(x) are given in

Table. 3.2. Both functions are minimized.

Table 3.2
The values of the objective functions wy(x), wy(x)
§ wi(x) wa(x)
Xj
X1 2 5
X2 4 3
X3 4 2
X4 5 2
X5 6 1
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Then, when » =»=0,5, the minimum criterion (3.6) is achieved in
alternatives x,, x; that is the solution will not be the only one. However, it is obvious
that x; > x,, since x; has the best value of the second function, i.e. only the x; variant
is effective.

Unlike the first method, this method is more general (there are less
requirements for objective functions and many alternatives), but when the problem
(3.6), (3.7) has several solutions, additional analysis may be necessary.

Note that for the various monotone transformations W, for the same values of
the parameters various effective alternatives will be found. But, if we consider all the
values of the parameters % € I, the resulting set of effective alternatives will be the
same.

Example 3.8. Let the set of acceptable alternatives be given:

X ={x>0,i=120x +x, <1000,5x, +3x, > 3500 }
(it 1s shown in Figure 3.6) and the following objective functions:
fi(x)=37,5x, +30x, — max,
£,(x)=50x, +25x, — min.

Consider two transformations:

e {f /i), ﬁ(x)—fzm.(x)} and W — {f — A, D=L (x)},
flmax _ fil’l’lll’l fzmax _ fzmm flmax fzmm

where  f™, ™" 1is the maximum and minimum values of the f; functions,

respectively.
x> | Find the maximum and minimum
values of the functions f; and f, in the set
of constraints, namely:

S 1s attained at the point (1000,0), f™
= 37500,

£;™" is attained at the point (700,0),
fmin= 26250,
" at the point (1000,0),
| ‘A‘ r\ . /o atthe point ( )
S0 1000 Yo 7= 50000,
Fig. 3.6. Graphical interpretation of famin-at the point (250, 750), f,M"=31250.
example 3.8
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We construct the object functions according to the transformations w' and w”,
that is

W= {37500 —37,5x1-30x2 50x1+25x2-3 1250}

11250 ’ 18750

b

e 37500 -37,5x1-30x2  50x1+25x2 31250
37500 31,250 ’

and consider the problem of parametric programming;:

min > 7wl (x) (3.8)
xeX+ i=1,2
yell

and

min Y y,w?(x). (3.9)
xeX+ i=1,2
yell
Thus, if y;=0,8, , =0,2, the minimum criterion w! (task 3.8) 1s achieved at
point C, and the minimum criterion w* (task 3.9) — at all points of the BC edge (see
Figure 3.6).
When » =2/3, 7 = 1/3, the minimum criterion w' (task 3.9) is achieved at all
points of the BC edge, and the minimum criterion w* (task 3.6) is at point B (see

Figure 3.6).
The third method (based on Theorem 3.3)

A set of effective alternatives for objective functions f can be found by solving
such a parametric programming problem with respect to parameters z € Z¥

maxfl(x),

Wfl.(x)ZZ,., Viel,, i#l,
fl.(x)Szi, Viel,,
xelX,

where Z"~' — (M — 1) is dimensional parallelepiped,;

ZM_l = H[f;‘(min) >f;‘0pt ] X H[fiopt ’ﬁ(max) ] ?

iEIl [612
i#l

where f,°”' is the optimal value of the corresponding objective function, fimin is the

smallest value of the objective function if it i1s maximized, and fimax) 1S the largest
value of the objective function if it is minimized.
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Note that it is necessary to choose such a objective function for the main
optimized function, the optimum of which is achieved only at effective points

As in the second case, not all alternatives obtained by this method can be
effective, and therefore, there is a need for additional analysis.

3.5 General problem of finding compromise solutions

After constructing many effective alternatives to X, the group of experts is
given the right to choose the best solution in some sense. They give their
recommendations to the DM. It either makes a choice of one of their proposed
solutions or takes their average result.

Selecting the only one decision from a variety of effective solutions is rather
difficult task, because it is possible that the alternative, not optimal against any of the
criteria, will be the best in a particular situation of decision-making.

Consider the possible principles of compromise which are applied when
selecting a solution from a variety of effective alternatives. Here we will assume that
a normal task without priorities is considered, i.e. the criteria are equivalent and
normalized. We will also assume that all the criteria are maximized in the set of
acceptable alternatives and take only positive values.

3.5.1 Principles of uniformity

In the case where the criteria are normalized and of the same in importance, it
is natural to strive to uniformly and harmoniously improve the quality of all partial
(local) criteria. This is the essence of the principle of uniformity, though at the same
time the principle can be implemented in different ways. Consider some of them,
assuming that the alternatives are evaluated by » criteria: yy, y», ...y, and all the
criteria are maximized.

Principle of equality. According to this principle, maximization is carried out
provided that the levels of all criteria are the same. In other words, an effective
alternative is chosen for which the value of all the criteria are equal that is
yvi=y,=...=y,. However, this principle is overly rigid. It can predetermine the
choice of alternatives that lie outside the area of compromise and even do not give
solutions at all, especially when it comes to discrete problems. Examples of such
situations, provided that the two criteria y,, y,maximized, are shown in Figure 3.7.
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Vi=y2

Yo=(yo =yo)

v

Vi

A2

»
>

Y1

Y2

v

Fig. 3.7. Graphical interpretation of situations of decision-making based on

the principle of equality: a — existing effective solution; b — the solution is

beyond the scope of compromise; ¢ — no solutions (continuous case); d — no
solutions (discrete case)

The principle of uniformity (maximin). This principle assumes a uniform
increase of levels of all the criteria by "pulling" the worst of them, 1.e. the criterion

with the lowest level. In addition to uniformity, this principle has another important

2

A

Yo

»
»

M1
Fig. 3.8. Illustration of the use of the
principle of uniformity (maximin)

essence which is to ensure a guaranteed
level of the minimum criterion min y;. It
is often called the principle maximin (or
minimax in the  problem  of
minimization).

This principle 1s illustrated 1n
Figure 3.8 in the condition of two criteria.
Both criteria are maximized here.
Effective alternatives will be located on
the so-called North-Eastern border of the
set of acceptable solutions. According to
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the principle of uniformity, it is necessary to choose a solution that provides the
maximum value of the criterion with the lowest level. In this case, the criterion y;.
Therefore, it is rational to choose such a solution: yy = max min y;.

The principle of the best uniformity. In this case, there is some strengthening
of the idea of uniformity in comparison with the previous model, namely: if several
solutions are obtained as a result of applying the maximin criterion, then the second
minimum is determined, and its maximization is carried out (Figure 3.9).

Ayz F %)

Yo=maxminy;maxminyz

> -
b &
Fig. 3.9. Graphical interpretation Fig. 3.10. Graphical interpretation
using the principle of the best using the principle of quasi-equality,
uniformity KL=Y = {y: [y, <6

The principle of quasi-equality. In this case, all local criteria are maximized,
provided that their level does not differ by more than a given value J, that is, there is
some weakening of the overlaid rigid principle of equality (see Figure 3.10)

The idea of applying the principles of uniformity is very attractive. The
harmonious improvement of the quality of all the criteria is the ideal for optimization.
However, often even a slight deviation from these principles can increase
significantly the level of one or more criteria, and thus improve the solution of the
problem.

The principle of alignment of quality. This principle is based on theorems on
the average values of higher degrees. Mathematically, this model is written as
follows:
min 3 y;*,
yer® 0
here, Se(1; 5", S"= (log m)/ log(1+¢).

As the value of the parameter S increases, starting from one, the values of the
criteria are aligned, and when S > S” we reach an ideal alignment equivalent to the
model of a sequential maximin.
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3.5.2 Principles of fair assignment

The principle of absolute assignment. It provides that a compromise is
considered fair when the total absolute level of reduction of one or more criteria does
not exceed the total absolute level of increase of other criteria, 1.e.

opty=<y: Z\ij\z Z‘ij‘ nre,
yey© jeI* jel~

where I is a subset of local criteria whose level is improved (Ay; > 0); I~ — a subset

of local criteria whose level is degraded (Ay;<0), and Ay, — the value of the

increase (or decrease) of the criterion during the transition from the solution j’ to

¥, Ay, =Ay; (V).
Example 3.9. Consider the case where there are two criteria y,, y,. Suppose

that they are both maximized. Compare the outcome y(2;4) and y' (3;1 (see
Figure 3.11).
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Fig. 3.11. Graphical interpretation of the principle of absolute assignment
(Example 3.9)

In the transition from the )’ solution to y, the criterion y, is reduced to such a
value:

A1 =[y1=y"1[=3-2=1,

The criterion y; is increased by the following:

Aya| = [y2 = yol= 1[4 - 1] = 3.

In other words, in the transition from solution y’ to solution y, we make a
concession by the first criterion: Ay, = 1, but from the position of the second criterion
we will win a larger value, that is Ay, = 3 (see fFg. 3.11).
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So, since the absolute increase in criteria Ay, exceeds the absolute decrease in
Ay, then the solution y'is considered to be better than y ()’ > ).

The model of criteria sum maximization (model of integral efficiency)
corresponds to this principle, namely:

optyEmaXZyj .

yere 5o
A serious disadvantage of the principle of absolute assignment is that it does
not exclude a sharp differentiation of the levels of individual criteria, that is, a high
value of the generalized criterion can be achieved at the expense of one or a group of
criteria at a very low level of others. However, this principle has an important
advantage — it 1s convenient for implementation.

The principle of relative assignment. Suppose that all the local criteria
forming the efficiency vector are of equal importance. Then, we will consider to be
fair such a compromise, where the summative relative level of decrease in quality of
a decision against one or on several criteria does not exceed, 1.e. less or is equal to the
summative relative level of increase in quality against the other criteria. The
corresponding to this principle model is referred to as the model of fair relative
assignment. It is written in this form:

> NYe,

2.7,

jel™

2.7

jel™

opty=<y:

yeY©

where 7 1s the relative change of the "price of assignment" criterion, which 1s
calculated by the formula:

_ Ay, 00p)
max{y’, y}

ni1n;

Consider the mathematical interpretation of the described principle.

Example 3.10. Let two alternatives be given in the zone of compromises Y
v (2;7) and y' (3; 5) (Figure 3.12), the quality of which is assessed by the criteria y,
and y, (both of them are maximized). Alternative y is better than alternative y’ in
criterion y;, but inferior to it according to the criterion of y,. It is necessary to
compare these two alternatives and select the best one in terms of the principle of fair
compromise.
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Fig. 3.12. Graphical representation of the relative assignment principle
(Example 3.10)

To compare these alternatives, we introduce a measure of the relative decline
in the quality of the latter for each of the criteria in the transition from alternative y to
»"and vice versa, that is, the price of assignment 7,(y, y"), namely:

_ M (OLy) 7 = Ay, (y,5")
1= ! 2 2 /] °
max{yy, y, | max{y,,y,}

Here Ay, and Ay, are the absolute value of the reduction in the level of criteria
in the transition from solution y’ to solution y (for criterion y;) and the reverse
transition (for criterion y,). If the relative magnitude of the reduction of the level
criterion y; most from the reduction criterion y,, you should give preference to the
solution y. This follows from a comparison of the values of the price of assignment
for each of the criteria.

In this example Ay, =1, Ay, =2, according to the principle of absolute
assignment, solution y is better than solutions y’, but on the contrary, according to the
principle of relative assignment, the best alternative is y' since 5, = 1/3, n, = 2/7, 1.e.
M= N2

Consider the case of continuous change of solutions. Then, the price of the
assignment has the form of a logarithmic derivative that is
dy, (x)

dx

n,(x)=~
Y

Suppose that an increase in the value of the parameter x leads to an increase in
the criterion y; and a decrease in the criterion y,. The relative intensity of their change
depending on x is characterized by the price of assignment #z,(x) and #,(x)
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(Figure 3.13). As it can be seen from the graphs, when x changes from 0 to x,, the
relative increase in y; criterion will be greater than the decrease in y, criterion.

771()5); 772()6)
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1 )

m )

X0 ” X
11(x0) = 172(xo)
Fig. 3.13. Graphical interpretation of the relative assignment principle

(continuous case)

The principle of relative assignment corresponds to a scalar optimization model
with a criterion in the form of a product of local criteria, namely:

opty EmaxHyj.

erc jEI

For convenience of calculatig instead of this model it is also possible to use
equivalent model of the following type:

optyzmeylg(Zlogyj, y;>0,jel

ye jel

Note that this principle can be applied provided that all local criteria are of
equal importance. If this assumption is not valid, then the model must be adjusted,

using the weight vector: a = (v, ... , a,), and find optimal solutions based on such a
model:

max [ [y}’

yeY*© jel

Here, the principle of fair compromise is somewhat violated, but this is done in
accordance with the degree of importance of the criteria and practically results in
artificial differentiation of the value of the assignment.

Comparing the two principles of fair concessions examined above, it is
possible to draw the following conclusions:

The principle of fair compromise on the basis of assignment has a very clear
idea of justice, on the basis of which the best compromise solution is chosen.

86



The principle of absolute assignment does not depend on the actual value of the
criteria and can therefore allow for large differences in their levels, and therefore it
should be used only in conjunction with one of the principles of uniformity.

The principle of the relative concessions is particularly sensitive to the criteria,
and at the expense of relativity concessions, there is an automatic reduction of its
rates as applied to the criteria with higher value and vice versa. As a result, there 1s a
significant smoothing of the criteria levels. It can also be considered that an important
advantage of the principle of relative assignment is its invariance to the criteria
measurement scale.

If there is an unequal importance of the criteria, the idea of a fair compromise
based on the evaluation of concessions loses its clarity as the arguments for the
choice of the weighting vector « is rather doubtful, especially when there is a variety
of numerous criteria.

3.5.3 Other optimality principles

The principle of the main criterion. According to this principle, one of the
local criteria is chosen as the main one and its scalar optimization is carried out,
provided that the level of the other criteria is not worse than acceptable, that is

opt y =maxy,,
yeY

where Y'= {y ‘yj >y7,j € {2,3, m}}ﬂ Y®, y7 is given the acceptable level of the

criterion Vs j=2,3,...m.

In this case, the main criterion can be chosen, but it is better to take the one for
which it is difficult to determine the permissible level.

Ultimately, with the help of such a model you can implement any compromise
scheme and get any optimal solution in the zone of compromises. At the same time, it

is often impossible to argue for the selection of an acceptable level of criteria 7.

The principle of maximizing the weighted sum of criteria. 1t is a modification
of the absolute assignment model for the case when the priorities of the criteria are
givena;, j=1,2,...,m, and is written in this form:

opty:mai(Zajyj ,

yeY jel

where o; € [0,1],j € I={1,2,...,m}, > a,=1.

jel
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To some extent, this principle has universal significance. For example, when
solving the multicriteria problems with the help of this model it is possible to
determine a lot of compromise solutions (theorem 3.1).

Note that as in the previous cases it is almost impossible to argue the choice of
weight coefficients a; J for the implementation of any principle of compromise

The principle of maximizing the probability of achieving ideal quality. Often

in stochastic vector problems the ideal, desired values of all local criteria y7, and

hence the ideal quality is y". Then the optimization problem can be formulated in a

scalar form with a criterion that means the probability of achieving a complex event
P(y2y"):
opt y=max P(y > y").

yeY
In practice, the methods of calculating the probability of events, even if there
are two or three, are very complex. That is why this method can be used only in some
specific cases, when the number of events m < 3, and the calculation of the

probability P(y > y") is quite simple.

3.6 Criteria normalization methods

In real problems, the scales of measurement criteria are often different, and the
majority of the models used are sensitive to this fact (invariance is a model of relative
concessions). They have sense only in the normalized critical space, and therefore
there is a need to perform normalization of criteria, i.e. artificially reduce them to a
single measure.

The basis for many normalization methods is introduction of the concept of
"ideal quality", that 1s, a wvector that has an 1ideal efficiency value:
yideal = (ylide”l s e ymideal). Then, the choice of the optimal solution becomes
equivalent to the best approximation to this ideal vector. Different methods of
normalization are obtained depending on what is considered to be an ideal vector and
what sense in the "best approximation" is understood.

Often, instead of the actual value of the criteria their deviation from the ideal

-y, j=L2,...m or dimensionless value of the criterion: y ; _Y

u

Yj

value: Ay; =y

are considered, obviously v, €l0:1], j= L2,...m.

When solving multi-criteria optimization problems both methods of scale
transformation are used. However, only the second one can be used for normalization
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since it does not depend on the scale of criteria measurement, does not detract from
the significance of any of them and reduces all criteria to a single scale [0;1].

Consider the main ways of normalization from the perspective of a method for
choosing the ideal vector y™“.

Method 1. The specified values of criteria: y =(y,,¥,,...,¥, ) are taken for
ideal *

This case is quite rare, because the definition of a given value of criteria is
usually associated with serious difficulties, and its reasoning is very biased that leads

to the subjectivity of the optimal solution.

the ideal vector quality, y

Method 2. The vector with components, which are the optimal values of local
criteria, 1s taken as an ideal vector of efficiency. For example, in a problem where all
criteria are maximized, the ideal vector should be chosen in this form:

ideal
Y =(max y,,max y,,...,max y, ).
yeY yeY yeY

And then, instead of the absolute value of the criteria, their relative
dimensionless value is introduced, that is

)7j =L, j=1L2,...m.
max y
veY
The disadvantage of this method of normalization is that it depends
significantly on the maximum possible level of criteria, which is determined by the
conditions of the problem. In such circumstances, preference is automatically given
to the criterion with the highest value of the local optimum, and the equality of
criteria is violated.
The same drawback can be found in Savage method (the principle of the least
harm). Here the ideal vector has the same form, but the space of criteria is

transformed into the space of deviations, namely: Ay, :nylgx Y, =Y, j=L2,...m,

and further choice is based on the principle of minimax. This method also depends
significantly on the scale of measurement criteria.

Method 3. When using this method, the components of an ideal vector are the
exact upper faces (sup) [or for minimization problems-exact lower faces (inf)] of
local criteria that are defined in the solution space Y, that is

¥y =(supy,,supy,, ..., supy,).

yeY yeY yeY
Relative criteria are determined by the following formulas:
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= Y , j=L2,...m.

i sup y,

yeY

This method of normalization is the fairest because it does not violate the
equality of any of the criteria, moreover, it is objective and does not depend on the
scale of their measurement. Despite this, its application is often impossible since the
limit of the criteria is infinity. However, under such conditions, it is possible to
approximate the implementation of this method by specifying a certain, sufficiently
high level of criteria.

Method 4. Here y**“ components are the maximum possible deviations of a
criteria, taking into account the conditions of the original problem, namely:

_ Y; .

;= - , j=12,...m,
max y. —min y.

yeY J yeY J

or, when the problem is considered without constraints,

I —
g sup y, —inf y.

yeY yeY

, J=1,2,...m.

Note that this method of normalization requires a special check of the
invariance conditions with respect to the origin and scale of the criteria measurement,
at least with respect to the use of some principles of compromise.

Method 5. Within its framework, normalization is carried out on a single
hypercube in this way:

Consider that miny; =0, max y, = 1, jel,
yeY yeY
or infy, =0,sup y, =1, jel
yey yey

It is also possible to violate the invariance conditions with respect to the origin
and scale of criteria measurement for a number of models.

As you can see, the successful solution to the problem of normalization
depends greatly on how accurately and objectively it is possible to determine the
ideal quality of the solution. Normalization, in fact, is reduced to a certain
transformation of the criteria space, i.e. to the choice of a convenient and "fair"
topology, in which the task of choosing an alternative for several criteria acquires a
strict and understandable sense.
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Therefore, the transformation must meet the following requirements:

— to consider the need to minimize deviations from the optimal values for
each objective function;

— to have the common beginning of calculation and one and the same order of
value change across the whole set of admissible alternatives;

— to maintain a preference relationship across the set of alternatives that are
comparable to the original objective functions.

The most widely spread methods rooted in the described above ones are given
in the following transformations:

S0 e,
(=" _f"mm (3.10)
S e,
flmax _f;mm ’ 2
ST e,
=1 ) . (3.11)
VG i/ Ty
f;max ? 2>

where f™ is the maximum, £;™" is the minimum value of criterion f,(x) in the set
of admissible alternatives X, Vie I, U I, .

Note that the considered normalization methods are described provided that the
criteria are of equal importance, but in most cases, they are not equal, and therefore, it
1s necessary to take into account their priorities

3.7 Methods of accounting for criteria priority

All methods of criteria priority can be divided into two groups. Consider each
of them in more detail.

3.7.1 Hard priority methods

Hard priority methods are based on the fact that criteria are ranked by
importance: y; >y, ... >, on the basis of which their sequential optimization is
performed.
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The principle of consistent optimization based on strict priority is that the level
of less important criteria cannot be increased if it causes at least a slight decrease in
the level of the more important criterion.

In practice, this means that first they find a local optimum for the most
important criterion on the whole set of admissible alternatives X, which is fixed as an
additional constraint. Then the local optimum of the second most important criterion
is looked for, but for a new admissible set X°' and so on. Thus, there is a gradual
narrowing of the admissible set to a single optimal solution or optimal subset, that is

XoX"5x%5 ox=x°
0j _ 0(;-1)
X% = x‘yj(x)zxer;l%gl)yj(x) Nx°v=,

This principle of ordering a vector set is called lexicographic.

There are such difficulties in applying this method:

1) if there are groups of equivalent criteria, there is a need for their local
ordering/ranking within these groups on the basis of one of the principles of
uniformity;

2) this method is unsuitable for the solution of many practical problems,
because the maximization of the first criterion gives a single solution and the problem
is actually reduced to a scalar, because the non-capital criteria are not taken into
account.

At the same time, this principle gives good results when using a quasi-optimal
approach, behind which at each stage a quasi-optimization is carried out, that is, not
the only optimum is found, but some area close to it, namely:

XY =l x)> max v (0= (X0

where Ay; 1s permissible deviations of the j-th criterion from the exact optimum.

At the same time, the level of permissible deviation from the optimum is
determined taking into account the importance of the criteria, the accuracy of the
problem statement and some practical considerations

Note that this approach at the last stage gives not one optimal solution, but a
rather narrow quasi-optimal subset, so the only solution is chosen by the DM.
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The advantages of the strict priority method are that when using it there is no
need for quantitative characteristics of the importance of the criteria, it is enough only
to organize them in terms of significance.

3.7.2 Methods of flexible priority

Such methods require quantification of the priority, which allows only a certain
degree of preference to be given to more important criteria when choosing a solution.
Quantitative estimates of priorities are set, as a rule, in the form of the following
vector:

az(al,az, wsa,), a0, iel, Zaizl.

J iel
Depending on the compromise method applied, different variations of the
methods of calculation of prioritiesare used. For example:
The principle of uniformity with priority. Optimization is carried out in
accordance with one of the following requirements:
opty = (a1y1 = a2 = ... = a,),) — represents the principle of equality based on
priority;

opty= mag( rnjin (aj v j) (the principle of uniformity with priority);
ye

opty= r;la;x min, (ajyj) rfe;x min, (ajyj) ... (the principle of the best
ey € j

uniformity with priority).

The principle of equitable assignment with priority. Optimization fulfills this
requirement:
opty = mzﬁ( Z(ajyj) or opty= me;i( Z(aj logyj).
e el < el
Other optimality principles with priority. The optimization is carried out
according to the following rule:
-5
opty = max Z(ajyj) :
yey jel
The advantage of the method of flexible priorities is that they allow reasonable
to give preference to more important criteria, given the level of importance.
The disadvantage of these methods is the difficulty of finding numerical
priority values. As a rule, such estimates are subjective.
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Remark 1. Carrying out the transformation of space using vector a, it is
necessary to take into account which principle of optimality will be used to select one
of the effective solutions to the problem.

Remark 2. The different importance of the criteria can also be taken into
account in normalization. In this case, the normalization is carried out considering the
characteristics of the priority, for example, the weight vector, namely:

a .
yj: ideal’-]EI’

ideal

where 7™, jel is anideal vector (see subsection 3.6).

However, the accounting for priority is better to proceed after the criteria have
been normalized for the reasons of clarity of it argumentation.

3.8 Methods of solving multi-criteria optimization problems
3.8.1 Methods of consolidation to a generalized criterion (convolution)

Firstly, let us consider the examples of the methods of solution which
consisting in the consolidation of the initial multi-criteria problem to the scalar type
by the way of the formation of some generalized criterion. All of these methods are
based on the following scheme:

1. All of criteria are normalized; it means that they are reduced to a comparable
dimensionless shape.

2. They are "curtailed" into the one objective function, forming a so-called
generalized criterion, in which the relative importance of every of the criteria is taken
into account with the help of such weighting factors: a = (al, Osy ey O, ), a >0,

iel, Zal:l.

As a consequence, the initial multi-criteria problem is reduced to a simple
optimization problem with one criterion.

The most common types of convolution are:

[. The generalized criteria which are based on the weighted average function:

m /8
F= (Zaikisj :
i=1

where k;, 1=1, 2, ... m are normative local criteria; a;, i = 1, 2, ... m are weighting
factors.
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Among this group, a generalized criterion of this kind is especially provided:

which is a linear convolution of local criteria (named Weighted Sum). It is easy to use
because it allows keeping the linearity of output function. Therefore, in other words,
if the initial criteria are linear, then the resulting criteria will also be linear.

II. The multiplicative convolution @, =4 .
i-1

In problems, where the criteria tare minimized and maximized at the same
time, the criterion of this kind is often used:

> fi(x)

_ iEIl

YA

ie[2

There the sum of the criteria, which are maximized is written in the numerator,
and the denominator is the sum of the criteria that are minimized.

The disadvantage of this criterion lies in the fact that it is based on the clear
assumption, according to which insufficient level of one indicator may be
compensated or offset by the other; for example, the low production of output is
apparently offset by the low cost of products.

Now, let us recall the popular "criterion of human judgment". It has the form of
a fraction, where the assessment of the person's dignity by other people is written in
the numerator, and the denominator is their opinion of themselves.

III. The following criterion is often used too:

zmkm%ﬂ@.

yeY€ Qa;

According to it, the maximin problem with a scalar criterion is considered
instead of a multi-criteria problem.

In practice, the method of purposive programming has also been widely used.

It 1s based on the summary of all the criteria in one generalization, which
means the distance from this vector estimate to an inaccessible ideal point:
b =(bi, ... by).

The most commonly used generalized criterion of this kind is given below:
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M
F(x)= 2 e (f(0=5).

It allows to find optimal solutions of linear deterministic problems using the
simplex method.

Example 3.11. Solve the following multi-criteria optimization problem using
the convolution method if the criteria priorities: «; = 0,7 and o, = 0,3. The criteria are
considered normalized.

(xl, xz) 3x, +2x, — max,
(xl, ,)=—X, +2x, —> max,
2x, —x, 24,
2x1 + 3x2 <24,
20x, —5x, <100,
5x, +20x, 2100,

X, X, 20.

Solving

Since the criteria of the problem are normalized then it is not necessary to
normalize them. Therefore, let us perform the convolution of the criteria taking into
account their given priorities and direction of optimization. Since the initial criteria
are linear, we will apply a linear convolution, namely:

F(xl, xz) = alfl(xl,xz)+a2f2(xl, xz).

Then the resulting criterion according to our data will look like this:
F(xl,xz) =0,7(3x, +2x,) + 0,3(—)61 + 2x2) =2,1x, +1,4x, - 0,3x, +0,6x, =
=1,8x, + 2x,.

on its basis such a scalar problem is formulated:

F(x,,x,)=18x, +2x, — max,
2x, —x, 24,

2x, +3x, <24,

20x, —5x, <100,

5x, +20x, 2100,

X%, 20.

To solve this problem, we can use the simnlex method or solve it graphically.
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As a result of the decision x; = 6, x, =4, and the value of the integral criterion
F (x1, xp) = 26, the initial criteria is fi(x, x2) = 26, £(x1, xp) = 2.

3.8.2 Method of the main criterion

Let us consider the problem of multi-criteria optimization in which all the
criteria are minimized and ordered according to their importance, namely:

f,(x) > min, iel,

xelX,

fi(x) 2 fr(x) 2.2 f, (x).

The main idea of the method is that the original multi-criteria optimization
problem can be replaced by a one-criterion problem with additional constraints,
which allow to take into account the requirements described by other criteria in the
full sense.

There is a scheme of the method.
1. Choose one main criterion f,(x) for optimization.

2. For less important criteria f,(x),... f,,(x) allowable values are calculated
Soso s
3. The criteria f,(x),... f,,(x) are replaced by constraints of the following
form:
fi(x)< f,,when iel.

4. Instead of the output consider such a scalar problem:

f1(x) — min,

[0, iel,
xe X.

The advantage of the described method is that its implementation does not
require a quantitative assessment of the priorities of the criteria. However, it also has
a disadvantage. It is a complexity of establishing acceptable levels of criteria's values.
In most cases, they are chosen subjectively. In this regard, if the criteria are
equivalent, then any one of them may be chosen as the main one. But it is better to
give preference to the one for which it is difficult to set the allowable values.
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It is also worth noting that the solution obtained by this method will always be
weakly effective, and then when it is unique it becomes more effective.

The method of the main criterion can also be applied to solving problems in
which the criteria are maximized and then the additional constraints become as

follows: f,(x)>f,,iel.

Generally, the resulting scalar problem can be written as follows:

Ji(x) — opt,
fix)>fi, iel,
[0S f,, ieb,
xe X,

where /; is the set of indices for which the objective functions are maximized; 7, — the
set of indices for which objective functions are minimized.

Example3.12. Solve the multi-criteria optimization problem by the method
of the main criterion:

£1(x,, x,)=2x, +3x, —> max,
f(xl,xz)z —3x, = min,
f3(xl,x2) =—X, + X, = min,
x, +x, <10,
2x,+4x, 212,
x, <6,
X, x, 20,

if the priorities of the criteria are given as follows: f; > f; > f, , and the limit values

of the criteria are known: f =14, f, =3.

Solving

Choose the main criterion of the highest importance. In this case, this is a
criterion f;. For the other two criteria, we set the constraint using known limit
values. Since the criterion f; needs to be maximized, then the corresponding
constraint will have the following form: f;(x,,x,)>14, i.e. 2x,+3x,>14. For the
criterion  f, (which 1s minimized), we formulate the following
constraint: f, (x,,x,) <3, or in a concrete way: x; —3x, <3 in view of this, the initial

multi-criteria problem is reduced to the following scalar problem:
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fi(x,x,)=—x, + x, > min,
x, +x, <10,

2x, +4x, 212,

x, <6,

2x, +3x, 214,
x,—3x, <3,

X, X, 20.

Having solved this problem, we got the following result: x, =8,25,x, =1,75, as
well as the value of the criteria: f; =-6,5, f, =3, f,=21,75.

Let us consider the geometric interpretation of the described solution of the
problem.

But first, we should construct the domain of the admissible solutions of the
initial problem on the coordinate plane (see Figure 3.14, a) which is a polygon
ABCDE (marked in the Figure 3.14 by a thick line), and draw the objective functions
of the initial problem.

Additional constraints change this area to a set of FBCNG (it is shaded in the
Figure 3.14). However, all solutions that are not acceptable by the criteria are
rejected f;, f,, and the solution of the problem is the point N with coordinates
(8.25; 1.75).

It is easy to see that in this case, the constraint, which belongs to the first
criterion, does not affect the solution of the scalar problem, while the constraint that
belongs to the second one is active.

Obviously, changing the limit values of the criteria leads to a change in the
range of admissible solutions of the scalar problem. For example, the situation when
the following acceptable level are: £, =10, f, =0, shown in Figure 3.14, b. Here the
area of admissible solutions is a polygon of MLBCNG. The solution of the problem is
now a point N with coordinates (7.5; 2.5).

Consequently, each threshold value corresponds to its optimal solution, and it
will be weakly effective. Therefore, if change the acceptable level of the criteria,
then we can find all the weakly effective solutions to the initial multi-criteria
optimization problem.
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Fig. 3.14. The geometrical interpretation of the solution of the multi-criteria
problem to the example 3.12: a - acceptable level of the criteria: f; =14, f; =3; b -

acceptable level of the criteria: £, =10, f, =0

3.8.3. Method of successive concessions

This method as well as the method of the main criterion described above is
used in cases, when the criteria are organized according to their importance but
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quantitative estimates of their priorities are unknown. Let us describe its application
in solving a problem of the following form:

f;(x) > min,i e/,
xelX,

)2 [(0)2 02 fy (%),

The essence of the method of successive concessions is that the initial multi-
criteria problem is replaced by a one-criterion sequence, and the range of admissible
solutions is narrowed from problem to problem via additional constraints, which take
into account the requirements of the criteria. When formulating each problem that
relating to the most important criterion is made a concession, the magnitude of which
depends on the requirements of the problem and the optimal solution for this
criterion.

Let us describe the scheme of the method.
1. Solve the scalar optimization problem by the most important criterion in the
whole set of admissible alternatives X, that is,
f1(x) = min,
xeX.

min

As a result, we get the optimal value of the criterion: f,(x): f™".

2. Solve the optimization problem guided by the following important criterion,
taking into account the additional constraint: f;(x)< £;™ +A,, where A, is the
admissible concession according to the first criterion. This problem can be written as
follows:

f2(x) - min,

L) ™ +A,
xeX.

As a result of its solution we get the optimal value of the criterion: f,(x):

f‘zmln.
Let after the “k” steps get the optimal values of the criteria: £;™™, ", ..., ™",

then at “(k + 1)-th” step solve the following problem:
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J1s1(x) = min,
[ M+ A,
fz(x) S 2min + Aza

L) S LM+ A,
xe X,

and calculate the optimal criterion value f;™".

After considering all the criteria, the problem will be solved. An optimal
solution of a multi-criteria problem will be the solution of the last scalar problem.

Therefore, the initial multi-criteria problem is reduced to the successive solving
of a range of scalar problems, the number of which will be equal to the number of
criteria.

This method gives the opportunity to take into account the priorities of the
criteria and avoids increasing their values more than some admissible level (in the
case, when the criteria are minimized) or avoids their reduction less than a certain
established level (when the criteria are maximized).

The complexity of the method is due to subjectivity in determining the
admissible levels. Usually admissible concession is set by experts from the
perspective of the optimal value of the criterion and conditions of the problem.

Remark. If the criterion is maximized then the corresponding constraint is

formulated as follows: f;(x)> /™ — A,, where A, — is the admissible concession of

this criterion.

Let us illustrate the use of the method of successive concessions on an
example.

Example 3.13. Solve the problem of multi-criteria optimization by the method
of successive concessions:

(Consider that criteria are ranked according to importance.)

fl(xl,xz):xl-i—%cz — max,
/1 (x1 , X, ) =—-2x, +3x, > minx,
f3(x1,x2)=x1+x2 — min,
3x, +5x, <15,
2x, +3x, 26,
X —x, <1,

X, %X, 2 0.
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Solving
Applying the described method, we first solve the optimization problem by the

criterion which has the highest priority (in this case, it is the first) in the initial set of

admissible alternatives. I tlooks like:

fi(x, x,)=x +7x, > max,
3x, +5x, <15,
2x, +3x, 26,
X, —x, <1,

X, %, 20.

The optimal solution for this problem will be the following values: x, = %,

X, = 2, in this the optimal value of the first criterion f; =17.
Suppose that the experts determined that the concession for the first criterion is

A, = 2. Then the second problem is formulated in accordance with the following rule:

optimization is carried out for the next criterion of importance and the one added to
the existing constraints, which takes into account the previous criterion. Since the
first criterion was maximization, then the constraint would be as follows:

fl(xl,xz)le+7x2f1*—A1,
that's
X, +7x,217-2=15.

Then, the problem of the second stage is formulated as follows:

f>(x,, x,)==2x, +3x, > min,
3x, +5x, <15,
2x,+3x, 26,
x —x, <1,
x, +7x, 215,

XX, = 0.

15

The solution of this problem will be pair (x,,x,): x, =g X, =g and the

optimal value of the criterion will be f, = E
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Now let us do the concession on the second criterion, assuming that the

decision of the experts A, =3 Given that the second criterion is minimized, an

additional constraint is formulated as follows: f,(x,,x,)=-2x+3x,<f, +A,,

namely:

—2x, +3x, SE+122.
8 8

Consequently, the third problem takes the following form:

f3(x,, x,)=x, +x, > min,
3x, +5x, <15,
2x,+3x, 26,
X —x, <1,
x, +7x, 215,

—2x,+3x, <2,

X;,X, = 0.

The solution of this problem (and hence the output) will be pair (xl,xz):

X, :2, X, 22, and the value of the criteria will be £, =15, f, =2, f; :@.
17 17 17

Thus, having solved three scalar problems, we get the solution of the initial
multi-criteria optimization problem. Obviously, varying the magnitude of the
concession every time, we have the opportunity to determine other solutions to this
problem.

Note that most methods of multi-criteria optimization assume a direct choice of
the optimal solution from the set of all available ones. Therefore, it is useful to
analyze the results obtained to find out whether they always provide an effective
solution, or if not, then specifically predict the possibility of improving it to an
effective one.

To illustrate this fact let's consider the following example:

There is an original method of multi-criteria optimization that apply to solving
linear problems. It can be described as follows: first, find the optimum points for each
criterion separately and then the optimal solution y, is obtained in the form of a

convex combination of points yi (y/I :z/iiyi, where A4, 20, i=1,2,...,m;
i=1
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Z/ll. =1), which provides the minimum value of the maximum from the normalized
i=1

deviations of the criteria f; from the optimum inherent to them, that is,

v = ;%)

Yi

max
ieM

5

2
= min max 2L /") JZ(y )
A ieM yi

where M= {1,2, ...,m}, y,—is the optimal value of the i-th criterion.

Such an identification of the optimal solution has dramatic disadvantages.

Firstly, if some criterion has several points of the optimum on the set X then it
is not clear which one should be used since each point y' corresponds to its solution
Yo

Secondly, the optimal solution obtained in this way, as a rule, will not even be
weakly effective.

This situation is illustrated in Figure 3.15. Here, both criteria y; and y, are
maximized, and the area of admissible solutions (polygon OABCD) is shown by a
thick line. Obviously, the optimal solution of the problem with the criterion y, will be
the point: D= (y,,0), with the criterion y, all points on the segment 4B will be

optimal. If in respect to this criterion we choose the point y; for the optimal solution,
then the described method gives a solution to the multi-criteria problem yg,, and if
we choose the optimal point y, —, we get a solution y;. However, none of them will

be effective since the solution y, is better than any of them.

A

V2

X2 » B i
4 . NN _Yo—

3% y;

Yo
Yo

D

>

0 yi N

Fig. 3.15. Graphical interpretation of the definition of the solution of the multi-
criteria problem

This definition was improved later, namely: the best solution is suggested to
consider y*, which is described by the following condition:
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* 0* *
= JAX . = JAX
max 2L i a2 /i)
ieM xeX ieM

Vi Yi

3.9 Concept of solving multi-criteria optimization problem with preferences
given in set of criteria

Consider the following multi-criteria optimization problem:

wix) > min, i€ l,
x e X,
where 0 < wi(x) < 1, i € I and the benefits are given on the set of objective
functions W.

Lemma 3.2. For each admissible alternative x € X with characteristic signs:
0<wi(x)<1, Viel in space Wc E™ there is a vector p and a number ky> 0,
whereas the vector p corresponds to the following relation:

p=@uLpy...p)={p:pi>0,Viel Y p =1}, (3.12)

iel
and the alternative x € X satisfies simultaneously the following equations:
piwi(x)=ky, i€l (3.13)
Proof

Since w; (x) > 0, when i € , then, by dividing the two parts of expression (3.13)
into w; (x), we conclude that
pi= ko/ wix). (3.14)

But since the values of p; must satisfy the condition (3.12), after substituting
the relation: >’ p, =1 by expression (3.14), we obtain the following result:

iel

1 Hwi (x)
k= = , (3.15)
0 g‘%”i(X) ;dll;[wf (x)
i#q

This proves the lemma.
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Remark. The expression (3.15) that indicate the parameter ky is a strictly
increasing function for each of the variables w;(x) on the interval (0,1), with

ko € (0; 1/M).

Lemma 3.3. If for two non-equivalent alternatives x and x  from the set X, the
, Viel), then w(x)=ywi(x ), Viel and
ko(x") = yko(x""), where y is the constant of proportionality y# 1.

Proof

%k

vectors p and p~ coincide ( p; = p;

The alternative x corresponds to the vector p~ that is p; wi{x') = ke(x ') for all
values i € I and the alternative x corresponds to the vector p; wix )= ko(x ),
where Vi e I, hence then, respectively

ij(x)

Jel
e . (3.16)

Pi= ZHWj(x)

qel jel
J#q

* #3k
* kO X Hk kO X
pi = * and p[ = dk |
MG X V% X

Now, taking into account that pi =pi, Viel we get the following result:

Wi(x*) _ ko(X*) _
Wi(x**) ko(x**)

y, Viel,

this proves the lemma.

Note that the direction which determined by the vector p € P' is given for
alternatives in the positive octant of the space W of the values of the function w.

The arbitrary vector of weighting factors p € P* which satisfies the conditions
(3.12) will be interpreted as giving preferences to one objective function over another
expressed quantitatively.

Define the direction generated by the vector p in the space W. After assigning
this direction to the angles f; (i € I) between the coordinate axes and the radius vector

p, namely:
* *
cos f3, = (M,: €) _ W =, Viel,
el s
iel
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where e¢;=(0,...,0,1,0,...,0) is a basis vector on the axis w; and w = {w,-*}
represents a point that located in the space W on the ray p.

Taking into account this relation and the normalization condition, we write
down a system of linearly independent equations with the help of which it is easy to
find unknown directional cosines, namely:

cos B, w,
—LL L Vi jel, i#],
cos,b’j w;

> cos® B =1.

iel

On the other hand, the system of equations (3.13) is true for any point w™ via
Lemma 3.2, hence

*

Wi Pi el e,
w. Pp;
J
and therefore,
SOSBL_Li e, ix),
cosf, p
D cos® B =1.
iel

Solving this system, we get the following formula for determining the
directional cosines of the vector p:

Hpj

jel
cosfB=—2—— Viel. (3.17)

ZHpjz

qel jel

Assume that the objective functions are equivalent if p; = 1/M, Vie I, then the
directional cosines of the vector p in the space W will be determined by the following
formulas:

cosﬂi:ﬁ, Viel.
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Consequently, assigning the quantitative benefits of the set of objective
functions by means of the relation (3.12) shows the direction of the search for
solutions in the space W of the selected transformations.

That is why the solution of the vector optimization problem will be assumed as
a compromise alternative belonging to the set of effective alternatives and is located
in the given direction set by the vector p € P in the space .

When for a certain alternative x and the given vector p € P* the following
relation holds: pwi(x) = kg, Vi € I, then we will say that the alternative x lies in the
direction determined by the vector p € P.

We will find what value of the parameter &, corresponds to an effective
alternative, which lies in the given direction that set by the vector p.

Theorem 3.4. If x, is an effective alternative for the given vector p € P, then
it corresponds to the smallest value of the parameter &k, under which the system of
equations (3.13) is performed simultaneously for all values i € 1.

If for the transformation wi(f{(x)), Vi € I choose that which looks like (3.10),
then, taking into account this theorem, we can give the following definition: the
solution of the vector optimization problem for the given vector of benefits p € P*
will be assumed as a compromise alternative x € X that provides the same minimum
weighted relative losses: w,(x) = p,w;(x)against all the criteria simaltaneously.

3.10 Method of constraints for searching compromise solutions in vector
optimization problems

In order to substantiate the computational procedure of searching for the above
defined compromise solution, we prove the theorem.

Theorem 3.5. In order the alternative x € X characterized by the following
features: wix') >0, VieIbe effective in relation to the given vector of benefits
p € P', itis sufficient it has the only solution of the system of inequalities:

pwix") < ky, Viel, (3.18)

with respect to the minimum value of the parameter k, with which this system
is compatible.

Proof

Assume the opposite, i.e. the alternative x~ is the only solution of the system
(3.18) when the parameter k, =k, is not effective. Then, there is an alternative
x' € X that corresponds to the following conditions: w; (x') < w(x), Viel, and at
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least one inequality is executed as strict. Having multiplied these inequalities by
pi>0, Vi e I, we draw the following conclusion:

pwi(x") SPiWi(x*) < ko*, Viel,

and at least one inequality is strictly executed.

Consequently, we have a contradiction. An alternative x'satisfies the system
(3.18) with the value of the parameter k, not more than k . Thereby the theorem is
proved.

This theorem brings us to that the previously compromised solution of the
multi-criteria optimization problem can be found as the only solution of the system of
inequalities (3.18) with a minimal value of the parameter k, which this system is
compatible with.

In the space of solutions, a compromise alternative corresponds to the point of
intersection of the ray where directional cosines are determined by the given vector of
benefits p € P* with the formulas (3.17) with the zone of effective alternatives.

It follows from the existence of points of intersection that a compromise
solution for which the minimum possible weighted losses for all criteria are the same
[pwi(x) = kominy, Viel]. If such a point does not exist, then a system of inequalities
will be used for a compromise alternative and this alternative will correspond to the
point closest to the given ray.

To find a compromise solution we will construct an iterative process with the
parameter k, € (0; 1/M); at each step of which the compatibility of the system of
inequalities (3.15) for x € X and the given vector p is checked.

The parameter ky € (0; 1/M) limits the relative losses: wi(x) = w; (f;(x)), Viel.
If ky — 0, then the relative losses go to 0, i.e. the objective functions f;(x) go to their
optimal values, and when ky, — 1/M then the inequalities (3.18) are satisfied in the
whole set of admissible alternatives X.

By decreasing the parameter &, and thus reducing the weighted loss for all
objective functions we are approaching the compromise alternative which ensures
minimal losses for all criteria f;(x).

The iterative process stops, when the smallest value of ky(/) (I — is the number
of the step) in which the system of inequalities (3.18) is compatible in the set of
admissible alternatives, differs from the nearest value ko(/ + 1) for which the system
is no longer compatible, not more than the value: £>0. The value ¢ is given in
advance from the considerations of the acceptable time for solving the problem. At
the same tim,e if the solution of the system of inequalities is the only one, then this is
the desired compromise alternative. If however, it is not the only one, then the
relative losses for the obtained alternatives are equivalent to & The only compromise
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alternative can be determined by optimizing any generalized criterion in a set of
alternatives equivalent to & For example, the linear convolution of the criteria:

F(x)=3 pw(x), (3.19)

iel
can be minimized in the following set:

X':{x:piwl.(x)ﬁ ko(min),‘v’ie],xeX}. (3.20)

Such a generalized criterion always allows to find effective solutions.

Let’s consider the geometric interpretation of this method.

Example 3.14. Let the equivalent criteria be given and the set of admissible
alternatives be linear (see Figure 3.16). Here G is the region of values of the

transformed criteria w, and w, in the set of constraints, " is the limit of this set, {2 j 18

a part of the range of values of the criteria w; and w, in which they do not exceed the
parameter value.

The criteria w; and w, are defined by the relations (3.10), that is, they are
reduced to dimensionless appearance and minimized.

Since the criteria are equivalent, then p,=p,=1/2 and

1
cos(f)) = cos(f) = ﬁ, that is, the direction R is the bisector of the coordinate angle

w10w,. Solutions that provide the minimum relative deviations from optimal values
are located in the area G on a ray that goes from the origin to R.

A compromise solution providing the minimum deviations will be the point C
(the intersection of the ray with the area of effective alternatives). To find it, we will

compute successively the least value k. at which the intersection of sets Q, and G is
not empty.

If the vector found in accordance with the formula (3.16) does not intersect
with the area of effective points €2, . Then in a region corresponding to the minimum
value ky at which the system (3.18) is still compatible, a certain set of points will
necessarily fall and among them will necessarily be effective, best suited to the
benefit given by the weight vector, that is, closest to the ray R.

From these positions, we will analyze some generalized criteria.

Consider the criterion of this form:

min F'(x) = minmax p,w,(x), (3.21)
xeX xeX iel

where w(x), i € I are described by the relations (3.10).
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This method allows us to find an

" v alternative for which either the equation
system is executed: pwix) =ko, Viel
kO? \3 / - and the minimum value of the parameter &,
ko ’ G or for some values of the equality
ko' o N/ parameter is not performed and
k0(1+1) Qi) o Do, (x*) < kO(min)-
Wi If this alternative is the only one,

then it will be a desired compromise

. lution otherwise, it i t 1
Fig. 3.16. Grafical representation of SOIRHION OTACTWISE, 11 15 TISCEssdly 10 apply

iterative process of finding a
compromise alternative

an additional criterion (3.19).

Thus, the proposed method which
based on the search for additional
alternatives to the system of inequalities (3.18) with a minimum value of k; can be
considered as a way of solving the problem (3.21).

The method of minimizing the criteria that having the form of a convolution
(3.19) in the set X does not allow to achieve the above-described solution for the
following reasons:

— it essentially depends on the choice of the type of transformation w,(x) since
the different order of the quantities w(x) leads to a change in the preferences, and the
terms can become comparable in size with small values of p;;

— when the order of the criteria w;(x), i € [ is the same, then the benefits may
change due to the non-symmetric behaviour of the functions f;(x);

— if the functions f;(x) are linear and the admissible set is a polyhedron, then
the solution according to criterion (3.19) lies at the vertex of the polyhedron, while
the compromise solution will be placed on the edge.

If in the role of a possible transformation we take formulas (3.10), then the ¢
problem of finding a single alternative (3.19), (3.20) can be formulated as follows:

Find the solution of such a parametric programming problem in relation to the
parameter k, for a given vector of benefits p:

- = £ (x) filx)= 7
FX)=2 P o omin T 2P o o |2 (3.22)
m)gn (x) iezlep fi _fi i;‘;p fi _fi

taking into account such constraints:
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xelX,

£)z =Ko (e pmn) e, (3.23)

filw)s g =g g} vier,

The result of solving the problem (3.22), (3.23) with the minimum possible
value of the parameter &, € (0; 1/M) will be a desired compromise alternative.

This method is called a constraints method.

Let us describe its algorithm.

1. Find the minimum possible value of 4, in which the constraint system (3.23)
1s compatible.

2. If the solution of the system is unique then it will be the desired solution of
the multi-criteria optimization problem.

3. If the solution of this system of inequalities is not the only one then the
further choice is made with the criterion (3.22).

Note that this method does not depend on the type of functions f;(x) and the set
of admissible alternatives X. It is only necessary to have effective ways of verifying
for the system of inequalities compatibility (3.23).

3.11 Method of constraints in linear programming multi-criteria problem

Let a set of linear objective functions is given:
F={f(x), iel

where f(x)=c'x=clx +cix, +...+c\x iel, with m the first functions are

n’ n?’
maximized and the rest (M - m) are minimized.
For variables: x = {x;}, j=1, ..., n, the linear constraints are as follows:

Ax < b,

Apply the method of constraints for solving this problem. According to it, at
first, we should perform the conversion of the objective functions, thus:
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o
! c'x

cC X — .
Wl(f;(’x)): i Ol i s VZEII,
CX; —C Ximin
c'x —c'x} .
w;(fi(x)) = o> Viel,
Cximax_c i

o 0

where x; :(x.o XDy oo Xyt X, ) is the solution that belongs to the set of constraints

712 29 2o Hin

imax *Vijmax?’ *°* inmax)’

and optimizes the i-th objective function; x, :(xl.lmax,xnmax,.. X X

X = (xl.lmin, Xiamins -+ Xijmins ++- xinmin) — are solutions that provide the minimum and

maximum values of the i-¢4 criterion, respectively.

A compromise solution will be one for which the weighted relative losses will
be the same and minimal, that is, pyw(x) = ... = p,Wu(X) = ko min-

According to the method of constraints, this solution can be found from the
system of inequalities (3.23), which in this case can be written as follows:

cix>c'x! ——O(cixf —cixl.min), Viel,
Pi
o .
; i o 0 i i o .
cix<c'x; +;(c X . —CX ), Viel,, (3.24)
i

Ax<b, x,20, Viel.

Solving this system (3.24) will be equivalent to solving the linear programming
problem formulated below:
min{k, =x, ., }

for the following constraints:

dyx, +d,x, +...+d,,x,+d,, x,.,+d; =0,
dyx, +dypx, +...+d,,x, +d,, x,,,+d, 20,
dy X, +dy,x, +...+d,,x, +d,, . x,.+d,, =20,
d, X +d,X% +...+a,x,—b, <0,

x;20, i=12,...m,
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where

n
. R i 0 .
pic, Vi=1,nViel, 2 (X5 = Xymin), Vi€ T,
J -
d.. = . 1: J=1
y i . . 1,n+ .
—p.C, Vi=lLnViel i _ 0 ;
Dics J=1Ln, 2> D (Xmax — X ), Vi€,
J
1 .
—pichxl.j, Viel,
j=1
d =

n
i 0 -
pichxl.j, Viel,.
J=1

Conclusions

One of the problems in decision-making 1s the presence of a large number of
criteria that are not always consistent with each other. Such a situation can be
described by mathematical models of multi-criteria optimization problems.

The solution to the multi-criteria optimization problem is to be found among
the set of effective, 1.e. unsolvable alternatives. Since effective alternatives are either
equivalent or uncomparable with each other, then some of the principles of
compromise must be used to select one of them.

Criteria may have different value and their priorities can be set quantitatively in

the form of a priority vector:a=(a¢,,,...,a,) @20, iel, > a;=1, or
iel

qualitatively: the relation of benefits to the set of objective functions:

f1(x)= f,(x)>...2 f,,(x). Depending on how the priorities of the criteria are given,

which principle of compromise is chosen, and which form has the domain of
admissible alternatives and objective functions, different methods are used to find the
set of effective alternatives and their corresponding methods of solving multi-criteria
optimization problems. Brief characteristics of the most common is given below.

The method of the main criterion consists in changing the multi-criteria
problem to one-criterion with additional constraints. This method does not require the
normalization of the criteria and the quantification of their priorities. However, it is
necessary to have information about the acceptable level of non-main criteria.

The methods of the convolution (are based on the introduction of the integral
criterion and the subsequent reduction of the original multi-criteria problem to the
scalar). They are convenient to use but have several limitations. In particular, these
methods involve the normalization of the criteria and quantification of their priorities;
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in addition, they can only be applied to the concave functions and the convex set of
admissible alternatives.

The method of the successive concession does not require the normalization of
the criteria and the quantification of their priorities. The initial multi-criteria problem
is replaced by the consistency of scalar problems. The magnitude of the concession
according to each criterion 1s determined by the DMP depending on the size of the
optimum and the meaning of the problem.

Since not always the alternatives found as a result of solving the multi-criteria
optimization problem will be effective, it is useful to analyze the given results to find
out whether an effective solution has been succeeded, and if not, then, specifically
predict the possibility of improving it to an effective one.

SELF-STUDY
Questions for assessment and self-assessment

Formulate the general statement of the multi-criteria optimization problem.
What alternatives are called effective for Pareto? Effective for Slater?

What properties of effective alternatives do you know?

Formulate and prove the lemma of effective alternatives.

Formulate theorems on the properties of effective alternatives.

What methods of finding effective alternatives do you know?

7. Why do we need to normalize the criteria when solving multi-criteria

AN S e

problems?

8. What are the ways to normalize the criteria you know?

9. What is the problem of finding compromise solutions?

10. What is the essence of the principles of uniformity in the search for
compromise solutions?

11. What the principles of uniformity in the search for compromise solutions
do you know?

12. What is the essence of the principles of concession in the search for
compromise solutions?

13. What the principles of concession in the search for compromise solutions
do you know?

14. Explain the essence of other principles of optimality in the search for
compromise solutions.

15. Which of the other principles of optimality in the search for compromise
solutions do you know?
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16. What are the methods of the convolution in applying to solving multi-
criteria problems?

17. Name the stages of the methods of the convolution.

18. What kinds of the convolution do you know?

19. What are the advantages and disadvantages of the methods of the
convolution?

20. Is 1t necessary to normalize the criteria when using the methods of the
convolution?

21. Do we need the quantitative values of the criteria benefit when using the
methods of the convolution?

22. What is the essence of the method of the main criterion for solving multi-
criteria problems?

23. List the advantages and disadvantages of applying the main criterion
method.

24. Is it necessary to normalize the criteria when using the method of the main
criterion to solve multi-criteria problems?

25. Do we need the quantitative values of the benefits of the criteria when
using the method of the main criterion in solving multi-criteria problems?

26. What 1s the essence of the method of the successive concession of solving
multi-criteria problems?

27. What are the advantages and what are the difficulties of using the method
of the successive concession to solve multi-criteria problems?

28. Is the normalization of the criteria in case of the consecutive assignment
method applied?

29. Do quantitative values of the advantages of criteria are required when using
a serial assignment method?

30. Do the methods of the convolution, the successive concession and the main
criterion determine the only optimal solution of the multi-criteria problem?

31. Is it possible to find one of the effective solutions of the multi-criteria
problem using these methods?

32. What are the criteria priority accounting methods?

33. Name the methods of the strict priority criteria. What is their essence?

34. List the methods of taking account of a flexible priority criteria. What is
their essence?

35. What is the solution of the problem of multi-criterion optimization in the
given relationship advantages?

36. What 1s the essence of the method of constraints when searching for
compromise solutions of the vector optimization problem?
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Hands-on practice
Task A

1. Construct a set of effective alternatives to such a problem of multi-criteria
optimization:
fi(x, x,) = x, + 7x, - max,
f> (x5 x,) =2x, —3x, - max,
3x, +5x, <15,
2x, +3x, 26,
x —x, <1,

X, %, 2 0.

2. Solve the multi-criteria optimization problem formulated below with the
main criterion method, if the benefits of the criteria are given as follows: f; > f, > f,.

fl(xl,xz) = X, + 7x, — max,
fz(xl, xz) =2x, —3x, - max,
fs()cl,)cz):x1 + X, — min,

3x,+5x, <15,

2x, +3x, 26,

x —x, <1,

X, X, = 0.

3. Solve the following multi-criteria optimization problem using the method of
the convolution, if the benefits of the criteria are equal to 0.3; 0.2; 0.5 respectively.

fi(x,x,)
fz(xla )

f3(x1, xz) =—X, + X, = min,

=2x, +3x, > min,

—3x, — max,

x, +x, <10,
2x,+3x, 212,
x, <6,

X, %, 20.
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4. There are strict priorities set in the set of criteria: f; > f, > f,. What

methods of multi-criteria optimization can be applied? Solve this problem of multi-
criteria optimization under such conditions:

fi(x, xz) =—x, +3x, = min,
£ (%, x,) =4x, +x, - max,
£ (%, x,)=x, +x, > min,

x, <8,

3x,+5x, 215,

x, +x, <10,

X, X, 0.

5. Let in the set of alternatives: X = {x, x,, ..., X;, }, set five criteria, where

the criteria f}, /4, fs are maximized, and f,, f; — are minimized. The values of the criteria
on the set X are given in Table. 3.3. Identify the set of effective alternatives.

Table 3.3

fi S S fa s
X1 1 3 3 6 2
X 2 5 2 7 3
X3 6 3 5 5 4
X4 3 2 3 6 5
Xs 9 7 8 5 4
X6 3 4 5 2 4
X7 6 4 5 7 5
X3 3 2 1 4 2
X9 5 7 4 3 4
X10 7 4 2 5 6

Task B

Formulate mathematical models of the following multi-criteria optimization
problems.

1. The enterprise "Morning" has 7 outlets, including shops and a warehouse of
production. Daily delivery of goods goes from the warehouse to stores. It is known
where stores are located and what the ways of communication there are between them
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are. It is necessary to make an optimal route for transportation of products from the
warehouse to the stores, taking into account the cost of transportation, the time of
delivery, the length of the route, its workload, the quality of roads, provided that the
transportation is carried out by one car, and the goods are delivered to each store once
a day.

2. In the process of iron ore mining at the Zaporizhzhia Iron Ore Plant a
bookmark that hardens is used. It consists of viscous and inert materials. An inert
filler for the preparation of a mortar mixture is the waste of energy, metallurgical and
mining production, in particular blast furnace slag (x), tails of CGOK processing
plant (x,), lime-dolomite material (x3), sand (x4) and loam (xs).

The task is to determine the composition of the mixture so, that its cost is
minimal and strength is the maximum. In this case, the following technological
conditions must be fulfilled: the water content in the mixture is 20% of the astringent
components; the content of cement, limy-dolomite material and sand should be 65, 9,
35, and 18% respectively of the inert components of the mixture.

The dependence of the strength of the mixture on its components is described
by the function: ¢(x) = 467x; + 380x, — 54x3 + 87x, — 120x5 — 23,25.

3. There are three mining sites at mine "Dobropolska". The coal extracted at
each of them has different sulfur content, humidity and ash content (see Table 3.4).
For each of the districts, the values of the maximum possible and the minimum
required amount of extraction are known, as well as the cost of extraction of one ton
of raw materials (see Table 3.4). The planned production of the mine at the mine is
3 000 thousand tons. Due to the potential of each site, it is necessary to draw up a
plan of mining operations in order to minimize the costs the amount with the output
being maximum, and the ash content of the raw material should not exceed 39.5%.

4. The mechanical factory producing parts of the three types uses turning,
milling and planing machines. Thus, processing of each part can be carried out by
three different technological methods T1, T2 and T3. Time limits for processing the
part on the respective machine are given in Table 3.5 for each technological methoda
as well as the resources (verst-year) of each group of machine tools. Profit from the
sale of each type of product is respectively 22, 18 and 30 UAH. Make the optimal
plan for boosting production capacity, which ensures maximum profits provided
within the minimum time of lathe use.
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Table 3.4

Ne of the site station
Characteristics of coal, % and
indicators of the work of the sites
1 2 3

Ash content 49 37 23

Humidity 7 8 10

Sulfur content 1,8 2,1 3

Costs, gr. 1184210 1381777 | 1083515

Maximum volume of extraction, 1 650 1 090 1270

ths. tons

Minimal amount of raw material 1200 600 530

extraction, ths. tons

Table 3.5
The rules of time for processing parts, year Resource

The type of I II I time
machine T1 T2 | T3 | T1 | T2 | T3 | T1 | T2 | T3
Turning 1 09 1,1 |12 |15 — |09 — | — 200
Milling 08 {08 1,309 1,1 |13 11|08 | — 400
Planing — 07107107/ - | 13]13 06| — 300

Task C

Solve the problems of multi-criteria optimization presented in 7ask B by the

convolution methods, the main criterion and the successive concession.
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SECTION 4

FUZZY SETS AND FUZZY RELATIONS

By the end of this section you will be aware of:

e concepts of fuzzy set and fuzzy relation;
e properties of fuzzy relations,

e how to use these concepts in the theory of decision-making.
4.1 Notion of membership

Let E be a set, where 4 1s its subset. Then 4 = E, x is an element of the set £
and x € 4. To describe this membership, we may use characteristic function u ,(x),

the value of which indicates whether an element x belongs to the set 4 or not, namely:

I, xe A,

o]

0, xeg A.

Example 4.1. Let E ={x,,x,,x;,%,,%s} and 4 ={x,,x,,x,}. We write out for

each element of the set E its degree of membership to the set 4:

wa)=0, p,(0) =1 p,(n)=1 w,(x)=0, p,(xs)=1.

Thus, all the elements of the set 4 can be described with the elements of the set
E, accompanying each of them by the value of its degree of membership, namely:

A= {(xl‘o)’ (x2 1)5 (x3 1)5 (x4‘0), (xs‘l) }

Example 4.2. Let the set E =[O; 5], A :[l; 2],then

1’ xE[l; 2],
lﬁ(x):{kh,xe[ml)U(2;5L

and the set 4 can be written like this: A={xe E:u, (x)=1}.

Let A be the complement of the set 4 with respect to E. Then
AcE,AUAd=E,and ANA=0.

122



If xe A, then x & 4, and we can write that when g ,(x) =1, then 15 (x)=0.
The following values of the degree of membership of the elements of the set
Awill be obtained for Example 4.1 data:

ﬂz(x1):19 ,U,q(xz):oa ﬂg(x3):09 ﬂ;(x4):1’ ,le(xs):(),

and 4 = {(x,

1), (32]0), (x3]0), (x4[1), (x5[0)} .

For the conditions of Example 4.2

Lxe[o)U(2 5],
#ioxeln2),

and Z:{er,,uAf(x)zl}.
Now we consider the operations of union and intersection of sets, using the

terminology of characteristic functions.
Take set 4 and take set B, which characteristic functions are as following:

) I, xeA, ) I, xeB,
X)= X)=
FAY70, xea, #5970, xeB

respectively.
The characteristic function of their intersection is function u,,(x), which is

defined by the following rules:
1, xe A B,

:uAﬂB(x):{O, xe ANB.

It can be written in the form of the following formula:

HanB (x)=p (x) pg(x),
or
400 (6) = ming g, (x), 1 ()}

Similarly, for union of sets 4 U B

1, xe AN B,

ﬂAUB(X) = {O, x¢ ANB.

that is: s, (x) = 21, (x) ® p,(x), where @ is a Boolean complement,
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OF 41,135 (x) = max{ s, (x), gt (¥)}.

Example 4.3. Consider the following set: £ = {x;, x», X3, X4, X5}, and its two
subsets:

A= {(xl‘o)a(xz D), (x; 1),(x4‘0),(x5‘1)} and B ={(x

1): (X2 ‘0)9 (.X3 1): (x4 ‘O)a ('xS ‘1)} .

Let’s find their union and intersection:

AN B = {(x,]0), (x,]0), (x3

1), (24]0), (x51)},

AU B ={(x,[1), (x,

1), (X3 1), (x4 ‘O)a (-xS ‘1)}’

and also, complement the received subsets:

ANB={(x

1)9 (xz

1), (x3]0), (g D), (x5J0)},

A U B = {(xl‘o)a (XZ‘O)a (x3

1), (x,]0), (xs[1)}.

4.2 Definition of fuzzy set and its terminology

In all the examples of the previous subsection, the elements of the set £ either
belong to or do not belong to the subset 4, and the characteristic function acquires the
value 0 or 1 of this subset. Now, suppose that it can take any values from the interval
[0; 1]. According to this assumption, the element x of the set £ may not belong to the
set 4, then u,(x)=0, 1t can slightly be an element of 4 [when the value £, (x) 1s

close to 0]; it can belong to a set 4 of greater or lesser degree [when the value is not
very close to 0 and to 1], it can represent an element of the set 4 to a great extent,
while x,(x) close to 1 or finally x can be an element of the set 4 - and

then 1, (x) =1. Thus, we obtain a generalization of the concept of membership, which
allows us to introduce the concept of a fuzzy set.

Definition 4.1. Let £ be a set (in the classical conception). A fuzzy subset A of
E is the set of pairs of the following form: (x, U, (x)), where x e E, function
1, (x): E—[0;1]. Furthermore, ,(x) is called the membership function of the fuzzy

subset 4.
The value p,(x) of this function for a particular element x is called the degree

of membership of this element to a fuzzy subset of A4.
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We designate a fuzzy subset A, or A  E, when it is clear that we are talking
about fuzzy subsets, we write: 4 C E'.
The membership of an element to an indistinct subset is affected as follows:

xeA, yed, zeA,
0,2 1 0
where € denotes ¢ ,€1s an equivalent €.
0 1

Example 4.4. Let A = {(x, 0,2),(x2‘0), (x5

of the universal set: £ = {x;, x», X3, X4, X5}.

093)9 (x4‘1)a ()C5

0,5)} is a fuzzy subset

This means that the fuzzy subset of A contains elements: Xy, X3 are
insignificant, it does not contain x,, fully includes the element x,, and x5 belongs to it
to a large extent.

Thus, we have the opportunity to create a mathematical structure, an object that
allows us to operate with relatively incompletely defined elements, the membership
of which to a given subset is only hierarchically ordered to a certain degree.

See the examples of similar structures:

— a set of very high individuals in a certain set of people;

— a subset of a dark green color in a set of all colors;

— a subset of numbers approximately equal to a given real number;

— a subset of integers very close to 0

— if a i1s a real number and x is a small positive number, then the number
a + x forms a fuzzy subset in the set of material numbers.

Note that it is necessary to distinguish between probability and fuzziness.

When it comes to probability, we mean membership or non-membership of an
element to a clear, completely defined set under the influence of random conditions.
For example, with probability p, a certain student will pass terminal examinations
with excellent grades, 1.e. s’/he will belong to a set of excellent students. A set of
excellent students is a definite, clear set. Fuzziness suggests that the set itself is not
defined to the full extent. That is why it is impossible to establish its exact limits. An
example of such a set is "a set of people who sing well”. Here it is unclear the very
concept of "good singing". In the above examples of fuzzy sets, the elements
responsible for their fuzziness are highlighted in ifalics. In fact, one and the same
person can be considered "very tall" and at the same time not as there is no possibility
to clearly define the boundary of this set, and the phrase "approximately equal" in
each of the situations can be understood in different ways.

People easily use concepts which cannot be clearly described, and the
apparatus of fuzzy sets is designed precisely for the purpose to provide a
mathematical form for qualitative concepts to formalize operations with such
concepts.
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From Definition 4.1, a fuzzy subset is completely described by its membership
function. So, below we will sometimes use the membership function to denote a
fuzzy set.

Classical sets form a subclass of the class of fuzzy sets. These are the sets
which membership functions take values only 0 or 1.
Example 4.5. Consider the classical subset of numbers: B = {x ‘ 0<x<2 }

and a fuzzy subset of numbers: C = {x"‘x close to 1"}.

The graphs of the membership functions of these sets are shown in Figure 4.1.
We would like to note that the form of the membership function g, of the fuzzy

subset C depends on the meaning, which in this particular situation acquires the
concept of "close".

I"L“ |J..“

1

a O
Fig. 4.1. Graphs of membership functions: a — the classical set B;
b — fuzzy subset C

A fuzzy subset is said to be empty if its membership function is zero in the
entire set E, that is
Ux(x)=0, Vxek. 4.1)

A universal set £ can be described by a membership function of the following
form:
up(x)=1, Vxek . (4.2)

Definition 4.2. The support of a fuzzy subset 4 (denoted as supp A) with the
membership function x ,(x) is a set (in the classical sense), which looks like this:

suppAz{x‘er, ,uA(x)Z 0}. 4.3)

Example 4.6. Let wuniversal set FE= {xi,x,, X3, X4, X5}, 1its subset
A={(x,]0,1),(x,]0.3),(x3]0,5), (x4]0), (xs[1)} , then supp A = {x1, x2, x3, X5}
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Definition 4.3. A fuzzy subset of 4 is referred to as normal if the following
equality is held: sup x, (x) =1. Otherwise, a fuzzy subset is called subnormal.

xeE

For example, the fuzzy subset C of Example 4.2 is normal. Subnormal is often
the intersection of fuzzy subsets. Subnormal fuzzy set A can be transformed into
normal (to be normalized). To do this, it is necessary to separate the membership
function of this set by an amount sup z, (x) . However, it should be kept in mind that

xeE
applying such a transformation to any task, it is necessary to clearly imagine its
"physical sense".

Definition 4.4. Let 4 and B be fuzzy subsets of the set £, u,(x) and g, (x)
be their membership functions, respectively. We say that 4 includes B (that

isB c Z) if for any element x € £ such an inequality is valid:
1 (X) < g1, (). (4.4)

Note: when B = A4, then supp B < supp 4.

Definition 4.5. The sets 4 and B coincide (are equivalent) if
ug(x)=p,(x). Vxek.

Example 4.7. Assume a universal set: £ = {xi, x, X3, X4, X5}. Consider its two
subsets:
A={(x

0,2),(x,

094): ('x3 ‘O): (.X4

D, (x5]0,5);,

B = {(x,]0), (x

074)a ('xS‘O)a (X4

0,5), (x5

0,2)}.

As max u A(x):l, then a fuzzy subset 4 is a normal subset; for the set B-

xeA

man,uB(x)=O,5<l, that is why the set B is subnormal. Moreover, BcC A4,

because uy (x,) <, (x,), Vx, € E.
Example 4.8. Consider the fuzzy subsets:

A= {x| “x1is close to 1"}, B = {x| “x is very close to 1”}.

It is clear that B < A , then the membership functions of these subsets must
satisfy such inequality: uz(x) < u,(x), Vx € E . Graphically these functions may have

a look like it is shown in Figure 4.2.
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4

Fig. 4.2. The graphs of membership functions of the sets 4 and B,
where Bc A4

4.3 Operations on fuzzy sets

Since fuzzy sets are an extension of the class of classical sets, then all
operations that are defined over classical sets can be applied to them, at the same time
there are special operations applicable only for them.

When applied to fuzzy sets, the classical operations, for example, union and
intersection, can be defined in various ways. We will look at some of them below.
The choice of a particular method depends on the sense that the operation acquires in
the framework of the presented task. But, since classical sets represent a subclass of
fuzzy, the natural requirement to determine these operations is their correct execution
in relation to clear sets.

Definition 4.6. The union of fuzzy subsets 4 and B is called fuzzy subsets

AU B, the membership function of which has the following form:

sy ()= max{u, (x), iy (x)}, x€E. (4.5)

If {4,} is a finite or infinite family of fuzzy subsets with membership

functions u 4 (x,y), where yeY a parameter of the family is, then C :ﬂAy, is a
y
fuzzy set with this membership function:

He(X)=sup sy (x,y), xe€X. (4.6)
yeY
A graphic interpretation of this definition is shown in Figure 4.3. Here the

fuzzy subsets Aand B are depicted by the graphs of their membership functions, the
thick line reflects the membership function of the unification of these sets by
Definition 4.6.
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X

Fig. 4.3. The graph of membership function of union of fuzzy sets 4 and B,
when g5 (x) = max{u,(x), uz(x)}, x€kE

1),(x,]0,2), (x3]0), (x,]0,5), (x5/0.8)} and

0,2),(x5‘0)} are given for a universal set:

Example 4.9. Let fuzzy sets: 4 ={(x,
B ={(x,]0),(x,]0.5), (x3]0,2), (x,

E = {x1, x», x3, x4, x5 }. Find their unions.

Solution

According to Definition 4.6

AUB:{(xl

0,8)}.

1),()62 0,5),()(73 0,2),()(74 0,5),()65

Definition 4.6, a. The union of fuzzy subsets 4 and B can also be determined
using a limited sum of their membership functions, namely:

L if g (x)+ u,(x)2>1,
Hap(X) = () .B( ) (4.7)
e, (x)+ py (x) in other cases.
This formula can be written differently as follows:
Hayp (x) = min{ 1, g2, () + 25 (x) }. (4.8)

Graphical interpretation of the union, by definition 4.6, and fuzzy subsets A4
and B with membership functions y, and u, respectively is shown in Figure 4.4.

Example 4.10. Taking the subsets of Example 4.9, we find their union in
accordance with Definition 4.6, a. So,

AUB:{(xl

0,8)} .

l)a(xz 0,7),()(?3 0,2),()(?4 0,7),()(?5
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IL g Hal B

Fig. 4.4. The graph of membership function of the union fuzzy sets 4 and B by
Definition 4.6, a

Definition 4.6, b. The union of fuzzy sets can also be found for their algebraic

sum that is the merging of fuzzy sets 4 and B is a fuzzy set with such membership
function:

Hgup(X) = () + pap(x) — 414 (x) - pp(x). 4.9)

A graphical representation of the membership function of fuzzy subsets 4 and
B associated in accordance with definition 4.6, b, if their membership functions are
U, (x) and py(x) respectively, are shown in Figure 4.5.

Fig. 4.5. The graph of the membership function of the merged fuzzy sets 4 and
B by Definition 4.6, b

Example 4.11. We find the unions of subsets 4 and B from example 4.9 in
accordance with Definition 4.6, b. Thus,

AU B = {(x1} (x,]0.6).(x:/0.2).(5,[0.6). (x5[0.8)}.
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Definition 4.7. An intersection of fuzzy subsets A4 and B of the universal set £
is called fuzzy subsets with membership functions of the following form:

Hanp(X) =min{u,(x), up(x)}, xek. (4.10)

Its graph is shown in Figure 4.6

H 4
1k - - -

=
X

Fig. 4.6. The graph of the intersection membership function of fuzzy subsets A4
and B in accordance with Definition 4.7

Example 4.12. Let’s define an intersection A B of fuzzy subsets 4 and B of
the universal set £, using Definitions 4.7, if E = {xy, x,, X3, X4, X5},

A={(x[1), (x,/0.4), (x3]0), (4]0, 7). (x5[0.8)},

0,4), (x5]0)}.

1)5 (.X3 092)3 (.X4

B ={(x]0),(x;

0,4), (x5[0)} .

So, AN B ={(x,[0),(x,]0,4),(x3]0), (x,

When {4, } is finite or infinite, the family of fuzzy subsets is characterized by

membership functions u 4, (x,y), where yeY i1s a parameter of the family, then the

sectionC = ﬂAy of its sets is a fuzzy set which membership function
y

:uC(x):inf:uA,(xay)a xek. (411)

yeYy 7Y

The intersection of fuzzy subsets can also be determined in a different way.
Definition 4.7, a. The intersection of fuzzy subsets A and B is a limited product
of their membership functions, that is,

Hanp(x) =max{0, u, (x)+ pg(x) - 1. (4.12)

131



A graphic interpretation of this intersection is shown in Figure 4.7. Here, the
functions of membership to fuzzy subsets 4 and B, respectively, are reflected. The
thick line shows the function of the intersection of 4 and B.

Lh
1___

X
Fig. 4.7. The graph of the intersection function of fuzzy sets by
Definition 4.7, a

Another definition of the intersection can be formulated using the algebraic
product of their membership functions.

Definition 4.7, b. An intersection of fuzzy sets 4 and B is referred to as a fuzzy
set which membership function is equal to the algebraic product of the membership
functions of these sets, that is

Hanp (X) = pp (X) pg(x). (4.13)
Graphs of membership functions g ,(x) and u,(x) fuzzy sets A and B, and

their intersections by definition 4.7, b is shown in Figure 4.8. The thick line of the
graph corresponds to the section membership function.

=

X
Fig. 4.8. The graph of intersection membership function of fuzzy sets 4 and B
by Definition 4.7, b

Example 4.13. Let's find the intersection of fuzzy subsets 4 and B if Ac E,
BcCE s E= {xb X2, X3, X4, x5}7 A= {(xl 1)9 (-xz 094)9 (xS‘O)a (x4 077)9 (-xs 098)} s
B ={(x,]0), (x,]1), (x3]0,2), (x,]0,4), (x5[0)} .

Then, by Definitions 4.7
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AN B ={(x,|0),(x,
and by Definitions 4.7, b
AN B ={(x,|0), (x,

094)a ()C3 ‘O)a ()C4

Oal)a (XS‘O)} s

094)a ()C3 ‘O)a ()C4

Definition 4.8. A complement of a fuzzy set A in E is referred to as a fuzzy

0,28),(x5/0)} .

set 4, characterized by such a function:
pa(x)=1-p,(x), xeE. (4.14)

Note that the property: A() 4 =< hold for classical sets under all conditions is
not always valid with respect to fuzzy sets. For example, if the compliment of a fuzzy
set is defined as described above and the intersection is calculated according to Rule
47 or 4.7, b, then AN A # D, but in calculating the intersection according to Rule
4.7, and the equality 44 =& will be correct. Options of intersection and merging
are chosen by a researcher, depending on what properties of operations are essential
for the problem being solved.

Example 4.18. Consider such a fuzzy subset: 4 = {a number much larger
than 0}, its membership function is shown in Figure 4.9 with a solid curve. The
complement of the set A is a fuzzy set of numbers, not much greater than zero. This
set corresponds to the membership function, the graph of which is shown in Figure
4.9 with a dotted line.

Fig. 4.9. The graphs of the membership functions of the fuzzy set A and its
complement (for example 4.18)

The non-empty intersection of the sets A and A in this example is a fuzzy set
of numbers "significantly greater than zero and not much greater than zero"
simultaneously. The non-emptiness of this fuzzy set reflects the fact that the very
concept of "being significantly larger" is not clearly described. So, some numbers
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may belong to both sets at the same time. In some sense, this intersection can be
considered a "fuzzy boundary" between the sets 4 and 4 .

Definition 4.9. The difference of subsets A and B of the universal set £ is a
fuzzy set A | B, characterized by such a membership function:

1,5 (x) = {gﬁ (x) —pg(x), it p,(x)= py(x), (4.15)
in other case,
that 1s
405 (%) = max{ g2, (x) = g5 (6,0} (4.16)

Let's find the difference between fuzzy subsets 4 and B, if Ac E, BC E,
E = {-xla X2, X3, X4, X5},

A={(x[1), (x,]0.4), (x3]0), (x,
B= {(xl‘o)v(xz 1), (x;
Then, by Definitions 4.9, a

ANB={(x1),(x,10),(x,10).(x,10,3)(x5 ] 0,8)}.

0,7), (x5

0,85,

0,4),(x5/0)},

092)9 ('x4

4.4 Distance between fuzzy subsets

Hamming distance. First, we recall the notion of Hamming distance in its
application to classical subsets.

Let A and B be two classical subsets of a finite set: £ = {xl yenns x7}, and
B ={(x,]0), (x, 1), (x3]0), (x4]0), (x5]0), (x[1), (x; D)}
A= (0], (1200, (53/0), (|1, (5[0, (1), (07]0)3

Under the Hamming distance between A and B, we mean this value:

d(4,B) = il\uA () = 5 (%)) (4.17)

In our example

d(A4,B)=|1-0/+|0—1/+|0—0[+[1—0+|0—0+[1-1|+|0—1| = 4.
The Hamming distance satisfies all the axioms of the metric, namely:
1. d(X,Y)=>0,
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2. d(X,Y)=d(Y,X),
3. d(X,2)<d(X,Y)+d(Y,Z),
4. d(X,X)=0.

Task. Check the fulfillment of these axioms with respect to Hamming
distance.

For a finite set £ which cardinality is m(E) = n (n 1s the number of elements of
the set £), we also define the relative Hamming distance as follows:

5(A,B) = (1}1(,4,3). (4.18)
n

In respect to the subsets 4 and B above 6(4,B) = % -d(A,B) = ;

It is obvious that always 0 < 6(4, B) < 1.

Generalization of the concept of Hamming distance

Consider now three fuzzy subsets 4, B, Cc E, here E is a finite set of
cardinality n, namely:

XX | xs|.x,

A= , (4.19)
a |a,|a;|...a,
x| x| x| x

gt T % | (4.20)
b |5, | by | ..b,

c_k | | x| Xy “21)
¢ le el e

Suppose that we have determined the distance D (a; b;) between a; and b;,

i=1,n and also between (b;, ¢;) and (ai, ci), i =1,n . These distances will correspond
to such irregularities:

D(a;,c;) < D(a;,b,)+ D(b;,c;), Vi=1,2,...,n. (4.22)
Moreover, we can write down that
> D(a;,¢;)< Y. D(a;,b,)+ Y. D(b;,c,), (4.23)
i=1 i=1 i=1

and
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Y D(a,,e,)< Y. D(a;,b)+ Y. Diby.c,), (4.23)
i=1 i=1 i=1

These two formulae give two estimates of the distance between subsets,
expression (4.23) gives a linear estimate, and (4.24) is quadratic.

Let’s consider the case when the membership functions of fuzzy subsets
acquire their values in the interval [0; 1], that is, when in the expressions (4.19) -
(4.21) the quantities a;, b;, c; € [0; 1], i=1,2, ... n.

Let's pretend that D(a,,b,) = ‘ai —-b;|, D(b,;,c;)=

b, —¢;

, D(a,,c;)=

a. —c;
We define two types of distances.

Definition 4.10. The generalized Hamming distance or the linear distance is
calculated by the formula:

d(4,B) = _ilm () = 5 (5). (4.25)

It's obvious that
0<d(4,B)<n. (4.26)

Definition 4.11. The Euclidean or quadratic distance is calculated as follows:

e(4,B) = \/Zn: (4 (x;) = g (xi))2 : (4.27)

This distance satisfies this condition:
0<e(d,B)<n. (4.28)

We also determine the relative distances
The generalized relative Hamming distance

d(4,B) 1
5B =" LS ) -y ), (4.29)
i=1
for this will the following inequality be valid: 0<6(4,B) <1.
The relative Euclidean distance
e(4,B 1
o(4,8) =% )=J—Z(uA<x,~)—uB(x,~))2, (4.30)
\/; n =
0<e&(4,B)<1.
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The choice of a particular distance depends on the nature of the problem
discussed. Each of these distances has advantages and disadvantages, which become
clear in their applications. Obviously, you can specify other distances too.

Example 4.19. Determine the distance between such fuzzy sets:

:x1|x2|x3|x4|x5|x6|x7 :x1|x2|x3|x4|x5|x6|x7
0,7/02]006[05|1]0° 020010608041

Solving
d(4, B)=10,7-0,2| +10,2—-0|+ |0 -0| + 0,6 — 0,6 + 0,5 —0,8] + |1 — 04| +
+10-1/=0,5+0,2+0,3+0,6 +1=2,6.

1 2,6
5(4,B)=—d(4,B) ==
(4,8)=—d(4,B)=—

=0,37.

e(A,B) =J(o,7—0,2)2 +(0,2—0)* +(0-0)* +(0,6—0,6)* +(0,5-0,8)* +(1-0,4)* +(0—1)*

= (0,5 +0,2 +0,3% +0,6> +1=1/0,25+ 0,04 + 0,09+ 0,36 + 1 = /1,74 =1,32,
e(4, B)=1,32,

£(4,B)=—=-1,32=0,49.

J7
The distances d(A4, B), e(A, B) can be defined also when the universal set is

infinite (countable or not) if the corresponding sums and integrals coincide. If E is
countable, then

d(4,B) = gm () - g () (431)
e(4, B) = Jiw ()~ 15 (5))° (432)
when these series coincide. -
If E =R, then
d(A,B) = [luty(¥) -ty () (433)
and h
e(4,B) = \/j (41,4~ 25 () (4.34)

when the integrals coincide.
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If E < R 1s bounded above and below, then the corresponding integrals always
coincide, and the distances d (4, B) and e (4, B) are finite. Then you can determine
the relative distances, namely:

6(4,B) = d(A’B), (4.35)

£(4,B)=84B) (4.36)

B B
where d(4,B) = [|u,(x)— py(x)dx and e(4,B) = \/ [ (e (x) = pp(x))*dlx .

Consider as an example a geometric interpretation of the concept of distance
between fuzzy sets. Let the sets A and B are subsets of the universal set
EcR', E=[a, ], and the graphs of their membership functions z ,(x) and s, (x)
are shown in Figure 4.10. Then the linear distance between these sets corresponds to

the area of the shaded figure bounded by the curves of the functions g ,(x) and
Mg (x).

Fig. 4.10. Geometric interpretation of the linear distance between fuzzy sets

4.5 Classical subset closest to fuzzy. Fuzzy index

The question arises as to which classical subset (or subsets) is at the Euclidean
distance from a given fuzzy set 4. It is easy to see that this is an classical subset (it is
denoted 4 ) for which

0, ifu,(x,)<0,5,
wy(x)=41, if p,(x)>0,5, (4.39)
0 orl, if u,(x,)=0,5.
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In order to avoid inaccuracy, we specify that x,(x;)=0, when
4 4(x;)=0,5Thus, we can formulate a definition.

Definition 4.12. The set 4, which is closest to fuzzy set 4, is called the set
A characterized by the membership function:

0, ifu,(x)<0,5;

”A(x"):{1 if p,(x)>0,5. (4.40)

Example 4.20. Let E = {Xy, X», X3, X4, X5, X¢, X7, X3}, A E and

A =1{(x]0,2),(x,|0,8),(x5(0,5),(x40,3), (x5 1),()66‘0),(967 0,9),(x40,4)}.
The classical set closest to the set 4 will be:
A ={(x,]0), (x,]1), (x3]0), (x,]0), (x5]1), (x6]0), (x; 1), ([0} } -

Using the notions of distances introduced earlier for fuzzy subsets, we define
two indices of fuzziness.

The linear index of fuzziness is determined through the generalized relative
Hamming distance as follows:

v(A4) = %d(A,A). (4.41)
n
The quadratic fuzzy index is determined via the relative Euclidean distance,
namely:
2
A)=——+=e(4,4). 4.42
17(A) Tn (4, 4) (4.42)

Factor 2 in the numerator is introduced in order to ensure the content of the
fuzzy index within the following limits:

0<v(4,4)<1, (4.43)
0<n(4,4)<1. (4.44)

When E =[a,b]c R then the linear index of fuzziness is calculated by the

formula:

b
Vv(A,B) = ﬁ [[22,4(0) = g, (o)l (4.45)
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The geometric interpretation of the nearest classical set and the fuzzy index can
be seen in Figure 4.11. Here, the thick line shows the membership function of the
nearest classical set 4 to the fuzzy set 4 described by the membership function x,.
The linear fuzzy index corresponds to the normalized area of the shaded figure.

oA
I

0.5----

Fig. 4.11. Geometric interpretation of the index of fuzziness

Indices of fuzziness can be determined in another way, namely:

V(A =2 3 minGa (5, (35), (4.46)
n(4)= iJimm{uz ()13 (). (447)
\/; P A\ oy i

Indeed, for any element x; € £

| 14 () = 1, (x) | = g5 (%) (4.48)

Then, the formula (4.41) for calculating the linear index of fuzziness can be
rewritten in a convenient form, namely:

VA =S (3). (4.49)

From this expression 4.49 it becomes obvious that v(4) = V(Z) :

Example 4.21. Let E = {x1, X3, X3, X4, X5, Xg, X7, X3}, A C E,

A=1(x

0,2),(x,

0,8), (x5

0,5),(x,

0,3), (x5

1)a (x6‘0): (x7 059)a (x8 0’4)} H

A= {(x,

078)9 (xz

0,2),(x,

095)9 (x4

077)9 ('xS ‘O)a ('x6

l)a (.X7 071)9 (xS 0’6)} 9
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Let’s calculate the fuzzy index of the set A. We will first determine the
intersection of the sets presented above.

AHZZ{(M

0,2),(x,

092)9 ('x3

035)9 ('x4

093)9 (xs ‘0)9 (x6 ‘0)9 (X7

0,1), (xg

0,4)}.

Now we can calculate the linear index of fuzziness:
v(A)= %(0,2 +0,24+0,5+0,3+0+0+0,1+0,4)=0,425.

Let A and B are two fuzzy subsets of E. Let us explain how the indices of the
fuzziness of the intersection 4()B and the union AU B of these fuzzy subsets
correspond to the indecision indices of the original subsets?

Let's consider examples.

Example 4.22. Let E={x,%,,%}, A={(x,

B =1{(x0,6), (x,]0,3), (x;

original sets and their intersections, namely:

0,2),(x,(0,6),(x5]0,1)},
0,8)}. We calculate the indices of the fuzziness of the

A = {(x,]0.8),(x,/0,4), (x,0,9)}, v(4) = %(0,2 +0,4+0,1) ~ 0,46
B ={(x,]0,4),(x,]0,7),(x50,2)}, v(B)= %(0,4 +0,3+0,2)~0,6.
AN B = {(x,]0,2),(x,]0.3), (5:/0,1)}, AN B = {(x,]0,8), (x,]0,7), (x3]0,9)},

V(AN B) = %(0,2 +0,3+0,1)~ 0,4.

Obviously, in this case, the fuzziness index of the intersection is less than the
index of fuzziness of the original subsets.

Example 4.23 Let E={x,x,,x, A ={(x
B, = {(xl 094)a (.X'Z 097)7 (.X'3

and their intersections, 1.e.:

0,8),(x,(0,6),(x5/0,8)},

0,2)}. We calculate the indices of fuzziness of these sets

A'={(x,10,2),(x,]0,4),(x,0,2)},  wv(4)= %(0,2 +0,4+0,2) = 0,53,
B’ ={(x,[0,6),(x,]0,3),(x;]0,8)}, v(B") = %(0,4 +0,3+0,2) = 0,60,
A, ﬂ B, = {(xl 074)a (xz 056)a ('x3 092)} H A’ ﬂ B’ = {(xl 076)9 (xz 074)9 (x3 078)}
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v(A'NB')= %(0,4 +0,4+0,2) ~ 0,66.

In this example, the fuzzy intersection index is greater than the fuzzy indexes
of the original subsets.

Thus, we see that the fuzziness index of the intersection of subsets 4 and B can
be either smaller or larger than the indices of fuzziness of the original subsets. The
same can be said about union fuzzy subsets. The statement is also fair for the
quadratic fuzzy index.

4.6 Classical subset of a-level of fuzzy set

Definition 4.13. Let « €[0;1]. The classical set of a-level of fuzzy subset A4
(denoted by) is the set consisting only of those elements of 4 whose membership
function is not less than ¢, that is,

A, ={x|u,(x) 2 a}. (4.50)
Example 4.24. Let the fuzzy set A be given in the following form:

xl|x2|x3|x4|x5|x6|x7

08[01|11]03/06]02]0,5

We define sets of level 0,3 and 0,5 of this fuzzy subset, namely:

XL [ x| xs | x| x
1| X2 | X5 | Xa | Xs | X6 | X7
Ays = Aoz = {x1, X3, X4, X5, X7}
0,3 ’ 0,3 15 A3y A4y A5y AT S
1joj1]1]1]0]1
x| x| x| x| x| x| x
1| X2 | X3 | Xa | X5 | X | Xy
AO,S = ’ AO,S = {x19x37 Xs, x7}'
1joj1]jof1]o0]1

Example 4.25. Let the universal set X= {1, 2, ..., 6}, and the membership
function of the fuzzy set 4 — X is given by the table:
x [0] 1] 2|3]4]5]6
1,(x)]0]01/03]05]/07]09]1

Then, for the set 4 we can write down such level sets:
A0,1: {1929 3a 49 59 6}9 A0,3: {29 3a 49 59 6}a A0,5: {39 49 Sa 6}9
A0,7: {49 59 6}7 A0,9: {59 6}7 Alz {6}
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Example 4.26. Let X = R"is the graph of the membership function g of the

fuzzy set A is shown in Figure 4.12, a. The sets of level ¢ and o, and the graphs of
their membership functions are shown in Figure 4.12, b and 4.12, c.

Mg

1 L=

C

Fig. 4.12. The level sets and their relation

As can be seen from these examples, for all values of ¢; and o, satisfying the
following conditions: 0 < o <1, 0< <1 and o, < ¢, the corresponding level sets
A, and A4, are related by the following relation: 4, < 4, .

a)
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It is convenient to use level sets for the formulation and analysis of some
decision-making problems, we will also apply them in solving problems of fuzzy
mathematical programming.

Let (AUB), and (A4(1B), are sets of a-level of union and intersection of

fuzzy sets 4 and B respectively. Let us consider their connection with level sets A4,
and B, output sets. If for the operations of intersection and union we take definition

4.7 and 4.6 respectively, then this relationship will be:
(A4UB), =4,UB,, (ANB), =4,NB,.
When using definitions 4.6, b and 4.7, only inclusion will be fair, i.e.:
(4UB), >4,UB,, (ANB),cA,NB,.

For fuzzy subsets, the decomposition theorem will be carried out below.

Theorem 4.1. Any fuzzy subset 4 can be decomposed into level sets, that is,
submit it in this form:

A=Jo4,, (4.51)

moreover, the membership function of the set a4, : u,, (x)=au, (x),the union of

fuzzy sets is satisfied for all valuesa €[0;1], and the membership function of the
level set a is given as follows:
1 s ﬂA ('x) > a,

Ha,00) :{O,yA(x) <a.

Example 4.27. For the set A and its level sets, using example 4.25, we can
write that

A=0,1{1,2,3,4,5,6103{2,3,4,5,6,0,5(3,4,5,6:U0,7{4,5,6'U
U0,8{5, 6} U1{6}.

The decomposition formula will also be correct when the universal set has the
cardinality of the continuum.

Example 4.28. Let the fuzzy set A < R" is given by its membership function:

y (x) =1- - x € R". Having considered the interval [¢; 1], where 0 < o < 1, we
+x

can make the following conclusion:

144



1, if ,uA(xl.)e[a;l],

ﬂA“(xi):{l, if ,uA(xi)%[a;l].

So, in this example

I, if xZ‘/L,
-«

0, if x<,|]——.
-«

IuAa (x) =

The decomposition theorem is applicable not only to analysis, but also to the
synthesis of fuzzy sets.

Consider the sequence of classical subsets 41 — 4, © 43 ... < 4,, and set the
value of «; for the set 4,, o, for the set 4,, and ¢, for 4,, and a; > o > ... > «, then,
using the formula (4.51), we obtain a fuzzy subset of A.

Example 4.29. Suppose it is given and classical set:

X= {-xla-xZa X3y e ’x10}9

and their subsets:
A1 = {xl, X4, X5, X7, Xg},
Ay = {x1, X4, Xs, X, X7, Xo},
Az = {x1, X2, X4, X5, X6, X7, X0},
Ay = {x1, X2, X4, X5, X6, X7, X9, X10} 5

and the following the numbers are also defined ; = 0,9, &, =0,5, o3 =0,4, a4 = 0,1.
Using the formula (4.51), we obtain a fuzzy set A.
Let’s construct the sets ¢, 4; first by the following formula:

a;, ifx, €4,

Mo, (X)) =01, (X)) {0, ifx 4.

Then we obtain the following subsets:

[ e o | | [ | | X | X | o |

10910, 0]09/09/01]09/01[09]0

o, A

b

s x| x| % | % % | X | X |
105/0]0(05/05/05/05/0[05] 0 |

a4,

b
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e [ [ | x| e | X | X | |

a3A3_\0,4\0,4\0\0,4\0,4\0,4\0,4\0\0,4\ 0|
aA:|x1|x2|x3|x4|x5|x6|x7|x8|x9|x10|
Hlorlor|ofor|o1]o1]o1| 00101/

Combining these fuzzy sets, we obtain the required fuzzy set, that is

A= 4;,

1

| e [ x| s | | | X | X | oo |

109]04]0109[09[05[09]0/]09]01]

4.7 Special operations on fuzzy sets

We have already considered a number of operations on fuzzy sets. They were
similar to operations with classical sets, but acting as a new structure, fuzzy sets have
new properties. Therefore, new operations can be introduced on them that do not
make sense for classical sets.

We first define the Cartesian product of fuzzy sets.

Definition 4.14. The Cartesian product of A, x A, x...x A, fuzzy sets 4, < X,,
1 =1, .., nis a fuzzy set A in the Cartesian productX,x X, x...xX, , the

membership function of which has the following form:
pg(x) =min{g, (), 44, (x,)}, x= (xl,xz, : ..,xn)e X. (4.52)
Example 4.30. We define the Cartesian product of fuzzy sets 4 and B if

:x1|x2|x3 x| xs P EREIENES
0,1[05[03|1[02"  05/0]|0/[02[03

According to Definition 4.14
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x;, B
Py X, X, X3 X, Xs
X o0 0 0 01 0,1
AxB= X, 05 0 0 02 0,3
X3 03 0 0 02 03
X, 05 0 0 02 0,3
Xs 02 0 0 02 0,2
Definition 4.15. 4 convex combination of fuzzy subsets 4, ..., 4, of a

universal set X is a fuzzy set A with membership function, has the following form:

() = 2 2t (), (4.53)

where 1,20, i=L.,n, Y 4=1.
i-1

With respect to classical sets, in contrast to a Cartesian product, the operation
of a convex combination does not make sense.
Definition 4.16. Concentration operations (CON) and dilatation (DIL)

operations are defined as follows:

CON A4 =4%, (4.54)
DIL 4 =4%, (4.55)

wherein
e (X) = p5(x), xe X, a>0. (4.56)

Example 4.31. Let the universal set £ = {x,, ... ,x,}, A CE,

e X |x2|x3 |x4|x5|x6
0,2509|04(06| 10"

Define the sets: B=CON 4, C = DIL 4, namely:

R NENERE

B:
0,0625 | 0,81 (0,16 [036| 1 | 0

5

x| x, X, X, | x| X

0,510,95]0,63[0,77|1 ] 0"

C=

147



Example 4.32. Let the fuzzy set A = R' be fed by its membership function

1

() =—— 1
T l4r-a (Lt —dff

,theny , (x) =

Graphically, these sets can be represented as follows:

|
|
|
|
|
|
|
I = ol
o
Fig. 4.13. Graphs of membership functions of fuzzy sets A and CON A.

Applying the concentration operation to a fuzzy set means reducing its
"fuzziness". In real problems, this can mean the arrival of new information that
allows more accurately (clearly) describe the presented fuzzy set. Similarly, the
stretch operation can be used to simulate situations involving loss of information.

4.8 Fuzzy relations

Definition 4.17. A fuzzy relation R in a set X is referred to as a fuzzy subset of
the Cartesian product X xX. It 1is characterized by such membership
function sz, : X x X —[0;1].

The value 1,(x,y) of this function indicates the degree which relation R

between the elements x and y is satisfied. It is clear that we can regard classical
relations as a separate case of fuzzy relations, the functions of membership to which
can have only two values: 0 or 1.

Example 4.32. We consider two similar relations on the interval [0; 1]. This is
the classical relation of "greater than or equal to" R (2) and a fuzzy relation
"significantly larger" R (>>). The pairs connected by the relation R are shown in
Figure 4.14, and the relation R is showninF igure 4.15.

If there is a fuzzy relation R, then there are pairs of elements for which it is
performed clearly, there are pairs for which this relation is not satisfied, and also
there is some intermediate zone where the pairs have this or that degree of
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membership, that is, the relation is satisfied for them only at a certain degree
depending on the situation. The fuzzy border in this case is represented by the
variable hatching density.

Just as with normal relations (see Section 2), fuzzy relations can be defined by
a matrix, graph or cuts.

V4 ¥4
1 1
. I
X X
Fig. 4.14. Graphic representation Fig. 4.15. Graphic representation
of the relation «=» of the relation «>>»

A matrix of a fuzzy relation is similar to the matrix of the classical relation,
only its elements can be numbered from 0 to 1.

When a fuzzy relation is specified with a graph, each arc is assigned a number
from the interval [0; 1], which means the degree of fulfillment of the fuzzy relation
for a given pair.

The upper and lower sections of the fuzzy relation are fuzzy sets defined as
follows:

R+(x)={y‘,uR(y,x): yvelX, yR(y,x)>0},

R (x)=Plup(x.): yeX, p(x,)>0}.

Definition 4.18. A support of a fuzzy relation R in a set X is a subset of the
Cartesian product X x X which looks like this:

supp R=1{(x, y)(x,y)€ X x X, p5(x.y)>0}.

A fuzzy relation support can be understood as a classical relation in the set X,
which connects the pairs (x, y) for which the relation R 1s satisfied from a non-zero
power.

Example 4.33. Let the relation R be "approximately equal". We define it in the
set: X = {1, 2,3.4, 5} using the matrix. It can have the following form:
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1 05 02 O
05 1 05 02 0
R=10,2 05 1 05 0,2.
0 02 05 1 05
0O 0 02 05 1

Then, the support of a described fuzzy relation will be the following classical
relation:

supp R =

O O = =
O = = =
—_ = = =
—_ = = = O
—_— = = OO

Note that the specific form of the matrix of relation depends on the meaning of
the problem and how the expression "approximately equal" is understood.

4.9 Operations on fuzzy relations

In the previous subsections, operations on fuzzy sets and classical relations
were considered. Operations on fuzzy relations combine the properties of both
relations to some extent. In other words, some of them are analogues of the
corresponding operations with classical relations. But there are also those that belong
only to fuzzy relations. For example, operations of combining and intersecting fuzzy
relations can be defined in the same ways as for fuzzy sets.

Definition 4.19. Suppose two fuzzy relations 4 and B are given in the set X,
that is, two fuzzy subsets 4 and B are presented in the Cartesian product X *. Then the
fuzzy sets: C= A1 BandD = AU B , will be called respectively the intersection and
union of the fuzzy relations 4 and B on the set X.

Example 4.34. relations 4 and B are represented in this form

05 1 0 1 02 0
A=|0 01 0}, B=03 1 1.
1 1 04 0,8 0,8 1

Let us find an intersection and a union of these relations, using Definitions 4.6
and 4.7, namely:
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05 02 0 1 10
ANB=[0 01 08, AUB={03 1 1|.
08 08 0,4 111

Definition 4.20. A fuzzy relation B contains a fuzzy relation A4 if for fuzzy sets
B and A4 there is an inclusion: A C B, their membership functions satisfy the
following inequality:
(6, y)< py(x, ), Vx,yeX.

For example, in example 4.32 above, the relation ">" contains the relation
H>>H.

Definition 4.21. If R is a fuzzy relation in the set X, then the fuzzy relation R
which membership function (x, y) =1-u, (x, y) we call the complement of

relation R of the set X.
For example, the complement of a fuzzy relation "better" would be "no better".

The fuzzy relation R™'in the set X that is inverse to R is defined as follows:
xR'ly < yRx, Vx,yelX,
or using the terminology of membership functions
Hoi (%7) = pe (¥, %), Vx,yeX.

Unlike classical relations, the product (or composition) of fuzzy relations can
be defined in many ways.

Let's consider some of the possible definitions of this operation.

Definition 4.22. The maximin product of fuzzy relations 4 and B in the set X is
described by such a membership function:

Hyp (x,y) =Ssup min{ﬂA (x,z), Up (Z,y)}.

zeX

If the output relations are given in a finite set X, then the matrix of their

maximin product is equal to the maximin product of the matrices of the relations A4
and B.

Definition 4.23. The minimax product of fuzzy relations 4 and B in the set X
will be equal to the fuzzy relation which membership function is

Ky (x, J’) = ilel)f; maX{#A (x, Z)a Up (Za J’)}
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Definition 4.24. The maximal multiplicative product of fuzzy relations 4 and B
is characterized by the membership function of the following form:

HMyp (x, y) = Sup{:“A (x, Z) "Hp (xa Z)} -

zeX

Example 4.34. Let the fuzzy relations 4 and B be given with the help of
matrices:

1 0 05 02 05 0 1 O
0,7 1 08 0 02 03 1 O
A= , B= .
03 0,4 03 1 03 05 0
0 02 08 1 1 1 0 05

Let’s find the composition of the relations 4 and B, using the definitions 4.22 —
4.24, then, we get the following results:
the maximin composition will be described by such a matrix:

0,5 03 1 0,2

0,8 0,3 1 0

A 'B .= D)
0,3 0,3 0,40

1 1 0,5 0,5

minimax composition — matrix of the following form:

02 03 02 0

0,7 0.7 0 0,5

A- Bmin max ’
04 03 0 03

02 0 08 O

and the maximal multiplicative composition is such a matrix:

05 02 1 01
08 03 1 0
0,3 0,12 04 0
1 1 04 05
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4.10 Properties of fuzzy relations

Let's consider now what are the characteristics of fuzzy relations.
Definition 4.25. The fuzzy relation R in the set X is called reflexive if for any
elements x € X the following condition is fulfilled:

tp(x,x)=1.

If the reflexive relation is given by a matrix, then its main diagonal includes
only units.

An example of a reflexive relation is "approximately equal" is given by a set of
numbers.

Definition 4.26. Fuzzy relation R will be antireflexive if u,(x,x)=0, Vxe X .

The complement of the reflexive relation will be antireflexive. An example of
an antireflexive set of numbers can be the relation "much more".

Definition 4.27. The fuzzy relation R in the set X is called symmetric if for any
elements x,y € X, the following condition is fulfilled:

luR(xay) :#R(y’x)'

The matrix of a symmetric fuzzy relation given in a finite set will be
symmetric. This example will be the relation "very different in size."

Definition 4.28. The relation R on the set X will be asymmetric if it has the
following property:

/uR(x’y)>O’ = ,UR(y,X):O, 360 ,UR(.X,y):,UR(y,X)ZO, \V/)C,yEX.

1n other words:
min{uz (x, ), g2 (7, X)} = 0, Vx, y € X .

Asymmetric is the relation of "much more” type.
Definition 4.29. The relation R oi the set X will be antisymmetric if the
following condition holds:

min {,uR(x,y ),,uR(y,x )}z 0, x # y

Definition 4.30. The fuzzy relation R on the set X is called transitive, if
R*cR.

Obviously, the property of transitivity depends on the method of determining
the product of relations. According to the earlier definitions it is possible to name its
three types: maximin (max min), minimax (min max) and maxmultiplicative (max -)
transitivity.
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It is easy to see that R e S R omin, Thus, max min of transitivity leads to

maximal multiplicative transitivity.

An example of max min-transitive is the relation "much more" in the set of

numbers.

Example 4.35. Check for transitivity a fuzzy relation that has the following

form:
1 0 0 0 04
0O 1 09 1 O
R={0 1 09 1 O
0O 1 09 1 O
04 0 0 0 1
Solution

To check this property, it is necessary to calculate max min, min max and max
multiplicative compositions of this relation.

1 0 0 0 04
0 1 091 0

=0 0,9 09 09 0
0 1 091 0
004 0 0 0 1

Since R . R ,then, the fuzzy relation R is max min transitive. Therefore,

it will be both multiplicative and transitive. Let's check the relation for min max

transitivity. The corresponding composition

0 04 04 04 0
04 0 0 0 04

Rominma=04 0 0 0 04
04 0 0 0 04
0 04 04 04 0

As you can see, R. . & R, consequently, the relation R will not be min max-

transitive.
Definition 4.31. The transitive closure of the fuzzy relation R will be a fuzzy

relation R, which is obtained by the following rule:
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R=RUR*URU..UR"U..

Obviously, when determining the transitive closure, it is necessary first to
establish the type of operation for a product of relations.

With regard to a transitive closure, the following statement applies:

Theorem 4.2. A transitive closure of any binary relation R is the least
transitive binary relation that contains R.

Note that the a-level of the transitive closure of a fuzzy relation coincides with
the transitive closure of the corresponding a-level of the source fuzzy relation, that is,

(Rj =Ra, Va#0.

Here is a formulation of two theorems that allow us to construct a transitive
closure in some cases.

Theorem 4.3. If there is a number &, for which R* = R*"', then

R=RUR*U..UR".

Theorem 4.4. If R is a fuzzy relation in a finite set E, then m(E) = n, then
R=RUR>URU..UR" orthere is a number: k <n for which R* = R*"".

Example 4.36. We construct a transitive (max min) closure of the fuzzy
relation R given by a matrix:

08 1 0,
R=[0 04 0
03 0 02

To do this, we will calculate successively R, R, namely:

0,8 0,8 0,1 08 0,8 0,
lelaxmin =10 0’4 0 ’ Rlilaxmin =10 0’4 0.
0,3 0,3 0,2 0,3 03 0,2

We see that R* = R’ consequently, R=RUR? and takes the following form:

1 o1 |08 08 01 08 1 0,1
04 O0/UO 04 0|=|0 04 0]
03 0 0,20 |03 03 02 (03 03 0,2
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4.11 Classification of fuzzy relations

Taking into account fuzzy relation properties, all types of fuzzy relations can
be divided into three classes.

The first class includes symmetric relations, the majority of which are
characterized by the similarity or difference between objects of a set X. Such relations
can be set by a weighted graph with non-oriented arcs.

The second class 1s formed by antisymmetric relations. They specify ranking
dominating relations in a set. They are matched with oriented weighted graphs with
one-sided orientation of arcs.

The third class includes the remaining relations.

The relations of each class in their turn can be subdivided into subclasses from
the perspective of fulfilling the conditions of reflexivity or antireflexivity.
Schematically, the classification of fuzzy relations is presented in Figure 4.14, a more
detailed classification can be found in the collection [25]. Let's consider some of the
fuzzy relations.

The fuzzy relation of a pre-order is referred to a binary fuzzy relation that has
the properties of transitivity and reflexivity.

If R is a pre-order, then there is the following equality:

R=R>=..=RF=R.

The pre-order in the set: X :{A,B,C,D,E}, for example, will be a relation
that looks like this:
1 0,7 08 05 05
0 I 03 0 05

0 07 1 0 0,2
06 1 09 1 0,6
0 0 0 0 1

Fuzzy half-order is a transitive relation that does not have the properties of
reflexivity.

Symmetrical, reflexive relations are called relations of similarities. They show
the degree of similarity ("proximity") of two elements.

Symmetric, anti-reflexive relations are called relations of differences.

For the relations of similarities and differences are characterized by the
following assertion the statement: if R is a fuzzy relation of similarity, then R the
relation of difference.

Among the close relations special attention is drawn to similarity itself.
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Definition 4.32. The relation of similarity or equivalence is called a fuzzy
binary relation, which is characterized by transitivity, reflexivity and symmetry.

Obviously, this relation is a pre-order one.

Relation

A B C D FE
411 08 0,7 1 09
B0 1 07 08 0,8
c|07 07 1 0,7 0,7
D
E

1 08 0,7 1 09
09 08 0,7 09 1

is a fuzzy relation of similarity.
General, the relation of this kind:

A B C D FE
All a a a a
Bla 1 a a a
R, = , if ael0,1],
Cla a 1 a a
D|a a a 1 a
Ela a a a 1

will be similarities.
Task is to check the transitivity of these relations.
Example 4.40. Fuzzy relation x R y, where x,y € [O; +oo) , defined by such

membership function:

—k(y+1)

e , v<x, k>1,

,uR(x,y)z I, y=x,

e K y>x, k>1.

Task: Check it out for yourself whether it is related to a relation of similarity.

Each a-level of fuzzy relation of similarity i1s a normal equivalence relation.
We would like to remind that any relation of equivalence makes some partition of a
set. Consequently, each a-level of fuzzy relations of similarity will also make
partitions in this set. The property of a-levels of fuzzy relation implies the
corresponding partitions of the set X. Moreover, with the decrease of a, the
integration of the equivalence classes occurs. Thus, the unclear equivalence relation,
in contrast to the classical relation of similarity, implies hierarchical set of
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distributions on non-intersecting equivalence classes in the set X. This is explained by
the fact that the condition of transitivity imposes rather strong restrictions to the
degree of membership y(x, y). Namely, for the fuzzy relation of similarity, the

following theorem works.

Theorem 4.5. Let R< ExE is a relation of similarity and x, y, z are three
elements of the set £. We prescribe that

/uR(Z’x)’

Hr (x, Z)

/uR(y’x)’

C =
a= Hpg (X, y)
¢ = pip(y,2) = t1g (2, »).
Then, c>2a=b or a>b=c,or b>c=a, that 1s, at least two values from a, b,
c are equal, i.e. equivalent, and the third value is more than them.

Definition 4.33. The fuzzy binary relation, which has the properties of
antireflexivity and symmetry, is called the relation of difference. Examples of relation
of difference are:

1. The relation of the set {4, B, C, D, E} is given by a matrix of the following

form:
A B C D E
Al 0 02 03 0 0l
B102 0 03 02 02
c|(03 03 0 03 03
D| 0 02 03 0 0l
E|{01 02 03 01 0

2. Fuzzy relation given by such membership function:

1—e 0+, y<x, k>1,
ﬂ§(X,Y): O: yzxa
1 —e 0D, y>x, k>1,
1s a relation of differences. It is formed as a result of substitution:
iz (x,y)=1— pp (x,y) in Example 4.40.
The measure of difference can be considered as the distance between the

elements of the set (if adding transitivity). Moreover, different types of transitivity,
respectively, assign different types of distances.
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Definition 4.34. The fuzzy relation of order is referred to the binary
characterized by the properties of reflexivity, transitivity and anti-symmetry.

It is distinguished relations of strict and non-strict order.

Strict order is an antireflexive, asymmetric and transitive relation.

Relations of non-strict order are reflexive, antisymmetric and transitive.

4.12 Fuzzy set mapping. Generalization principle

In many decision-making tasks, there i1s a need to extend the domain of
definition X of the given mapping or relation by including along with the individual
elements of the set X, to its arbitrary fuzzy subsets.

For example, a set of controls (guiding or managing influences) U has a
mapping f:U —V that describes the functioning of a managed system. For each

control u e U its image: v= f (u), displays the response of this system to the choice
of this control. If the selected control is not clearly described, for example, in the
form of a fuzzy subset ,u(u) of U, then to find the system response to it, it is
necessary to define the image y(u) when f is mapped.

The method of extending the scope of defining image for a class of fuzzy sets
is called the generalization principle.

L. A. Zadeh suggested the generalization principle, which is based on
determining the image of a fuzzy set under the classical (clearly described)
representation.

Let the map @: X — Y, and 4 be a subset of the set X, which is characterized
by a membership function x, (x) :

Definition 4.35. In the image of a fuzzy set 4 when displayed with ¢, we will
call the fuzzy subset of the set ¥ as a combination of such pairs:

(v, 15 (9)) = (). 1, (x)), x € X,

where 1, - the function of the property of the image, z,:Y —[0;1].
It 1s easy to understand that the membership function u, can be written as

follows:
ps(y)= sup u,(x) yev, (4.57)

xep ' (v)

and the set o' ( y) for each fixed element y €Y is determined by the following rule:

o' (y)={xe X, p(x)=y]

>
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that is, a set of all those elements x € X , the image of which when the mapping ¢
will be y.
Example 4.42. Let the set X ={x,x,,x;,x,x,x,x,}, and the set

Y ={»,,,»;}. The mapping ¢: X —Y is given by the table:

Ve Va2 W3
x |1 0 0
x»!0 1 0
x| 0 1 0
x/1 0 0
x| 0 0 1
x| 1 0 O
|0 0 1

In the set X we define a fuzzy subset A4:

_5 | x| x| x| xs | x| X
03/05/1]0]05[08]04

We find an image B in a fuzzy subset of A when mapped with ¢. In accordance
with definition 4.35

Hp (Jﬁ): sup ﬂA(x)>

xep (1)
o~ (7)) = {1, x4, %} 5

then u,(» )= sup u,(x)=sup{0,3; 0;0,8}=0,8.

xe{xl,X4,x6}
Similarly
ts(»,)= sup p,(x)= sup u,(x)=sup{0,5; 1} =1,

xep'(12) xe{xy, x3}

tp(v3)= sup p,(x)= sup u,(x)=sup{0,5;0,4}=0,5.

xep™ (13) veixs, 17}
Thus, the image of the set 4 in the representation ¢ will be a fuzzy set Bc Y,
which looks like this:
N | Y2 | Y3
08| 1 (05

B=
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We now apply the generalization principle to expand the area of fuzzy
mapping.

The mapping of the set X to the set Y is called fuzzy if each element x e X is
compared with a corresponding certain fuzzy subset of the set Y. A fuzzy

representation of the membership function is described as g, : X xY —)[O; 1]

wherein the function g, (x,,y) for each fixed element: x=x, is a membership

function of a fuzzy subset in the set Y, which is the image of the element x, with the
mapping .

Consequently, let it be given a fuzzy mapping u,: X xY —[0;1] and z,(x)
fuzzy subset of the set X. If for the purpose of finding the image of this fuzzy set at
the mapping 4, we apply the generalization principle in accordance with rule (4.57),

then we obtain the following set of pairs:
(12, (. ¥) 11, (x)) xe X,

where the function g, (x, y) for each fixed element x defines a fuzzy subset of the
set Y.
As a result, we can conclude that the image of the fuzzy set u, (x) in this case

is a sufficiently complex object, namely, a fuzzy subclass of all fuzzy subsets of the
set Y. Consequently, there is a need to introduce the principle of generalization in a
different form.

Definition 4.36. In the image B of a fuzzy set 4 < X with fuzzy mapping
f, X xY — [O; 1] is referred to a fuzzy subset of the set Y characterized by the

following membership function:

115(v) = supminfu,, (x), gz, (x, »)}. (4.58)

xeX

The basis of this definition is the maximizing product (composition) of fuzzy
relations.

When ¢ is the classical mapping, that is z, (x, y) =1,1f y= go(x) , then formula

(4.58) turns into (4.57).
In many tasks, the initial fuzzy mapping x, depends on n variables, that is, has

the following form: g, : X x¥ —[0;1], where X = X, x X, x...x X,,.

Assume that a fuzzy subset x4, is given in the set X. In general case, the

membership function of this subset has the following form:
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7y (xl,..., X, ) = min(,u1 (x1 ),..., U, (xn ); V(x1 yeoes X, )),

Here u,(x), i=1...n and v(x...x,) are known membership functions of

fuzzy subsets of the set X,, i=1,...n and X, respectively.

Applying the generalization principle in accordance with rule (4.58) for this
case, we obtain the following formula for the membership function of the image of a
fuzzy subset u,:

ps(y)=sup  mingan () (0, V(01 ) (31,0 0)) - (459)

E— )eX

Example 4.42. We have sets: X ={x,,...x;}, Y ={y,,,,;} and a fuzzy

subset 4 of the set X, which is given as follows:

EAENEYEAT AP

05(08| 100104 1"

Besides, we know the fuzzy mapping ¢ : X — Y which membership function
H,: X xY —[0;1]is given by a table, i.c.

Vi Vo )3
x (02 01 O
x, 104 08 1
x| 1 01 0
fo= 10 05 1
x| 0 0 1
x |03 0 08
x; 109 03 04

It is necessary to determine the image B c Y of the set 4 with fuzzy

mapping o.
Solution
We will apply definition 4.36. Then, to calculate the membership function of

the set B, we use the maximization product of the functions x, and x,. The obtained

results are presented below.
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0,2 01 O
0,4 08 1
I 01 O
(0,5, 0,8;1;0;0,1;04;1)-| 0 0,5 1|=(0,8;0.8).
0 0 1
0,3 0 0,8
0,9 0,3 0,4
So,B:yl B! J’3.
1 10,808

Example 4.43. We extend the scope of defining the arithmetic operation of
adding to the class of "fuzzy numbers", i.e. the class of fuzzy subsets of the numerical
axis.

The complement operation in the set of numbers is a mapping

o:R'xR' >R ie o(r,r)=r=r+r,.

Assume that u,,u, are two fuzzy numbers (u;, 1, : R' — [0,1]). The image of a
pair (,ul, J7x )When displaying ¢, we will call them the sum: g5 =z, + 1, . Then, using
formula (4.59), we obtain the following result:

ps(r) = sup min{z (1), 1513 )} (4.60)

1,1 €R
n+rn=r

In particular, when fuzzy numbers g and u, are intervals [a,,b] and
a,,b, |then, according to formula (4.60) [a,,b,]+[a,,b,]=[a, +a,, b +b,].

Definition 4.37. The prototype 4 of a fuzzy set B Y with a fuzzy mapping
H,: X xY —[0;1] is called the union of all fuzzy sets, the images of which at this

mapping belong to the fuzzy set B, i.e. they are subsets of B.
Let’s denote the image of the fuzzy set u, through A- 4 . Then, the condition

for determining the pre-image of a set can be written as follows:

sup min{u, (x), 1, (x, )< p15(y), Yy eY. (4.61)

xeX

It comes from inclusion 4-u, <Y .

The explicit expression for the prototype membership function is given by the
following theorem. For its wording, we will give the following sets:
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N ={(x,y)(x.y) e X <Y, 11,(x,)> 115 (»)},

X° :{x‘xeX,Nx i@}.
Theorem 4.6. In the given above notation, the fuzzy set 4 (the prototype of the
set B) is described by the following membership function:

inf , xeX°,
m,(x)= yENxﬂB(y)
LxeX\X".

It 1s easy to check that when image £, is clear, that is ¢ a normal display

@: X — Y and membership function

( )_ 1 ify=(ﬂ(x)»
#ol 2 YI710 for all other couples (x, ) € X x Y,

then, 1,(x)= s (p(x)). VxeX.

Conclusions

Fuzzy sets act as a generalization of the notion of a classical set in cases where
an element can belong to a set only to a certain extent. The theory of fuzzy sets
allows us to describe situations of uncertainty more adequately due to the
impossibility of clearly to describe the preferences or the set of permissible
alternatives.

Operations over fuzzy sets can be defined in different ways, depending on
specific tasks, provided that they are performed correctly in relation to distinct sets.

Fuzzy relations are an extension of the concept of binary relation to a class of
fuzzy sets. Their properties are substantiated by features of fuzzy sets and binary
relations.

The generalization principle is a way of expanding the scope of mapping to a
class of fuzzy sets.
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SELF-STUDY
Questions for assessment and self-assessment

1. What does the characteristic feature of the set mean?

2. Give a definition of a fuzzy set.

3. What is called a fuzzy set support?

4. What operations about fuzzy sets do you know?

5. How can be fuzzy set complements defined? Union and intersection of fuzzy
sets?

6. What explains the existence of several operations of union and intersection
of fuzzy sets?

7. What special operations with fuzzy sets do you know?

8. What is the sense of concentration and dilatation operations?

9. How is the Hamming distance calculated when considering a finite set?
Counting set? Set of continuum cardinality?

10. How do we calculate the Euclidean distance between sets?

11. What is the geometric meaning of the linear distance between sets?

12. What property characterizes the index of fuzzy sets? How is it calculated?

13. Does the index of fuzziness of the intersection (union) of sets depend on
the indices of fuzzy input sets?

14. Does the index of fuzzy set change as a result of concentration and
stretching operations?

15. Give the definition of the nearest classical set to this fuzzy?

16. What set is called the set of a -level for fuzzy set?

17. Formulate a theorem on decomposition of a fuzzy set in level sets.

18. Formulate a theorem on decomposition of fuzzy sets.

19. What is called a fuzzy relation?

20. How can fuzzy relations be given?

21. What mathematical operations can be applied to fuzzy relations?

22. What fuzzy relation are called reflexive (antireflexive)?

23. What fuzzy relations belong to symmetric, antisymmetric, asymmetric?

24. What fuzzy relation is called transitive? How are the various types of
transitivity of fuzzy relations interrelated?

25. What 1s the transitive closure of a fuzzy relation?

26. What features are taken into consideration to classify fuzzy relations?

27. Give a definition of the relation of pre-order, strict and non-strict order,
equivalence, similarity, similarity, differences, preferences. What relation properties
is this classification based on?
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28. What is the image, mapping of a fuzzy set?

29. Formulate the generalization principle regarding the display of fuzzy sets.
30. What is the image of the fuzzy set in normal mapping?

31. What is a fuzzy mapping?

32. How can the image of the fuzzy set be determined with fuzzy mapping?
33. What is a prototype of fuzzy set in classical mapping?

34. What is a prototype of fuzzy set in fuzzy mapping?

Hands-on practice

1. The following fuzzy sets are given:

Y= X2 X3 X4 Xs ‘x6 |x7 )
05 (04 |0,7 |08 [1 |1 [09 ~
p= 4 X2 X3 X4 Xs |x6 ‘x7 )
0 03 [04 [08 [0,7 [0,7 [0,9 °
1 2
——(x-3) +1Lifxe(0;6),
R G (0:6)
0,if x & (0;6);
0,ifx <0,

D: u, (x) = %x, if x 6(0;6),
I,if x > 6.

Will these sets be normal? Subnormal? Identify their supports.

2. Determine the intersection and union of sets: a) 4 and B, b) C and D from
task 1 (by three definitions).

3. Determine the complement of sets 4, C.

4. Perform operations of concentration and dilatation of sets B and D.
5. Decompose the fuzzy sets 4 and B (from Task 1) in the level sets.
6. Find the closest to sets 4, B, C, D of task 1 of classical sets.

7. Find the Hamming distance and Euclidean distance between sets: @) 4 and
B; b) Cand D.

8. Find the linear and quadratic indices of the fuzzy sets of B and D.
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9. Calculate the linear index of fuzzy sets, which membership function
pu(x)=1-(x- 1)2 , where x €[0; 2].

10. Give an example of a symmetrical and reflexive fuzzy relation.

11. Give an example of a transitive and reflexive fuzzy relation.

12. Using a matrix, define fuzzy relations: a) "approximately equal", b) "much
more", in a set of numbers from 1 to 6.

13. Find max min-, min max- and max-multiplicative compositions of fuzzy
relations R ta R,, which are given as follows:

1 05 045 1 08 0,4
R=(03 1 02], R,=103 1 0,2].
0l 05 1 1 1 1

14. What are the properties of each of the following fuzzy relations:

1 0 0,2 1 05 045

a) R=| 0 1 09|, b) R={03 1 02|,
0,2 09 1 1 1 0,4
0.5 0 1 1 05 045
c) R=/07 1 02|, d R=(03 1 02
020 0 0.7 1 1 04

15. Let the following sets be given: X ={x,, x,,x;, X,, X5, X, X, |,

Y = {yl, Vs y3}. Mapping ¢ : X — Y by the table, namely:

V1 )2 V3
X1 1 0 0
X, 0 1 0
X3 1 0 0
X4 0 1 0
Xs 1 0 0
X6 0 0 1
X7 0 0 1

Find the image ¢ (A4) of the set 4 when mapping o, if the set 4 is given as
follows:
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X1 ‘ X2 ‘ X3 ‘ X4 X5 ‘ X6 ‘ X7

0,5 0,4 10,7 08 ‘1 ‘1 0,9

A:

16. Let's have the following sets: Xz{xl,xz,x3,x4,x5,x6,x7} Y ={y. 0.0}
Determine the set ¢ (A4) for the mapping ¢ if the set 4 is given as follows:

A= X1 |XZ |X3 |X4 |X5 |x6 ‘x7
05 |04 0,7 |08 [1 |1 [09 ~

and fuzzy mapping ¢: X — Y, set by table:

V1 Y2 Y3
X 0,7 0,5 0

X3 0 1 0,9
X3 0,8 0,6 0,5
X4 0,7 0,3 0,9
Xs 1 0,7 0,6
X 0 0 1

X7 0,2 0,7 1
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SECTION 5§

DECISION-MAKING IN FUZZY SOURCE DATA

In this section you will

e study decision-making methods in the presence of fuzzy output data and
their application to solving of applied problems.

5.1 Task of achieving fuzzy goal (Bellman-Zadeh approach)

Let X be a universal set of alternatives, that is, a set of options, among which
MDP chooses. A fuzzy goal in the set X will be referred to some its fuzzy subsets.
Denote this subset as G. The fuzzy goal is described by the membership function
g : X —[0;1]. The higher the degree of membership of the alternative x to the fuzzy

set of goals 4, , the higher the value s (x), i.e. the higher the degree to which this

goal will be achieved, if you choose an alternative x as solution. Fuzzy constraints or
a set of admissible alternatives are also described by fuzzy subsets of the set X. We
denote them as C;, C,, ..., C,. We will assume that we know the functions of the
membership of these fuzzy sets.

To solve a problem means to achieve the goal and to satisfy the limitations.
Moreover, in such statement it is necessary to speak not only about achievement of
the goal, but about its realization at one or another degree. It is also necessary to take
into account the degree of implementation of restrictions. The essence of Bellman-
Zadeh approach to solving this problem is that the goal of decision-making and the
set of alternatives is considered to be an equilibrium of fuzzy subsets of some
universal set of alternatives. This allows to solve the problem in a relatively simple
manner. In particular, in the Bellman-Zadeh approach, the requirements of the task
are taken into account in the manner described below.

For example, let an alternative x provide the achievement of the goal (in other

words, corresponds to the goal) with the degree s (x) and satisfies the constraint (or

it is admissible) with the degree 1. (x) . Under such conditions, the fuzzy solution D,

to the task of achieving fuzzy goal is referred to the intersection of fuzzy sets of goals
and constraints, i.e. D=G()C. Thus, the solution of the problem of a fuzzy defined
goal also represents a fuzzy subset of the universal set of alternatives X. If the
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intersection of sets is determined by Rule 4.7 (see Section 4), then the membership
function of the solution g, will have the following form:

Hp (x) = min{NG (x)’ﬂc (x)} -

If there are several goals and constraints in the task, the fuzzy solution can be
described by the following membership function:

1y (x)= min{yG1 (x),..., U, (x), He, (x),-.., He (x)}

Example 5.1. Suppose we have such a universal set of alternatives:

X={.2.3,.., 10}. The set of goals and constraints is given in this set, namely:
G — "x should be close to 5" (fuzzy goal),

C, — "x should not be close to 4" (first constraint),
C, — "x should be close to 6" (second constraint).

Their membership functions are given by the table

1 2 3 4 5 6 7 8 9 10
us(x)| 0 o1 04 08 1 0,7 04 02 0 0
e (x)[03 06 09 1 08 07 05 03 02 0
#e(x) 02 04 06 07 09 1 08 06 04 02

In accordance with the Bellman-Zadeh approach, the membership function of
the fuzzy decision of the problem are the following values in the set X:

(12 3 4 5 6 7 8 910
up(x)|0 01 04 07 08 07 04 02 0 0

Obviously, such a solution is characterized by uncertainty, because we obtain
more than one alternative, some fuzzy set of alternatives. If the DM is not able to
process this type of decision, then we may recommend an alternative, which has the
highest degree of belonging to the fuzzy solution, that is

max /ip (¥)= max min{ug (x) i ()}

Such an alternative is called a maximization solution.
This is one of the most commonly used methods in the literature for choosing a
single alternative.
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In the example above, this solution will be number 5 since the degree of its
membership to the fuzzy solution is maximal.

Example 5.2. Solve the task of achieving a fuzzy goal, when the goal and
constraints are given by the following membership functions:

1 2 )
——(x—-3) +1,ifxe(0;6),
C: ,uG(x)z 9( ) ( )
0,if x ¢ (0;6);
lx,ifxe(O;6),
D: p.(x)=16
O,ifx¢(0;6).
Solving

To solve this problem, we will use the Bellman-Zadeh approach, i.e.

HMp (x) = min{,uG (x),,uC (x)} -

For convenience, we will draw the graphs of the membership functions of the
goal and constraints (see Figure 5.1).

e (X)

A )

U (X)

Fig. 5.1. Graphic interpretation of solving the problem of achieving a fuzzy
goal

Here, a thick line shows the membership function of the fuzzy solution
(decision) D. Let's describe it analytically. To do so we find the points of intersection

172



of the graphs of the membership functions of the goal and its constraints by making
the following equation:

—l x=3)P} +1=—x.
He-3)

Having solved it, we obtain the coordinates of two points of the cross section:
x1 =0 and x, =4,5. Now we can write the membership function of the solution in an
analytic form, 1.e.

%x, if xe(O; 4,5),

Hp (x) = —%(x—3)2 +1, if xe(4,5; 6),

0 1in other case.

The maximization solution is an alternative: x, =4,5, and the degree of its
membership to the fuzzy solution is 1, (x) =0,75.

The above-examined situation of decision-making was characterized by the
fact that both the goal and the constraints were subsets of the same universal set. A
more universal statement may be the other statement of the problem, when the fuzzy
goal and constraint are subsets of the different universal sets. Let’s consider it.

Suppose X is a universal set of alternatives as it was mentioned above and an
image is mapped as ¢ : X — Y, which value (the set ¥ elements) can be understood as

the reaction of some system to output x € X or as some estimates of the choice of the
appropriate alternatives. The map ¢ is considered unambiguous.

In this case, a fuzzy goal is described in the form of a fuzzy subset of the
universal set of reactions (estimates) of Y, that is, the membership function

UeY —)[O; 1], and constraints are fuzzy subsets of the initial set X which
membership functions He, :X—)[O; 1], i=12,...,m.

Here, the problem is reduced to the first statement (that is, to the case when the
goal serves as a fuzzy subset of the set X). Let's describe it.
We define the fuzzy set of state alternatives zi that ensure the achievement of

the given goal . This set is a prototype of a fuzzy set when displaying ¢, 1.e.

After that, the original task will be equivalent to the task of achieving a fuzzy
goal from the perspective of the same fuzzy constraints.

Definition 5.1. Let G and C be fuzzy sets of goals (in the set of Y) and
constraints (in the set of X). The fuzzy solution of the goal G goal with the constraints
C is called the maximal set D, which has the following properties:
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1. Dc C (the solution is an admissible alternative);

2. go(D)c G (achievement of fuzzy goal), where (p(D) is the image of the set

D with fuzzy mapping @.

Provided the fuzzy representation of the set of alternatives in the set of
reactions or estimates is given, the fuzzy solution can be found, using the definition

of the prototype given in the previous Section.

p, X XY — [0; 1]. Each alternative of this mapping matches its fuzzy rating. Fuzzy

constraints are described by membership function u.(x). By Theorem 4.6, the

Let X be a universal set of alternatives, Y is a universal set of estimates, and
also gives a fuzzy mapping of X to

prototype of the set D is defined as follows:

or

problem it is possible, for example, to choose the one which degree of membership
My, 1s maximal to the fuzzy solution, that is, the alternative that implements the value

max u,,(x). However, this choice cannot be considered sufficiently substantiated.
xeX

N={x»)| (x.r) € X<V, 1, (x,9)> 1 (»)}
N, ={y|re?, (x.y)e N},
on{x‘xeX, N, i@},

inf pg(v), xeX,

Hp (x) = {yENX

, xeXx\Xx°
Now the fuzzy solution is described by the following membership function:

Kp (x): min{,uﬁ (x), He (x) }»

min{,uc(x), inf u, (x)}, xeX,’

YeN,

pe(x), xe X\X°.

If it is necessary to choose a concrete alternative, then for solution of the

There are also other ways of defining a single alternative
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Thus, the Bellman-Zadeh approach is based on the possibility of symmetric
description of the sets of goals and constraints in the form of fuzzy subsets of one and
the same universal set. This allows you to solve the problem in a rather simple way.
At the same time, not every decision task can be formulated in this way.

Remark: Occasionally, the importance of goal and constraints is taken into
account by weighting factors. Then the solution to the problem is described as
follows:

pp(x)= min{ﬂﬂﬂq (x)»-"»/lnﬂc,, (%), ViHe, (x)»'--avmﬂcm (x)},

where A,,..,4,,v,...v, weighted coefficients of objective functions and

m

constraints, respectively.
This approach cannot be considered sufficiently substantiated.

5.2 Fuzzy mathematical programming problems and their classification

The standard problem of mathematical programming is usually a search for the
maximum (or minimum) of a given function in a given set of admissible alternatives,
which is described by the system of inequalities. Example,

£(x) - max,
gpl.(x)S 0,i=1,...,m,
xelX,

where X is a set of alternatives given, f: X — R'and ®; ‘X >R, i=1,..,m are

given functions.

At the same time, when simulating real problems, the researcher can often have
only fuzzy descriptions of the functions f and ¢ or their parameters, the set of
alternatives X cannot be described clearly. Such a representation of the decision-
making situation can, for example, reflect the inadequacy of the available information
or to be a form of an approximate description sufficient for solving the problem.

Moreover, in some cases the precisely defined set of constraints (admissible
alternatives) can only be approximate to the real situation in the sense that in the
original problem alternatives beyond the set of constraints may not be inadmissible,
but are only to some extent less desirable for DM. For example, let’s recall a situation
where the set of acceptable alternatives is a combination of all sorts of ways of
distributing resources that the DM is going to invest in this operation. In this case, it
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1s impractical to enter a clear limit of the set of permissible alternatives (distributions)
in advance, since it may happen that the allocation of resources which is under this is
threshold will give an effect outweighting "less" its desirability for the DM. Thus, a
fuzzy description may prove to be more adequate to reality than arbitrarily accepted
clear in some sense limitations.

Forms of fuzzy description of information may be different. Hence, this causes
differences in mathematical formulations of problems of fuzzy mathematical
programming (FMP). Some of them have been grouped in 5 types of tasks described
below [27].

Task 1. Maximization of a given classical function on a fuzzy set of
alternatives. That is, we have the following task:

£(x) > max,

xelX,
where f: X > R', u.:X —[0;1].
Let's describe approaches to solving this problem.
1. Reducing the task to a fuzzy goal.
For this purpose, the objective function is standardized as follows:

2 fx)
flx)= sup  f(x)

Xesupp e

— max.

The resulting function f(x) is considered to be a function of belonging to the

fuzzy goal. Therefore, the value f (x) will be the degree to which the goal is

achieved when choosing an alternative xe€ X . This allows to apply the Bellman-
Zadeh approach to solving this problem directly. The choice of an alternative is
considered rational when the alternative has maximum degree of membership of the
fuzzy solution, that is, implements the following value:

maxmin{u (x), £ (x)}.

2. Reducing the task to the problem of multi-criteria optimization.

In this approach, the fact that it is necessary to achieve the maximum value of
the function and the maximal membership of the solution of the problem to the set of
admissible alternatives is taken into account. Thus, we formulate such a multicriteria
problem:
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£(x)— max,
e (x)— max,
xelX

This approach will be further discussed in more detail below.

Task II. This is a fuzzy version of the standard problem of mathematical
programming.

It can be obtained if you "mitigate" constraints that is, assume the possibility of
some of their violation in the standard problem of mathematical programming,
namely:

f(x) — max,

¢(x)<0,
xe X.

Besides, instead of maximizing the function f (x), one can strive to achieve a
fixed value of this function. Moreover, a different deviation of f (x) of this value
should be assigned different degrees of admissibility, For example, the larger the
deviation, the lower the degree of its admissibility. In this case, the fuzzy problem
can be written as following:

f(x)2z,
o(x)<0,
xelX,

where the symbol ~ means the fuzziness of the corresponding inequalities.

We describe one of the ways of formalizing such tasks.

Assume that z, is a given value of the objective function f'(x), the achievement
of which 1s considered sufficient for the purpose of decision-making, and there are
(given to DM) two limit levels a and b, and inequality: f (x)< z, —a signifies a
strong violation of the condition: f(x)>z,, a ¢(x)>b is a strong violation
conditions: ¢(x)<0. Then you can write sets of goals and constraints using the

following membership functions:

0, f(x)S z. —da,
pe(x)=1ulx,a), z —a< f(x)<z.,
L, flx)>z,
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0, o(x)>b,
pe(x)=1v(x,b), 0<gp(x)<b,
1, o(x)<o0,

where z:X —[0;1] and v:X —[0;1] is some of the functions that describe the

extent to which the inequalities are implemented from the point of view of DM and
taking into account the specific task of decision-making.

Thus, the original problem will be formulated in the form of the task of
achieving a fuzzy goal, to which the Bellman-Zadeh approach can be applied, or can
be reduced to the multi-criterion optimization problem of this kind:

e (x) — max,
e (x)— max,
xeX

More detailed description of the methods for solving this problem will be
discussed below (Section 5.3).

Task III. 1t is given the vaguely described function that needs to be
"maximized", that is, a mapping g, :X xR' —[0;1], where X is a universal set of

alternatives, R' is a numerical axis. In this case, the function My (x,,7) for each fixed
X, € X 1s a fuzzy evaluation of the result of the choice of alternative x, (fuzzy
assessment of the alternative x,) or a fuzzy reaction of the system to control x,. The
fuzzy set of admissible alternatives is also given as x4 : X — [O; 1] :

Many classes of tasks of fuzzy mathematical programming are described in
such a statement. Methods of their solution are discussed in the monograph [25].

Task IV. 1t is specified the usual objective function f: X — R' and constraint
system: ¢@,(x)<b,, i = 1, .., m. Moreover, the parameters in the description of

functions ¢, (x) are given vaguely in the form of fuzzy sets, in particular.

For example, in the linear case (X =R”), the functions ¢,(x) have the

following form:
¢i(x):iaifx.j’ 1= 1,...,m,
i=1

and each of the parameters g, and b are described by the corresponding fuzzy set

Hi; (aij )» Vi (bi)'
Several ways of solving such problems are developed.
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One of them is the method of modal values. Its essence is that the fuzzy
parameter is replaced by its modal value, and then the scalar problem is solved. The
degree of membership of the resulting solution is calculated as a minimum among the
degrees of membership of the parameters of modal values. However, this method can
be used when the membership function of the parameters is unimodal, that is, each of
them reaches its maximum value only at one point. If this requirement is not met,
then the question of which of the values f the parameters, having the highest degree
of membership to be chosen, remains open.

Another method of solving is to construct the original problem bringing to
Task I type.

There are also methods based on the construction of the original problem to the
problem of multi-criteria optimization [6].

Task V. In its condition, the parameters of constraints functions and parameters
of the objective function constraints are not clearly described.

One of the approaches to solving such tasks is its reduction to the Task III type.

5.3 Problems of mathematical programming with fuzzy constraints

Let a function @: X — R' is set, the values of which evaluate the results of the
choice of alternatives, and a fuzzy subset of acceptable alternatives of alternatives of
X po: X —)[O; 1] are given in the universal set. It is worthwhile to "maximize" a

function ¢ 1n a certain sense in a fuzzy set . , that is

¢(x) - max,

xeC.

This means that by "maximizing" one can understand the choice of a fuzzy
subset (fuzzy solution), which corresponds better in some sense to the fuzzy value of
the function ¢. It is clear the presentation of the solving in this form is expedient only
when it is meaningfully perceived by the DM.

If DM does not perceive a fuzzy description of the problem, then by
"maximizing" the function ¢ one should understand the rational choice of a concrete
alternative or a set of alternatives.

Herein, rationality means that when choosing a particular alternative, DM
should proceed from the need for a compromise between the desire to get the highest
value of function ¢ and the desire to give preference to an acceptable alternative that
has the greatest degree of belonging to the set of permissible alternatives.
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We consider two approaches to the solution of this problems. Their
justification is given in the monograph [27].

5.3.1 Solution 1 based on the level sets of fuzzy set of constraints

This approach is that the initial problem of fuzzy mathematical programming is
formulated in the form of a set of classical problems of maximizing a function ¢ in
all possible level sets of a set of admissible alternatives. If the alternative x, € X is a
solution of the problem: ¢(x)—> max, in the A-level set, then it is natural to assume

that its degree of belonging to the fuzzy set of solutions is at least A.
Thus, taking all possible values A, we obtain the fuzzy solution membership
function.
Let's describe this approach in more detail.
Let's denote the A- level set of the fuzzy set of admissible alternatives x4 . by
C,, that is,
C,= {x ‘ X € X,,uc(x)Z/I}.

For all numbers 4 > 0, provided that C, # <, we introduce such a set:

N(/I):{ X

x € X, p(x)=sup (/)(X')}-

x'eC,

This is the set of solutions of the ordinary problem of maximizing the function
@ in the set of alternatives, the degree of membership of which to the set of
admissible alternatives of the initial FMP problem is not less than A.

To construct the fuzzy solution membership function, it is necessary to assign
to each alternative xe X the degree of belonging to this set. We do this in the
following way: the degree of belonging to the alternative x, of an fuzzy set of
solutions is the maximum (more precisely, the upper bound) of the numbers 4 for
which the corresponding set N (1) contains an alternative x,.

Definition 5.2. The solution of the FMP problem will be referred to as a fuzzy
subset, which 1s described by such membership function:

,ul(x): sup 4. (5.1)

A:xeN(1)

Let's call it solution of type 1.
Statement 5.1 If x esupp z'(x), then z'(x)= z.(x)
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Proof
a) When xesuppu'(x) and u'(x)> g, then sup u'(x)>u.(x). This

AxeN(4)
means that there is number A that satisfies the conditions: 4 > s, (x),and xe N (/T )

Then, according to the definition of a fuzzy solutionx € C;, then x (x)z A , that is,

the set: 4> e (x) , 1s impossible.

b) If x esupp ' (x) and p'(x)< u.(x), that is:

sup ' (x)< pe(x)=v, (5.2)

AxeN(4)
then, for any number A which satisfies the condition xe N(A), the inclusions
xeC, cC, are fulfilled, in addition, x ¢ N(1), since otherwise it follows from (5.2)

that v < v, hence

o(x) < sup p(x') < sup p(x') = ().

x'eC, ¥'eC,
Thus, the statement has been proved.
Taking into account Statement 5.1 and Definition 5.2, the membership function
of the solution of type 1 can be written in the following form:

u-(x), if xe| [N(A),
PG ESVIO .
0 1in other case,

thus,
supp ' (x)= UN(4).

A>0

We will say that solution 1 exists, if lul(x);t 0 in the set X, that is, if only there

is a number that A> 0 for which N(1)=@.
A fuzzy solution corresponds to a fuzzy "maximum" value yw(r) of the

function (o(x). It is an image of a fuzzy set ,ul(x) under the mapping ¢ and in
accordance with Definition 4.36, it looks like that:

#,(r)= sup u'(x)= sup sup 2, (54)

xep™ (r) xep™!(r)xeN(2)

where

o7 (r)={xxe X.0(x)=r}.
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If there is no solution of type I in the FMP problem, then we can use the
g-optimal fuzzy solution, which for a given number &> 0, can be defined as follows:

u(x)= sup 2, (5.5)
AxeN(e,A)
where N(e,A)= {x xeX,p(x)> sup p(x') - g}, (5.6)
x'eC,

and a fuzzy value of the function ¢ corresponding to it is described by the following
membership function:

py(x)= sup s (x). (5.7)
xep™!(r)
The boundary u,, when &—0, can be considered as the upper fuzzy
boundary of the function ¢ on the fuzzy set u,..
The concept of s-optimal solution can be useful not only when ' (x) =0 for

all alternativesx € X, but also when N(1)= @ for certain values of A from the
interval [0; 1].
Consider the properties of solution 1.

1. For any number of ry, provided by the condition that u,(ry) > 0, there is an
alternative: X € X, for which ¢(¥)=r; and ¥ € N(4)for a value A > 0, that s,

1, €Supp A, :{U N(/I)}ﬂ(p_l(ro);t@. (5.8)

A>0

Proof

According to the definition g, () and the set supp x, on the left side of

expression (5.8), we obtain the following result:

sup sup 4 >0,
xega*l(ro) /'t:xEN(/'L)
that is, there is an alternative x'e gp_l(ro) , for which there will be fair inequality:

sup A >0 and this, in its turn, means that there i1s a number 4> 0 for which the
Ax'eN(A)

alternative is x'e N(A). From here we obtain the inclusion x'e ™ (1) N(4),

which proves the truth of the expression (5.8).
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2.1f 1, esupp 4, then sup ,ul(x): sup L (x)
xep™(r.) xep™(r.)

Proof

Taking into account the definition of a fuzzy solution, membership functions
#'(x) and . (x) related by inequality: 4'(x)< u.(x) for each alternative xe X,

so this inequality will also be true:

sup ,ul(x)ﬁ sup yc(x).

xego_l(rc) xego_l(ro)

Suppose that for a certain number 7, € supp 4, it holds as strict. Then with

respect to some alternative x, € ¢~ (ro) , the inequality:
H(x) < pe (%)) *)

is performed for all alternatives x € ¢ (ro) :

Furthermore, as 7, € supp y,, according to the property 1, there is an
alternative x'e X and a number: A>0, for which the valid statement is true:
x' e(p‘l(ro)ﬂN(/i). Sincex’ € N(/l)and A> 0, then taking into account the
definition of the solution, s'(x")= - (x")>2 and thus, according to the inequality
™) uc (xo) >A, that is x,€C,. And from the perspective that, x'e N (/1)
andx e ' (1), thatis ¢(x")=r,, we have such equality:

o(x')=supp(x)=r,=0(x,),

xeC;

ie. x,e¢'(r,). Hence x,eN(A), and in  accordance  with

Statement 5.1, 2/’ (xo) =l (xo), which contradicts to the inequality (*).
Property 2 has been proved.

3. The function 4, (r) monotonically decreases in the set supp .

Proof
It is enough to show that s, (1)< u,(r,) for any values r,r, € supp , ,

satisfying the inequality: 7 >r,.
Assume the opposite, that is, for some numbers 7 >r, from the set supp x,the

inequality s, (r)> #,(r,) is performed. Then, according to the Property 2
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sup 4 (x)> sup pe(x),

xe¢_%q) xewA(@)

that is, there is an alternative x, € ¢ (7;) that satisfies such inequality:

He(x)> pe(x), (**)

for all the alternatives x € X .
Furtherore, since 7, € supp u,,then taking into account the given Property 1,

there is an alternative x, €¢ ' (r,)and the number A>0 corresponding to the

following condition: x, € N(4), that is r, =¢(x,) =supe(x)

xeC,
Besides, from here and the inequality (**) it follows that x, € C, , and that is
why
ry=¢(x,)=supp(x)2p(x) =7,

xeCA

that is r, > 7;, and this contradicts the assumption that 7 > r,.

Property 3 has been proved.

So, the function g, (r) 1s described in such a way that its value for a particular

number » € R' is the maximum degree of belonging of the alternative x to the set
#(x), within the framework of which the function ¢(x)acquires value 7.

As it has been proved in Property 3, function y(p(r) decreases in the set
supp 4, monotonically. This means, in particular, that within the set X there is no
alternatives for which the inequalities . (x)> yw(x)>0 and ¢(x)>r would be

fulfilled at the same time, that is, there 1s no such element x € X that should have
been greater than g, (r) the degree of membership u (x) and would provide more r

value than the maximized function.

If a fuzzy solution is unacceptable for DM and it is necessary to choose a
specific alternative x € X, then this choice should rely not only on the degree of
belonging of this alternative to the fuzzy set u (x), but also on the corresponding

value of the function (p(x). As follows from Property 3, the larger the value of r, the
smaller the value 1, (x) of the degree of belonging of that alternative x that achieves
this value. Under these conditions, the DM must first turn to the fuzzy maximum

value (r) of the function ¢(x) and select a pair (ro, 4, (ro)) that corresponds to its

desire to obtain as large a value ry, and at the same time the highest degree of its
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membership in the set u, (r) After having chosen such a pair, it is appropriate to

stop on such an alternative x, € ¢ (ro) that has the greatest degree of belonging to
the set u.(x) (or alternative, which in a sense is close to x).

There are two main disadvantages of this approach.

Firstly, this solution does not clearly take into account the need for a
compromise between the values of the maximized function and the values of the
degree of belonging of the alternative to the set of admissible solutions.

Secondly, it is complicated for calculation.

If the membership function is continuous, then the application of this approach
requires consideration of an infinite number of tasks, since the number of sets of the
level will be infinite. However, in the case of its practical use, it will suffice to
consider a finite set of tasks for sets of levels defined by experts or DM.

Let's consider the application of the described approach for the linear problem
of FMP.

Example 5.3. Solve this task of fuzzy mathematical programming:

£ (x,x,)=2x, +5x, > max,
2x, +3x, 26,

x, +6x, <18,

2x, +3x, <= 12,

X, X, 20,
when fuzzy constraints are described by such a membership function:

0, if 2x, +3x, 214,
0,5, if 13<2x, +3x, <14,
0,7, if 12<2x, +3x, <13,
1, if 2x, +3x, <12.

p(x)=

Solving

Let's apply a method of expansion on level sets. Taking into account the form
of the membership function of constraints, it is necessary to solve tasks on such sets
of level: 4,=1; 1,=0,7; and 43 =0,5.

At the level: A; = 1, the task acquires the following form:
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f(xl,xz):bc1 + 5x, = max
2x, +3x, 26,
x, +6x, <18,
2x; +3x, <12,

X%, 20.
When 4, = 0,7, then we have the following task:

£, x,) = 2x, +5x, — max
2x,+3x, 26,
x; +6x, <18,
2x, +3x, <13,

X, %, 2 0.
If level 4;=0,5, the task will be written as follows:

f(xl,xz): 2x, + 5x, = max
2x,+3x, 26,

x; +6x, <18,

2x, +3x, <14,

X, %, 2 0.

The formulated tasks are linear programming problems, and for their solution,
the simplex method can be used, for example, or since each of them has only two
variables, it is possible to solve them graphically.

With this purpose, we represent the sets of fuzzy level set of admissible
alternatives on the coordinate plane (see Figure 5.2).

Here, the ABCDE polygon corresponds to the level of the set: A4, = 1; 4,
BCDE, to level of the set: A, =0,7; A, BCDE, -level of the set: 4;=0,5.

The solution of the problem at the set of level 1 will be the point A. We find its
coordinates from the following system of equations:

x; +6x, =18,
2x, +3x, =12.

We get the following result: x, =2,x, = 2%.
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The value of the objective function at this point is f (A) = 17%.

X
Ta

Fig. 5.2. Graphic interpretation solving of the fuzzy mathematical
programming problem (Example 5.2)

Similarly, we solve the tasks at sets of 0.7 and 0.5 level. As a result, we obtain
the point 4;, which has the following coordinates: x, = 2%, X, = 23, and the point 4,

(its coordinates: X, =31, X, :23). The wvalues of the objective function

corresponding to these points are: f (Al) = 18% , f (A2 ) = 18% :

Let's describe the fuzzy solution of the problem by gathering the received
results into a table.

X1 X2 f A
2 2— 17l 1
3 3
2z 2é 18l 0,7
3 9 9
3l 2i 18— 0,5
3 9
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We would like to remind that when membership functions are continuous, then
it is necessary to solve tasks on an infinite number of sets of levels. But in practice it
is enough to define several levels for consideration.

5.3.2 Solution 2 based on finding set of effective alternatives. Equivalence of
solutions of both types

This approach is characterized by the fact that, from the very beginning, the
desire of DM to choose an alternative to obtain as much as possible maximized
function and the membership function of the fuzzy set of admissible alternatives is
explicitly taken into account.

With the same purpose, only the alternatives which are called efficient after
Pareto in multicriteria optimization tasks are to be used in solving this task.

We would like to remind that an alternative x, € X 1is called effective in two
functions ¢(x) and pu.(x) when for any other alternative x'e X from the

inequalities: @(x')2¢(x,) and . (x")= s (x,), follows from the validity of the

following equations: ¢(x')=¢(x,) and u.(x')= g (x,).

In other words, if x, is an effective alternative for functions ¢(x) and s (x) in
the set X, then by choosing any alternative, it is not possible to increase, in
comparison with ¢(x0) and g, (xo) , the value of one function without diminishing
the value of another.

In the task of making decisions when there are several criteria, the set of
effective alternatives serves as a set of proposed options for rational choice being
implemented by DM.

Consequently, let P be the set of all effective alternatives for functions gp(x)
and 4 (x) which are considered in the task of fuzzy mathematical programming.

Definition 5.3. The solution of the DM problem is called the fuzzy set whose
membership function is

if P
/f(x)—{“ clx), if xeh, (5.9)
0, in other case.

We will call it as a solution of type 2.

In this definition, there is a clear assumption that while making a decision, a
DM should use only alternatives to the universal set X, that are at the same time
unbending values of the functions ¢(x) and . (x).
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Corresponding to solution 2, the fuzzy value of the function ¢(x) is written as
follows:

,u;(r): sup yz(x), reR'. (5.10)

xeg™(r)

Let's establish the relationship between the solutions of both types.
Theorem 5.1 [27]. If the set X is compact, the function ¢(x) is continuous, and

the function g (x) is semi-continuous on the top of the set X, then, for each value

r € R' the following equality holds:
#y(r) = sy (r). (5.11)

Proof
Note, at first, that in this theorem, the set ¢ (r) is closed in X relatively to

each number r e R' and thus, for Ve R' an alternative x, €@~ (r) can be found

which satisfies the following equality:

sup ' (x)=p'(x,). (5.12)

xengl(r)

. 1 . . 1 2
Assume that there is a number 7, € R* for which either z, (,)> 1, (r,) or

sup 4'(x)> sup u’(x). (5.13)

xengl(ro) xego*l(ro)

As a consequence of equality (5.12) and in the conditions of the theorem, the
expression (5.13) takes on the following form:

te(x,)= max p.(x)= sup g'(x)>supp’(x). (5.14)

xewil(VO) xego*l(ro)

Therefore,
yc(x0)>y2(x), Vxego‘l(ro). (5.15)

The following situations are possible:

a) If 4*(x)>0 for some element xeg¢'(r,), then ’°(x,)=u.(x), and
o(x,)=¢(x)=r,, #-(x))>u(x) . But this contradicts the effectiveness of the
alternative x for the functions (p(x) He (x) and g, (x) :
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b) If 1*(x)=0, Vxeg '(r,), then no alternative is effective, that is, for any

alternative xe g™ (ro) , there is another alternative x'€ X that meets the following
conditions:

(p(x)Z(p(x’)zro, U (x)>,uc(x’) (5.16)
or

go(x)>¢)(x'):r0, ,uc(x)z,uc(x'). (5.17)
But if x'e¢'(r)(|N(2) for some number A>0, then on the basis of

conditions (5.17) we conclude that x € C, . Thus

p(x)<r,=¢(x'),
and this contradicts the inequalities (5.17).
With respect to the conditions (5.16), they do not have the place for an

alternative x' = x, because x € ¢ (r,) and g (x,)= n131(x) e (x).
xep (R

From here ,u; (r) = ,u; (r), Vr e R'. Hence, the theorem has been proved.

Given the definition of 5.3, the implementation of the solution of type 2 is
reduced to finding the set of effective alternatives of functions ¢(x) and . (x).
However, this set includes, in the general case, an infinite number of elements, and its
construction is a rather complex task.

However, in order to obtain such a solution in a particular task, it is sufficient
that a finite number of effective alternatives, uniformly selected from the set P, have
been determined.

To find them, you can use the following property (see Section 3, Theorem 3.1):

If there are numbers v,,v, (v,>0, v, >0, v,+v,=1), for which the
alternative x, ensures the achievement of the maximum of the function
F(x)=vo(x)+v,u-(x) in the set X, then this alternative is effective for the
objective functions ¢(x) and . (x).

Thus, by providing various positive values of the weighted functional
coefficients go(x) and u, (x), and maximizing the corresponding functions F(x) , it is
possible to determine any necessary number of effective alternatives.

The alternatives, obtained along with the relative values of functions ¢(x)and
o (x), are transferred to the DM who makes the final choice from their subjective
representations (or using information not taken into account in this mathematical
model) about the relative importance of the values of functions ¢(x)and . (x).
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5.4 Decision-making when fuzzy relation of preferences is given in a set of
alternatives

Investigating a real situation or process in order to make a rational decision, it
is natural first to identify the set of all permissible solutions or alternatives.

Depending on the quality of information we have, this set can be described
with varying degrees of clarity. Let, for example, have some universal set of
alternatives X and an fuzzy description of its subset of admissible alternatives s (x).

The value of the function u. describes the extent to which the appropriate

alternatives in the given task are admissible.
If in addition to this function, there i1s no other information about the
investigated alternative, then it is rational to choose some alternative from the

following set:
XP ={x

In other words, it is advisable to choose an arbitrary alternative from those with
the highest degree of admissibility, since there is no reason to give preference to
others. When introduced into the model of additional information rational, there may

xelkX, yc(x):sup yc(y)}.

yeX

be the choice of alternatives from any subset of the set X or any alternatives that do
not belong to this set. It is possible that this information may serve as the basis for
identifying a single, the best of all alternative.

Information about a real situation or process, guided by the preferences of one
alternative over another, can be expressed in different ways. In the previous sections
we have already considered instances when it was presented in the form of utility
functions or described by numerical inequalities, but this method of description is not
always possible. More universal can be considered to be the presentation of
information in the form of preferences to the set of alternatives, in particular in the
form of binary relations (this case was discussed in Section 2), but they can not
always be clearly defined. In other words, sometimes a more precise model of the
situation will be a description of the preferences in the form of fuzzy relations, that is,
when they appear only to some extent. The ways of making decisions under such
conditions will be discussed below.
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5.4.1 Fuzzy relation of preferences and their properties

Definition 5.3. Let X' be a given set of alternatives. The fuzzy relation of non-
strict preference (FRP) in the set X will be referred to as any reflexive relation given
in it.

This relation is described by the membership function: s, : X x X — [0;1],
which is reflexive, i.e. u,(x,x)=1, Vxe X .

If up is the fuzzy preference relation in the set X, then for any pair of
alternatives x,ye X the value u,(x,y) represents the measure of the
implementation of the preference "x is not worse than y", or x > y. From the fact that
tg(x,y)=0, follows from one of two statements: either y =x or x and y are not

comparable with each other to a positive degree. Reflexivity of this relation reflects
the fact that any alternative is not worse than itself.

The fuzzy relation of preference given in the set X uniquely sets out three
corresponding fuzzy relations:

— indifference Rl(ﬂfg);
— quasi-equivalence Re(,u;);

—  strict preference R® (,u}g).

These relations will be used to identify and analyze the properties of non-
dominating alternatives in decision-making tasks.
By analogy with the usual relations, they can be defined as follows:

R =(xxx\RUR'IJ(RNR™).
R =R\R',
R°=ROR",
where R is the inverse to R relation, which is described by a membership function:

Mo (6 y)=pplx ) V(xy)e XxX.

Using the definition of union, intersection and fuzzy sets difference, we obtain
the following expressions to describe the membership functions of these relations.

1. Fuzzy relation of indifference

pi(x, y) = max{l - max{up (x, »), s (v, %)} min{ug (x, ), 1 (v, %)} =
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= max {min {1 -z, (x, 7)1 gt (v,%)},min{ g1, (x, ), 115 (%)}
2. Fuzzy relation of quasi-equivalence

p (e, ) = min{ug (x, ), g (v,%)}

3. Fuzzy relation of strict preference

S _ ,uR(x,y)—,uR(y,x), if ;uR(xay)ZluR(yax)a
/JR()C, )_ .
0, if 42, (3, ) < 1 (¥, ).

The meaning of these relationships can be explained by the example given
below.
Example 5.4 (classical relation of preference). There are n functions

fi X —> R',i=1,...,n given in the set X. Let’s assign to the set X the relation of
the preference R as follows: xRy < fi(x)> fi(y), V i=1,...n.

It is easy to notice that membership function of the relation R looks like as
following:

Lif £,(x)= f/(), Vi=Ln,
0 1n other case.

/JR(X,y)Z{

Note that in this relation, the preferences in the set X can be alternatives that

. -1 . .
cannot be compared, i.e. RUR™ # X xX , and there are alternatives x, y, for which

the condition (x YV ) ¢ RUR™ 1s fulfilled. For example, alternatives x, y, for which
[0z f0) izi g LE<L0)

Given the above definition,

Lif £,(¥)= £ (). ¥i=Ln

0 1in other case.

L (X, ) ={

It should be emphasized that alternatives, which are not dominated in relation
to this relation of preference, are called effective or optimal, according to Pareto, for
functions f;(x), i=1,2,..,n.

Now let's consider some properties of fuzzy relations u§ and ;.

I. Fuzzy relations x4 and uj are reflexive and symmetric.
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Indeed, 5 (x,x)= pep(x,x) = ptp(x,x) =1 since the original relation s, is
reflexive. The symmetry of these relations follows from their definitions.

IL. The relation g is anti-reflexive and anti-symmetric.

Really, u5(x,x)=0 since the output IRP is reflexive, that is u,(x,x)=1,
Vxe X

Let u5(x,y)>0, thatis s, (x,y)— £z (y,x)>0, then 3 (y,x)=0, and this is

an evidence of the antisymmetry of this relation.
Now let's show that when the output IRP 4, in the set X belongs to the

transitive one, then the fuzzy relations ¢ and 4 are also transitive.
Theorem 5.2. If the IRP x4, in the set X is transitive, then the corresponding

fuzzy relation x5 will also be transitive.
It is necessary to note that from this theorem and from the above investigated
properties of the relation x5, it follows that under the conditions of the theorem it is a

fuzzy relation of equivalence (reflexive, symmetric, transitive).

Proof
Assume that under the conditions of the theorem, the relation pj is not
transitive. In other words, alternatives x, y,z € X can be found for which there will

be fair the following inequality:
wi (x,p) <min {5 (x%,2), 15 (2,0)} - (5.18)

Assume now that g, (x, y)z Up (y,x), then from the definition of the relation

Uy we draw the conclusion: g, (x, y) = yR( y,x). Using this equality, we write the

inequality (5.18) in this form:
1 (v,) < mindue (v, 2), 15 (2, ). (5.19)
Since the relation 45 is symmetric, then inequality (5.19)
(v, 2) < g (3, 2),
15 (2,%) < g (2, %),

that is min{ug (7, 2), 5 (z,x)} < minfgeg (v, 2), g1 2,%)),
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And min{,u; (v,2), 8 (z,x)}ﬁ min{,uR (v,2), 1tz (Z,x)} which contradicts the
condition of the transitivity of the original relation at which
(%)= max min{,uR (x,2), 1y (z,y)}

The case, when (y, x) > U (x, y), is proved in the same way.

It is possible to prove a similar statement for the relation of the strict preference
Hy -

Theorem 5.3. If the fuzzy relation of the preference x4, in the set X is

transitive, then the corresponding fuzzy relation of the strict preference x; will also

be transitive.

Proof

Assume that under the conditions of this theorem, the relation g is not
transitive. This means that there are alternatives x, y,z € X for which such inequality

1s true:
s (% y) <min{ g (x.2), 413 (2.)} (5.20)

Since 1 (x,y)>0, Vx,yeX, then
ﬂg(X,Z):,UR(X,Z)_,UR(Z,X)>O, (521)

13 (2,9) = 1 (2,9) = 11z (¥,2) > 0. (5.22)

Consider two cases.

a) Let 1, (x, y) < Up ( y,x), then, given the transitivity of the relation #&, we

can write the following inequality as:
pp (15 %) 2 1 (x,y) 2 min{ gy (x,2), 11 (2,3)} - (5.23)

In addition, from the transitivity of the relation p, and inequality (5.21) it
follows that

U (x,z) > Uy (Z,x) > min{,uR (z,y),,uR (y,x)} : (5.24)

Taking into account the relations (5.23) and (5.24), we come to the following
conclusion:
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y7s (x,z)zmin{yR (z,y),yR (x,z)}, (5.25)
That is
Hp (x,z)>,uR (z,y), (5.26)

and from (5.23) it follows that
M (X3)> 11y (2,1). (5.27)
Further, since the relation g, is transitive, then
He(v,2) 2 min{ s (1,%), 1 (2,)} 2 min{ s (x, ), 44 (2,)}

Taking into account this inequality and the relation (5.27), we conclude that
Uy ( y,z) > [ (z, y) , and this contradicts the statement (5.22).

Thus, we see that it follows from the condition (5.20) that it is impossible to
perform such inequality:

H (%) < pap (,%).
b) Suppose now that 2, (X, 1) > 2, (,x), then
H (% 3) = (%, 3) = 1 (9,%) > 0,
and the inequality (5.20) can be written as follows:

(%) =t (v,x) < min {[ 42, (x,2) = 42 (2,%) |, [ 4t (2 0) = 1 (2) ]} (5.28)

Next, assume that g, (y,Z) 2 U (y,X) , then the function g, (y,z) n
expression (5.28) can be replaced by £, (y,x), that is

Hp (xﬂy)_:uR (y,x) < min{[ﬂR (x,Z) _ILIR(Z’x):|7|:ILlR(Z’y) — Hg (y,x)]} . (5.29)

When added to both parts of this inequality Hy ( y,x), this expression

becomes of the following form:

My (x,y) <m in{[yR (x,z) + (yR (y,x) — Uy (z,x))}, My (z,y)} : (5.30)

Here two opportunities should be considered.
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1) If pe(y,x)— 1tz (2,x)<0, then from (5.30) we obtain the following
inequality:
Hg (X,y) < min{/uR (x7Z)7ILlR (Zay)} 5

and 1t contradicts the transitivity of the relation z,.

2) When g, ( y,x) — Up (z,x) >0, then, taking into account transitivity, we can
conclude that

Hp (x:y) > Hp (Z,x) 2 min{/uR (Zay)azuR (y:x)} .
This leads to the following inequality:
Hi(sX)> g (2,7),

and it contradicts the fact that s, (y,z)> s, (v,x).

So, we have demonstrated that when the condition 1is fulfilled:

Hr (x,y ) > He (y ,x) , then from the expressions (5.21) and (5.22) there the inequality
follows:

e (:2) <t (,%). (5.31)

Similarly, it can be shown that when £z, (X, y) > Uy (y,x ) , from the expressions

(5.21) and (5.22), the given inequality follows:
i (2:%) < 1y (7,5). (5.32)
Further, taking into account that
He(9,2) 2 min{ g (v,x), 4t (x,2)}
pe(z.x) 2 min{ g, (2,9, 11 (3,)}
From the expressions (5.31) and (5.32) we obtain the following inequalities:
H(:2) 2 pp (x,2),
1 (2,%) 2 1 (2,7).

and they contradict the assumption (5.21) and (5.22).
The theorem has been proved.
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5.4.2 Fuzzy subset of non-dominated alternatives

Now let's consider the rational choice of alternatives from the set X, in which
the fuzzy relation of the preference R, its membership function is g, : X x X — [O; 1] :

As i1t was noted earlier, in those cases, where decision-making data about the
situation is described in the form of a simple relation of preference, then the rationale
can be considered as the choice of maximal (non-dominated) alternatives.
Mathematically, this problem is reduced to the definition of a subset of non-
dominated alternatives in a given set X.

Next, we will try to apply this approach to decision-making tasks when the
relation of preference to the set of alternatives is not clearly described.

Consequently, assume we have the usual (clearly described) set of alternatives
X and an fuzzy relation of non-strict preference f¢,, given in it, and fuzzy relation of

the strict preference 1, corresponding to it. Let’s define a subset of non-dominated
plural alternatives (X , ,uR). Note that since the initial relation of preference is fuzzy,

then it is natural to expect that the corresponding subset of non-dominated
alternatives will be fuzzy.
Given the definition of the relation of strict preference, for any alternatives

x,y € X, the value of uj (y,x) is the measure by which the alternative x will be
dominated by the alternative y. Consequently, with respect to a fixed alternative
ye X, a function (y,x) defined in a set X can be considered a function of the

membership of the fuzzy set of all alternatives x strictly dominated by the
alternative y.
For example, the measure of the membership of an alternative x, to this set

(corresponding to some fixed alternative y) is 0.3. This means that the x, is being

dominated by the alternative y with a grade of 0.3. It is easy to understand that the set
of "all" alternatives x not dominated by the alternative y, and this set is an addition to

the set u3(y,x) in the set X, where its membership function can be written as

follows:
1- 15 (y,x), xe X . (5.33)

If, for example, ,u;g (y,x)= 0,3, then the alternative x is not dominated by the

alternative y with a degree of 0,7. Obviously, to determine subsets of "all"
alternatives in a set X, where each of them does not dominate any alternative of this
set, it is necessary to take the intersection of the fuzzy sets described by the
expression (5.33), with all alternatives y € X .

198



Definition 5.4. Let X is the set of alternatives, u, is the relation of preference
given on it. A fuzzy subset of non-dominated alternatives is referred to the
intersection of fuzzy sets of the form corresponding to the expression (5.33) for all
alternatives y € X, that is,

127 (x) = iyg@ —upy (yx)]. xex, (5.34)
or
wy’ (x)zl—su)gyjf (y,x), xeX. (5.35)
ye

The function " (x) value represents the measure by which the alternative x

will not dominate any alternative of the X set.

Let 1" (x,)=c for some alternative x, . In this case, x, may be dominated

by other alternatives, but with a degree not higher, than (1 — oc).

Indeed, at the same time

sup 1, (v,%,) =1-a,

yeX
and then
,u}g(y,xo)ﬁl—a, VyeX.

Let's now define an fuzzy subset of alternatives through the function of the
membership of the output of the fuzzy preference y, . For this we will show that

sup,ug(y,x) = sup[,uR (y,x)—,uR (x,y)], VxelX. (5.36)

yeX yeX

Indeed, let an alternative x € X be randomly chosen. Let's introduce such sets

Yl(x):{y‘yeX, yR(y,x)> ,uR(x,y)}, (5.37)

Y2(x) =y € X, g (v,%) < a2z (%, v)}. (5.38)

Using the fact that Y (x) Uy? (x) = X, for each alternative x e X we write
equality (5.36) in the following form:

suwﬁ(y,X)=maX{ sup 23 (,x), sup ﬂﬁ(y,X)}- (5.39)

yeX erl(x) erz(x)
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Further, on the basis of the definition s, we perform the transformation of the
expression (5.39):
.5 (525)= s s )~ )} =

yeX er(x)

m{ aup [in () s ) sup [ﬂR<y,x>—ﬂR<x,y)]}=

yer'(x) yer?(x)

= sup| s, (v, x) = 21 (x, y)].

yeX

Taking into account equality (5.36), we can describe a set of non-dominated
alternatives using the following membership function:

wr’ (x)zl—sup[,uR(y,x)—,uR (x,y)], xeX. (5.40)

yeX

Formula (5.40) may be useful in processing information presented in the form
of a fuzzy preference relation to determine in a plurality of X subsets of non-
dominated alternatives.

Since the value ;" (x) acts as a measure of the "non-dominance" of the

alternative x, then it is rational, taking into account the fuzzy information given, to
consider the choice of alternatives with the highest degree of belonging to the fuzzy

set pp" (x), that is, those alternatives that give the value of a function " (x)

closest to the following magnitude:

sup ¢ (x) =1~ inf sup| sty (7,%) =t (x.) |

xeX €4 yex

Alternatives for which the function " (x) reaches its upper edge, that is, the

elements are of such a set:

XND:{x

xeX,uy” (x) =sup i, (z)},

zeX

We will call the maximal non-dominated alternatives of the set (X, s, ).
Example 5.5. It is given a finite set: X = {xl,xz,x3,x4,}, and the fuzzy relation

of the preference in it, function of membership of which has the following form:
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x| x| x| xy,
x | 1]02]03]08
pelxx,)=x, |05 1 [02]0,.
x| 0.6]04] 105
x, | 01| 01]03] 1

Let's find a set of non-dominated alternatives of the set (X, 1, ).

According to the definition above,

XX [ x| Xy
x| 0 0]0]07
;)=
Up\X;X;)=x, 1031 0 | 0| O,
x;103(02]0 /0,2
x 101l 0]0] 0

Then
ND N |x2 |x3|x4
Hr (x)‘o,7\o,8\1 [0.3

From this we see that the greatest degree of non-domination has an alternative
x;, and therefore its choice should be considered rational.
Definition 5.5. Let’s call the R-relation in the set X a linear if the two

alternatives to the set X are related to it or to its reverse relation.
That is, when the relation is linear, then there are no comparable alternatives in

the set X. For ordinary relations, linearity means that the following statement is true:
RUR'=XxX,
where R™'— a converse to R relation, or using the terms of characterising functions
Hg (x,y) =0 = i (y,x) =1

If there is a fuzzy relation, we can clearly identify only the complete lack of
linearity, that is, the fuzzy relation u, will not be linear if and only if there are

alternatives x, y € X for which the following equality is fulfilled:

pr(x,¥)= pp(v,x)=0,

where u, (x, y) — the function of the membership of this fuzzy relation.
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Consequently, the property of linearity with respect to the fuzzy relation can be
understood more widely.
Definition 5.6. Let A be some number on the interval [0;1]. A fuzzy relation

U will be referred to as A-linear if its membership function has the following
property:

max{u, (x,y), ttz (3, x)}> A, V x,y€X. (5.41)

Thus, if, for example, the fuzzy order is a 0.7-linear relation, then from each of
two alternatives one won’t be worse than another with a degree more than 0.7.

Definition 5.7. A well-known relation is called a strongly linear relation, if its
membership function satisfies the following condition:

maX{ﬂR('xa )’)9 ILIR(y9 X)}:l, anyEX (542)
In another way, this property can be defined as follows:

1 (%, 3)2 w1 (v,x) = prp(x,y)=1. (5.43)

Let's show that strong linearity corresponds to the following condition:
prl,y)=1-uz(v,x), Vx,yeX, (5.44)

where 2 is the corresponding fuzzy relation of the strict preference.

Really, when condition (5.42) is fulfilled, taking into account the definition of
the relation of the strict preference u;, we conclude that i (y,x) =0 and
uf; (x, y): 1, that is, the condition (5.43) is also fulfilled. On the other hand, if the
condition satisfied (5.43) and, moreover, the inequality g, (x, y) > [p ( y,x) 1s true,
then sz (y,x)=0 and g, (x, y)=1 that is, the condition (5.42) also holds.

Let's explain the meaning of strong linearity. For example, alternative x is
better than alternative y with degree 1 (x> y). Then (x,y)&‘ R*I,(x,y)eER*1 y

cannot be better than x with no positive degree. If there is relation y > x, then

(x,y)e R™', that is y > x with degree 1. If x is better than y with degree & (x>y),
o

then preference with the degree (1 — &) prevails: y > x.Thus, in its content strong

linearity is similar to the linearity of the ordinary relation to great extent.
Strongly linear relations have the following properties:

Lopg (s x,) =1, gy, 3)=0.
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2. The relations R° and R’, corresponding to a strongly linear relations,
coincide.
Indeed, when for some pairs of alternatives (x,y)e X the condition is

satisfied: s,(x,y)> g, (v, x), then, from the definition of strong linearity follows that
equality: 1, (x, y) =1, and according to the definition of the relation u, we conclude
that (x, y) = Ug (x, y). As a result of the symmetry of the relation being 5 when
11 (x, ¥) < g1, (v, x), then

sk (e, ) = min{peg (x, ), g1z (v, )} = 11 (x, ).

Definition 5.8. The fuzzy relation of preference is called weakly linear
relation, if 1t has the following property:

zuR(xay):O = ,UR(y,X)>O, vxayEX'

Here are examples of linear fuzzy relations.
Let X be a set consisting of 4 elements, then an fuzzy relation with such
membership function:

1 055 06 0
) 0 1 03 1
102 06 1 04

08 1 07 1

luR(xi’xj

5

will be 0,5 linear.
The relation described by the membership function of this form:

I 0,2 1 0

I 1 I 0,5
ILlR(xi’yj): O 08 1 1 4

I 1 03 1

will be strongly linear.

5.4.3 Clearly non-dominated alternatives and their properties
In this subsection, we consider the problems in which the set of non-dominated

alternatives is a normal fuzzy subset of the universal set X, that is, the membership
function of this subset has the following property:
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sup 15" (x)=1. (5.45)

xeX

In this case, for alternative from the set of maximal non-dominated
alternatives X", the following condition is fulfilled: " (x) =1 that 1s, the measure
of the non-dominance of each of them is equal to 1.

In other words, for each alternative xe X" and any alternative y € X, the

following equality is fulfilled: s} (y,x): 0, that is, no alternative dominates with a

positive degree the given alternative x.
Therefore, we will call these alternatives clearly non-dominated. Denote the set
of such alternatives as X “™°. Thus,

XN =Lxe X|up® (x)=1}. (5.46)

As follows from the definition of the sets X P

dominated alternative, the following condition is fulfilled:

and ", for each clearly non-

sup ,ug (y,x) =0, VxeXx ™ (5.47)
yeX
where 4 is the fuzzy relation of the strict preference, which corresponds to the
relation g, .

This leads to the conclusion that for any alternatives x,,x, € X“"” the

following equality will be valid:
e (%, %,) = iy (x,, %) =0. (5.48)

From the definition it follows that equality (5.48) is equivalent to equality:

/uR(xsz): /UR(Xerl)a
but then

ﬂ}lz (xpxz):max{l_ﬂlz (xpxz)s Hp (xlaxz)} 20,5.

In other words, any two clearly non-dominated alternatives are related to the
relation of indifference with a degree more than 0.5.

And the corresponding fuzzy equivalence pj relation will be defined as

follows:

/Ufe(xlaxz):/“}z(xlaxz):ﬂR(xzaxl)» VX, X, e XMW, (5.49)
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When there are random fuzzy relations of preference, it may turn out that

e (x,,x,) =0 for some alternatives x,,x, € X", that is, with no positive additive

measure, these alternatives will not be equivalent. Note, that then (xl, X, ) =0, that

1s, x, and x,are not comparable with each other. However, this does not apply to

linear relations.

5.5 Making decisions on the existence of several relations of preference in a set
of alternatives

Consider the problem in which the set of alternatives X is given, and each
alternative of this set is characterized by several features, the numbers of which
is j =1,..,m. The information on pairwise comparison of alternatives is given in the

form of preference relations R i J= 1, 2,...m. Thus, we have m preference relations

in the set X. Our goal is to make a rational choice of alternatives from the set
(X S R,LR, ... Rm) on the basis of this information.
Let's deal first with a situation where relations are described by numerical

utility functions fj : X >R, j=1,...,m, where R' is the numerical axis. The value

of a function f; (x) can be considered a numerical evaluation of the alternative x on
the basis of feature j, j=1,2,...m. The preference by the feature j is given to the

alternative, which 1s characterized by a higher value fj(x) The task is to choose an

alternative that has the highest ratings for all features. It is rational in this case to
consider the choice of the alternative x,, which has the following property:

if f,(»)=f(x) j=12,...,m, then f,(y)=f(xy), j=12,...,m. (5.50)

Such alternatives in multi-criteria optimization are called effective.
It is easy to see that each function f; (x), j=1,2,...m, describes the usual

preference relation in the set of alternatives in the following way:
R, ={(xy) | x,ye X, )= £, (5.51)

m
Let's O =(\R ;- Let's make sure that the set of all (non-dominated)
j=1
alternatives in the set (X,Q,) coincides with the set of effective alternatives for a set

of functions f,, j=L2,...m.

205



Assume that x,is an alternative that does not dominate in the set (X,(Q,). This

means that for any alternative y € X, the following condition is true:

(1.%)e 0, (5.52)

where Q; — the relation of the strict preference, corresponding to the relation Q,, it

has the following form:

lez{(x,y)‘x,yeX,fj( ) f( ) ,m, 3 j,: fjo(x)>fj0(y)}. (5.53)

Hence, taking into account the condition (5.52), we conclude that there is a
property (5.50), that is x, — an effective alternative to the function fj(x),

j=L2,...m
We can also show the opposite, that is, any effective alternative for a set of
functions f; (x), j=1,2,...mis not dominated in the set (X,Q,). Thus, in order to

find the set of effective alternatives, one can take instead of a set of relations R e

Jj=1,2,...m their intersection Q, and find a set of non-dominated alternatives in the

set (X,0,). Let's now write the intersection of relations R ; in a different form.

Let

L if (x.y)eR %

u.(x, v (5.54)
J ( ) { lf ( ) i

where 4, (x, y) — 1s the membership function of the relation R s J=L2,...m then

the intersection of these relations corresponds to the following membership function:
Ho, (x, y) = min{z (x, ¥)...., a1, (x, )} . (5.55)

It acts as an analogue of the convolution of criteria f; : F(x) = ‘n}in A:f;» in
j=1,...m

multicriteria decision-making problems. Here numbers A, are the coefficients of the

relative importance of the criteria. In the convolution (5.55) 4;=1, j=1,..m

which corresponds to the situation, where all the above relations are equally
important to consider when choosing alternatives. When such relations differ in
importance of the corresponding features, on the basis of which the alternatives are
compared, then various by magnitude coefficients 4, can be used in the convolution

(5.55). At the same time, we must consider the initial relations as fuzzy, that is, in
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determining the membership function (5.54) the numbers 0 and 1 must be considered
as extreme points of the single interval of possible values of the membership degree.
As a result of the convolution of the initial relations R; with the coefficients

m
4; corresponding to the condition: 2,1]. =1, we obtain the membership function,
j=l

which looks like this:
Ho, (x, )= min{A 24 (x, y )oos Ay, (3, 1)} (5.56)

that 1s, the function of membership of the fuzzy preference relation. But this relation
will not be reflexive. Therefore, it does not belong to the preferences in the sense of
the definition of paragraph 5.4.1, and therefore the convolution is described as
inconvenient for use when it is necessary to take into account the importance of the
relations presented.

That is why we consider the convolution of output relation of another form:

o, (4,3) = 32,1, (x, ). (5.57)

j=1

Note that the result obtained after convolution (5.38) of the usual relations R;,

the fuzzy relation £, will be reflexive since such are the initial relations.

Let all outgoing relations of preference be the same in importance. In the curl
(5.57) of this case, they correspond to following values of the weighted coefficients:

/1j =—, j=L2,...m . Let's find a subset of alternatives, non-dominated by a set

1
m
(X , QZ), using the definition in 5.4.2, as follows:

,ugzD(x)=1—lsup[,uj(y,x)—,uj(x,y)}, VxelX. (5.58)

m yex

Denote a subset of clearly non-dominated alternatives in a set (X s Mg, )as X, NP

and X, P as the corresponding subset in (X ,ﬂgz). Let's set that X,"° < X,“P.
Indeed, let x, € X,™P. then, in accordance with the definition of a clearly non-

dominated alternative, and taking into account formula (5.58), we can conclude that

sup i [/“j (v, x0) - Hj (xO,y )] =0

yeX j=1

or
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> L, (%)= 11, (x5 )] <0, (5.59)
j=1
for all alternatives y € X.

Assume that x, ¢ X"

. Then, in accordance with the property (5.50) and
definition (5.54), we see that there is such an alternative y e X, for which
U j(y,xo):l, j=12,...m, with respect to some index j,, equality is performed:
U jo(xo, y) = (. But then, in relation to the alternative y, there will be no fair inequality

(5.59). It follows that x, X;“"P and, accordingly, X0 = x, NP,

Remark: The set X,°"° does not cover all the effective alter natives for
function f i J= 1,2,...m, i.e. doesn’t coincide with the set X; Though, we can

show that each effective alternative, i.e. each element x e X; ™" have an additive

degree of belonging to the set ugZD, 1.e.

X < suppuy, .

Indeed, when equality is satisfied with respect to any alternative xe X
ygzD (x) =0, then, based on the definition (5.58), we find that in the set X we can

select an alternative y, for which

yj(y,x)—yj(x,y)zl, j=L2,...m,

That 1s ,uj(y,x):l and ,uj(x,y):O, j=12,...m. This means that the

alternative y is dominated by the alternative x, that is f ].(y)> f ].(x), j=12,...m,

and therefore the alternative x can not be effective for the function set fJ )
The function ,ugzD arranges alternatives by the degree of their non-domination.

For example, if ,ugzD (x) =3/4 and there is an alternative y € X a better than

the alternative of x by any of the two features, then, at least according to one of the

other signs, it strictly prevails with the alternative y.

CND

If we take the intersection of the sets X and y]QVZD then we obtain the

appropriate ordering in the set of effective alternatives, on the basis of which it is
possible to make a choice among them.

Consequently, the application of the convolution (5.57) of the original normal
relations to solving the decision-making problem in the set of functions allows us to
obtain additional information on the relative degree of non-domination of effective
alternatives, thereby narrowing the class of rational choices to such a set:
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XCND — {x

xeX,uy (x)= sup ug’ (x')}.

x'eXﬁVD

In the general task, when the set of alternatives 1s given as the set of m fuzzy
preference relations R i J =1,2,...m and the coefficients of the relative weight of

these relations /1j, j=L2,...m, are given, we can act in the same way as in the

previous case.

Let's now formulate the decision-making algorithm for several given relations
of preference over the set of alternatives.

1. Construct a fuzzy relation Q, (intersection of initial relations):

po, (5, y)=min{g (x, )., g2, (x, )}

Next define the fuzzy subset of non-dominated alternatives in the set (X , ,qu)

with the following formula:

#g” () =1=sup| pg (x.7) = ttg, (.%) |

yeX

2. Create a fuzzy relation O, [the convolution of the relations of type (5.57)]:
o, ()= 2., (x.7)
and define a fuzzy subset of non-dominated alternatives in a set (X N ):
o) () =1=sup| g, () = ttg, (30) |

3. Find the intersection of sets yélvD and /ngD the following rule:

u™? (x) = min{,ugD (x),,L/QV2D (x)} :

4. Consider the rational choice of alternatives from the following set:

X :{xeX‘,uND (x)=sup u™” (x’)}.

x'eX

It should be noted here that, depending on the type of task, it is reasonable not
only to consider alternatives from the set of X'”, but in one sense or another, weakly
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(or not very strongly) dominated alternatives, that is, those which degree of belonging

to the set z"° of lower than a given one.
Example 5.6. Let the set X = {x,,x,,x;,x,}, and there three clear relations of

preference with the same significance are given, namely:

B I S S N I XX | X5 | Xy B I S N I
x|1][1]o]o x|1][1]o]o x| 1][1]o0]o0
R=x,|1|1|1]0 R=x,/0|1|1]0 R=x,|1|1]|1]0
x| 0/l0][1]0 x| 0]0[1]0 xl0lo]1]o0

x| 0| 1]o0]1 x| o0lo]1]1 o111

It is necessary to make a rational choice of the alternative from the set X on

their basis.

Solving
Since the relations of preference have the same significance, we state that the
: : : 1

coefficients of relative weight 4, =4, =4, = 3

1. Build a relation: Q, =A4R N A4,R, N 4R, for our data, it becomes the

following:
x [1/3[1/3] 0
uy (xox,)=x, | 0 [1/3]1/3] 0.
x;] 0] 0 [1/3]0

X | Xy | x| Xy
x |0 l1/3] 0 [0

s (xx,)=x, [ 0] 0 [1/3]0.
5 0[]0 00
x,]0] 0|00

Next, find a subset of non-dominated alternatives in the set (X » Mo, ):

_x1|x2 EEZ
Ho, (x)=1 [2/3]2/3 |1
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2. Build a relation:
0, = %(:ul(xi’xj)—i_ ﬂz(’ﬂ'»’?;‘)Jr /u3(xi’xj))

which, according to our data, takes the form of:

po, (xox,)=x, [2/3] 1 [ 1
x| 0 0 1
x| 0 [1/3]2/3

—_— o O O

XX | Xy | Xy,

x| 0130 o

48 (xx;)=x, [0 0 [ 1 [0
5|0l 0] 0|0

x, | 0 [1/3]2/3] 0

Find a subset of non-dominated alternatives in the set (X s Mg, ):

”gzD(x):fl %;2/3%33 %f

3. The set of non-dominated alternatives is the intersection of sets /lgD and

,ugzD , that 1s

_X1|X2 |X3|X4

#(x)=1 (2730 1

Conclude, that in the above example, it is considered rational to choose
alternatives x; and x,;, which have the maximum degree of non-dominance.
Example 5.7. Let the set X = {x,,x,,x;}. There are two fuzzy relations between

the preferences R, and R,, the first of which is significant, half as less as the latter, in

particular
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X Xy X3 X Xy X
x |1 05 03 x| 1 01 O
R = , R, =
x| 0 1 08 x, 03 1 1
x| 1 05 1 x| 1 05 1

It is necessary to make a rational choice of the alternative from the set of X

based on the given relations of preference.

Solving
1. Construct the relation: Q, = 4R, (1 1,R, taking into account 4, =0,33 and

A, = 0,67, it takes on the following form:

0,33 0,067 0
to (%.x,)=| 0 033 0,264,
0,33 0,165 0,33

and a corresponding strict preference relation

0 0033 0
wyle,x)=l 0 0 0167
033 0 0

Find a subset of non-dominated alternatives in the set (X s Ho, ) Its membership

function
X, | X, | X,

ND _
Ho, (x)—0’67 | 0,967 | 0,833"

2. Construct a relation: O, :ﬂ’lzul(xi’xj )+ lZﬂZ(xiaxj). Its membership
function:
1 0367 0,2
to,(xx,)=| 02 1 0867,
1 0,5 1

and the corresponding relation of the strict preference looks as follows:

0 0,167 0
5, ()=
Mo, \X;, X ;)= 0 0 0,367 |.
0,8 0 0
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Find a subset of non-dominated alternatives in the set (X » Mo, ):

X, |x2 |)c3

ND _
o, (x)‘o,z 0,833 10,633

The initial set of non-dominated alternatives has the following membership
function:
X, | X, | X,

“ND(x)zo,z 0,833 10,633

The maximum degree of non-dominance is characterized by the alternative x;,
so its choice can be considered rational.

5.6 Relation of preference in fuzzy set of alternatives

Let's consider now the case when the subset of admissible alternatives is also
fuzzy.

Let X be a universal set of alternatives, and there is an fuzzy subset of
admissible alternatives, whose membership function is v: X —)[O; 1], as well as the

fuzzy relation of the preference with the membership function p, (x, y), are given on
it.

In case, when the set of permissible alternatives is a normal set, the choice of a
rational alternative occurs only depending on the fuzzy relations given to it in the
preferences. But now we need to take into account also the degree of affiliation of the
alternative to the set of permissible alternatives, that is, the preference should be
given to those of them that are more important to the function v(x).

This requirement can be taken into account as follows:

Let's define the relation of the preference generated by the function as follows:

i (x)—{l’ if v(x)2v(y),

L if v(x)<v(y).

Now the original task is reduced to the statement studied in the previous
paragraph, and to solve it, you can use the procedure described there.
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5.7 Making decisions when preference is given in a set of properties

Given a set of alternatives X and a set of properties (or experts) of P. Each xe X
is to some extent inherent in every property of the set P. For each fixed sign pe P is
known the fuzzy relation of the preference of ¢ on the set X, that is, we know the

function of membership ¢@: X x X x P —[0;1] . Its value @(xi, x,, p) represents the
degree of preference of the alternative x; over the alternative x, on the sign of p. If P
is the set of experts, then @(x;, x,, p) is the relation of the preference over the set of
alternatives proposed by the expert p. Thus, the function ¢ describes a family of

fuzzy preferences on the set X relative to the parameter p.

The elements of the set P differ in their importance, and the fuzzy relation of
U:PxP— [0; 1] describes the importance of the signs, in particular, the value
w(p1, p2) shows the degree to which the sign p, is considered as no less important than
the sign p,.

The task is to rationally choose an alternative from the set X based on the

information described above.
Consider one of the possible approaches to solving this problem.

Denote by ¢"”(x,p) the fuzzy subset of the non-dominated alternatives,
which corresponds to the fuzzy relation of the preference ¢(x;, x,, p) for the fixed
property pe P:

0" (x,p)=1-sup| o(y,x,p) - o(x,y,p)]. (5.60)

yeX

If the alternatives were compared on the basis p, then it would be rational to

consider the choice of those that provide the greatest value of the membership

function " (x, p) (the degree of non-domination) on the set X. But in this case, it is

necessary to choose an alternative taking into account a set of features that differ in
their importance.

For a fixed alternative xy€X, the function (/)ND (xo, p) describes a fuzzy subset

of properties, by which it is not dominated. It is clear that when for two alternatives

x, and x, the fuzzy set "’ (xl, p) 1s "no less important" than the fuzzy set of

properties ¢’ (xz, p) , then the alternative x; should be considered as less acceptable

than the alternative x,. Thus, the situation in this case is similar to that which was
considered in the analysis of the problem of fuzzy mathematical programming.

Consequently, now it is necessary to generalize the given fuzzy subset of the
set P and to assume the received fuzzy relation to the resultant preference relation on
the set of alternatives X.
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This relation, generated by function ¢"" (x, p) and fuzzy relation u, will be

determined by the following formula:

U(xlaxz ) = Sup min{q’ND (x17p1 ), o™’ (xzapz ), u' (plapz )} : (5.61)
(1, p2)eP?

This fuzzy preference relation can be considered as the result of a
"convolution" of the family of fuzzy relations of ¢(x,,x,, p) into a single test fuzzy
preference relation which takes into account information about the relative
importance of the criteria given in the form of a fuzzy relation of preference.

Thus, the construction of the fuzzy relation of the preference of 7 to the
original problem of choice is reduced to the problem of choice with a single
preference relation. To solve it, it is enough to determine the corrected fuzzy set of
non-dominated alternatives corresponding to the relation 77 and select those that give

the maximum of the function 7" (x)

Consider the tasks that illustrate the described approach.

Example 5.8 (a choice based on clear relations). Let the set of alternatives be
given: X = {xi, x,, X3, X4}, which are compared with each other according to the three
signs A, B, C. The results of the comparison are described by the following matrices
of relations of non-strict preference:

on the basis of 4

X1 X2 X3 X4
x| 1 0 1 1
x| 1 1 1 1
x3[0 0 1 O
x| 10 1 1
on the basis of B
X1 Xy X3 X4
x| 1 1 0 1
x| 0 1 1 O
x310 0 1 O
x40 1 1 1
on the basis of C
X1 X2 X3 X4
x| 1 0 1 1
x| 0 1 0 1
x| 1 0 1 1
x 10 0 0 1
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The relation of the relative importance of properties is described by a matrix of
the following form:

A 1 1 1
B 1 1 1
c |0 0 I

From this matrix it is clear that properties 4 and B are equivalent to each other
and each of them is more important than the property C.

Guided by the described approach, we define a set of alternatives that do not
dominate each of the attributes, resulting in the following membership functions:

BAENEEE

011 |0 |0°

¢ND (X,A)

X% | x| X,

ND _ .
0" (xB)=1T5 To 1o
D RAENEE
o (xC)=T7 17 To

Consequently, the following are not dominant:
e on the basis of 4, the alternative x;;

e on the basis of B, the alternative x;;

e on the basis of C, the alternative x, x,, x3.

Further, by the formula (5.61) we have the following matrix of the resultant
preference relation on the set of alternatives X:

X Xy X3 Xy

x 1 1 1 0
nx;,x;)=x, 1 1 1 0
xx3 0 0 1 O
xx 0 0 0 O

And according to the formula (5.60) we have the corresponding set of
undamaged alternatives (unmodified):
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x1|x2|x3|x4

1\1 \0\1

77ND (X,A):

Finally, using the formula: 7" (xl.):min{nND (x,).m"™" (xl.,xl.)} , we find the

corrected set of non-matched alternatives:

_xl|x2|x3|x4

Uﬁ?(xi)_l ‘1 ‘0 ‘0'

Thus, we conclude that the choice of alternative x; or x, should be considered
rational in this task. Note that these alternatives are not dominated by features 4 and
B, which are most (equally) important.

Example 5.9 (choice on the basis of fuzzy relations). Consider one of the
typical decision-making tasks.

Assume that a Company Director is considering four further company
developing projects for enterprises 4, B, C, D. S/he should choose to implement only
one of them. Aimed at this, s/he invited four experts: E,, E,, E3, E4, whose positions
s/he treats in different way. In particular, s/he concurs one expert's conclusions more
attentively and respectfully than to the views of others. The relative preferences of
the positions of the experts are described by the following matrix of fuzzy relation
"not less important":

E, E, E; E
E |1 04 06 0
E, | 1 1 08 1
E; 102 1 1 1
E, 108 0 0 1

According to the experts, the relation of preferences between the projects is
described by the membership functions, which are as following:

El4 B C D E,|A B C D
A 1 0,8 1 0 A 1 0,4 0,5 0,3
Blo 1 02 1 B|08 1 08 08
C 0 0,8 1 0 C 10,5 1 1 0
Dlo o0 o0 1 D08 0 0 1
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Ex1 A4 B C D
411 0 08 0
B0 1 0 O
c|01 0 1 04
D1 0 1 1

Solving

Es|A B C D
4 ] 1 1 09 O
B |0 1 1 1
cl|04 0 1 O
D|0 0 0 1

Find fuzzy sets of non-dominated alternativesfor each of the property:

A B C D

S

S
—_~ o~~~ —~

.,E
.,E

S

—

S
[\

SN N N N

E
E,

S
W

S S S

1 02 0 O
03 1 05 02
0O 0 03 1
1 0 0 O

Next, we seek for a fuzzy preference relation 7, defined on a set of functions

¢"” and a fuzzy relation y, in particular:

A B C D
A1 04 04 1
B|1 1 05 08
c 105 05 05 05
D|1 1 05 1
Finally, we determine the fuzzy set of non-dominated alternatives

corresponding to the relation n ,which membership function has the following form:

T [0.4]0,97]08

and the corrected set of non-dominated alternatives will be as follows:

Tleor =1 [0.4]05]08

As we see, the greatest degree of non-dominance is the alternative 4, so the
choice of this particular project can be considered rational.
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Then, when the greatest degree of non-domination has not one, but several
alternatives, the DM can either choose by themselves one of them, based on some
other additional considerations, or expand the circle of experts and solve the problem
again as described above.

Conclusions

The theory of fuzzy sets is a mathematical apparatus which allows to describe
the concepts that can not be clearly expressed. Applying this theory is appropriate in
the cases where there is lack of information to make a decision or description of the
situation by means of conventional sets makes a model "coarsened” that prevents
achieving a satisfactory result.

The tasks of fuzzy mathematical modeling are generalization of conventional
tasks of mathematical modeling. They are classified, depending on what elements are
fuzzy, that results in the use of different approaches to thir solving. In particular, it
can be an expansion on a plurality of sets, a reduction to a task that is not clearly
defined, or to a multi-criteria optimization problem. The listed approaches belong to
the indirect methods of solving tasks of FMP.

Fuzzy preferences can simulate situations in which information about the
benefits of alternatives cannot be expressed unambiguously. They take these
preferences "to some degree". In many cases, this makes it possible to build a more
adequate mathematical model and simplify the task.

SELF-STUDY
Questions for assessment and self-assesment

1. Formulate the goal of achieving a fuzzy purpose.

2. What are the features of the Bellman-Zade approach to solving a task of
achieving a fuzzy purpose?

3. How to take into account a goal and constraints in formulating and solving
the achievement of clearly defined objectives?

4. Is it possible to formulate the task of achieving an ambiguous goal in the
case when the goal and the constraint(s) represent a subset of different universal sets?

5. Formulate the general statement of the problem of fuzzy mathematical
programming.

6. How fuzzy mathematical programming problems are classified?
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7. What approaches are used to solve tasks of FMP?

8. What are the properties of the solution of the FMP problem?

9. What is the essence of the method of reduction to the task of achieving an
ambiguous goal when solving the problems of the FMP?

10. What 1s the method of decomposition the set of levels when solving the
problems of the FMP?

11. Expand the essence of the method of modal values in the application to the
tasks of the FMP?

12. Describe the application of the method of reduction to the multicriterion
problem in solving the problems of FMP.

13. What are the properties of solutions to the problem of FMP, based on the
different approaches existing between them?

14. What is a fuzzy relation of preferences?

15. What properties does a fuzzy preference relation have? What does it
characterize?

16. How can the preference relation be based on the relation of strict
preference? What are its properties?

17. What relations are called A-linear? Strongly linear? Describe their
properties.

18. How do you make a rational choice of alternatives when you know the
relation of preference to this set of alternatives?

19. Give a definition of an undominated alternative.

20. Define the concept of a clearly undominated alternative.

21. How is the rational choice of alternatives made, when you have some
preference relation in the set of alternatives?

22. What types of convolution are used to select an alternative that is based on
several relations of preferences? Outline the scope of their application.

23. How is rational choice of alternatives made, when it is given the relation of
preference to the set of alternatives and the fuzzy preference in a set of properties?

Hands-on practice
Tasks A.

1. Solve the task of achieving a not clearly defined goal, according to the data
presented in the table.
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X1 X2 X3 X4 X5 X6 X7
G 0,8 0,6 0,7 0,4 0.2 0,1 0,1
C, 0,5 0,3 0,5 0,4 0,6 0,5 0,4
C, 0,9 0,8 0,7 0,6 0,5 0,4 0,3
C; 0,3 0,5 0,7 1 0,9 0,6 0,2

2. The goal and constraints of the problem are described by the following

membership functions:

—%(x—3)2 +1, ifxe(1;5)

1% (x ) =
0 1n other case,

lx, if xe(0;6),
B 6
#p(x)= 1, if x>6,

0 1in other case.

Solve the task of achieving a fuzzy defined goal.

3. Solve the task of achieving an fuzzy goal under the following conditions:

—(x—1)" +1, ifx£(0;2),

0 in other case,

uc(X)={

_ %‘x, if xe(0;2),

yD(x)
0 n other case.

4. Solve the following problem of fuzzy mathematical programming:

f2(x1,%,) = x —x, > min
X, —2x, 22,

2x, +5x, <10,

—12x, +8x, < 24,

X;,%, 2 0.

5. Solve the following problem of fuzzy mathematical programming.
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£ (x;,x,)=2x, +5x, - max
X +x, 24,

4x, + 6x, < 24,

3x, +8x, <24,

X1, %, 20.

6. Solve the following problem of fuzzy mathematical programming by the
method of decomposition at the plural level.

fi(x,,x,)=2x,+3x, > min
X, +2x, > 2,

2x, +5x, <10,

12x, +8x, <24,

X;,%, 2 0.

7. Solve the problem of fuzzy mathematical programming by the method of
reduction to the multicriterion problem.

£i(x,,x,)=2x, +3x, — min
X, +2x, 22,

2x, +5x, <10,

12x, +8x, <24,

X;,%x, 2 0.

8. The set X ={x,,x,,x;}, there are two fuzzy relations of preference given,

the importance of which, respectively, 4, = 0,7, A, = 0,3. Make a rational choice of an
alternative from the set X according to the relations if

1 05 045 1 05 0
R =[03 1 02|, R*=0,8 1 01|
1 1 04 10 1

9. At the given preferences, make a rational choice of the alternatives from the

set: X' = {x1>x2’x3 }
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1 05 045 1 08 04
R=(03 1 02/, R,=103 1 02].
01 05 1 1 1 1

10. By the given relations the preference make a rational choice of the
alternatives from the set: X = {x,,x,,x;} ,if 4, =04 1, =0.6.

1 05 05 1 0,3 0,4
R =/03 1 02], R,=103 1 0,2
01 1 1 1 05 1

Tasks B.

Using the theory of fuzzy sets, compile mathematical models of the following
tasks.

1. Commercial Transport Company (distributor) buys goods of the same type
from a group of Suppliers, and also transports it and sells it to Buyers. Suppose that
M Suppliers and N Buyers are involved in co-operation. The constraints of each of
them are known. Moreover, they are clearly described.

In addition, the distributor has information on:

— the purchase price per unit of product in each vendor #,,i =1,2,...,M;

— the sale price unit of finished product s =12, N;
i=12,...M;j=12,.,N;

— the mandatory volume of proposals for the contract p,,i =1,2,..., M;

— the specific transport costs ¢;;,

— the mandatory volume of demand for the contract ¢ =12, N;

— price of a unit of goods purchased outside the contract k,,i =1,2,..., M

— the sale price of a unit of goods sold outside the contract 7= L,2,...,N;

It is necessary to determine what should be the volume of products

x., i=12,..M,j=12,..,N,being purchased from each of the suppliers and sold

ij)
to each of the buyers in order to minimize the cost of transportation of these goods
and maximize the profit of the distributor.

2. An enterprise uses several production facilities. Each of them is
characterized by the parameters that differ from other parameters (dimensions,
lighting system used, atmospheric pollution level, surface reflectivity, lighting
requirements and resource saving). Several types of luminaires with different
technical parameters can be used to illuminate these premises.
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The task is to rationally select the light sources for each room, taking into
account the above characteristics, that is, what kind of lamp is necessary to apply to
satisfy all the requirements the most.

3. At Zaporizhzhie iron ore plant, in the process of mining operations,
hardening mixtures are used, consisting of viscous and inert materials. An inert filler
in the preparation of such a mixture are wastes of energy, metallurgical and mining
productions, in particular blast furnace slag (x;), tailings of the central mining and
processing plant (x,), lime-dolomite materials (x3), sand (x;) and loam (xs).

The task is to determine the composition of the mixture so that its cost is
minimal and the strength corresponds to the standard conditions (should be 20-60 kg /
cm?2), the water should contain about 20% of the viscous constituents, and cement,
calc-dolomite material and sand approximately 65, 9, 35 and 18% of the inert
components in the mixture, respectively.

Consider that the dependence of the strength of the mixture of its components
is described by such a function: ¢ (x) =467x; + 380x, — 54x; + 87x, — 120x5 — 23,25.

4. Several kinds of mixtures are used for the laying works at the mining
enterprise, characterized by the following features: strength, cost, basicity, shrinkage,
content of combustible components, porosity. Each of these features has a certain
priority. It is necessary to choose the optimal mixture composition according to the
set priorities.

5. A buyer chooses one of five models of washing machines. S/he evaluates
each of them according to the following characteristics: cost, capacity, economy,
overall dimensions, weight of loaded laundry.

Task: a) to formulate and make a decision, taking into account these
conditions, the task of achieving a fuzzy defined goal;

b) formulate and solve the problem of choosing an alternative under fuzzy
relations of preference. What assumptions should be made in each case?

6. A company management (CEO) should appoint one of three candidates for
the post of the Chief Engineer. It is necessary to consider the following selection
criteria: education, work experience, authority in the team, age, organizational
abilities.

Tasks: a) to formulate and solve, taking into consideration these conditions as a
task of achieving a fuzzy goal; b) articulate and solve the problem of making a choice
using fuzzy relations of preference.

7. To make an alloy of lead, zinc and tin of a certain composition, raw
materials are used in the form of five alloys of the same metals, but of different
composition and different cost per 1 kg (see Table 5.1).
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Determine how much alloy of each kind you need to take to make an alloy
containing about 50% tin and about 25% zinc at an average cost.

Table 5.1
Metal content, % Unit
cost,

Type of UAH/
alloy Plumbum | Zinc | Tin kg
I 25 30 45 8
11 10 50 40 17
111 30 30 40 10
IV 40 25 35 12
\Y 10 70 20 15

8. At mine “Dobropilska”, there are three operating extraction sites. The
approximate content of sulfur, moisture and ash content of coal extracted on each of
them is different (Table 5.2). It is known values of the maximum possible and the
minimum required amount of coal production from each site, the amount of
production costs for each site (Table 5.2). The planned output production at the mine
is 3000 thousand tons. Considering the potential of each site, it is necessary to draw
up a plan of mining operations in such a way that the extraction costs are minimal
and all the requirements of the consumers to the quality of raw materials are fulfilled,
in particular, the ash content should be approximately 47%, humidity - about 10%,
sulfur content - about 3%.

Table 5.2

Characteristics of coal, % and the Section number

performance of the extraction site 1 5 3
Ash content 49 37 23
Humidity 7 8 10
Sulfur content 1,8 2,1 3
Costs, UAH 1184210 | 1381,777 | 1083,515
Maximum volume of extraction, 1650 1090 1270
thousand tons
Minimal amount of raw material 1200 600 530
extraction, thousand tons

Tasks C
1 — 8. Solve the problems formulated in tasks B in one of the methods.

225



SECTION 6

MAKING DECISIONS IN RISKY AND UNCERTAIN CONDITIONS

By the end of this section you will:

e be aware of and know methods of making decisions in risky and uncertain
conditions and how to apply them when making a decision;
e have practiced solving problems and tasks using the described methods.

6.1 Concept of situation of decision-making

Let us now consider the situation when the quality of the solution depends on
the external factors, which the DM (or the management body) does not influence. We
will also assume that these parameters and perturbations remain unchanged in time,
1.e. the model is static.

The static decision-making model, which is based on the game-theoretic
concept, is well known and common for many real-world circumstances of one-off
choice of options (plans, actions, alternatives, strategies etc.) associated with the
uncertain influence of the environment on the choice situation that decision - making
body holds.

Investigating the static decision-making models, we will proceed from a
scheme in which the following assumptions are provided:

1) the management body has a set of mutually exclusive decisions:
® ={p,,0,,..0, |, one of which must be chosen;

2) the environment C is described by a set of mutually exclusive states:
®=1{6,,0,,..0,}, and can be in one of them, however at the moment of decision-
making by the management body it is not known which state exactly it is in or will
be;

3) an estimating functional is defined: F = { f j’k} characterizing the "benefit"

or "loss" of the management body when choosing a solution ¢, € ®@ , if the medium
will be or is in the state 6, € ©.

Based on these assumptions, the decision-making process under uncertainty
can be described by the following scheme:

1) Forming a set of possible decisions of the management body:
® ={p,,0,,..0, |, and sets of states of the environment: ® = {6,,6,,...0,}
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2) Determining and setting of the main indicators of efficiency and utility,

which are included in calculation of the estimated functional: F' = { Sin };

3) Determining the information situation that describes the environmental
behaviour strategy C by the management body;

4) Selecting criteria for decision making in a set of criteria that characterize
the information management situation determined by the management body.

5) Adopting or correcting the optimal decision according to the chosen
criterion.

Let’s formulate the necessary definitions.

The situation of decision-making is referred to as three elements: {@,®, F}, in
which:

@ ={p,,p,,...0,} is a set of possible decisions of the management body;

®=1{6,,0,,..6,} —aset of possible states of the environment;

F = { Six }is an estimated functionality, where is f,; = f(6,,9;).

In an expanded form, the decision-making situation is characterized by the
following matrix:

¢ P e P e Py
O o S o S S
02 f21 f22 ka f2m
O, fn Jnn - Ju - Sim
O, Ju Jo o S o im

The category of evaluative functional is closely related to such concepts as
efficiency, utility, loss, risk and under. At the same time, the choice of this or that
form of a functional depends on the specific management tasks. Usually two of its
forms are used: those that determine the utility and/or those that determine the loss.

If an estimated functional determines the efficiency, utility, profit etc., i.e.
when making a decision the management body proceeds from the need to reach their
maximum, then it is said that it (the functional) has a positive ingredient. In this case,
the estimated functional is indicated in the following way: F = F" = { 0y }

When the management body proceeds from the need to achieve a minimum of
evaluation functional (i.e, it shows losses, risk), it means that it has a negative

ingredient. This fact is written as follows: F'=F~ = { S i }

227



An informational situation of decision-making situation is referred to a degree
of uncertainty gradation in the choice of states by the environment itself from a given
set of "®" at the moment of decision-making by the management body.

The following informational situations are distinguished [35]:

I, - when the distribution of a priori probabilities on the elements of the set of
states of the environment ® is given, this situation is also called the situation of
decision-making under risky conditions;

I, — there probability distribution with unknown parameters is given;

I5 - there are systems of linear relations of orders on the components of the a
priori distribution of the states of the medium C;

1, - when the distribution of probabilities in the set of states of the environment
® is unknown;

Is —the antagonistic interests of the environment in the decision-making
process,

I - "intermediate" choice of the environment of their states between I; and Is ;

I; —the existence of a fuzzy set of states of the environment.

A decision making criterion is referred to the algorithm which is defined for
each of decision-making situations and the informational situation /, that allows to
choose the only one optimal solution ¢, from the set F or to make a set of such

solutions, which are called equivalent against given criterion.
In each informational situation "I" several criteria can be applied. The choice of
a particular one is performed by the decision-making body.

6.2 Criteria for decision-making under risky conditions

The first informational situation /; is characterized by a given distribution of a
priori probabilities on elements of the set ® , namely: p = (p1, p> ... p,), where

n
p;= p(9=9j),z p; =1. It is widely spread when simulating practical decision-
j=1
making tasks for risky conditions, since it allows us to use effectively the
constructive methods of the theory of probability in the process of developing a
whole scientific direction - the theory of statistical decisions.
Note that in real tasks or problems, the calculation of the a priori distribution:
p = (p1, p> ... pn), 1s carried out either by processing a large amount of statistical
material or on the basis of analytical methods based on hypotheses on the behaviour
of the environment and the application of the methods and theorems of the
probability theory. Both methods give results which are approximate to some extent,
since certain difficulties and constraints (they relate to cost, time, under) arise from
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the processing of statistical data. When it comes to the use of analytical methods, it is
necessary to make certain assumptions, sometimes at the expense of the accuracy of
the process description. The resulting a priori distribution of probabilities is called
objective. However, sometimes the use of such methods 1s impossible, since there is
not enough statistical material, the environment is characterized by a complex
"behaviour" and, as a result of this application of analytical methods, requires
additional research, which leads to significant costs and time. In these circumstances,
the decision-making body can use the values of the a priori distribution of the
probability of thought and representation of experienced experts who are well-
orientated in the situation to formulate estimates. Such a definition of probability is
called subjective.
Let's describe the criteria for making decisions in situation /;.

1. Bayesian criterion (average). The meaning of this criterion is to maximize
the mathematical expectation of the estimated functional.

According to Bayesian criterion, the optimal solutions of B (or a set of such
solutions) are those for which the mathematical expectation of the estimated
functional acquires the largest (or the smalles) possible value, namely:

P, B (9, 1) = ggagBY(pk,p), k=1Lm, B™ (¢, p)=2 p:fi (6.1)
€ i=1
for a functional with a positive ingredient;
iy 1B (9, ) =min B (9, p), k=Lm, B (¢, p)= 2.Difu (6.2)
€ i=1

for a functional with a negative ingredient.

The Bayesian criterion is most used in the informational situation /;. It is
expedient to use it when the situation repeats many times, since in these conditions,
the average benefit value is maximized (or the average risk is minimized).

2. The criterion for the minimum dispersion of the estimated functional. For

each solution ¢, e ® we define the average value B*(¢,,p)of the estimated

functional and dispersion o in the following form:

B @np) =X p.fi (63)
oF =X (fi =B (@0 pr (64)
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The dispersion describes the scattering of random values of the estimated
functional for the solution ¢, relative to its average value B (¢, , p).

The essence of the criterion for minimizing the dispersion of the estimated
functional is to find a solution ¢, €® (or a set of solutions®) for which the
following equality is true:

o p.o, )= ino (p.0y)- (6.5)

Pk

The main disadvantage of this criterion is that the dispersion in the decision
¢, €P may be less than that in the the decision ¢, €®, while
B* (@4, P) < B* (¢4, p). In other words, the criterion for the minimum dispersion, on
the one hand, is auxiliary, and on the other, its adoption requires additional
determination and a slight change in the form of the dispersion o, by one of the

following methods, for example:

@)=~ B @) (66)
or
o (g,) =2 (fif ~max B (¢,.p)’ . (6.7)

If the estimated functional is given in the form of a negative ingredient,

namely: F=F = {f ik }, then the solution ¢, € ® can also be found using condition

(6.5), but here the value o} is determined by one of the following methods:

of =X (i ~B (9. PV 1. (68)
S 0)=3fi =SB @) (©9)

or
(9 =Y (fi ~minB (2P P (6.10)

Moreover, B~ (¢,,p)=D.p: [ -

i=1
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3. The criterion for maximizing probability of the distribution of the
estimated functional. We fix the value o that satisfies the following condition:

L N
a,<a<a,, and ¢ :mjlnmkmsz, a, :mjaxm]flejk.
For each ¢, € ®solution, probability of p( fi2 a) is determined by the fact

that the value of the estimated functional will be not less than «, when the
environment is in the state 6, and thesolution ¢ is chosen.

The meaning of the criterion for maximizing the probability of the distribution
of the estimated functional is to determine the solution ¢, €® (or the set of

solutions @ ) for which this probability will be maximal, that is,
01, P, 2 @)= max p(f; 2 ). (6.11)
=

When using this criterion, the management body proceeds from the need to
adopt a specific level of the value of «, and those solutions, for which the condition
(6.11) is satisfied, are considered optimal.

When probability values « and solution ¢, are fixed, the inequality: f; >«

defines the set of states of the environment 6,,, and probability of p(f ;{ >a) 1S

calculated as follows:

p(frza)=) p(fiza), 0,={0:f, >a}l. (6.12)

0)€0uk

If the estimated functional has a negative ingredient F' , then it is necessary to

determine the probability p(f, <), and the criterion becomes the following:

P(fy, Sa)= max p(fp=a), (6.13)

where

p(frsa)= Y p(fp<a), 6,={0,:f, <a}.

0)€0uk

4. Modal criterion. The idea of this criterion is that the decision-making body
comes from the most probable state of the environment. Assume that there is a single

value j* that ensures the fulfillment of this condition:

p(0;)=max p(0). (6.14)
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Then, the management body believes that the environment is in the state of

6..and chooses the solution ¢, for which f}, = max f 74, when the functional has a

positive ingredient or f, =mkin S when the functional is characterized by a

negative ingredient.
Note that here the situation is possible when the maximum probability value is
reached simultaneously in several elements of the set ®, that is:

p(0;)=p(0,)=...p(0,) =max p(0)),

then the optimal solution must be chosen based on the following condition:

%;fjjo =rg§§§;f;k . (6.15)

The advantage of the modal criterion is its simplicity. Firstly, it is enough only
to identify the most probable states of the environment, and besides, there is no need
even to know the numerical values of these probabilities. Secondly, the calculation of
the values of the estimated functional can be performed only for the most probable
states, which significantly increases the speed of decision-making.

Among the disadvantages and shortcomings of the criterion, it should be
mentioned the possibility of the solution optimal for the modal criterion is not always
having the highest Bayesian value.

5. Combined criterion. It is a combination of the Bayesian criteria and a
dispersion minimum which takes into account the natural desire of the management
body to provide the best average (Bayesian criterion) and minimal dispersion.

Let’s choose the value A, 0<A<1 and for each of the solutions ¢,

k=1,2,...m, we calculate the value of the criterion by the following formula:

k(@)= (1= (B (@,.0)) ~A0*(@,.0). (6.16)

The best solution is ¢, , for which the following condition is fulfilled:
k(¢ p) = maxk(g,, p).

Note, that at the same time, the value of the coefficient A is established on the
basis of which particular criterion (Bayesian or minimum dispersion) is to be given a
greater advantage. If 1 =0, then the criterion coincides with the Bayesian criterion
k(gok, p), and when 4 = 1 — with the criterion of the minimum dispersion.
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Let's consider two values:

" 2
A" =mint2 ;

P n . 2
ij (fjk)z
Jj=l1

sksk
A =max
Ppe®

S
. (6.17)

" .

Z_:p,-(f;)2

Obviously, they satisfy such inequality: 0<A <A <1. Here are the
statements which are given below.

Lemma 6.1 If parameter A satisfies such a condition 0<A<A", then
k((pk,p) > ( for any solution ¢, € ®.

Lemma 6.2. When parameter 4 satisfies such a condition A7 <1<1, then
k((pk,p) <0 for every decision ¢, € ® .

The proof of these statements is given in the monograph [35].

Thus, we can conclude that when 0< A < A", then in the combined criterion the
advantage is given to the Bayesian criterion in comparison with the minimum

dispersion criterion, and when A~ < A <1, then the minimum criterion for dispersion
is more taken into account.
6. The criterion of the minimal entropy of a mathematical expectation of an

estimated functional. Assume, that f ; >0 for all values of j = ,n and k=1, m. For
J

each of the possible solutions of ¢, € ® we calculate the entropy of the mathematical

expectation of the estimated functional by the following formula:

n

H(p,¢k)=—; —f"f"" ) -In —np"f"k - | (6.18)
. Z:,pjfjk Zl:pjfjk
Jj= Jj=

The solution ¢, is considered optimal when it has a minimum entropy, that is:

Dy :H(pa§00) =1’IlkinH(p,(0k).

When the condition: f ; >0, j=1Ln and k=1, m, is not executed, then you
J

can go to the category of losses by taking advantage of the transformation:

/= =max f ; - f ; and find the solution ¢, on the criterion of the minimum entropy
J J

/ 0]
Jk zj{c:@
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of the mathematical expectation of the estimated functional H(p,p,) when ¢, € ®,

where:

n

Hp.p)=-S | Lia || Peu |l ¢ oo, (6.19)

Jk

=l Z;p S Z;p S
Jj= Jj=

7. Conditional decisions. Assume that in the decision-making situation / we
can apply criteria for some set: K = {ky, ky, ..., k,}. One of them is considered to be
the main one, and for the other criteria the restrictions are given in the following
form: ¢; <k, <c;,i=Ln.

In this case, the decision taken by the management body on the main criterion
is called conditional.

Here it is worth taking into account the following considerations:

1) since the search for optimal solutions under the conditions described is
reduced to a search of options, then constraints in the form of equalities are not
always appropriate to use since they can lead to the absence of solutions (the problem
will not have any feasible solution at all);

2) a conditional solution can be chosen without the main criterion, then it will
represent a solution of such a system of inequalities:

Let’s consider an example of applying making-decision criteria under risky
conditions, using the example of the problem presented below.

Example 6.1. The team of power network installers consists of 5 workers,
who perform repair and re-installation works in emergency situations. Management
needs to make a decision on changing the number of workers. The following options
are possible:

@1 — do not change the number of workers;

@, — increase the number of workers by combining shifts (the team will be a
variable, 1.e. team-members may be different in different shifts);

@3 — increase the number of workers;

@4 — reduce the number of workers.

It is necessary to take into account the following possible situations:

0, — the average number of accidents during the day will be high (significantly
increase);

6, — the average number of accidents during the day will be moderately high
(insignificantly increase);
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65 — there will be a few accidents per day (their number will not change);

64 — during the day there will be few accidents (their number will decrease);

65 — there will be no accidents and/or emergent situations.

According to experts’ estimates, probability of each of the situations and
effectiveness of the decisions taken in them can be described as following:

p b1 | P2 | P3| P4
0,2 |6, |3 4 7 0
04 |6, |5 5 6 1
0,2 |65 |8 2 2 6
0,1 |6, |3 1 0 7
0,1 |65 |1 0 0 9

It is necessary to choose optimal solution.

Solve the problem using the criteria of the first informational situation.

The Bayes criterion. Since in our problem we use a functional with a positive
ingredient to evaluate possible solutions (it describes the effectiveness of solutions),
we will use formulas (6.1).

We calculate Bayes value for each of the solutions, namely:

5
B (9pp)= fup;=3-0,2+5-0,4+8-0,2+3-0,1+1.0, = 4,6.

i=1

5
B (@, p)=Y [0, =4-0,2+5-0,4+2-0,2+1-0,1+0-0,1=3,3.

i=1

5
B (@)= fup,=7-0,2+6-0,4+2-0,2+0-0,1+0-0,1=4,2.

i=1

5
B (¢;,p)=> fup,=0-0,2+1-0,4+6-02+7-0,1+9-0,1=3,2.
i=1
It is easy to notice that the highest Bayes value is the solution ¢,:
B((pl, p) =4,6, so its choice can be considered rational. Therefore, it is necessary to

leave the number of workers unchanged.
The criterion for minimizing dispersion of the estimated functional. By formula
(6.4), we calculate the value of dispersion for each of the possible solutions, that is,

5
o (@, p)=D (f, —4,6)p,=2,56-0,2+0,16-0,4+11,56-0,2+2,56-0,1 +

i=1

+12,96-0,1=4,44.
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5
(@, p)=D (f,-3,3)’p,=0,49-0,2+2,89-0,4+1,69-0,2+5,29-0,1 +

i=1

+10,89-0,1=3,21.

5
(@, p)= D (fr,—4,2) p, =7,84-0,2+3,24-0,4+4,84-0,2+17,64-0,1 +
i=1

+17,64-0,1=17,36.

5
(@, p)=D.(f,,-3,2)’p,=10,24-0,2+4,84-0,4+7,84-0,2+14,44-0,1 +

i=1

+33,64-0,1=10,36.

The lowest value of the dispersion has a solution ¢, that involves increasing

the number of workers by combining shifts, so its choice on this criterion will be
rational.

Let's consider the modifications of this method.

The first one is described by the formula (6.6). Firstly, we calculate the average
Bayes value for all the criteria, namely:

1l &
—> B'(¢;,p)=3,825.
m

Now we calculate the value of dispersion (the variances) with respect to it, that
18,

5
2@, )= (fy —3,825)*p, =0,68-0,2+1,38-0,4+17,43-0,2+0,68-0,1 +

i=1

+7,98-0,1=35,04.

5
o3 (@,,p) =D (f,—3.85°p,=0,03-0,2+1,38-0,4+3,33-0,2+7,98-0,1+

i=1

+14,63-0,1=3,48.

5
2@y, p)= > (f5 —3,85)*p,; =10,08-0,2 +4,73-0,4+3,33-0,2 +14,63-0,1 +

i=1

+14,63-0,1=17,5.

5
(P p) = (fiy —3,85) p, =14,63-0,2+7,98-0,4+4,73-0,2+10,08 - 0,1 +
i=1

+26,78-0,1=10,75.
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Obviously, the minimum value of dispersion is obtained for the solution ¢,, so
the choice of this alternative can be considered rational.
The second modification is described by the formula (6.7). The maximum

Bayes value is maXB+(g0j, p)=4,6. We calculate deviations of the values of the
J

estimating functional for each of the solutions from it, namely:

5
2@, )= (fy —4,6)* p, =2,56-0,2+0,16-0,4+11,56-0,2 +2,56-0,1+

i=1

+12,96-0,1=4,44.

5
(@2, p) = (f» —4,6)*p,; =0,36-0,2+0,16-0,4+6,76-0,2 +12,96-0,1 +

i=1

+21,16-0,1=4,9.

5
(@ p) =D (fi —4,6)’ p,=5,76-0,2+1,96-0,4+6,76-0,2+21,16-0,1 +

i=1

+21,16-0,1=7,52.

5
G2 (@ p)= D> (fis —4,6)"p, =21,16-0,2+12,96-0,4+1,96-0,2+ 5,76 - 0,1 +

i=1

+19,36-0,1=12,32.

The minimum value of the modified dispersion corresponds to the solution ¢,
that is why its choice can be considered rational.

Now let's solve the problem using the criterion of maximizing distribution
probability of the estimated functional. We compute the necessary
parameters: o, :miin m/_in f; and a, = max max f;;» according to our data @ =0 i
a,=9.

Now let’s choose the number a that satisfies the following condition:
o, < a <a,, assume that o = 5. By the formulas (6.12) we calculate the probability

p(f, = «) for each solution ¢, , that is:
@ p(f;725=0,4+0,2=0,6;
@0 p(fy 25)=0,4;
@, p(fy 25)=0,2+0,4=0,6;

@,: p(f;25=0,2+0,1+0,1=0,4.
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The maximum value of probability has two alternatives: ¢, and ¢, that is,

rational by this criterion, the following decisions can be considered: not to change the
number of workers or to increase it.

Now we apply the modal criterion for the solution of the problem.

With this purpose, we determine the state of the environment, which has the
greatest probability. For the formulated problem, this will be the state 62, that is, the
average number of accidents during the day will be moderately higher (insignificantly

increase). Estimates of solutions for this state have the following meanings: f,; =5,

J2=5, 13=06,15=1.
The highest value corresponds to the decision ¢,. Therefore, its choice can be

considered rational, that is, it i1s necessary to increase the number of workers.

Let's consider some more criteria that can be used in this situation.

The criterion for the minimal entropy of the mathematical expectation of the
estimated functional. For each of the possible solutions, we calculate the entropy of
the mathematical expectation of the estimated functional by the formula (6.18).

In our case:
H(p,<01)=—; L ‘In L =1,1731.
- ijfjl ijfﬂ
J=1 j=1
H(p,¢2)=—zll p—f2 ‘In p—f2 =1,008.
- ijsz ijsz
J=1 Jj=1
H(p,(p3)=—z np,# -In np,# =0,909.
. ijfﬁ ijf/;
J=1 Jj=1
H(p,(/a):—; e "f"4+ In —np,-f,.4+ =0,96.
. lejfj4 lejfj4
J= J=
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The criterion has the minimum value for the solution ¢;. Thus, the choice of
alternative @3 — to increase the number of workers, will be optimal.

Combined criterion. Consider the problem of choosing a solution for this
criterion, using different values of the parameter .. We calculate the boundary values

of the parameter, which determine the advantage of the criteria by the formulas
(6.17), namely:

2 2
A" =min= < =0,497; A7 = max == =0,827.
k +32 k +32
ij(fjk) ij(fjk)
Jj=1 Jj=1

Now we calculate the value of the criterion, when 4 =0,4 (A< A"), thatis

k(p,¢)=4,6°(1-0,4)—0,4-4,44=10,92 .

k(p,p)=4,3(1

(1-0,4)
k(p@,) =3,3"(1-0,4)-0,4-3,21=5,25.
(1-0,4)-0,4-6,61=7,64.
k(p@,)=3,2>(1-0,4)-0,4-10,36=2.

The maximum value of the criterion corresponds to the decision ¢,, that is,

when 1< A", the choice of this solution will be rational.
Consider the problem of choice in the condition provided that 2 =0,9
(A>A"), namely:

k(p9¢1)2_1:88; k(p,@z):—l,g; k(p9¢3):_4986; k(p9(04):_8:3'

The maximum value of the criterion corresponds to the alternative ¢,, that is,
if 1> 1", the choice of this solution will be rational.

In the case, when 1=0,662 (A1 <A<A"), the criterion acquires the
following values:

k(p,p)=4,2128; k(p,p,) =1,5558; k(p,p,)=1,09; k(p,p,)=-3,3972.

So, the solution ¢, will be optimal.

Let’s put the results calculated using different criteria in a table (Table. 6.1).
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Table 6.1
Results of calculations and decision making according to the different criteria
in risky conditions

The value of the criterion for Optimal solution
Criteria name decisions

®1 ) Q3 Q4
Bayesian 4,6 33 4,2 32 01
Minimum dispersion 4,44 3,21 7,36 10,36 ®
Modification 1 5,04 3,48 7,5 10,75 ®
Modification 2 4,44 49 7,52 12,32 ¢ 1
Maximizing the probability | 0,6 0.4 0,6 0.4 01,02
distribution of the
estimated functional
Modal 5 5 6 1 ?3
Minimum entropy 1,1731 | 1,008 | 0,909 0,96 ®3
Combined, 4 =04 10,92 | 5,25 7,64 2 ? 1
Combined, 2 =0,9 -1,88 | -1,8 | 4,86 -8,3 Q-
Combined, 1 = 0,662 42128 | 1,5558 | 1,09 |-3,3972 ® 1

Analyzing the results, we can draw a conclusion, that the use of different
criteria gives different optimal alternatives, and therefore, before making a decision it
is necessary to determine which criterion it will be chosen on, taking into
consideration the terms of the task and the requirements for the decision. For
example, in the considered problem, the alternative ¢, will not be optimal for any of
the criteria, the alternative @3 will be optimal only by the modal criterion, that is, a
decision maker must choose between two alternatives: ¢; - not to change the number
of workers and ¢, — to increase the number of workers by combining shifts (the team
will have a variable members).

6.3 Bayesian sets

The Bayesian criterion makes it possible in the information situation to
investigate the synthesis problem while choosing the optimal solution according to
the probability distribution: p = (py, ..., p,), in the set of environment states C. We
denote by A the set of possible values of the a priori probability distribution vector,
namely:
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A:{(pl,...,pn):OSpjSl,j:l,,,,n, ij:l},
i=1

and consider (n — 1) - dimensional simplex:
n—1
P ={(p1,..., p,):0<p <1, j=1..n-1, > p, 31}. (6.20)
i=1

It is a projection of a flat set A, in (n — 1) - dimensional space of values of the
first (n — 1) components of the vector of the a priori distribution p = (py, ..., p,).
The essence of the synthesis problem is to partition the simplex P _, into sets,

S(pch

n—1’

s, NS, =,when i#k;

2 US, =£..
k=1

3) The solution ¢, € ® will be optimal for the Bayesian criterion, if pc S, .

k=1,...m, satisfying the following conditions:

We will call the set S, as the Bayesian set of a priori probabilities:

p= (i, ..., p,) In respect to solution ¢,, the solution itself ¢, e® for the

probability pc S, will be referred to as the Bayesian solution, and the value

B"(p,p,) in Bayesian solution ¢, is the optimal Bayes value of the estimated

functional.
Determine the Bayesian surface of the optimal Bayes values of the estimated
functional F~ (or simply Bayesian surface) for all probabilities pe A, in the

following way:
B*(p) =r;13g3*(p,¢k)- (6.21)

If a decision making body has information about the Bayesian set, then they
can relatively simply take the optimal decisions (using solutions after the Bayesian
criteria), even if the apriori distribution of probabilities: p = (py, ..., p,), the states of
the environment C are defined inaccurately. But the problem of constructing the
Bayesian sets is a rather complicated mathematical task of partitioning (n — 1)-th-
dimensioned simplex into subsets, especially when n>4. Let's consider the
following methods of constructing Bayesian sets of solutions.
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6.3.1 Geometric method for constructing Bayesian sets

Note that this method can be used only for a small number of states of the
environment, in particular, when n =2 or n = 3 only.

In general case, the geometric method for constructing a Bayesian set in (n — 1)
-dimensional space of values p,, ..., p,; for the chosen solution ¢, € ® can be
described as follows:

Each of the sets S, will be a set of points p satisfying the following system of
inequalities:

n—1
by, (P)20, i=l..mi=k, p,20 j=1..,n-1, Z;pj <1, (6.22)
=

where

b ()= 20, = [+ A=) =S (623)

So, we have a system of (n + m - 1) inequalities. From this, it follows that each
of the sets S, is a convex closed polyhedron in (n — 1)-dimensional space, which is

completely described by its vertices.
To find a vertex of the set S, it is necessary to examine various combinations,

which are made of (n — 1)-th equality of the following form:

— n—1
byy, (P)=0, p; =0, Z:,p,:l. (6.24)
=
Such combinations may be equal or less than C ,’,’1;1,1_1. The vertex of the set S "

will be presented by any point: p =(p,,..., p, ,) satisfying the system of iequalities
(6.22) and the system with (n — 1)-th equation (6.24) with a non zero determinant.
But this method is not rational, since the number of combinations is quite wide.

Example 6.2. We consider the problem of constructing a Bayesian
set @ ={p,p, @, forthe case with three possible solutions: and two states of the
environment: 6 ={¢,,0,}, that is, when n =2 and m = 3. Suppose, that the estimated

functional is given by such a matrix:

o @, @
p 91 fn flz f13 .
l-p |6, 1, fon Jfu
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Let’s write the Bayes values of the functional for each of the solutions:
B (p.p)=pfi+(1-p) s
B (2.0,)=pf1+(1-P) f 2
B (p0)=pfs+(1=p)f .

The Bayesian surface is determined by the following formula:

B'(p)=maxB*(p.0,),

Pre®

and the boundaries of the sets are described by the points, in which the change of the

surface line passes. These are the points of intersection of the corresponding Bayes
values of the estimated functional, namely:

Ly, B (p.9))= B (p.0,),
Ly B (p.¢,))=B"(p.9,);

r,,: B'(p.g,)=B(p.o,),

where I, o, 18 the boundary between sets S, and S o -
Consider an example with numerical values.

Example 6.3. Assume that the estimated function is given as follows:

b @, P
6, 10 2 5
02 _3 7 4

Then the Bayes values for each decision acquire the following form:
B+(p,(p1) :10p+(—3)(1—p) =10p-3+3p=13p-3,
B (p.p,)=2p+7(1-p)=2p+7-Tp=—5p+17,

B (p.p,)=5p+4(1-p)=5p+4-4p=p+4.

We construct graphs of these functions on the coordinate plane (see
Figure 6.1).

A Bayesian surface B” ( p) is marked on the drawing with thick line.
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Fig. 6.1. Graphic representation of the Bayesian surface and Bayesian sets (for
Example 6.3)

It is obvious that
B+(p, (01), 0<p<p,
B'(p)=1B"(P.9;). P,<P<p,
B'(p.9,), p,<p<l.

The Bayesian sets will look like this: §, = [O,pl], So, =[p2,1], Se, = [pppz].

To calculate the values of the probabilities p; and p,, we make the following equation

p: B (p.9,)= B (p.9,), p.: B (p.9:)= B (p.9),
Sp+T7=p+4, 13p-3=p+4,
—6p =-3, 12p=T7,
1 7
p1=5- Pfﬁ-

Consequently, finally the Bayesian sets acquire the following form:
1 1 7 7
= O; — 1, =|— ,— ) =|—, 1 .
SC/JZ |: 2:| S(”s |:2 12:‘ S¢1 |:12 :|
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6.3.2 Functional method for constructing Bayesian sets

The construction of Bayesian sets, when there are several solutions, can be
accomplished either by joint consideration of all possible pairs of decisions, or by
successive transition from two solutions to three, from three to four etc. Therefore,
there is a direct method of solving the problem of constructing Bayesian sets and
multi-step method of successive increase in the number of solutions.

The direct method for constructing Bayesian sets under the condition of several
possible solutions involves the sequence of actions described below.

For the initial set of solutions: ®={g,,...,¢,}, it is necessary to make all

possible pairs of solution
(¢1’¢2) ’ (¢1’¢3)’ (¢1a¢4) 5t (¢17¢m) — 1n total (m - 1) pairs,
(@,,0,), (0,,0,) 5 ---, (¢, ,) —in total (m — 2) pairs,
(@9, -, (@,,,) —1n total (m — 3) pairs,

(91,04)5 ---» (@,,0,) — 1n total (m — 3) pairs
(@,1>9,,) — 1 pair

and for each pair, break the simplex P, 1 into two corresponding Bayesian sets.
We denote via S, |, a Bayesian set of decisions ¢, € @ in a group of only two

solutions, then

s

S =

2]

S

2 oile;

For a part of a simplex P, \ S, the Bayesian set S, can be defined as follows:

S, =S,

»le; -

Then, we consider a part of a simplex [F, ; \(S,, Uus »,)] for which the Bayesian

set S, is defined with the following formula:

oslo;

S, =[(B,\S, US,)INS
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Continuing this process, then, in a similar way we can establish that:

k-1 m
S(ﬂk = [(13"_1 \ L._Jls% )]i:rkll S¢k|(ﬂf ’

6.3.3 Method of variation of the reference point for constructing Bayesian
solutions

Assume that some probability is selected: p°=(p/,...,p)), p’eP_

(reference point).

Let us describe the scheme of the method.

1. Find the Bayes values of the estimated functional in relation to the decisions
¢, € ® when p = p°, namely:

B (p"0)=>.pfr, k=12,..m.
j=1

2. Determine the solution ¢, €® for which the following condition is
fulfilled:

B'(p")=B(P",¢,) =maxB"(p".0,).

3. Calculate the discrepancies: 6, , = B"( po,(pko) —~B*(p°,¢,), for all decisions
@, €D \goko )
4. Calculate the vectors d,, as the difference between the k-th and Ko-th

columns of the estimated functional F" by the following rule:

+

fi) [
dy, =| - |=| - |
T ) o,
5. Consider the variation: p=(p,,...,p,), the starting point p°, constructed

according to the rule:
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ﬁ:p°+q,where p,=p;+q; Zﬁjzl, Zp?zl, qu:O.
j=1 j=1 i=1

For each pair of solutions (¢, ,¢,), we find a scalar composition (g,d,, ),

namely: (¢.d,,,)= > q,d},
j=1

and S

The boundary between the conditional Bayesian sets S(/,kolwk oo, 1

determined by calculating (n — 1) variational points p',...,p"" on the basis of solving
n-1

(n — 1)-th system of linear algebraic equations, with the of which vectors ¢',....,¢"",

can be found, that is,

(9,dy,) =0y, »
q.=0, i=12,....,n—1.

Z% =0.
=1

6. The equation of the hyperplane I', A~ which is the boundary of the sets

Sy and S, -and passes through the points p =(p,,..., p.,) is obtained by
solving the following equation:

Pi=Pi»  Pr=Pn o PP

F-Bl. BB . Ba-Ba|_,

P =P P =Py o Poa P

After constructing conditional Bayesian sets S

o000 the Bayesian set S% 1S

defined as follows: S(/, =

ko P D\gy, Pro 1Pk

Next, the process of constructing Bayesian sets is performed consistently using
the described method for all solutions ¢, € ®.

Example 6.4. Consider the problem of constructing Bayesian sets for the case

of three possible solutions: ®:{(p1,(p2,(p3}, and three states of the environment:

©={0,, 0,, 05} that is, when n=3 and m=3. Assume that the estimated functional

is given by such a matrix:
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b P P

)2 6 2 1 4

D, 6, 5 2 3
l-p-p, |6 2 5 1

Write the Bayes values of the functionality for each of the possible solutions,

namely:

B+(p,(01) = 2p1 +5p2+2(1_p1 _pz) :3p2 +2,
B™(p,p,)=1p, +2p,+5(1-p,— p,)=—4p, —3p, +5,

B+(p,(03) =4p +3p,+(l-p,—p,)=3p, +2p, +1.

Now let's make an equation of boundaries:

1) Ff/’h(”z : B+(p’¢1):B+(p’¢2)’ 2) F(pl,go} :B+(p7¢1):B+(p9¢3)9
3p,+2=-4p -3p,+5, 3p,+2=3p, +2p, +1,
6p,=—4p -3, p,=3p,—1.

p,=-0,67p +0,5.

3) Ly o B (p,,)=B"(p,,),
—4p,—-3p,+5=3p, +2p, +1,
=5p,=—4+7p,

p,=-14p +0,8.

Based on the results of the calculations, we construct the boundary image

obtained on the coordinate plane (see Figure 6.2).
As you can see, the source area is divided into 6 subsets. Determine now which

solution is the optimal for each of them. To do this, we choose an arbitrary point in
each subset and calculate the Bayes values for each of the solutions at that point. The
maximum value corresponds to a certain Bayesian set. The results of calculations are

reduced to Table 6.2.
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Fig. 6.2. The boundaries of subsets S, |, and S, obtained from the

calculations in Example 6.4

Table 6.2

The results of calculating the Bayes values of the estimated functional in each

of the subsets

Subset cooll)r((;;;l;tes Bayesian values Maximum Betlc())rtl}ing
| 5 | B o) | B oy | Brey | " Bayesian set

1 0 0 2 5 1 5 S,,

2 0 0,6 3,8 3,2 2,2 3,8 S,

3 0 0,9 4,7 2,3 2,8 4,7 S,

4 0,45 0 2 3,2 2,4 3,2 S,,

5 0,65 0 2 2,4 3 3 S,

6 0,9 0 2 1,4 3,7 3,7 S,

Taking into account the results obtained, we finally have the following

Bayesian s

ets:
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p+p, =l (p +p, <1,
o p, <—0,67p,+0,5, Lo
S p,=-0,67p, +0,5, p,=2-14p, +0,8,
a =) S, =1p,<-L4p +0,8, S, =
p,23p -1, ? P, <3p -1,
N D>P,20. >
PP, 20. PP, 20.

The graphic representation of the received Bayesian sets is shown in

Figure 6.3.

—Tr1iz

—Tr23
—TI13

—

Fig. 6.3. Graphic representation of Bayesian sets (Example 6.4)

Example 6.5. Assume that the decision-making situation is given by a matrix:

p Q1 | ¢2 | @3
0,3 0, 2 1 4
0,5 0, 5 2 3
0,2 03 2 5 1

The referenve point po=(0,3; 0,5; 0,2). We construct a Bayesian sets
according to the scheme described above.

To do this, lets’s follow these steps:

1. Calculate the Bayes values of the estimated functional in the control point,

namely:
B (py,¢)=0.3-2+0.5-5+0,2-2=3,5,
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B (py,9,)=0,3-1+0,5-2+0,2-5=2,3,
B (py,9;)=0,3-4+0,5-3+0,2-1=2,9.
2. Find a solution ¢, for which
B (py»¢y,) = max B (py,¢,) =3,9.
In our case k, =1.
3. For each solution ¢, except ¢, , calculate the discrepancies as follows:
Ok =B(Py>0,) — B(py, 91, »

Namely o0,, =1,2, 6,,=0,6, J,,=0,6.

4. First, we will determine the boundary between the sets S o and S > for this

purpose we calculate the following difference:

1Y (2) (-1
d,=|2|-|5|=-3|
5) 2) | 3

We introduce the variation of the control point: p = p, + ¢, namely:

p,=0,3+¢q,,
p2;,=0,2+¢,,
P,=0,5+gq,.

Let’s calculate the scalar product (d,q), 1.e.

—1 q,
(d,q)=|-3 || 9, |=—9,— 34, +3q;.
3 q;

Let's write equality: (d,q)=0,,=1,2, and we will make a system of equations

for finding the first variation, namely:

251



—q, =39, +3q;=1,2,
q, =0,
q,+9,+q;=0.

Having solved it, we have got the following results: ¢, =0; ¢, =-0,2;
q,=0,2.
Calculate the first point of the border, namely:

0,3 0 0,3
pot+q=0,5|+|-0,2|=|0,3 ],
0,2 0,2 0,4

and p' =(0,3; 0,3; 0,4).

Let’s calculate the second variation by the following system of equations:
—q, =39, +3q, =12,
q, = 0,
q,+4q,+4,=0,

then ¢, =-0,3; ¢,=0; ¢,=0,3,

0,3 -0,3 0
Pot+tq=05+ 0 |=]0,5],
0,2 0,3 0,5

and the second point of the border p*> =(0; 0,5; 0,5).

The straight line passing through these two points will look like this:

p,—0,3 D, -0,3
0-0,3 0,5-0,3

We convert it into a canonical form in the following way:

0,2(p, —0,3)==0,3(p, -0,3),
0,2p, —0,06=-0,3p, + 0,009,
0,3p, =-0,2p, +0,15,
p,=-0,67p,+0,5.
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Consequently, the boundary I' | = between sets S, and S, is described by the

following equation:
p,=-0,67p +0,5.

Similarly, we construct boundaries between sets S, and S, , and between S,

and S, . Now we get the following results:

L, ,ip,=3p-1, I, :p=-L4p +0,8.
As you can see, the results obtained by the two methods are the same.
6.4 Construction of decision sets relative to other criteria.
Method of optimal set partition

Consider the decision-making situation {@,@,F } described by such a matrix:

D e Dy
O fu o S
en f}"ll f;zm

and in the set of states of the environment, we know the probable distribution of
probabilities and the criterion for decision-making is chosen.
You must divide the set:

IA

n—1
Pn_l={(pp---,pn_1):0Sp,-Sl,j=,...n—l, >.p, 1}, (6.25)
i=1

inits subset S, < B, |, k=1, ... m satistying the following conditions:
S,NS, =9, i#k, i,k=1,2,..,m, (6.26)
Us, =P (6.27)

and for pc S, , k=1,...m on the optimal criterion K there is a solution ¢, .
k

In the previous section of this coursebook, the problem of constructing sets of
solutions in relation to the Bayesian criterion was considered. There a geometric and
functional method of constructing them were proposed. In the paper [39], the
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problem of constructing Bayesian sets is solved with the help of the method of
optimal set partition (OSP) described in the monograph [15].

Now let's try to answer the question: is it possible to build sets of decisions in
relation to other criteria? Let’s consider the problem of constructing sets of solutions

n—-12

S, © b, k=1,...m, with a relatively combined criterion of this form:
K(pagok):(l_a)B+(p>§0k)_ao-2(pa¢k)a (628)

where B"(p,p,) is a Bayes value for solution ¢, that corresponds to a priori
distribution of probability: p=(p,,...p,); o’(p.@,) — variance of values of the

estimated functional, which correspond to the solution ¢, ; « - parameter, 0 <a <1.

Obviously, the construction of sets of solutions can be regarded as the problem
of optimal partition of a simplex P, _, into subsets corresponding to a possible

solution. To solve it, we formulate the initial problem in the form of the problem of
optimal partition of sets.
Task Al. To break (n — 1)-th dimensional simplex:

n—1
1)n—1 :{(pp---apn_1)30§pj Sl, jzl,...l’l—l, ij Sl}

i=1

mnits subsets S , S ,... S
2] %)

,, in such a way that the following conditions are met:

S,NS, =D, i#k, ik=1,2, . m,

and functional 1s

oo Sp,) = I ¢.(p)p(p)dp, (6.29)

reaching the maximum value.

Here p(p) is areal, integral, integrated function;

—

n—

Ck(p):(l_a) ((fz/c _fnk)pi +f;1k)_

i

_O{E(fﬂz —fi)p,- _(HZ__:(f:k _fnk)pi] —2fs S (f,k —fnk)p,.], k=1, ..m.

i=1

Il
—

i=1
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Partition Sw S s S o> which is the sum of the problem Al, we will call

optimal.

The formulated task Al is a problem of OSP with fixed centers of subsets
without restrictions [15].

To solve it we introduce the characteristic functions of subsets S o> k=1,..m,

namely:
1, 1if peSq,k,
/1;(]9): k=12,...,m.
0, if peS\S,,

Using the terms of characteristic functions, we can write the problem Al in this
form:

Task B1 Find a vector function: 2"(-) = (ﬂf(-),...,i; (-)), which corresponds to

the following condition:
I(A"())= max I(A°(),
A (el

where

140 = | i{(l—a)g((ﬁk—ﬂk)pﬁ )~

P k=1 1

O{HZ(fl;? _fi)pi _(n (fa _f;zk)pij _2f;zki(f;‘k ]pnk)piJ]/lk(p)dpa

i=1 i=1 i=1

I = {AUp)= (A4 ®)s-... 4, (D)): Zml A, (p) =1 almost everywhere for p € P,

A(p)=0v] peP ,k=1,..,m}

(pl’“., P

Note that F/(S, ...S, )=1(A(-)).

Using the method of optimal partition of sets, described in the monograph [15],
we obtain the solution of the problem in this form:

I, if 1-a)(B,)-a(c’,)2(1-a)(B,)-a(c’,).Vj=1m

0 1in other case,

X (p)={ (6.30)

where A (p),..., A, (p)are characteristic functions of subsets S, ...,S, which form

the optimal partition of the simplex P, ;
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n—l1

O-;z ~ 4 (lef _fni)pi _(nz_(fzk _f;dc)pij _2fnk2(fik _fnk)p" ’

i=1

B, Z(fk Su )P+ s k=1m.

Let’s assure that the optimal statement of the problem A1 will form a simplex
partition in the set of solutions, that is, the following statement is true.

Statement 6.1. Subset S; yeres S;m which is the optimal solution of the task Al,

form the set of solutions by the combined criterion (6.28).
Proof

Let partition S;,..., S(:m be a solution of problem Al. Consider an arbitrary
subset S;k, and the point p=(p,..., pn)eS;k. According to the necessary and

sufficient condition for the optimality of the partition [15], such inequality will be
fair:

Ck(p)ZCj(p), j=1m. (6.31)
n—1

Taking into account that p, =1- Z p, , turn expression into function
k=1

definition, namely:

Ck(p) = _a)(i(ﬁk — fu)D; +fnkJ_
_O{i(fz/? _f;zi)pi _(i(ﬁk _fnk)piJ _zfnkli(fik _fnk)pi] -
- (1—a)[§p,-f,~k +(1 —ip,-mk] -

_a(iﬁlfpi - if;zipi + rj{ nk [Z nk j 2fnk nz:(f fnk )pi] =

=1 i=1

i=1 i=1

=(1—a)ip,~f,~k [kap, (nZ(f fnk)p,-j —2ﬁk”2(ﬁk—fnk)pij=
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i=1

:(l_a)ipifik_ kapz (nZ: Jir fnk)p + ]]:

:(l_a)ipif;k - Zj:lefpz _(ifikpij ]:(l_a)B+(p,¢k)_ao_2(p,¢k)

Then, it follows from the inequality (6.31) that

(l_a)BJr(p’(Dk)_ao-z(pa(Dk) 2 (l_a)BJr(pa@j)_ao-z(pa(Dj) VJZI, m.

So, (1-a)B" (p,¢,) —ac’(p,p,) = I;lgg(l—a)F(p,(pj)—wz(p,(pj),

ie. K(p,p,)== I(},}%K(p’(af)'

Thus, the decision ¢, is optimal in relation to the combined criterion when

P=(PiyesP,).
On the other hand, if the decision ¢, is considered optimal by the combined

criterion, when p= p,, then the following condition is fulfilled:

K(pm@) maXK(poa¢k) max{(l a)(zpsz] (.Zn:(ﬁkzn:fikpi)zpi]}’

i=1

ie. (1- a)(ipmfikj - a(i(fzk - iﬁkPOi)ZPOij =

>(1 _a)(ipm’fz‘jj_a(i(f;j _if;jpm)zpm‘ja Vji=1lm.

Taking into account that Z p, =1 and, converting expressions, we get the
i=1

following inequality:

(1 _a)(i(f;k = fu)Poi * nk\]_

i=1

_a[i(ﬁz nk)pOz (Z(fk f;zk)pmj 2fnk§ nk pOlJ
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>(1- a)(nz‘,(f;] _f;y')pOi +fnjj -

S

_a[nzl:(fijz _fnjz‘)pOi _(HZ__I‘,(/{U _ﬁy)pOij _2/[;y‘§(f,~j —fnj)po,} , Vj=1,

i=1

And according to formula (6.30), this means that p, €S, .

*

So, subsets S;,...,S¢ form the set of decisions in relation to the combined

criterion. The statement is proven.
We formulate the algorithm for solving the task A1, which is based on the OSP
method [40].

Algorithm Al

1. We put the set P, | in a parallelepiped P which sides are parallel to the axes
of the Cartesian coordinate system.

2. We cover the parallelepiped P with the rectangular grid.

3. We set the function in the nodes of the grid by the following rule:

(p)= I, it peP |,
PEI0, if pep..

4. We calculate the value of the characteristic functions A, (p), k = 1,m in the
nodes of the grid with the formula (6.30).

5. When A4, (p) =1, the point p belongs to the set S o, - Otherwise, no.

6. To check the correctness of calculations, we calculate the value of the target
function F'(S,,,...,S, ) in the node p.

Let's illustrate the example of the application of the described algorithm in the

example that follows.

Example 6.6. Let's consider the decision-making situation, which is described
by such a matrix:

2 ?, ?s Py
6, 4,05 3,29 2,93 0,99
6, 3,79 4,12 4,05 4,19
6, 3,23 3,54 4,75 5,95

It is necessary to construct sets of solutions corresponding to the combined
criterion (6.28).

258



The result of the algorithm A1l is shown in Figure 6.4. When « = 0, we obtain
the Bayes sets (Figure 6.4, a), if ¢ =1 — the sets corresponding to the dispersion
minimum criterion (Figure 6.4, b), the results for the combined criterion are « = 0,3

(Figure 6.4, c¢) and o = 0,7 (Figure 6.4, d).

Fig. 6.4. Graphical representation of sets of decisions by the combined
criterion, obtained using Algorithm Al

It is obvious that if the criterion of the minimum dispersion (« = 1) is applied,

then, under an arbitrary a priori probability distribution, the solution ¢ will be

optimal, at the same time @), the solution will not be used in any case and can be

excluded from consideration. The use of other solutions depends on the a priori
distribution of probability and the type of criterion applied.

Note that the described algorithm can also be extended to situations with more
than three states of the environment, and the construction of sets of solutions allows
us to find the optimal solution even in the case of an uncertain a priori probability
distribution or at least to evaluate a possible error.
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6.5 Criteria for making decisions in conditions of complete uncertainty

Let's now consider the decision criteria that are used in other information
situations. Let's start with the situation of the I, characteristic of the unknown

n
probability distribution: p = (p1, p2 ... p), p; =p(@=0,), ij =1, in the set of
j=1
states of the environment &, ...0, and the absence of active counteraction of the
environment to decision-making purposes. In the specific sense, this situation
corresponds to the model of passive "behaviour" of the environment in the theory of
statistical decisions. In other words, it reflects the complete absence of data about the
environment in the management body. In real conditions, such situations are
associated with the introduction of new equipment or the implementation of new
samples of goods, when the demand for products is completely unknown etc.

Let's consider the decision criteria which can be applied to this situation.
Conditionally, they can be divided into two groups: criteria of integral values and
evaluation criteria.

Let’s characterize varieties of integral criteria.

Criteria of the maximum measure of Bayes sets. We have a decision-making
situation {@,@, F} Let's denote through S %,S e S o the Bayesian sets of solutions

m

o, @,,...¢,, respectively, and through ,u(S%), ,u(S ), ,u(Swm) the measure of these

()
sets. As the probability distribution is unknown in situation /4, then the principle of
the maximum measure of the Bayesian sets can be considered appropriate for
choosing a solution. It corresponds to the assumption that the a priori distribution of
the Bayesian set which has a greater measure is more likely to be true for the
environment C.

Thus, the optimal is considered the solution ¢, €® which satisfies the

following condition:
u(o,)=maxu(p,). (6.32)

PrE

The disadvantage of this criterion is that the optimal solution ¢, may not

always satisfy the desired condition for the decision-making body, i.e.

[ B (¢0-p)dp> | B* (¢ p)dp,
S

20 Sé”k
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where is the value j B*(¢,,p)dp characterizes the integral Bayesian value of the

S‘Pk

estimated functional.

The criterion for the maximum integral Bayesian value of the estimated
functional. The integral Bayes value of the estimated functional in the solution @, is

referred to the value J' B (¢,.p)dp.

Slﬂk

In accordance with the above criterion, the solution ¢, that satisfies the

following condition will be optimal:

[ B (0. p)dp = max [ B (¢ p)dp- (6.33)
s, k< S

20

The disadvantage of this criterion is that the optimal solution ¢, may not

always be in line with the desired decision-making body condition, namely:

u(p, )z u(e,).

Criterion of maximum integral potential. The disadvantages of the criteria
described above may be somewhat neutralized by applying the principle of choice
based on the concept of the potential solution.

The integral potential of the solution ¢, € ® will be referred to the following

value:
[ B (. p)dp

S

=— . 6.34
" = ulp) u(B2) €9

The optimal criterion for maximum potential is considered to be a solution
@, € P that satisfies the following condition:

T =maxrmw .
(pko A c® Pk

The described criterion can be considered a convolution of the previous two
criteria.
Consider the example of the criteria described above.

Example 6.7. Let the decision-making situation be described by such a matrix
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o, @9, @
6, 10 2 5

92 _3 7 4

The Bayesian sets corresponding to this situation was constructed in 6.3.1 (see
7 1 1 7
Example 6.3), namely: § =|—;1|, § =[0;—1|, S =|—;—|. Determine the
p ) y ? |:12 :| ?> |: 2:| (] |:2 12:|
measure of these sets. It's easy to make sure that:

1
’U(S%):E; ’u(Sf”Z):E; ’U(S%):E'

As we see, the criterion for the maximum measure of Bayesian sets ¢, will be

the optimal solution since the set of greatest measure corresponds it.

Now calculate the integral Bayesian values for each of the solutions. As shown
above (see Example 6.3), the Bayesian values of the estimated functionality are as
follows:

B (¢,p)=13p-3, B*(p,,p)=—5p+7, B (¢,.,p)=p+4,

1
[ B (01.p)dp=[(13p-3)dp =13p> ~3p|; =7.326,
A 12

Sp1

12

0,5
[ B (poop)dp=[ (-5p+7)dp=-5p*+7p| =225,
0

Son

7
[ B (0.1)d f (p+4)dp=p +4p\12 = 0,4236.

Sp3

As the results of calculations show, the solution optimized by the criterion of
maximizing the integral Bayesian value will be ¢, .

Now compute the value of the integral potential for each of the solutions by the
formula (6.34), namely: T, = 17,5824, T, = 4,5, T, = 0,4621. With regard to this
criterion, the solution ¢, will also be optimal.

Bernoulli — Laplace Criterion. The application of the above criterion in
conditions of complete uncertainty is based on the principle of inadequate reason, its
essence that when there is no reason to consider any state of the environment more
likely than others, then a priori probabilities should be considered equal, that is,
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A A A A A 1 . .
p=(p,P,-0,)> P;=— , j=L2,...n, and after they have been determined, the
n
decision can be taken according to the criteria of the information situation /.
The Bernoulli-Laplace criterion implies the use of the Laplace principle of
insufficient base and Bayesian criterion, in particular, the optimal criterion for this
criterion will be a solution ¢, that satisfies the following condition:

+/A _ +r A _ 1<
B (p.g,,) =max B (p,cak)—gklggn;ﬂk.

We will analyze the solution obtained on the basis of the matrix of the
estimated functional. Obviously, a solution ¢, 1s better than a solution when ¢, such

a difference is an integral part: B*(p,¢,)— B (p,9,) :lZ(f,Z — /). Then you can
n

Jj=1
determine the necessary and sufficient condition that the solution ¢, will be optimal,
namely:

mln{li(f; —f;)} >0.
n‘s

pe®
izk

More information on the study of this criterion can be found in literary sources
[35].

Let’s apply this criterion in an example.

Example 6.7. Let the decision-making situation be described by such a matrix:

& O P
6 1 4 2
6, 5 3 1
6, 2 3 5

It is necessary to find the optimal solution according to Bernoulli-Laplace
criterion.

Solving

First, we define the a priori distribution of probability. Since the conditions of

: . 1
the problem predict three states of the environment, then p, = p, = p, =3 Now

calculate the Bayesian values for each of the solutions, namely:

+ 1 : +
B (¢’k):_2fik-
35
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In numerical terms B* (gol) = %, B (¢)2) = % , B* (%) -

As we see, the solution ¢ is optimal.

W | oo

6.6 Criteria for making decisions in conditions of antagonistic environment
behaviour

Let's now consider the decision criteria in conditions of antagonistic behavior
of the environment (informational situation /5). In other words, the environment
actively opposes the decision-making objectives, that is, from all its states, it chooses
exactly those in which the evaluative functional acquires its worst values. That is
why, in this situation, the choice of solution, which allows you to get the guaranteed
values of the estimated functionality, will be rational. This can be achieved using
Wald and Sevig's criteria.

Wald criterion’ (maximin principle) is used when the estimated functionality
describes the efficiency, benefits, i.e. it has a positive ingredient: F = F". At the same
time, the choice ¢, of a solution satisfying such a condition is considered rational:

S =R

In other words, the chosen solution provides the maximum benefit in the worst
situation.

Example 6.8. The situation of decision-making is given by such a matrix:

LT o S T 1
6 2 1 7 8
6, 8 6 3 3
6, 2 10 4 0
6, 2 3 11 4
6 16 4 7 10

It 1s necessary to find a rational solution, taking into account the antagonistic
behavior of the environment and the necessity of obtaining the maximal value by the
estimated functionality.

Solving

Apply the Wald criterion. To do this, we define the smallest element in each
column, and then we will select the largest among them.

' This criterion was developed by Hungarian mathematician Abraham Wald in the early 1940s
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1 :rarjlgglf; :min{2,8,2,2,16} =2,
f, =min f; —min{1,6,10,3,4} =1,
1 :glégl/‘lg =min{7,3,4,11,7} =3,
£ :ﬁlin]fj; =min{8,3,0,4,10} =0,

;<0

gggggfliralﬁ; =max{2,1,3,0} =3.

The maximum value of the functional corresponds to the solution ¢, so its

choice can be considered optimal.

The advantages of the Wald criterion include the fact that it is "extremely
conservative in situations where conservatism may take place" [35], but its
disadvantage is that it proceeds from the assumption that an adversary is a perfect
master who always finds the best (for self) solution, and this does not always
correspond to reality.

However, objections may be raised against this criterion. Let’s illustrate it on
an example.

Example 6.9. Let's take the decision- making situation which is described by
the following matrix.

)
Fr=16 0 1
6, 100 1

It's easy to make sure that Wald's criterion is the best solution ¢, however, the
average value of the functionality for the solution ¢,: B*(¢,)=100(1-p), will be
greater than the average decision value ¢,: B*(¢,)=1—- p, for all a priori probability

distributions: p,=p, p,=1-p, when 0< p<1-10~. But despite this, the choice
of solution will be justified if the environment acts as a conscious opponent to the
management body.

All the given above suggests that, under certain conditions, it may be advisable
to introduce additional constraints which, for example, are based on the Bernoulli-
Laplace criterion, that is,

: +
=maxmin f.
j;co P e® 6,c0 f;k ’

1
B (;,(Dk) > BO'
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The Savage criterion (minimax risk) was proposed by Leonard Savage in
1951. It is one of the main ones in the frequency of its use in the theory of statistical
decisions. It is used when the estimated functional shows the loss or risk, that is,
F = F". In this case, the optimal solution will be the following:

=minm
]pko @ e®@ Gggfk

By using this criterion, as in the Wald criterion, it would be advisable to restrict
the value of the estimated functional to the Bayesian value, namely:

1
B (—,p,)<B,.
n
Note that the Savage criterion allows to "soften" the conservatism of the

minimax criterion by replacing the winning matrix with the loss matrix, which is
defined as follows:

a‘(ﬁj,(pk)zrrzpe:x{m(ej,(pk)}— (,a%) 0,€0, 9, ed.

Take, for example, the prize matrix from Example 6.9:

L)
F =16 0 1
6, 100 1

Optimum for a minimax criterion will be a solution with a guaranteed win per
unit. Let's see what result will be when replacing this matrix with a loss matrix.

According to the above transformations, the matrix becomes of the following
form:

(L)
F =6 1 0]
6 0 99

and, in accordance with the Savage criterion, the choice of solution ¢ will be
rational.

The main objection to this criterion are as following: when the decision
@,, €D is optimal for the Savage criterion, and we will remove the optimal solution
® from a plurality of solutions ¢, #¢, then in a new set ®\ @, the decision P,

may not be optimal.
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6.7 Criteria for making decisions in conditions of partial uncertainty

Informational situation /s is characterized by the presence of factors that
determine two types of environmental behaviour.

The first is characterized by the management body having some information
about the true distribution of probabilities on a plurality of environmental conditions.
Although it is not enough to determine accurately the informational situation, it is
possible to establish a degree of optimism-pessimism about the behaviour of the
environment.

The second type assumes that the management body has information about the
state of the environment, which 1s an intermediate between the information situations
I, and /s, in other words, there is complete or partial knowledge about the distribution
of probabilities on the set of states of the environment and its antagonistic behaviour.

Consider criteria that may be useful in such situations.

Hurwitz Criterion. 1t is built on the basis of the desire of the management body
to take into account not only the worst situation for them (as the Wald and Savage
criteria), but also the best one. That is why it 1s a weighted combination of maximax
and maximin criteria.

The essence of the Hurwitz criterion is to find an optimal solution that satisfies
the following condition:

in fF — = i — <A<
Amin f, +( ﬂ)fg}ggf,-ko max{Amin fi +(1 l)g}ggﬂk},o_ﬂ_l.

When A =1, then the Hurwitz criterion coincides with the Wald criterion, and
when A =0 — with a maximaximum criterion, which meets the conditions of the
most favourable state of the environment. The real state of the environment is
somewhere between these extreme cases which is characterized by magnitude

/16[0;1]. Together with the described criterion, it is also possible to apply the

modified Hurwitz criterion, when each solution ¢, € ® corresponds to its value of
the coefficient A, 6[0;1]. In particular, the solution that satisfies the following

condition 1s considered optimal:

. . : B
A, g};g S, +A=4) %}Sg)‘ S, = r;:gg{ﬂ’k Ig}elg i +a ﬂ’k)%}gg St

0<A <1, k=12..m.

Let's dwell on the practical application of this criterion.
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Example 6.10. Let the decision-making situation be described by such a
matrix:

F'oo o o o ¢
6, 1 3 0 2 7
6, 3 1 10 8 1
6, 5 5 4 5 6
o, 3 7 3 6 2
6, 8 2 5 4 8

At the same time, the level of OSS optimism-pessimism is 1 =0,7. We will

choose the optimal solution by the Hurwitz criterion. To do this, we first compute the
value of Hurwitz's indicator for each of the solutions with the following formula:

Ju= /I%ggﬁk +(1 _/I)rgggfjk :

For convenience, write the results of the calculation in the form of the
following table:

F 2 ?, ?y @, s
o, 1 3 0 2 7
o, 3 1 10 8 1
o, 5 5 4 5 6
A 3 7 3 6 2
o, 8 2 5 4 8
Igrj)eig P 1 1 0 2 1
1221@))( S 8 7 10 8 8

f/lk 371 2,8 3 3,8 3,1

As we see, the maximum value of the Hurwitz index corresponds to the
solution ¢, so choosing it in these conditions can be considered optimal.

Consider the example of a possible objection to the Hurwitz criterion. Assume
that the decision-making situation is described by such a matrix:
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(2 )
g 0 1
o 6, 1 0
6, 1 0
6o 1 0

By the Hurwitz criterion, both solutions have the same values. Therefore, they
are optimal, but from the perspective of the given matrix of the estimated functional,

the solution ¢ is much better than ¢,. This fact can be taken into account if having
introduced for each decision, ¢, € O, being investigated for optimality by the Hurwitz

criterion, the restriction of this kind:

where B, is a given value.
Let's consider now the question of choosing the value of the coefficient

A 6[0;1]. Obviously, it corresponds to a certain degree of optimism-pessimism of

DMP. The greater the confidence of the DMP in respect to one of the extreme cases
of environmental behaviour, the closer to 0 or 1 will be the value A . Value ZL:E,

being the equilibrium point of the gap, indicates that the DMP considers at equal
degrees the environment as antagonistic and as that it will maximally contribute to
the decision-making objectives. In the general case, the optimal solution on the
Hurwitz criterion is a function of A . Let's illustrate this fact in an example.

Example 6.11. Assume that the decision-making situation is described by such

a matrix:
L I S
®, I 5 3 0
®, 2 2 2 4.
®, 4 2 3 6
®, 0 4 3 1

~

Calculate the value of Hurwitz's criterion f,, for each decision ¢, € ® with

the following formula:
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Ju= ﬂ‘IHI]_leig]ij +(1 _ﬂ‘)%}?g)(][jk'

Also
fa :/1%128]31 +(l_/1)%}géfjl =A-0+4(1-4)=4-44;
i :/1%28/[12+(1_/1)%3Sg){/[12 =2A+5(1-4)=5-34;
fa :/“gj_’igfffz*(l‘ﬂ)%jﬁ‘éﬁa =24+3(1-1)=3-4;
]24:/1%12(191]34+(1—/1)%}gg)(fj4 =0-4+6(1-1)=6—-641.

Construct the graphs of the obtained dependencies (see Figure 6.4).

Fig. 6.4. Curves and sets of Hurwitz for Example 6.10

It is obviously that from the perspective of different values of the indicator 4 ,
the solutions @ and ¢, will be optimal, but ¢ and ¢ are non-optimal, no matter

what values they have. Thus, the set is divided into two subsets: A o and A o0 and
Afﬁz = [O’/’LO] ’ A(/’4 = [/10’1] :
Let’s find these sets. To do this, we will calculate the value of the parameter 4,

. . : : . . 1
as the point of intersection of straight lines f, i f}4, also: A, =3 So, A, = {0- %},

b

A = {%, 1} . When 4 ¢ A, = [0; %} , then the optimal Hurwitz criterion will be the

Py

solution @, and when 2eA, = [%, 1} , the solution @), will be optimal.
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Consequently, the following definition can be formulated. A set of Hurwitz is
referred to a set A, , which satisfies the following condition:

A, = {/1 c[0:1]

S :maxfm}= D, ECD,
pie®

Moreover,

UA, =[01], A, NA, =@, when ¢, %4,

(%=1

Hurwitz curve we will call a jagged line T'*(4), defined as follows:
[ (2)={fy-xom AeA,  k=12,..m}.

It may be obvious that the curve and the sets of Hurwitz are similar to Bayesian
curves and sets. Therefore, based on them, we can formulate the criteria for the
maximum measure of sets of Hurwitz, the maximal integral value of the Hurwitz
index, and also the maximum of the integral potential.

Hodges - Lehman Criterion. This criterion takes into account the assumption
that, in actual decision-making problems and tasks, actual information about the
situation is often between complete ignorance and the availability of accurate data
regarding the a priori probability distribution. For example, the a priori distribution
may seem fairly reliable, but it is still insufficiently reliable to base the decisions on
it.

The use of the Hodges-Lehman criterion allows you to take into account the
information that DMP has and at the same time provides some level of guarantee in
the event if it is not accurate. In a certain sense, this criterion is a "mix" of Bayes and
Wald's criteria.

Let's consider the situation of decision-making {CD,G),F } when the estimated

functional is given in the form of risks. Let’s call a decision ¢, a limited Bayesian
solution in  rtespect to the given priori distribution peA, if

B‘((pk , p) =min B~ (¢,, p) and besides, there is such an inequality: f, < f, where
0 P €@ 0

J, is a given threshold value of the functional.

A limited Bayesian solution can also be defined by the following condition:

min ﬂuB’((pk,p)Jr(1—%){221(3(]’]]C :

@, ed

271



where constant 16[0, 1] and reflects the degree of confidence in the information that

DMP has.
Choosing the optimal solution for the Hodges-Lehman criterion is convenien,
using the following algorithm:

1. Determine the minimax risk, i.e. f =min max f, .
9@ 0,€0 Ik

2. Taking into account the calculated value of risk and the conditions for
making a decision, choose the size of the maximum permissible risk f,, and f, =1

3. Choose the solution ¢, , which is the best to the Bayesian criterion for the
admissible value of the a priori distribution p, €A, when the following condition is

fulfilled: f, > r;};ag)( S

Now apply the criterion considered in an example.

Example 6.11. Let the decision-making situation be given by such a matrix:

F* o O, O @ @
0, 0

0, 10

0, 4

0,

0,

0 W W W N
AN N L W
A O L 0 N
0 A O W

The priori probability distribution is estimated as follows:
2,=(0,1;0,3;0,2;0,1;0,3).

Determine which solution will be optimal for the Hodges-Lehman criterion.
To this end, we write the matrix of the estimated functional in the form of risks
or losses, for which we first find the maximum value of the estimated functional, that

is  f.=maxmax f, =10. Now the loss can be estimated as follows:
Pre® 0,€0

fj;c:fmax_ j;'

As a result, the matrix of the estimated functional acquires the following form:
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Fo o o o ¢

6, 6 7 10 8 3
6, 7 5 0 2 7
6, 5 5 6 5 4
6. 7 3 1 4 6
6, 2 4 5 6 2

Next, we will perform calculations according to the above algorithm.

1. Calculate the minimax risk: f =min max f, =7.

P e® 0,€0

2. Select the minimum acceptable risk, namely: f,=8 = =7.

3. Calculate Bayesian values B~ (¢,, p, ), for those decisions ¢, which satisfy

such condition: f, = max S
J

In this task, this will be a solution ¢, @, @. So, B (¢.p,)=5,
B (¢,,p,)=4.7, B (¢s5,p,)=44.

The lowest value of the Bayesian criterion corresponds to the decision @),

therefore, this choice can be considered optimal.

hallis A

4.

SELF-STUDY
Questions for assessment and self-assessment

What is an informational situation as the basis for making decisions?

Give the definition to a decision-making criterion.

What elements describe a situation of making decisions?

Is the difference between the estimated functionals with a positive and

negative ingredient?

. Name the stages of the decision-making process.

What features characterize a decision-making situation in risky conditions?
Describe the criteria which are applied in risky situations.

When is it appropriate to apply the Bayesian criterion?

Under what conditions should decisions be made on the basis of the

minimum dispersion criterion? What are the features of its application?

10. In what situations does a modal criterion apply?
11. Give the definition of a Bayesian set.
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12. What are the properties of Bayesian sets?

13. What purpose are Bayesian sets used for?

14. What methods of building Bayesian sets do you know?

15. What is the geometric method for constructing Bayesian sets? When it can
be used?

16. How can the essence of the functional method of constructing Bayesian
sets be defined? When it can be used?

17. Formulate the algorithm of the method of variation of the reference point
for constructing Bayesian sets?

18. What criteria can be used in conditions of complete uncertainty of decision-
making situation?

19. What is the meaning of the Bernoulli-Laplace criterion?

20. Describe the integral decision criteria (maximal measure of Bayesian sets,
integral Bayes value of the estimated functional, integral potential)

21. What criteria should be used in conditions of antagonistic behaviour of the
environment?

22. What are disadvantages and advantages of the Savage and Wald criteria.

23. In what situation it is expedient to apply the criteria of Hurwitz and
Hodges-Lehmann? Describe the meaning of each of these criteria.

Hands-on practice

Task A

1. Find optimal solutions in risky conditions using the criteria of the first
informational situation, when the decision-making situation is described as follows:

a p I N N by p I N N
o1 6 1 5 3 0 0,2 6 1 5 3 4
03 6, 2 2 2 4 0,3 6, 3 2 2 4
0,5 6, 4 2 3 6 0,4 6, 4 3 3 0
o1 6, 0 4 3 1 01 6, 1 4 3 1
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c) p N N/} d p o0 0 9,

01 6 5 4 0 0 o1 6 2 3 0 1
0,5 6, 1 3 7 4 03 6, 3 2 2 4
03 6, 0 5 2 6 0,3 6, 2 2 4 6
o1 6, 0 2 3 4 03 6, 2 4 3 1
e) p N N H b AN N
0,4 6 2 5 3 1 o1 6 2 5 3 0
0,3 6, 1 3 2 4 03 6, 5 0 2 4
0,2 6, 4 2 3 5 0,5 6, 4 2 3 6
01 6 5 0 3 2 o1 6 7 4 3 3

2. Construct the Bayesian set using geometric method, when the decision-
making situation is given by one of the following matrices:

a) o0 09 b) o009
g 1 5 2 5 6 1 5 2 5
6, 4 0 3 2 6, 4 0 3 2
c) o 009 d) o 009
6 2 5 2 4 6 0 5 2 6
6, 2 3 7 2 6, 4 3 3 2

3. Build the Bayesian set with a geometric method and a reference point
method, if the decision-making situation is specified by one of the following

matrices:

a) Do O @O, ¢ b) Py b P, O
0,116 1 5 7 0,416 12 4 5
0,416, 7 2 1 0,316, 10 6 12
0,56, 4 1 3 0,316, 7 10 7

c) Py O @, ¢ d) Py O P, P
0,216 1 0 3 0,216 11 15 20
0,516, 1 4 1 0,516, 17 3 14
0,316, 5 1 1 0316, 11 5 7
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e) Do ¢ O, @ f) Py O O, @
0,416 3 1 3 0,116 2 0 1
0,216, 2 2 2 0,116, 1 2 3
0,416, 1 4 5 0,816, 1 4 0

4. Choose an optimal solution using the criteria of the maximum measure of
Bayesian sets, the maximum integral Bayes value, and the maximum of the integral
potential for the decision-making situation from task 2.

5. Find the optimal solution using Bernoulli-Laplace's criterion when the

decision-making situation is given as follows:

a) I A b) I A
g 2 5 0 0 6 1 7 3 0
0, 2 2 2 4 0, 2 2 5 4
6, 2 0 3 6 0, 4 0 3 6
6, 2 4 3 1 9, 1 4 3 1

6. Accept the optimal solution using the Hurwitz criterion in the following

conditions:
a) R N VN b) R N VN
6 1 2 3 0 g 1 5 3 2
0, 5 2 2 4 g 1 3 2 4
0, 4 4 3 6 0, 4 2 4 6
6, 0 4 3 1 0, 7 4 3 1
2=0,7 A=0,5

7. Build sets of Hurwitz for the decision-making situation of Task 6.

8. Find the optimal solution using the Hodges-Lehman criterion, in the context

of such a decision-making situation:

a p, F' oo o0 0 o b po F o 0 o o
o1 g 1 5 3 2 035 6 1 5 3 0
03 6 2 6 2 4 015 6, 3 2 3 4
0,5 6, 4 2 2 6 0,4 6, 4 2 3 6
o1 6 1 4 3 1 o1 6 0 4 3 1

276



Task B

Submit the tasks described below as a mathematical model of the decision-
making situation and solve them.

1. The tourist agency has 10 cars for transportation of customers. It plans its
work for the next year. It can: leave the number of cars unchanged, take an additional
number of cars for rent or lend several of them for renting. The cost of maintaining
each car, the profit it brings when working with full load, the cost of leasing
additional cars and the profit from lending a car (in conventional units) is shown in
Table 6.3. The actual need for cars is random and depends on many unknown factors.
Possible states of the environment are described as follows:

o a slight increase in the number of tourists is expected;

o the number of tourists will increase significantly;

° the number of customers will be constant;

o the number of customers will be reduced significantly;

o there will be almost no customers.

Table 6.3

The cost of maintaining one car 5
Costs for renting one car 15
Profit from the work of one car 5
Profit from renting a car 5

2. Igor is a dedicated football fan. He periodically plays on the totalizator,
betting on the results of a match. Now he needs to decide what amount of money
from possible options: F = {100, 200, 300, 400} to bet, taking into account the five
possible scenarios for the match results:

0,— victory with a probability of 0,3;

0, — defeat with a probability of 0,2;

O, — victory over extra time — 0,1;

0, — victory according to the results of puncture penalty — 0,1;

O, — Draw with a probability of 0,3.

Describe the situation of decision-making and recommend Igor a strategy of
his behaviour, based on the following assumptions about his arguments:

a) confident in his assessment of the results of the match;

b) not sure in his assessment of the results of the match;

c¢) does not want to risk;

d) interested in the greatest winnings.
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3. According to the data of statistical observations, the data about the
dependence of the relative yield of agricultural crops on the initial soil moisture and
the selected irrigation program were obtained and summarized in Table 6.4. The
farmer needs to make a selection of the irrigation program in case the probability of
the moisture content is known.

Table 6.4
Probability of
Humidity of [rrigation program humidity
the soil, % values
P1 P2 P3 P4

10 0,13 | 0,40 | 1,00 1,00 0,03
20 0,28 | 0,40 | 1,00 0,98 0,08
30 0,37 | 0,53 | 1,00 0,96 0,1

40 0,60 | 0,61 | 0,96 0,90 0,12
50 0,58 | 0,74 | 0,94 | 0,86 0,18
60 0,62 | 0,86 | 0,88 0,75 0,14
70 0,76 | 1,00 | 0,61 0,50 0,1

80 0,86 | 1,00 | 0,53 0,40 0,12
90 0,90 | 1,00 | 0,40 0,32 0,08
100 0,99 | 0,72 | 0,40 0,28 0,05

4. The law enforcement guard noticed two suspicious young men who are
brazenly behaving in a crowded city, drawing attention to themselves, but not
committing unlawful actions. His job description provides for such a variety of
alternative actions in the described situation:

@, — to stop the actions of potential offenders without waiting for help:

@, — call for help and wait for it to neutralize potential offenders;
@5 — wait for the young people to commit an unlawful act in order to have a

reason to apply force to them;
@, — make remarks to the young people;

@s — do not pay attention to these people.

The set of possible states of the environment is estimated as follows:
6,— young people are innocent, just in good spirits and having a rest;

¢, — young people are poorly controlled potential criminals who stumble

when they do not have the opposite;
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6, — young people are provokers, their goal is to seize a law-enforcers' piece

of weapons;

0, — young people — re-dressed quality assurance officers from the department
of internal investigations.

The decision-making situation should take into account both the potential
danger to the law-enforcers and the danger of the situation and its consequences for
citizens, whose peace is the purpose of law-enforces activities.

Describe the situation of decision-making and recommend the law-enforcement
strategy of behaviour based on different assumptions.

5. In anticipation of the sowing season, a farmer must choose one of the
following alternatives to their activity:
@, — grow corn;

@, — grow wheat;

@y — grow beans;

@, — use land under cattle grazing.

The magnitude of the costs associated with these opportunities (see Table 6.5)
depends on the amount of precipitation that can be divided into four categories:

6, — heavy precipitation;

¢, — moderate precipitation;

0, — slight precipitation;

0, — arid weather.

Table 6.5
h ) P P
6, 20 40 -50 12
6, 60 50 100 15
A 30 35 45 15
O, -5 0 -10 10

Give advice to the farmer in choosing a solution under the following
conditions:

a) the probability of rainfall is known, namely: p = (0,3; 0,4; 0,2; 0,1).

b) the farmer believes that he is not always happy;

c¢) the farmer does not trust the weather forecast;
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d) the farmer considers the weather forecast to be quite accurate, but he wants
to provide certain guarantees of successful activity in the event that the forecast does
not materialize.

6. The company plans to produce new products. Experts of the research
department are confident that new products will be in high demand, and therefore
insist on its immediate introduction into production without an advertising campaign
in markets. The marketing department evaluates the state of things in a different way
and proposes to hold an intensive advertising campaign, which will cost the company
100 000 UAH, and if successful, will bring 950 000 UAH. In case of failure of the
advertising campaign, the annual profit is estimated at only 200 000 UAH. If the
advertising campaign is not carried out at all, then the expected profit is estimated at
400 000 UAH, when new products will appeal to consumers and 200 000 when they
remain indifferent to new products.

Give recommendations to the director of the company choosing a solution
based on the following conditions:

a) an advertising campaign with a probability of 0,8 is expected to be
successful;

b) the reaction of buyers to new products can not be predicted since such goods
have not yet been on the market;

¢) the director trust more in the marketing department;

d) the director considers the forecast to be rather precise, but seeks to secure
certain guarantees of the company’s success.

Task C.

1. Formulate a task that is modeled by the first informational situation. It is
necessary to determine:

— a set of states of the environment;

— a set of possible decisions of the management/decision-making body;

— functional, by which one can evaluate the quality of a solution in a particular
situation;

— a priori probabilities on the set of states of the environment.

The compiled task is to apply as a mathematical model of the decision-making
situation and to solve it.

2. Solve Task C-1 taking into account the antagonistic behaviour of the
environment, its partial or complete uncertainty.
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May/June 2010 John Wiley & Sons, Inc. P. 317-332.
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English-Ukrainian Glossary of Terms

A

Aditivity

Alternative

— (clearly) undominated
— effective

— optimal to Pareto

— optimal to Slayter
undominated

— unsurpassed for a set of purposes

weakly effective
— weakly optimal to Pareto

B

Bayes value of the estimated
functional

Bernoulli — Laplace criterion
Binary relation

C

Complementary (of)

— fuzzy relation

— fuzzy set

— relation

Composition of relations
Concentration
Constraints

Convex combination of sets
Criterion

Bayesian —

Bernoulli — Laplace —
Combined —
Decision-making —
Hodges — Lehman —
Hurwitz —

AIMTUBHICTH

AJbTEepHATHBA

— (41TKO) HEeIOMIHOBaHa

— epexTuBHA

— ontuManbHa 3a I[lapero

— ontuMainbHa 3a Credtepom

— HEJIOMIHOBaHAa

— HETOKpallyBaHa 3a MHOXHUHOIO
e

— cnabko epekTuBHA

— cnabko ontumanbHa 3a [lapeto

BaiiecoBe 3HaUYeHHS OLIIHHOTO
¢dbyHKL1OHaNA

bepuynni — Jlannaca kputepiit
binapue BigHOIIECHHS

JlonoBHeHHSA

— HEYITKOT'O BIJHOIIEHHS
— HEYITKOI MHOXXHUHH

— BITHOIIIEHHSA
KoMmmnosuiiis BigHOLIEHE
KonuentpyBaHnus
OOMexeHHs

OnykJia KoMO1HAIlisl MHOKWH
Kpurepiii

— balieca

— bepnymm — Jlamnaca
— KOMOIHOBaHHU

— TPUUHSATTSA pilIeHb

— Xomxkeca — Jlemana

— I'ypsina
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— of the maximum integral Bayes
value of the estimated functional

— of the maximum integral potential

— of the maximum measure of
Bayesian sets

— of maximizing the distribution of
probability of the estimated
functional

Partial —

Savage —

— of the minimal entropy of the

mathematical expectation of the

estimated functional

— of the minimum dispersion of the

estimated functional

Wald’s —

Criterion space

D

Decision

— Bayesian

— limited

— conditional

— minimum

Decision maker (DM), decision-
making person (DMP)
Decision-making

— 1n risky conditions
Degree of membership
Dilatation

E

Element(s)
— non-comparable

MaKCHMaJIbHOTO 1HTErpaJbHOTO
0ailecoBOT0 3HAUYEHHS OIL[IHHOIO
dbyHKIIOHaNA

MaKCHUMAJIbHOTO 1HTEeTPaJIbHOTO
MOTEHITIATY

MaKCHUMaJIbHOT Mipu OaliecoBUX
MHOXWH

MaKcuMi3allii HMOBIPHOCTI
PO3MOLTY OIIHHOTO ()YHKIIOHANa

YaCTKOBUU

Cagimka

MIHIMaJbHOI EHTPOIII]
MaTeMaTHIHOTO CTIOIBaHHS
OI[IHHOTO (pyHKITIOHAJA
MIHIMYMY JIUCIIEPCIi OIIHHOTO
dbyHKIIOHaNA

Bananna

Kpurepiitnuii npoctip

Pimnenns

OailiecoBe
oOMeKeHe
YMOBHE
MI1HIMaJIbHE

Oco0a, o npuitmae pimenHs (OIIP)

I puitHATTA pilleHb
— B YMOBAaX pU3UKY

CrymiHp HaJIeKHOCTI

Po3TsaryBanus

Eaxementn

— HETOPIBHSAHHI
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F

Function (of)

— membership

— characteristic

— choice

— growing by the relation R
— utility

— equivalent
Functional

Fuzzy

Fuzzy goal/purpose
Fuzzy index

— — quadratic

— — linear

Fuzzy mathematical programming

Fuzzy purpose
Fuzzy relation

— antisymmetric

— antireflexive, irreflexive
— asymmetric

— complete

— converse

— empty

— of equality

— of indifference

— of non-substantial preference
— (of) pre-order

— of quasi equivalence
— reflexive

— of similarity

— (of) strict order

— of strong preference
— strongly linear

— symmetric

— transitive

— of uniformity

— weakly linear

— A-line

DyHKIIA

— HaJIE)KHOCTI

— XapakTepUCTUYHA

— BHOOpY

— 3pocTaroya 3a BiTHOIICHHSIM R
— KOPUCHOCTI

— eKBIBaJICHTHA
dyHKI10HAI

HeuiTkunii, HeBU3HAUYEHUH
HeuiTka MmeTta

Innexc HeuiTKOCTI

— — KBaJpaTUYHUU

— — JIIHIMHUHN

HeuiTke MaTemaTnuHe
mporpaMyBaHHS

Heuitka mera/miian
HeuiTke BifHOIIEHHA
— aHTUCUMETPUYHE
— aHTUpEe(IIEeKCUBHE
— aCUMETpHYHE
— IIOBHE
— oOepHeHe
— MOPOXKHE
— PIBHOCTI
— Oaly)oCTi
— HECTPOTOi IepeBaru
— MEePEeATOPAIKY
— KBa31€KB1BaJIEHTHOCTI
— pedJiekCuBHE
— IMOA10HOCTI, CX0XKOCTI
— CTPOTOTO MOPSIIAKY
— CTpOroi nepesaru
— CHJIBLHO JIIHIMHE
— CHMETPHUYHE
— TPaH3UTHUBHE
— OJIHAKOBOCTI
— ciabko JIiHIMHE
— A-IIH1IHE
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Fuzzy set HeuiTka MHOKUHA
— —normal — — HOpMallbHa
— — subnormal — — cybHOpMasbHa

HeuiTknii po3B’s130K
— — &-ONITUMAJIBHUN

Fuzzy solution
— — g-optimal

I

Image of the set

— — with the fuzzy mapping

— — with the classical mapping

O0pa3 MHOKUHU
— — MPU HEYITKOMY B1100paKeHHI1
— — IIpH 3BUYAHOMY Bi10OpakeHHI1

Indopmaniiina curyanis
— — OPUHHATTS PILIEHb y

Informational situation (of)
— — decision-making in fuzzy

conditions/terms HEUYITKUX YMOBax
Ingredient Iarpenient
— negative — BiA’€eMHUH
— positive — MOJAaTHHU I

Integral potential
Integral Bayes value
Intersection (of)

(fuzzy) relations

— fuzzy sets (subsets)

L

relations

Linear order

[HTerpanbHUi MOTEHITIAN

InTerpanbHe GailecoBe 3HaUYCHHS

Ieperun

— (HeYITKUX) BITHONICHb

— HEYITKUX MHOXXHUH (T1IMHOWH)
— BITHOIIIEHD

JliHiiiHUM TTOPSATOK

M
Map, mapping BinoOpaxxeHnns
Method(s) of Metoa(mn)

— criteria normalization

— flexible priority consideration

decision-making

restrictions
successive concessions

summary to the generalized
criterion [convolution(s)]

the main criterion

— HOpMaJIi3allii KpuTepiiB
— NPUUAHSATTSA pllIEHb
— BpaxyBaHHSl THYYKOTO NMPIOPUTETY
— 00MeXeHb
— MOCJiJOBHUX MOCTYIOK
— 3BEJICHHS J0 y3araJbHEHOTO
KpUTEPIiIO (3TOPTKH)
— TOJIOBHOTO KPHTEPitO
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— the maximum integral Bayesian
value of the estimated functional

— tough priority
— Wald’s

Model

— deterministic
— dynamic

— static

— stochastic

N

Normalising criteria,
Normalization of criteria

(0

Order

— linear

— not strict
— partial
— strict

P

Preference

Principle of

— a fair acquiescence with a priority

— an absolute acquiescence

— an alignment of quality

— equality

— generalization

— insufficient grounds

— maximin

— maximizing probability of
achieving the ideal quality

— maximizing the weighted sum of
the criteria

— MaKCUMAaJIbHOTO 1HTETPAIBHOTO
0ailecoBOT0 3HAYEHHS OIL[IHHOIO
dbyHKIIOHaNa

— )KOPCTKOTO MPIOPUTETY

— Bansna

Moaean

— JIeTepMiHOBaHa
— IAHaAMI4Ha

— cTaTHYHa

— CTOXaCTHN4YHa

Hopmaugizauia kpurepiiB

IMopsanok

— NIHIAHAA
— HECTPOTHUM
— 9aCTKOBHUHU

— CTPOTHUM

Ilepesara

MpuHoun

— CHOpaBeIJIUBOI MOCTYIKHU 3
IPIOPUTETOM

— a0COJIIOTHOI MOCTYNKH

— BHUPIBHIOBAHHS SKOCTI1

— PIBHOCTI

— y3arajbHEHHS

— HEJOCTaTHHOI IMiACTaBU

— MaKCHUMIHY

— MakcuMmi3zailii HMOBIPHOCTI
JOCATHEHHS 171€aIbHOT SIKOCTI

— MakcHMi3aIlii 3BaKeHOI CyMH
KpUTEPIiB
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— quasiveness

— relative act

— the best uniformity

— the main criterion

— the slightest damage

— uniformity (maximin)

— uniformity with priority
Probability distribution
— objective

— subjective

Problem (of)

— fuzzy mathematical programming

— mathematical programming with
fuzzy constraints

— multi-criteria optimization

Product (of)

— maximinium

— relations

R

Relation

— acyclic

— antireflexive, irreflexive
— anti-symmetric

— asymmetric

— of differences

— diagonal

— of domination

— of equivalence

— linear

— negative transitive

— of non-strict order

— of non-substantial preference
— of indifference

Relation cut(s)
— lower cut or undercut
— upper cut

— KBa3ipiBHOCTI

— BITHOCHOT MTOCTYIIKH

— Halkpamioi piBHOMIPHOCTI

— FOJIOBHOTO KPHUTEPIIO

— HaWMEHIIIO1 KON

— PIBHOMIPHOCTI (MaKCHUMIHY)

— PIBHOMIPHOCTI 3 IPIOPUTETOM
Po3noain imoBipHoOCTI

— 00’ €KTUBHUI

— cy0’€KTUBHUM

3amgaya

— HEYITKOI0 MaTeMAaTHUYHOTO
IpoTrpamMyBaHHS

— MaTEeMaTU4YHOT'0 IPOTPaMyBaHHS 3
HEYITKUMHA OOMEKECHHIMU

— 0araTokpuTepiiiHOI onmTUMi3arii
Jo0yTok

—MaKCUMIHHHHI

— BIIHOIIEHD

Binnomenns

— QlUAKIIIYHE

— aHTHpPE(PIEKCUBHE

— aHTUCHMETPUYHE

— aCUMETpUYHE

— BIAMIHHOCTI

— JlaroHaljibHE

— JIOMIHYBaHHS

— €KBIBaJICHTHOCTI

— JI1HIAHE

— BiJI’€MHO TPaH3UTHUBHE
— HECTPOTOTO MOPSJIKY
— HECTPOTOI IIepeBaru
— Oaifmy)xocTi

Po3pi3 BinHOmIEHHS
— HUXKHIN

— BEepXHIiH
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Set

— Bayeseian
— Hurwitz
— internally stable
— usual the closest to the fuzzy
— external stable
— nondominated alternatives
— usual the closest to the fuzzy
Fuzzy set
— normal
— subnormal
Set partition (in)
Solving, solution
— fuzzy
— maximizing
Strategy
Support (of)
— fuzzy relation
— fuzzy set (subset)

T

Transitive closure of fuzzy relation

Transitivity
— maximin
— maxmultiplicative

— minimax

U
Union of
— relations

— fuzzy relations
Utility

MHo:KnHa

— OaliecoBa

— I'ypeina

— BHYTpIIIHBO CTiiKa

— 3BMYaiiHa HalOIMK4a 10 HEYITKOI
— 30BHIIIHBO CTIMKAa

— HEJJIOMIHOBAaHHUX AJIbTEPHATUB

— 3BMYaiiHa HalOIMK4a 10 HEYITKOI
HeuiTka MHOKHHA

— — HOpMaJIbHa

— — cyOHOpMasbHa

Po30MTTS MHOKUHU

Po3B’s130K

— HEYITKUN

— MaKCHUMI3yBaJIbHUHN

Crparerisn

Hocii

— HEYITKOT'O BIJHOIIEHHS

— HEYITKOI MHOKHHH (T11IMHOKHHH )

TpaH3uTHBHE 3aMUKaHHS HEYITKOTO
BIJHOIIIEHHS

TpaH3uTHBHICTH

— MakCHMIHHA

— MaKCMYJIbTUILTIKATUBHA

— MIHIMakKkcHa

O0’enHaHHA
— BITHOIIIEHD
— HEYITKUX BIJHOIIEHD

KopucHictsb
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Ukrainian-English Glossary of Terms

A

AJIMTHUBHICTH

AJIbTEepHATHUBA

— e(eKTUBHA

— HEeJOMIHOBAaHAa

— HETIOKpaIllyBaHa 32 MHOXHUHOIO
e

— ontuManbHa 3a I[lapero

— ontumainbHa 3a CieiitepoM

— cnabko epekTuBHA

— cnabko ontumaibHa 3a [lapero
— Y1TKO HEJIOMIHOBaHAa

b

bararokputepiiina 3agaua
baiiecoBe 3HaUuEHHS OLIIHHOTO
dbyHKIIIOHaNA

bepuynni — Jlanmaca kputepii
binapue BigHOIICHHS

B

Banbna xpurepiit
Bapiant

BekTop ineanpHuii
Binnomenns

— aHTUpedIICKCUBHE
— aHTUCHUMETPUYHE
— aCUMETpUYHE

— QUAKIIIYHE

— Daifmy)xocTi

— BIJI’EMHO TPaH3UTUBHE
— BIIMIHHOCTI

— JlaroHajibHE

— JIOMIHYBaHHS

— €KBIBaJICHTHOCTI

Aditivity
Alternative

effective
undominated
unsurpassed for a set of purposes

optimal to Pareto
optimal to Slayter
weakly effective

weakly optimal to Pareto
clearly undominated

Multi-criteria problem

Bayes value of the estimated functional

Bernoulli — Laplace criterion
Binary relation

Wald’s criterion

Variant

1deal vector

Relation

antireflexive, irreflexive
antisymmetric
asymmetric

acyclic

of indifference

negative transitive

of differences

diagonal

of domination

of equivalence
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— JiHIAHE — linear

— HECTPOTOro MOPAIKY — (of) non-strict order

— HEeCTpOroi nepesaru — (of) non-substantial benefits

— HEUITKE — fuzzy

— obepHeHe — converse

— OJHAKOBOCTI — (of) uniformity

— MePEeATOPAIKY — (of) pre-order

— MOBHE — complete

— MOoA10HOCTI — of similarity

— MMOPOKHE — empty

— pedeKkcuBHE — reflexive

— PIBHOCTI — of equality

— CUJIBHO JIiHIITHE — strongly linear

— CUMETpUYHE — symmetric

— cnabKo JiHiitHe — weakly linear

— CTPOTOTO MOPSAIAKY — (of) strict order

— CTpOroi nepesaru — of strong advantage

— CXOXKOCTI — of similarity

— A-JiHilHE — A-line

— TpaH3UTUBHE — transitive

BigoOpakeHHs HEeUiTKe fuzzy mapping

Biacranno Distance

— eBKJIIZJ0BA (KBaJApaTUYHA) — Euclidean (quadratic)

— BIIHOCHA — relative

— XeMMiHTa — Hamming

—y3arajibHEeHa — generalized

A

Ho0yTok Product (of)

— BIJHOLIEHD — relations

— JIeKapTiB — Cartesian

— HEYITKUX B1JIHOIIEHb — fuzzy relations

— MaKCUMIHHUM — maximinium

— HEYITKMX BI1JIHOLIEHb — fuzzy relations maxmultiplicative
MaKCMYJIbTUTLTIKATUBHHAM

— HEYITKMX B1JIHOLIEHb — fuzzy relations minimax
MIHIMAaKCHUH
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JlomoBHeHHSA
— BITHOIIIEHHSA
— HEYITKOTO BIJHOIIIEHHSI

— HEYITKOT MHOXWHU

E
ExBiBajieHTHIiCTBH
— MHOXHH

— pileHb
EnemenT

— MaKCUMAaJIbHUM
— MIHIMaJbHUN

— Halripmun

— HaUKpaluuu

EnemenTu HEmopiBHIHHI

3

3agaua

— BubOpYy

— HEYITKOTO MaTeMaTU4YHOTO
porpaMyBaHHS

— TPUUAHATTSA PIIEHb Y HEUITKUX
yMOBax

— OaraToKpuTepiiHOT ONTUMI3aIli]

— MaTeMaTU4YHOTO MPOTrpaMyBaHHS
3 HEYITKUMHU OOMEKCHHSIMU

3BY>XEHHS BiTHOIICHb

3HaueHHs QYHKI[IT HEUiTKe

I

InrpenienTt

— BIA €MHUM

— DJOIaTHUU

Inpexc HeuiTkoCTI

— KBaJpaTUYHUU

— JMHIAHAK

[HTerpanbHUi MOTEHITIAN
InTerpanbHe GailecoBe 3HaUYCHHS

Complement(ary) (of)
— relation

— fuzzy relation

— fuzzy set

Equivalence (of)

— sets

— solutions

Element

— maximum, maximal
— minimum, minimal

— the worst

— the best
Non-comparable elements

Problem (of)
— choice
— fuzzy mathematical programming

— decision-making in fuzzy terms

— multi-criteria optimization

— mathematical programming with
fuzzy constraints

Narrowing relationships

Fuzzy function value

Ingredient

— negative

— positive

Fuzzy index

— quadratic

— linear

Integral potential
Integral Bayes Value
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[adopmaniitna cutyanis

K

Komnosuiiist B1AHOIIEHD

KonuentpyBaHnus

KopucHicts

Kpusa I'ypsina

Kpurepiii

baiteca

bepnymni — Jlannaca

Banbpna

['ypgina

KOMOIHOBaHUM
MaKCHMaJIbHOTO 1HTErpaJbHOTO
0allecoBOTO 3HAYCHHS
OI[IHHOTO (PpyHKITIOHATIA
MaKCHMAaJbHOTO IHTErPaIbHOIO
MOTEHIIaTy

MaKCUMaJIbHOT Mipu 0ailecoBUX
MHOXXWH

MaKcuMi3allii KMOBIPHOCTI
PO3MOIITYy OI[IHHOTO
¢dyHKLIOHaIA

MiHIMaJIbHOT €HTPOII1
MaTeMaTUYHOTO CHO1BaHHS
OI[IHHOTO (pyHKITIOHAJA
MIHIMYyMY AHcHepcii OLiIHHOTO
dbyHKIIOHaNa

NPUNHATTA PillIeHb

Cagimxka

Xomxkeca — Jlemana

YaCTKOBUU

Kpurepiitnuii npoctip

JI

JIiHIAHUN TOPSIOK

Informational situation

Composition of relations
Concentration

Utility

Curve of Hurwitz
Criterion

Bayes

Bernoulli — Laplace

Wald’s

Hurwitz

combined

the maximum integral Bayesian value
of the estimated functional

the maximum integral potential
the maximum degree of Bayesian sets

maximizing the distribution of
probability of the estimated
functional

the minimal entropy of the
mathematical expectation of the
estimated functional

the minimum dispersion of the
estimated functional
decision-making

Savidge

Hodges — Lehman

partial

Criterion space

Linear order

295



M

MeTta HeuiTKa

Metoa(m)

— BpaxyBaHHS THYYKOTO
IpIOPUTETY

— TOJIOBHOTO KPHUTEPIIO

— JKOPCTKOT'O IPIOPUTETY

— 3BEJICHHS J0 y3arajJbHEHOTO
KPUTEPit0 (3TOPTKHU)

— HopMamizauii KpuTepiiB

— oOMexXeHb

— MOCIIIOBHHUX MOCTYIOK

MHo:KuHA

— OaifecoBa

— I'ypsina

— BHYTpIIIHBO CTiiKa

— 3BUYaiiHa HalOJIMKYa J10
HEUYITKO1

— 30BHIIIHBO CTIHKa

— HEJJOMIHOBAaHHUX AJIbTEPHATUB

MHoxMHA HeYiTKa

— — HOpMaJIbHa

— — cybHOpMasbHa

Mopean

— JIeTepMiHOBaHA

— IAHaAMI4Ha

— cTaTUYHA

— CTOXaCTHU4YHa

H

HenominoBana anpTepHaTHBa
HeuiTka meta

HeuiTke BigHOIIEHHA

— — Daifry)kocTi

— — KBa31€KBIBAJIECHTHOCTI

— — HECTpOroi mepeBaru

— — OJIHAKOBOCTI

— — CTpOroi nepesaru

Fuzzy purpose
Method(s) (of)

flexible priority consideration

the main criterion

tough priority

summary to the generalized criterion
[convolution(s)]

criteria normalization

restrictions

successive concessions

Bayeseian

Hurwitz

internally stable

usual the closest to the fuzzy

outboard stand
undocumented alternatives

Fuzzy set

— normal
— subnormal

Model

deterministic
dynamic
static
stochastic

Undominating alternative
Fuzzy goal
Fuzzy relation of

— indifference

— quasiequivalence

— non-substantial preference
— homogeneity

— a strong preference
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HeuiTke MatremaTuyHe Fuzzy mathematical programming (FMP)
nporpamyBanHs (HMII)

HeuiTkuii po3B’s30K Fuzzy solution
— — €-ONTUMAaJIbHUHI — — g-optimal
Hopwmanizanist kputepiiB Normalising criteria,

Normalization of criteria

Hociii Support (of)
— HEYITKOTO BiJTHOLIECHHS — fuzzy relation
— HEYITKOI MHOXHUHHU — fuzzy set (subset)
(T IMHOKUHH )
Q)
O0’eqHanHs Union (of)
— BIJTHOLICHb — relations
— HEYITKUX MHOXHH — fuzzy sets
— HEUITKUX BIJHOIICHb — fuzzy relations
OOMexeHHs Constraint(s)
O0pa3 MHOKUHU Image of the set
— — IIPHU HEYITKOMY BifgoOpaskeHH1  — — with the fuzzy mapping
— — IIpY 3BMYaliHOMY BifloOpakeHHI — — with the classical mapping
OnykJia KoMO1HAIlisl MHOKWH Convex combination of sets
Oco0a, 1o npuitMae pimeHHs Decision maker (DM),
(OI1P) Decision-making person (DMP)
II
Ileperun Intersection(of)
— BIIHOIIIEHD — relations
— HEYITKUX MHOXKHH (IIIMHOXKUH)  — fuzzy sets (subsets)
— HEUITKUX B1IHOIIEHb — fuzzy relations
[TigrMHOXWHA A-piBHS Subset of A-level
[1nan Plan
IToBepxHs OaitecoBa Bayesian surface
IToxka3nuk I'ypBina Hurwitz index
IHopsinok Order
— NMHIAHA] — linear
— HECTpOTrui — not strict
— CTporui — strict
— YaCTKOBUH — partial
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IpuitHATTA pilIeHb

— — B YMOBaX pU3UKY

MpuHuMn

— abCOMIOTHOI MOCTYTKU

— BUPIBHIOBAHHS SIKOCTI

— BITHOCHOI MOCTYIKHU

— FOJIOBHOTO KPHUTEPIIO

— KBa3ipiBHOCTI

— MakcuMmizaiii “MOBIPHOCTI
IOCATHEHHS 171€aJIbHOT AKOCTI

— MakcUMIi3aIlii 3BaXXeHOi CyMU
KpUTEPIiB

— MaKCHUMIHY

— HaWKpamoi piBHOMIPHOCTI

— HaMIMEHIIIO1 IIIKOIHU

— HEeJI0CTaTHbOT M1JICTaBU

— PIBHOMIPHOCTI 3 IPIOPUTETOM

— PIBHOMIPHOCTI (MaKCHUMIHY)

— PIBHOCTI

— CpaBeMJIMBOI MOCTYMNKH 3
IPIOPUTETOM

— y3arajJbHEHHS

[IporpamyBaHHs IILJIbOBE

IIpooOpa3 HEUITKOT MHOKUHHU

P

Pi3zHNng He4iTKHX MHOKHUH
Pimmennsa

— OaiiecoBe

— oOMekeHe

— yYMOBHE

Po30uTTSI MHOXUHUA
Po3B’s130K

— HEYITKUH

— MaKCHUMI3yBaJbHUN
Po3noain imoBipHOCTI
— — 00’ €KTUBHUH

— — cy0’€eKTUBHUM

Decision-making

— 1in risky conditions

Principle (of)

— an absolute assignment

— an alignment of quality

— relative assignment

— the main criterion

— quasiveness

— maximizing probability of achieving
the ideal quality

— maximizing the weighted sum of the
criteria

— maximin

— the best uniformity

— the slightest damage

— 1insufficient grounds

— uniformity with priority

— uniformity (maximin)

— equality

— a fair assignment with a priority

— generalization
Target Programming
Prototype of fuzzy set

Difference between fuzzy sets
Decision

— Bayesian

— limited

— conditional

Set partition

Solving, solution

— fuzzy

— maximizing
Probability distribution
— — objective

— —subjective
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Po3pi3 BinHOmIEHHS
— — BEepXHIiH
— — HUKHIA

Po3sraryBanus

C

Curtyalliss npuHATTS pillIeHb

CtyniHb HaJEXKHOCTI
Crpareris

T

TpaH3uTUBHE 3aMUKaHHS
HEYITKOI'O B1THOIIEHHS
TpaH3uTHUBHICTH

— MaKCHMIHHa

— MaKCMYJIbTUILTIKATUBHA

— MIHIMakKkcHa

()]
DyHKILifA
— BHOOpY

— 3pOCTaro4a 3a Bi,Z[HOIIICHHHM R

— KOPUCHOCTI
— HAJIC)KHOCTI
— XapaKTepUCTUYHA

DyHKIIIT eKBIBAJICHTHI

q
YacTkoBUI TOPSA0K

Relation cut(s)
— —upper cut
— — lower cut or undercut

Dilatation

Decision-making situation
Degree of membership
Strategy

Transient closure of fuzzy relation

Transitivity
— maximin
— maxmultiplicative
— minimax

Function of

— choice

— growing by the ratio R
— utility

— affiliation

— characteristic
Equivalent functions

Partial order

299



SUBJECT INDEX

A

Alternative 11, 16

— clearly non-dominated 203

— effective, efficient 68

— non-dominated 198
—non-improved for a set of purposes
68

— optimal to Pareto 68

— optimal to Slayter 69

— weakly effective 69

— weakly optimal to Pareto 69

B

Bayesian sets 240, 241

Bayesian solution 241

Bayesian surface 241

Bayes value of the estimated functional
241

Bernoulli — Laplace criterion 262
Binary relation 30

C

Cartesian product of fuzzy sets146
Characteristic function 122
Complement(ary) of

— fuzzy relation 151

— fuzzy set 133

— relation 35

Composition of fuzzy relations 151
— maximal multiplicative 152

— maximin 151

— minimax 151

Composition of relations 36
Concentration 147

Converse relation 36

Convex combination of sets 147
Criteria normalization methods 88
Criterion 22

— Bayes 229

— Bernoulli — Laplace 262

— combined 232

— decision — making 228

— Hodges — Lehman 271

— Hurwitz 267

— maximizing probability of the
distribution of the estimated
functional 231

— modal 231

— quantitative 22

— qualitative 22

— Savage 266

— the maximum integral Bayes value
of the estimated functional 261

— the maximum measure of Bayesian
sets 260

— the maximum integral potential 261

— the minimum dispersion of the
estimated functional 229

— the minimal entropy of the
mathematical expectation of the
estimated functional 233

— Wald’s 264

Criterion space 23

D

Decision

— Bayesian 241

— conditional 234

— limited 271

Decision maker (DM) 17
Decision — making person (DMP) 17
Decision — making 9

— 1n fuzzy conditions 18

— 1n risky conditions 228
— model 226

— situation 227

— tasks 12

— theory 9, 10

Degree of membership 124
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Difference of subsets 134
Dilatation 147

E

Element(s)

— maximal 46

— minimal 46

— non-comparable 41
— the best 45

— the worst 46
Euclidean distance 136

F

Flexible priority methods 93
Function of

— membership 124

— characteristic 122

— choice 48, 49

— growing by the relation R 47

— non-decreasing by relation R 47
— utility 55

— equivalent functions 59

Fuzzy goal 170

Fuzzy mathematical programming 175
Fuzzy relation 148

— antireflexive 153

— antisymmetric 153

— asymmetric 153

— complement(ary) 151

— max min transitive 153

— max multiplicative transitive 153
— min max transitive 153

— reflexive 153

— symmetric 153

— transitive 153

— weakly linear 203

Fuzzy relation of

— equivalence 158

— indifference 192

— non-strict preference 192

— order 160

— pre-order 156

— quasi equivalence 192, 193
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— similarities 156, 158

— strict preference 192, 193
Fuzzy set (subset) 124

— normal 127

— subnormal 127

Fuzzy solution 171, 173

I

Index of fuzziness 138, 140

— linear 139

— quadratic 139

Image of a fuzzy set 160

— with the fuzzy mapping 162

— with the classical mapping 160
Informational situation of decision
making 228

Ingredient

— negative 227

— positive 227

Integral Bayes value 261

Integral potential 261
Intersection (of)

— fuzzy subsets 131, 132,
—relations 35

— fuzzy relations 150

H

Hamming distance 134,136
Hard priority methods 91

L

Linear index of fuzziness 139
Linear order 41
Lower cut of relation 33

M

Mathematical programming with fuzzy
constraints 179

Map, mapping 160

Method(s) of

— criteria normalization 88



— consolidation to a generalized
criterion (convolution) 94

— constraints 109, 113

— successive concessions 100

— Savage 89

— the main criterion 97

— weight sum 95

Maximization solution 171

Membership function 124

Model

— deterministic 17

— dynamic 17

— static 17, 226

— stochastic 17

Multi— criteria optimization 18, 66

Multi-objective problem 67

N
Normalization of criteria 88
(0)

Order

— linear 41

— not strict 41
— partial 41

— strict 41

P

Partial order 41

Principle of

— an absolute assignment 83

— an alignment of quality 82

— fair assignment 83

— fair assignment with a priority 86

— equality 80

— generalization 160

— insufficient base 263

— maximin 81

— maximizing probability of
achieving the ideal quality 88

— maximizing the weighted sum of
the criteria 87

— quasiveness 82
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— quasi-equality 82

— relative assignment 84

— the best uniformity 82

— the main criterion 87

— uniformity (maximin) 80, 81
— uniformity with priority 93
Product of relations 36
Product of fuzzy relations 151
— maximin 151

— minimax 151

— maximal multiplicative 152
Probability distribution

— objective 229

— subjective 229

Prototype of a fuzzy set 164

Q

Quadratic distance 136
Quadratic index of fuzzyness 139

R

Relation 30, 31

— anti-diagonal 34

— antisymmetric 39

— asymmetric 38

— complement(ary) 35
— diagonal 34

— empty 34

— full 34

— 1irreflexive 38

— highly transitive 39
— negative transitive 39
— null 34

— reflexive 38

— symmetric 38

— transitive 39

— universal 34
Relation cut(s) 33
Relation of

— dominance 41

— equivalence 40

— 1dentity 34

— indifference 42, 43



— linear order 41

— non-strict order 41

— non- strict preferences 42
— order 41

— preference 42

— strict order 41

— strict preferences 42,43

S

Set

— Bayeseian 241

— Hurwitz 271

— externally stable 47

— internally stable 47

— classical the closest to the fuzzy 138
— a-level 142

— of non-dominated alternatives 198
— fuzzy 124

Set partition 253

Solution

— maximizing 171

— fuzzy 170, 171, 173

Strategy 16

Support of

— fuzzy relation 149

— fuzzy set (subset) 126

T

Transitive closure of fuzzy relation 154
Transitivity

— maximin 153

— maxmultiplicative 153

— minimax 153

U

Union of

— relations 35

— fuzzy relations 150

— fuzzy subsets 128, 129, 130
Upper cut of relation 33
Utility function 55
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Weighted sum method 95
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