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ABSTRACT

Purpose is to develop a new approach to the design of mining operations basing upon models and methods of deci-
sion making.

Methods. The paper has applied a complex approach involving approaches of decision-making theory. Analysis of
the pro-duction development scenarios is proposed for strategic activity planning; criteria to make decisions under
the uncertainty conditions as well as decision-making trees for day-to-day management are proposed to determine
balanced production level.

Findings. It has been identified that mining production design is of the determined character demonstrating changes
in “state of the nature” depending upon the made decisions. The idea of mining production is to reduce uncertainty
gradually by means of analysis of production scenarios, and elimination of unfavourable alternatives. Operative man-
agement is implemented while constructing decision trees, and optimizing operation parameters. Representation of
sets of rational equipment types as well as development scenarios, and their comparison in terms of decision-making
parameters makes it possible to determine adequate capacity of a working area, and to reduce expenditures connected
with the equipment purchase and maintenance. In this context, limiting factors, effecting anticipatory mining out-put,
are taken into consideration. Successive comparison of the alternatives helps identify decision-making area for dif-
ferent scenarios of the production development.

Originality. To manage mining production, approaches of decision-making theory have been proposed which involve
the use of decision trees, decision-making criteria, and analysis of scenarios basing upon representation of operating
procedures in the form of a network model within which the shortest route corresponds to optimum decision.

Practical implications. Decision-making system has been developed making it possible to optimize operation pa-
rameters, to reduce prime cost of mining, and to select a structure of engineering connections with the specified pro-
duction level. The described approaches may be applied at the stage of a stope design as well as in the process of a
field development. Specific attention has been paid to a software development to implement the approaches.
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1. INTRODUCTION

A process of mining design is a complex of interde-
pendent engineering and economic tasks involving stages
of equipment selection, substantiation of adequate pro-
duction level as well as reduction of expenditures con-
nected with purchase and maintenance of mechanical
aids (Hrinov & Khorolskyi, 2018). Optimum decision
making is possible if only mandatory successful problem
solving takes place at each previous stage. High require-
ments for engineering and operational production level
can be explained by the determinate nature of formation
of operation schedules as well as variety of states of

“nature”. Namely, depending upon functioning condi-
tions of one or another alternative use, it helps obtain
different results (i.e. “advantage”). Mining production
management needs solving a number of problems which
can be divided into conceptual problems (i.e. strategic),
technical and technological problems, and those connect-
ed with human factor (Vagonova & Volosheniuk, 2012;
Gorova, Pavlychenko, Borysovs’ka, & Krups’ka, 2013;
Khomenko, Kononenko, Myronova, & Sudakov, 2018).
The paper describes practices of decision-making
theory use to solve problems belonging to each of the
types. The idea is as follows: mining production design
process is a “game with nature”; i.e. probability of origi-
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nation of one or another state of nature is not unknown at
a design stage. “Rationalization” logic is: high produc-
tion investment is inexpedient if probability of a success-
ful scenario is minor. At the same time, it is possible to
select a production scenario with the least risks only by
means of uncertainty decrease.

Each problem solving has its own application area.
Failure in the design of mining operation schedule will
affect prime cost of output (Petlovanyi, Lozynskyi, Saik,
& Sai, 2018) as well infrastructure of the region where
the enterprise is located (Kalybekov, Rysbekov,
Toktarov, & Otarbaev, 2019; Kalybekov, Sandibekov,
Rysbekov, & Zhakypbek, 2019). Hence, it is strategic
problem being solved by means of construction of pro-
duction scenarios, their intertemporal and spatial compar-
ison, and selection of a sole optimum (Pivnyak,
Dychkovskyi, Smirnov, & Cherednichenko, 2013;
Bondarenko, Kovalevs’ka, & Ganushevych, 2014).

Special attention should also be given to the equip-
ment selection since economic characteristics are avai-
lable in addition to engineering characteristics and oper-
ational ones. Any enterprise can become unprofitable if
equipment with high technical data is applied but ex-
penditures connected with its purchase many times ex-
ceed prices for its domestic analogues (Khomenko, Ko-
nonenko, & Lyashenko, 2019). Thus, the problem is
two-sided: first, it can be explained by a non-use of the
equipment potential when mining and geological condi-
tions prevent from its complete application; second, by
high expenditures connected with its purchase and
maintenance. Hence, “rational” equipment is that one
involved maximally under the specified mining and
geological conditions when prime cost of mining is
minimal rather than the equipment which efficiency is
the highest. Decision-making criteria under uncertainty
conditions should be applied to solve technical and
technological problems. The criteria may help draw
conclusions concerning the expediency of some or other
equipment use.

Moreover, there are problems of operative manage-
ment when a manager is engaged in regular decision
making as for equipment purchase, implementation of
control etc. Decision-making trees may be used to solve
such problems.

Nevertheless, despite their reasonableness, fails in the
listed approaches are similar to those belonging to me-
thods of linear programming, analysis of hierarchies etc.,
i.e. high dimensionality, availability of basic and addi-
tional constructions, and complexity of interpretation of
result. So, it is required to design adequate software to
avoid the disadvantages.

Thus, use of decision-making theory methods to
manage mining production as well as software develop-
ment is topical scientific and practical task.

Currently, criteria evaluation method (Petlovanyi &
Medianyk, 2018), multi-criteria optimization method
(Goodfellow & Dimitrakopoulos, 2017), methods of
linear programming (Rahal, Smith, Van Hout, & Von
Johannides, 2003), quadratic programming (Li, Tan,
Yan, & Deng, 2011), and dynamic programming (Yu &
Gao, 2016) are available to manage mining production.
Each of them has its advantages and disadvantages.
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Criteria evaluation method answer unambiguously
(Kazakidis, 2010; Hoseinie, 2011) the question “Which of
the alternatives is the best”’; however, it is the best from the
viewpoint of one parameter. It is not a fact that the param-
eter to be optimized is the most important parameter.
Moreover, the models, relying upon parameters, are static
ones; thus, they cannot be used for long-term planning.

Analytical hierarchical process (AHP) (Ataei, Jam-
shidi, Sereshki, & Jalali, 2008; Iphar & Alpay, 2018);
metpethod of exclusion and selection (Mahase, Mus-
ingwini, & Nhleko, 2016); and organization of a priority
rank to upgrade evaluation PROMETHEE (Bogdanovic,
Nikolic, & Ilic, 2012) are the most popular today. The
methods help determine “the most important” parameter.
However, the problem is that advantages of one parame-
ter over another are determined by a designer; i.e. there is
a problem of subjectivity of opinions. Moreover, ad-
vantage degree of one parameter over another cannot be
accommodated in the standard rating 1 to 7 scale. For
instance, Donbas stopes apply equipment providing
500 — 3200 t/day efficiency (Sotskov, Podvyhina,
Dereviahina, & Malashkevych, 2018).

Then, 3200 t/day efficiency will correspond to ¢ = 1.0
maximum advantage; 1100 — 1500 t/day will correspond
to a significant advantage level. The significant ad-
vantage ¢=0.5 is understood as 10 —50% efficiency
surplus from minimum required QOmin in terms of break-
even operation of a mine. In the context of Donbas
mines, Omin = 1000 t/day (Salli, Pochepov, & Mamaykin,
2014). As of the turn of 2014, 198 stopes functioned in
Ukraine. Their efficiency was 500 — 3200 t/day. In this
context, distribution is not objective; only 5 per cent of
the equipment (i.e. 10 stopes of 198) will correspond to
maximum advantage level ¢ =1.0 and 37 per cent (i.e.
73 stopes of 198) will correspond to a significant ad-
vantage level. Namely, starting comparison stage demon-
strates “warped” understanding of the advantage level.
As of the turn of 2018, 75 stopes functioned in Ukraine.
In this context, 3200 t/day efficiency was observed in
4 stopes (i.e. 5 per cent); 1100 — 1500 t/day efficiency
was observed in 32 per cent of the stopes (i.e. 25 of 78).
Hence, the ratio remained stable during the four years
(Mamaikin, Sotskov, Demchenko, & Prykhorchuk,
2018). How else can be evaluated higher engineering
level of the equipment?

Methods of quadratic programming (Wang, Tu,
Zhang, Yang, & Tu, 2015), linear programming (Vuji¢ et
al., 2011), and dynamic programming are worth noticing.
While analyzing operations, such a term as “program-
ming” means a process of search for optimum actions
and decisions i.e. search for a sequence with the least
optimization parameter value. That can be achieved by
means of more complex tasks fragmentation into simpler
ones. Versatility, visualization, and possibility to study
the processes in time are advantages of the method.
However, attention should be paid to interpretation of the
results, and software development.

Hence, the process of mining management is rather
complex. It needs the use of universal tools, and models
among which are graphs and network models. At a plan-
ning stage, application of graphs and networks helps
analyze production scenarios; at a design stage, they help
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minimize uncertainty and risks; and at a stage of opera-
tive management they help reduce prime cost.

The listed approaches may be used by mining indus-
try as well as the related production branches.

2. STATEMENT OF THE PROBLEM

The process of mining management involves search
for several target functions. First, it is necessary to mini-
mize prime cost of the finished product; second, it is
necessary to minimize payback period. In this context,
the functions are influenced by operation parameters of
scheme Pr, mechanization level Py, being determined by
means of mining, transportation, mineral preparation etc.,
as well as Pr expenditures connected with purchase,
maintenance, and fund service.

The parameters are represented by a decision vector P
being within three-dimensional space X of optional ver-
sions. In this context, the vector P length is influenced by
a decision-making process as well as by probability of
one or another origination of production scenario ¢ char-
acterized by a— f—y ratio (i.e. completely negative re-
sults-intermediate results-completely successful results).

P1=Pe1+Pn+Pm

2@ P:=Pr+Pnrn+Puw

P1=Pra+Pra+Pu
o,

P3=Pg3+Pr3+Pum3

Figure 1. Area of possible results in the process of production
design

Hence, the search for optimum decision involves min-
imization of a decision vector P — min within X = f{c);
¢=a+ f+7y=1 space of optional versions. In this con-
text, the problem is being solved two directionally:

—the selected option should be optimal from the
viewpoint of cost minimization: P — min (Pr, Py, Pk);

— the selected option should guarantee the mentioned
production level while minimizing production risks; i.e.
in terms of the state of “nature”, characterized by a prob-
ability of ¢ = a + + y =1 scenarios maximally efficient
alternative should be adopted.

Then, optimum decision should involve minimization
of prime cost of mineral mining in turn factoring into the
reduced pay-off periods of production assets. That can be
achieved owing to the uncertainty decrease making it
possible to continue with assessment of production risks.
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All that helps select the most optimum production sce-
nario for the specified mining and geological conditions,
market structure, and the deposit state.

3. RESEARCH METHODS

Thus, the purpose is to develop approaches to opti-
mize parameters of deposit development relying upon
decision-making theory methods. The idea is to apply
decision-making trees, to analyze scenarios of production
development as well as decision-making criteria under
the uncertainty conditions to search for optimum alterna-
tives. Universal graphs and network models have been
used to solve the problems. Specific attention has been
paid to software development.

As it has been mentioned, strategic planning of min-
ing involves problems of reduction of prime cost as well
as pay-off periods.

Target function of prime cost reduction can be ex-
pressed as follows:

T
_ X2 DyG
Ciztle——>min;i: Ln ; €))
2 Dy
=1
‘C,-H—c_,.‘zo.m?,-; i=Tn, @)

where:
C; and C;—average prime cost in terms of i option

per accounting period, and prime cost of a ton of end coal
product in terms of ™ option during ¢ year respectively;

D, —mining output in terms of I option during ¢
year;

t and T— current year of an accounting period, and
the accounting period.

Target function of pay-off period reduction is:

I, >min, i= 1,n ; 3)
AS;

Ti=—=-i=1n; Q)
4G,

Iiy-T,20017,i=1n, ®)

where:

AS; — additional capital investment in terms of i option;

AC; — the current cost avoidance in terms of i option.

A value of permissible error involves different view-
points. Taking into consideration multidirectional nature
of the errors which actual value remains unknown as well
as possibilities of rather accurate calculations, it has been
accepted that the options will vary where difference in
values of target functions is more than 1 per cent. The
models record the fact (formulas (2), and (5). The most
complicated thing is to determine dependence functions
of mining prime cost, and influx of funds in terms of the
specific context of the planned option of a mine devel-
opment. Each option of a mine development involves a
set of actions with the help of which the object view can
be achieved. The set identifies the required capital in-
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vestment, and forms prime cost in the context of models
for i options during ¢ year.

Then, to analyze production scenarios, “life” cycle of
the enterprise including mining stages, transportation,
and mineral processing should be represented in the form
of a network model (Fig. 2).

(@)

;P 12
5 —o T
1 1 +AS
A4S =— S - T
.. W e
—.. ==
=& o= A8

e — Y

Figure 2. Changes in prime cost of mining: (a) graphs of
changes in capital cost; (b) network models demon-
strating various production scenarios

Figure 2 represents a lifecycle of an enterprise which
development may take place according to three scenari-
os. Scenario 1: at each production stage a designer makes
optimum decision which is the use of adequate solutions.
Points 2, 5, 7, and 9 correspond to successful solutions.
As a result, each stage records increment in profit 45
taking place owing to changes in prime cost AC. If so,
then the route within a network model, passing through
points / —2—5—7—9— 12, will be optimum one.

Scenario 2: at each production stage, decisions are
made relying upon practice or intuitively. In terms of
such an approach, rational decisions (point 5), irrational
decisions (points 8§ and //), and moderate decisions
(point /0) are made. Even A4S profits are possible owing
to 4C prime cost reduction. However, economic loss will
always be at the end of the cycle —4S resulting from the
decreased prime cost —A4C.

Scenario 3: incorrect decision is made at each stage.
In terms of such an approach, loss is similar to profit
according to scenario 1; however, it is opposite in sign.
That can be explained by constant increase in prime cost
of mining.

No matter which of the approaches is applied, there is
a versatile order of steps to optimize operation schedules:

— first, it is required to demonstrate such an operation
schedule which contains production cycle in the form of
a network model; vertices are equipment types, techno-
logical types etc.; i.e. options are possible. Values of
optimization parameter may be taken as a distance (edg-
es) between vortices;
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— to arrive at optimum solution, it is necessary to de-
termine the shortest route within the network model.

Network and graph optimization algorithms may be
applied to identify optimum route.

In this context, compelling stand of the authors is as
follows: coal is not the end product; it is just intermediate
link within coal-coke-metal system or coal-electrical ener-
gy system. Moreover, the system also involves preparation
plants being, together with mines, the product manufactu-
rers and consumers. Then, the required optimum condition
may be described with the help of following model:

' n "o,
aiS z .xl'jgaj(lzlazs“'am)
J=1

; (6)
lej:bj(]_laza 9n)
i=1
m ” n m ,
Za,=2bj22a,-, (7
l:l j=1 l=1
where

a;,a; —values of lower production capacity, and up-

per one;

x;; — the number of product units to be delivered from
point i to point j;

b; — the stipulated consumption in j points.

Hence, cost minimization should involve constant
coal demand as well as minimal expenditures connected
with mining, and transportation which can be achieved at
the expense of determination of rational output level.

Therefore, target function c is expressed as follows:

®)

m n .
c=> > S,-J-x,-j — min ,
i=l j=1

where:

Sj; — expenditures connected with coal extraction and
transportation from a mining point to a consuming point.

Thus, each stage of mining management should in-
volve minimization of expenditures connected with pro-
duction as well as solving problems aimed at the determi-
nation of rational output which will help minimize risks.

Substantiation of application area of decision-making
criteria use for the specified mining and geological con-
ditions will make it possible to select operation schedule
with minimum loss under unfavourable conditions and
maximum profit.

4. RESULTS AND DISCUSSION

Hence, selection of rational output for the specified
operation schedule is a “game with nature” when proba-
bility of a favourable scenario and an unfavourable one is
unknown. On the one hand, there are options; on the
other hand, there is uncertainty. The decreased uncertain-
ty helps minimize risks. We have to select such a produc-
tion level when an unfavourable scenario is lossless and a
favourable scenario results in the maximum profits.

Introduce following specifications:

An alternative X is an operation schedule including
equipment or options of techniques. State of nature M is
a set of events resulting in the adequate effect. Thus, the
set of favourable, unfavourable, and intermediate proba-
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bilities identifies state of nature. Our research considers
options of totally unfavourable conditions when failure
probability is maximal; totally favourable when success
probability is maximal; and intermediate results when
success probability ¢ is 0.1 — 0.9.

Success is a profit value R of a loss value S which
will be obtained while applying an alternative X during
the moment of state of nature M.

A pessimist is a decision maker (DM) relying upon
the idea that success probability ¢ is less than 0.5; thus,
the option helping minimize loss will be optimal one.

An optimist is a DM relying upon the idea that suc-
cess probability ¢ is more than 0.5; thus, the option hel-
ping maximize profits is optimal one.

Our research considers Wald, “maximax”, Laplace,
Savage, and Hurwitz criteria as well as the generalized
Hurwitz criterion.

Each criterion has its own application area; it is based
upon risk attitude of DM. If innovative decision or solu-
tion is meant when implementation expediency of a new
method is analyzed, then optimistic approach will be
more feasible since income deficiency may affect the
whole further process. If it is required to support availa-
ble production capacities, then pessimistic approach is
more reasonable.

Optimal operation schedule X" under uncertainty con-
ditions is searched on the basis of comparison criteria of
X", Xo", ..., X" options where i = 1,2, ..., N is a defini-
tion number of a schedule. Use of each of the criteria
helps formulate a hypothesis concerning alternative
“success” in terms of the known state of nature M. In
other words, there are options providing Qi, O, ..., O
extraction. In this context, expenditures connected with
purchase and maintenance are Ri, Ro, ..., R; respectively
and success is Xi1, Xa1, ..., Xj in terms of different states
ofnature M =1,2, ...,J.

It becomes understood that X;* option is optimal one
where success will be maximal (i.e. Xj) in terms of the
specified state of nature M. Each of the criteria makes it
possible to assess different concepts of enterprise activi-
ty. Probability of Xj success for various production sce-
narios M=1,2,...,j may be represented as a “game”
matrix:

X1 X2 X1
X12 X2 X2j ©)
X Xi2 Xij

If production process has not been started yet, then
success value is equal to production cost, i.e. Xi; =Ry;
X12 = R12; and )(,‘j = Rg,‘.

Then, selection of a rational production scenario is to
select an option for each state of nature. In this context,
the system state may be characterized by different devel-
opment scenarios: o — objective probability to obtain
negative results; f— intermediate results; and y — proba-
bility of total success. The set of all probabilities is
¢=atfB+y=1,orm

P [ 3§
2P gLy 25

c=a=—+
m n p

(10)
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where:

2P — set of negative results;

21 — set of intermediate results;

2SS — set of positive results;

m,n and p — the number of negative, intermediate,
and positive results respectively.

Pair-wise comparison of options in terms of pair-wise
assessments (a; y) helps obtain the most reasonable stra-
tegy at each stage (Fig. 3).

an

Probability to obtain intermediate results, y
IS N S e SO
NS} w E-S W o)} 3 [ee} e
E B < 2 2 2 2 2 %

o
=

I
0 0.1

02 03 04 05 06 0.7 08 09 1.0
Probability to obtain negative results, a

Figure 3. Distribution of the most successful decisions

Figure 3 may admit an assumption that if probability
of success achievement is comparatively large (i.e.
y >0.3), and probability of negative results is not more
than a<0.7, it becomes possible to select an option with a
potential tending to the increased extraction O — max;
conventionally, it is IV group. If probability of negative
results is high (i.e. a — 0), it is worth selecting an option
with O = QO efficiency indices being equal to efficiency
level a Qp; conventionally, it is I group. Intermediate
groups II and III are also available.

Use of the listed criteria makes it possible to calculate
success value Xj;. Hence, it is necessary to consider each
criterion in more detail and explain their calculation
technique.

In the context of Wald criterion, an optimal option is
that one providing the best success among possible ones
if course of events is negative (y =0; o= 1), i.e. “mini-
max” — minimal losses:

W, = min(X»-

i) j=12.M .

(11)

It is expedient to apply Wald criterion (Nickel,
Knight, Langille, & Godwin, 2019) while calculating
production risks for coal mines with unfavourable mining
and geological conditions. At the stage of mining com-
pletion, and in terms of lack of investment, it is impossi-
ble to develop new operation schedules without taking
into consideration the criterion.

“Maximax” criterion (Taneja, Ligteringen, & Walker,
2012) is opposite to Wald criterion; i.e. success probabil-
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ity is high — y=1; a =0. According to the criterion, the
alternative, capable of providing peak success, is optimal
one. Similarly to Wald criterion, there will be two stages:
stage one is search of maximal success for each option:

Mi= Xi1i),j=L2,...4=
1 max( 1_,) J ’ (12)
M1=maX(X11’X12’X13’X14)

to be analogously for M», M; and M, as well.

Stage two is search for maximal option among M,
Mz, M and M4, ie.:
X =My=max(M,M»M3Ma4). (13)

“Maximax” criterion is applicable if mining and geo-
logical conditions are favourable; there are no limitations
in terms of a gas factor and operation mode of a coal
shearer; and capacity of transportation chain is sufficient.
The criterion should be applied for mines engaged in
extraction of deficit coal grades owing to a peak demand.

Laplace criterion relies upon the principle of insuffi-
cient relevancy; i.e. an option with maximal average
success will be optimal one. Therefore, success probabi-
lity is y = 1/M = 0.25 for four states of nature M =1...4.
Then, in the context of stage one identify average suc-
cesses Li...L4 according to the formula:

M

2 X

Z
Li=F—,

v (14)

and in the context of stage two identify maximal success
among average ones X* = L; = max (L, Lo, L3, La).

Laplace criterion (Schniederjans, Hamaker, &
Schniederjans, 2010) can be applied in the context of
long-term production planning as well as in the context
of situations when design capacity of a stope is sufficient
for its operation during several years.

It goes without saying that designers may face prob-
lems in the process of analyzing options according to the
three criteria. Even greater difficulties arise when analy-
sis according to Wald criterion (o =1, y =0) and maxi-
max M; (a=0, y=1) give rise to absolutely opposite
results. Relying upon long-term monitoring practice of
activities by coal-mining enterprises and forecasting of
operation indices, authors of the paper propose versatile
approach based upon the use of the weighted criterion
taking into consideration both positive and negative pre-
dictions. In this context, it is believed that probability of
favourable scenario is y=2/5; and probability of an
unfavourable scenario is a=3/5. Then, the weighted
success value is:

Wy +2M;

i 5 (15)

Former criteria took into consideration successes.
However, risks should also be involved. In our case, risks
depend upon less profit. Apply Savage criterion to do
that (Tulabandhula & Rudin, 2013).

Savage criterion relies upon the idea that the option is
optimal where the less success value will be minimal
one; i.e. the lesser difference between less success R;; and
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real Xj; is the better. The criterion relies upon risk matrix
rather than upon game matrix. Thus, it involves three stag-
es. Stage one is the search for maximal success value Yj;
re. Y1 =max (X1, Xi2, Xi3, Xi14). Similar procedure is for
Y, Y3 and Y. Stage two is to determine maximal loss suc-
CESS Rij (1e R[[ = Y] —)(11, Rlz = Yz—X]z, R13 = Y3 —)(13,
Ri4=Y4— Xi4) for each state of nature M =1...4. Stage
three is to identify maximal loss profit for each chain,
and to compare the options:

Sij:max(R,-j),j:l,L...,M 16)
X" =min(8;),i=1,2,...N;j =1,2,...M

Savage criterion should be applied at the initial design
stage or when data concerning potential of the mining
complex and production risks are not available. Such an
approach is rather logical since value of actual mining
will be equal to design characteristics of the mining com-
plex. It is possible to say that if S;; — Xj; = 0 then resource
balance is achieved; i.e. at minimal expenditures the com-
plex will provide the planned design characteristics.

Hurwitz criterion (Sant’Anna, 2015) relies upon con-
sideration of boundary system states through the use of
coefficient of optimism, i.e. 0 <A<1. When A=0, the
criterion becomes identical to Wald criterion; when
A =1, it becomes identical to maximax criterion. To
compare with other criteria, it takes into consideration
only maximum Xjmax successes, and minimum Ximin ones.
In other words:

HU(;L) ://"Xijmax"_(l_ﬂ)Xijmin
i=1,2,.,N;j=1,2,.,M
X" =max(H ()i =12,..N; j=1.2,...M

a7

It is expedient to use the criterion when there is no
practice of the equipment option use at an enterprise.
Risk attitude of a designer is rather important too, i.e. if
2 <0.4 then option with less loss is optimal one, and if
2> 0.4 then option with maximal success is optimal.

The generalized Hurwitz criterion (Nachbaur &
Rohmer, 2011) resembles previous criterion; however, to
compare with normal Hurwitz criterion, it calculates the
weighted success values, i.e. each state of nature
M=1,2,...,j has J, probability. Then, in terms of i
option, success value will be as follows:

(18)

\ M
Hi = Z ﬂqx[q 5
g=1

where:

0 <A< 1isa coefficient for g value of option i;
nevertheless, g probability of one or another state of
nature should not be more than 1:

M
Y Ag=1= it Aot a,=1.
q=1

(19)

Optimal option search procedure involves several stag-
es. Stage one is to arrange state matrix X by increase, i.e.

XilbXi2s - Xij > Vi1 < Yin <...< yi/’j =L2,...M. (20)
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Stage two is to sum up all the successes in terms of
each state of matrix Y:

N
i=

Stage three is to calculate total of all successes if matrix Y:

N M
Vg= XX Vig=
i=lg=1

M
Sy, (22)
g=1

Stage four is to determine attitude of a designer to the
target function if it is necessary to search an option with
maximal success (i.e. optimistic approach is meant), then
A, coefficient for any g state will be:

Yq

M
Y3,
q=1

_Ya

A, (23)

Therefore, greater coefficient belongs to the produc-
tion scenario where maximal success is achieved. Other-
wise, if it is required to minimize loss (i.e. pessimistic
approach) in the context of a production development
scenario when the worst results are expected, greater
coefficient should be specified, i.e.:

YN-g+1 __ VN—g+l
_ g+l _ g+l

- M
d >y,
gq=1

g (24)

If so, then an option with maximal value of the gen-

eralized Hurwitz criterion will be optimal one:
Ed ' .
X =H,.j=max(H,.),z=1,2,...,N (25)

In the majority of cases, the criterion helps obtain
identical solutions both for pessimistic and optimistic
scenario of a production development since the state
matrix is ordered in a highly reliable manner. Thus, it the
assumption may be admitted that one or another scenario
of a production development is probable.

The generalized Hurwitz criterion is expedient to be
used in the process of long-term design of enterprises when
data of previous comparisons are of disputable nature.

Thus, the research proposes to apply decision-making
criteria to design mining operations. Use of the criteria
makes it possible to put uncertainty away, and evaluate
production risks. However, determination of Savage
criterion and the generalized Hurwitz criterion is rather
labour-intensive procedure since one should sort alterna-
tives, compare success value with maximal value etc.
Institute of Physics of Mining Processes of the National
Academy of Science of Ukraine has developed applica-
ble software — Kritery.v2 2019 Program (Fig. 4).

As Figure 4 demonstrates, option 3 will be optimal;
thus, the software helps obtain decisive answer.

The program makes it possible to analyze simultane-
ously up to 1000 options and 1000 scenarios, and run a
report according to the analysis data. Moreover, the user
obtains the interpreted result. Application of the ap-
proach together with the developed software affords an
opportunity of production scheduling.
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Figure 4. Work window of Kritery.v2 2019

Decision-making trees are also used to solve the cur-
rent problems. The idea is as follows: the whole cycle is
represented in the form of a graph where stage corre-
sponds to vertices and the current solution corresponds to
the graph branches (Hrinov & Khorolskyi, 2018). In such
a way, constant production monitoring takes place.

Irrespective of the fact what mining task is imple-
mented, and what tools of decision-making theory are
applied, they are united by a common approach. Idea of
the approach is in a graph process representation, and its
further formalization as a network model and optimiza-
tion. Applicable software is proposed to implement the
approaches.

5. CONCLUSIONS

The idea of mining production scheduling is to reduce
cost as well as pay-off period. That can be achieved ow-
ing to optimization of operation schedules and parame-
ters; moreover, it is required to determine rational output.

Approaches of decision-making theory have been pro-
posed for mining production scheduling. The approaches
involve use of trees, decision-making criteria, and scenario
analysis. Irrespective of the fact, what tool is used, there is
a common approach when operation schedule is represent-
ed as a network model. The shortest route within the net-
work model corresponds to optimal solution.

Application area of decision-making criteria under
uncertainty conditions has been proposed and substanti-
ated to determine rational output. The above will help
minimize loss, and maximize the planned profit. For
instance, Wald criterion should be applied while estimat-
ing a situation with the worst scenario. Assume, that it is
required to estimate loss when equipment is not put into
operation; i.e. the equipment has been purchased but the
activities are not provided. At the same time, maximax
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criterion makes it possible to estimate value of success in
terms of the best scenario. For instance, mining and geo-
logical conditions are favourable; factors, limiting equip-
ment efficiency, are not available; and the mined coal is in
demand. The use of the applicable software helps intro-
duce the described approaches into mining production.
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MOJIEJII TA METOJU IPUVHATTSA PIIIEHD JJIS1 YIIPABJIHHSA ITPHAYAM BUPOBHUIITBOM

A. Xoponbcbkuit, B. I'pinboB, O. Mawmaiikin, FO. JlemaeHKo

Merta. Po3poOutn HOBUI MiAXix 10 MPOEKTYBAaHHS TiPHHYOTO BUPOOHHIITBA, IKUH 0a3yeThCcS Ha MOAEISIX Ta METO-
JlaX Teopii MPUAHATTS PillICHb.

Metoauka. B po6oTi 3acTOCOBaHO KOMITIEKCHUN METOM, SIKUH BKIIOYA€ MIAXOMU TEOpii MPUHHATTS pirneHs. [
CTPATEriyHOro IUIaHyBaHHS AiSUIBHOCTI 3alPOIIOHOBAHO JIOCIHIIKYBATH CLEHapil pO3BUTKY BHPOOHMITBA, [UIS BH3HA-
YeHHs palliOHaJbHOTO PiBHS BUPOOHMITBA — KPUTEPii NPUHHATTA pillleHb B yMOBaX HEBH3HAUCHOCTI, a TAKOX JAepeBa
MPUAHATTSI PILIEHB YISl TOTOYHOTO YIPaBIiHHS.

Pe3yabraTu. BusiBieHo, o npouec NpoeKTyBaHHs TiPHHYOr0 BUPOOHHULITBA Ma€ JIETEPMIHOBAHHH XapakTep, SKUH
JIEMOHCTPY€ 3MiHY “‘CTaHiB MPHPOIM”~ 3aJIEKHO BiJ MPUHHATUX piieHb. CyTh NPOEKTYBaHHS TiPHUYOTO BUPOOHUIITBA
3BOJIUTHCS JI0 MOCIHIZOBHOTO 3MEHIIEHHS HEBU3HAYECHOCTI IILIIXOM JIOCIIJDKEHHS CLEHapiiB BUPOOHUIITBA Ta BHKJIIO-
YEeHHS! HECIPHUATINBUX anbTepHaTHB. OTepaTHBHE YIPABIIHHS 3MIHCHIOETHCS IUIIXOM MOOYJOBH JIepeB pillleHb Ta
onTuMizanii napaMeTpiB ekcrutyaTauii. IIpencTaBieHHss MHOKHH pallioHaJIbHUX TUIIB 00JIaJIHAHHS, CLIEHAPiiB PO3BUT-
Ky IOJiH Ta IMOPIBHIHHS iX 32 KPUTEPIIMH NPUHHATTS PillICHb J03BOJISE€ BU3HAYUTH PaLliOHAIBHUN piBEHb BUIOOYTKY
BUMAIIbHOI JITBGHUIN i 3HU3UTH BUTPATH HA TMpUAOaHHS Ta 0OCIYTrOBYBaHHSA OOJagHAHHS, MPH IOMY BPaXOBYIOTHCS
oOMexxyBalbHI (PaKTOPH, AKi BIUTHBAIOTh HAa BEMUNHY OYiKyBaHOTO BHAOOYTKY. [locigoBHE MOPiBHAHHS albTEPHATHB
JIO3BOJISIE BCTAHOBUTH TOJI€ MPUUHATHHUX PIIIEHB IS PI3HUX CIIEHAPiiB PO3BUTKY BUPOOHUIITBA.

HayxoBa HoBu3Ha. [{yis yripaBiniHHs FipHUYUM BUPOOHHUIITBOM 3alIPOIIOHOBAHO MIIX0/M T€OPil MPUHHATTS PillIeHb,
SIKi BKJIIOYAIOTh 3aCTOCYBAHHS JIEPEB pillleHb, KPUTEPIiB NPUIHATTS pillieHb Ta aHali3 CIieHapiiB, KOTPi 0a3yrOThCs Ha
MIPEACTaBICHHI TEXHOJOTIYHOrO MPOLECY y BUIJISAII MEPEeKeBOi MOJelNi, B sIKiil HAMKOPOTIIMI MapuUIpyT BiANOBigae
ONTUMAJILHOMY PillICHHIO.

IpakTnyna 3HaYnMicTh. Po3pobieHa cucrema NpUUHATTS PillieHb, JO3BOJISIE ONTUMI3YBaTu MapaMeTpu eKCIulya-
Tauii, 3HU3UTH co0iBapTiCTh BUIOOYTKY, BUOPATH CTPYKTYpPY TEXHOJIOTIYHUX 3B’SI3KIB 3 3a/laHUM PiBHEM IPOJYKTHBHO-
cti. Onucani B poOOTI MiIX01M MOKYTh OyTH BUKOPHCTaHI SIK Ha CTaAii MPOEKTYBaHHS OYMCHOTO 32000 TaK i B Iporeci
eKCILTyaTalil poJOBHUINa KOPUCHUX KonainH. OcoOJMBY yBary NpHIUICHO po3po0Li MpOrpaMHOro 3a0e3NedeHHs s
BIIPOBAKEHHSI ONMCAHUX MiIXOIIB Y BUPOOHHUIITBO.

Kntouogi cnosa: supobruymeo, onmumizayis, epekmugHicmy, npoepamte 3abe3neyerms, Kpumepiii

MOJIEJIA U METO/JIbI IPUHATHA PEIIEHUM JIJISA YIIPABJIEHUS IT'OPHBIM ITPOU3BOICTBOM

A. Xoponbckuii, B. I'punes, A. Mawmaiikus, 10. JlemaeHnko

Heab. PazpabotaTs HOBBIH MOIX0OA K MPOSKTUPOBAHUIO TOPHOTO MPOU3BOJICTBA, KOTOPHIA Oa3upyeTcs Ha MOJEIIX
1 METOZAAX TEOPUH MPUHSTHUS PELICHHUH.

MeTtoauka. B paboTe ucnonb30BaH KOMIUIEKCHBIH METOJ, KOTOPBIH BKIIFOUAET MOIXOABl TEOPUHU MPUHSATHS pellie-
HUH. [l cTpaTern4eckoro IIaHUPOBAHMSA JESTENBHOCTH NPEIOKEHO HCCIEA0BATh CLEHAPUH Pa3BUTHS MIPOU3BOA-
CTBa, U ONPEJEICHUS PAllMOHAIBHOTO YPOBHS MPOU3BOCTBA — KPUTEPUH NPHUHATHS PEIICHUH B YCIOBHUAX HEOIIpEse-
JIEHHOCTH, @ TaK)K€ JEPEBbsl IPUHATHUS PELICHUN JUI TEKYIIEro yIIPaBJICHU.

Pe3ysabTaThl. YCTaHOBIIEHO, YTO NMPOLECC MPOEKTUPOBAHUS T'OPHOTO IPOU3BOJACTBA HOCHUT JETEPMHUHUPOBAHHBIN
XapakTep, KOTOPBIH OTpakaeT U3MEHEHHE ‘‘COCTOSIHUN NpUpPOABI” B 3aBUCHUMOCTHU OT IMPUHATHIX perieHui. CyTb nmpoek-
TUPOBAHMS CBOJUTCS K MOCIEI0BATEIBHOMY YMEHBIICHUIO HEONPEASIEHHOCTH ITyTEM HCCIEJ0OBAHUS CLIEHAPUEB MPO-
W3BOJICTBA M MCKIIIOUCHHUSI HEOJIaronpusATHBIX anbTepHaTHB. ONepaTHBHOE yIpaBiIeHNUE OCYLIECTBIISICTCS TOCPEICTBOM
MIOCTPOEHMUSI AEPEBLEB PELICHUI U ONTUMHU3ALUKN NapaMeTpoB 3KcIuTyaTauuu. [IpencraBneHne MHOXKECTBA PALIUOHANb-
HBIX TUIIOB 00OPYIOBaHUs, CLICHAPHEB Pa3BUTHS COOBITHI Ta CPAaBHEHHE MX MO KPUTEPHUSIM MPHUHATHS PEIICHUH M03BO-
JSIET ONPEAEIUTD PAallMOHABHBIN YPOBEHb TOOBIYM OYMCTHOTO yYacTKa M CHU3UTH 3aTpaThl HA MPHOOpETeHNE 1 00CITy-
KHUBaHHE 000PYAOBAHNUS, TP ATOM YUUTHIBAIOTCS OTPaHMYMBAIONINE (aKTOPBI, KOTOPHIE BIUAIOT HA BEINYMNHY OXHIa-
emoil mpubsLn. IlocnenoBaTenbHOE CpaBHEHHE ANBTEPHATHB MO3BOJISIET YCTAHOBUTH I10JIE MIPUEMIIEMBIX PEIICHUH IS
Pa3HBIX CLIEHAPUEB Pa3BUTHUS IPOU3BOICTBA.

Hayunas HoBu3HA. /111 ynpaBiieHUs TOPHBIM IIPOU3BOACTBOM MPEJIOKEHBI OAXOAbI TEOPUHU NPHUHATHS PEIICHUH,
KOTOPBIC BKJIHOYANOT IMPUMCEHCHUA NCPEBLEB, KPUTCPUCB IMPUHATUA pemeﬂuﬁ M aHaJin3 CUHCHApUCB, OCHOBAHHBLIX Ha
IPEJCTaBICHUN TEXHOJIOTHYECKOT0 Mpolecca B BUJE CETEBOM MOJENH, e KpaTdyallinid MapIpyT COOTBETCTBYET OIl-
TUMaJIbHOMY PELICHHIO.
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IMpakTnyeckas 3HaunMocTh. PazpaboTaHa cucreMa MOJIEPKKH MPHHATHS PELICHUH, KOTOpask O3BOJIUT ONTUMH-
3MpOBaTh MapameTpbl SKCIUTyaTalluHl, CHU3UTh CE0ECTOMMOCTh A00BIYM, BBIOPATh CTPYKTYpPY TE€XHOJOTMYECKHX B3au-
MOCBSI3€H ¢ 33/IaHHBIM YPOBHEM MPOHU3BOANTEIbHOCTH. OnMcaHHble B paboTe MOIX0/bI MOTYT OBITh UCIIOJIB30BaHbI KaK
Ha CTaJiM MPOEKTHUPOBAHMS OUYMCTHOTO 32005, TaK M B MPOILIECCE IKCIUTyaTallud MECTOPOXKJICHHUS MOJIE3HBIX MCKOIIae-
MbIX. Ocoboe BHHMaHHWE YAEIeHO pa3paboTKe MpOrpaMMHOTO OOecIieueHus AJIsl BHEAPEHUSI ONMCAHHBIX MOJXOJO0B B
TOPHOE JIENO.

Knrouegvle cnosa: npouzso0cmeo, onmumuzayus, 3GekmusHocms, npocpammHoe obecnedenue, Kpumepiu
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