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Introduction 

In the last thirty years significant contributions have been made in the signal 

processing field. The advances in digital circuit design have been the key 

technological development that sparked a growing interest in the field of digital 

signal processing. The resulting digital signal processing systems are attractive due to 

their low cost, reliability, accuracy, small physical sizes, and flexibility.  

 One example of a digital signal processing system is called filter. Filtering is a 

signal processing operation whose objective is to process a signal in order to 

manipulate the information contained in the signal. In other words, a filter is a device 

that maps its input signal to another output signal facilitating the extraction of the 

desired information contained in the input signal. A digital filter is the one that 

processes discrete-time signals represented in digital format. For time-invariant filters 

the internal parameters and the structure of the filter are fixed, and if the filter is 

linear, the output signal is a linear function of the input signal. Once prescribed 

specifications are given, the design of time-invariant linear filters entails three basic 

steps, namely: the approximation of the specifications by a rational transfer function, 

the choice of an appropriate structure defining the algorithm, and the choice of the 

form of implementation for the algorithm. 

 An adaptive filter is required when either the fixed specifications are 

unknown or the specifications cannot be satisfied by time-invariant filters. Strictly 

speaking, an adaptive filter is a nonlinear filter because its characteristics are 

dependent on the input signal and consequently the homogeneity and additivity 

conditions are not satisfied. However, if we freeze the filter parameters at a given 

instant of time, most adaptive filters considered in this text are linear in the sense that 

their output signals are linear functions of their input signals. 

 The adaptive filters are time-varying since their parameters are continually 

changing in order to meet a performance requirement. In this sense, we can interpret 

an adaptive filter as a filter that performs the approximation step on-line. Usually, the 

definition of the performance criterion requires the existence of a reference signal that 

is usually hidden in the approximation step of fixed-filter design. This discussion 



7 
 

brings the feeling that in the design of fixed (nonadaptive) filters a complete 

characterization of the input and reference signals is required in order to design the 

most appropriate filter that meets a prescribed performance. Unfortunately, this is not 

the usual situation encountered in practice, where the environment is not well 

defined. The signals that compose the environment are the input and the reference 

signals, and in cases where any of them is not well defined, the design procedure is to 

model the signals and subsequently design the filter. This procedure could be costly 

and difficult to implement on-line. The solution to this problem is to employ an 

adaptive filter that performs on-line updating of its parameters through a rather 

simple algorithm, using only the information available in the environment. In other 

words, the adaptive filter performs a data-driven approximation step. 

 The subject of this book is adaptive filtering, which is concerned with the 

choice of structures and algorithms for a filter that has its parameters (or coefficients) 

adapted in order to improve a prescribed performance criterion. The coefficient 

updating is performed using the information available at a given time. 

It should be stressed that the derivation of the vector Kalman filter and Kalman–

Bucy filter which are given in this book are not the same as the standard ones given 

in the literature intended for “pure” mathematicians. They are built on a simple 

analogy between the above-mentioned filters and the scalar Kalman filter, and they 

do not contain such difficult terms as a posteriori and a priori estimates. 

 Sections 1.1, 1.4, 1.5, 3.1–3.5, 4.1 and 4.2 are written by A. Yu. Gusev. 

Sections 1.2, 1.3, 3.6, 3.7, 3.9 and chapter 2 are written by V. N. Gorev. Sections 3.8, 

3.10, 4.3 and 4.4 are written by V. I. Korniienko.  
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Chapter 1.  General Information 

1.1 Matrices. Determinants. Systems of linear equations 

1.1.1 The concept of the matrix 

A matrix of size mn, where m is the number of rows, n is the number of 

columns, is a table of numbers arranged in a certain order. The numbers themselves 

are called the elements of the matrix. 

 Matrices are denoted by capital Latin letters: A, B, C, ... . Matrix elements are 

denoted by the symbol ija , where i  is the row number, and j  is the column number, 

at the intersection of which there is an element: 

11 1

1

n

m mn

a a

A

a a

 
 


 
 
 

. 

If the number of rows of the matrix is equal to the number of columns and is 

equal to n, then the matrix is called square matrix of the order n. 

If the number of rows of the matrix is not equal to the number of columns, then 

the matrix is called rectangular. 

Depending on the values of the elements, the following matrices are 

distinguished: 

1) The zero matrix is a matrix, all elements of which are 0: 

0 0 0
0 0 0

0 0 0

 
 
 
 
 
 

. 

2) Identity (unit) matrix is the square matrix E or I, in which the elements of 

the main diagonal are equal to 1, and the remaining elements are equal to 0: 
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1 0 0
0 1 0

0 0 1

E

 
 
 
 
 
 

. 

3) Diagonal – diag (d11, ..., dnn), (its diagonal elements are dij, and non-diagonal 

are zero). 

4) A square matrix (i.e., i = j) is called upper triangular if all its elements below 

the main diagonal are zero, respectively, a square matrix is called lower triangular if 

all its elements above the main diagonal are zero. 

5) The trace of a square matrix is the sum of its diagonal elements  

1

Tr
n

ii

i

A a


 . 

6) The matrix B is called transposed to A and is denoted by tB A  , if the rows 

of the matrix B are the columns of the matrix A with the same numbers (and the 

columns of B are the rows of  A). 

Example 

1 4
1 6 0

6 5
4 5 1

0 1

t  
   

       
 

. 

For any matrices A and B for which the product A ∙ B is defined, the following 

equality exists: 

 
t t tA B B A  . 

7) The matrix A is called nonsingular if its determinant is not equal to zero, i.e.

 det 0A . 

8) The inverse of a nonsingular matrix A is a matrix A-1, such that 1A A E  . 
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9) A square matrix is called symmetric if tA A . 

 

1.1.2 Matrix operations 

Algebraic matrix operations include: 

- addition (subtraction), 

- multiplication by number, 

- multiplication of the matrix by the matrix. 

The sum (difference) of two matrices A and B of size m n is matrix C of size 

m n, the elements of which are determined by the equations: 

С A B  , 

 

ij ij ijc a b 

 

 

where i = 1, 2, …, m;  j =1,2, …, n. 

Thus, the addition (subtraction) operations of matrices are defined only if the 

matrices have the same size. 

 Example 

1 2 3 2 1 5 3 3 2
0 1 4 2 3 0 2 4 4

      
      

        
. 

The multiplication of the matrix A by the number λ is  the matrix C, in which 

each element is equal to the product of the corresponding element of the matrix A by 

the number λ: 

ij ijc a . 

Example 

1 2 3 2 4 6
2

0 1 4 0 2 8
   
    

    
. 
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The multiplication of matrix A of size mn by matrix B of size nk  is the 

matrix C of size mk, in which the element standing at the intersection of the i-th row 

and j-th column is equal to the sum of the products of the elements of the i-th row of 

A by the elements of the j-th column of B factor, i.e.

 

 

1

n

ij is sj

s

c a b


 .  

Thus, the multiplication operation of two matrices is defined if the number of 

columns of the first matrix is equal to the number of rows of the second. 

Remark. The matrix multiplication operation is not commutative: 

 A B B A   .  

Remark. If the products A ∙ E and E ∙ A are defined, then the following equalities 

take place: 

A E A  ,    E A A  . 

An overview of matrix operations can be represented by the following scheme: 

 n   n   n 

m  + m  = m  

 

 n   k   k 

m  ·  n  = m  

Exponentiation. The whole positive degree nA  ( 1n  ) of a square matrix A is 

the product of  n matrices equal to A, that is, 

                                               
times

...n

n

A A A A A    . 
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By definition we have 0A E , 1A A . Obviously, 

                                  n k n kA A A  ,  
k

n nkA A .    

1.1.3 The determinant 

A determinant of a square matrix  A is a number denoted by A , det( )A  or  .  

A rigorous definition of the determinant requires a detailed study of several concepts: 

substitutions and inversions, therefore we confine ourselves to a description of the 

methods for calculating the determinants of matrices of the 2nd and 3rd orders, and 

later on the determinants of any order.  

The determinant of the 2nd order is the number calculated by the formula: 

11 12
11 22 12 21

21 22

a a
a a a a

a a
  , 

that is, the 2nd order determinant is equal to the product of the elements on the main 

diagonal minus the product of the elements standing on the secondary diagonal. 

The determinant of the 3rd order is the number calculated by the formula: 

11 12 13

21 22 23 11 22 33 13 21 32 31 12 23 31 22 13 11 32 23 33 21 12

31 32 33

a a a

a a a a a a a a a a a a a a a a a a a a a

a a a

      . 

Of course, this formula is difficult to memorize, so you can use one of the rules to 

calculate the determinants: 

Triangle rule Rule of Sarrus 

  
Points which are the vertexes of the 
triangles denote the multipliers in the 
products 
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Determinant properties 

 Property 1. The value of the determinant does not change when transposing: 

11 1 11 1

1 1

n n

n mn n nn

a a a a

a a a a

 . 

 From property 1 it follows that the rows and columns of the determinant are 

equivalent, therefore all other properties will be formulated for the rows, but they will 

be valid for the columns as well. 

Property 2. The determinant containing a row of all zeros is zero: 

                                         

11 12 13 1

1 2 3

0 0 0 0 0

n

n n n nn

a a a a

a a a a

 . 

The procedure in which two arbitrary rows (two arbitrary columns) of the 

determinant are swapped is called a transposition of the rows. 

Property 3. The transposition of the rows changes the sign of the determinant to 

the opposite: 

11 12 1 11 12 1

1 2 1 2

1 2 1 2

1 2 1 2

n n

i i in j j jn

j j jn i i in

n n nn n n nn

a a a a a a

a a a a a a

a a a a a a

a a a a a a

  . 

Property 4. If all the elements of any row of the determinant are multiplied by 

any number k, then the value of the determinant will change k times: 
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11 12 13 1 11 12 13 1

1 2 3 1 12 3

1 2 3 1 2 3

n n

i i i in i i in

n n n nn n n n nn

a a a a a a a a

ka ka ka ka k a a a a

a a a a a a a a

 . 

Property 5. The value of the determinant will not change if we add another row 

multiplied by any number to some row: 

11 12 1 11 12 1

1 2 1 2

1 2 1 1 2 2

1 2 1 2

n n

i i in i i in

j j jn j i j i jn in

n n nn n n nn

a a a a a a

a a a a a a

a a a a ka a ka a ka

a a a a a a



  

. 

Property 6. If each element of a certain row of determinant is represented as the 

sum of two terms, then the determinant can be represented as the sum of two 

determinants: in the first determinant the row with the same number contains first 

terms, and the second determinant – second terms: 

11 12 1 11 12 1 11 12 1

1 1 2 2 1 2 1 2

1 2 1 2 1 2

n n n

i i i i in in i i in i i in

n n nn n n nn n n nn

a a a a a a a a a

b c b c b c b b b c c c

a a a a a a a a a

     . 

Property 7. The determinant having two equal rows is zero: 

11 12 1

1 2

1 2

1 2

0

n

i i in

i i in

n n nn

a a a

a a a

a a a

a a a

 . 
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Minors and algebraic adjuncts 

The minor of a certain element of the determinant is the determinant obtained 

from the given one by crossing out the row and column at the intersection of which 

this element is located. 

Example. Find the minors of elements 13a  and 22a  of the determinant   

3 8 2
1 4 0
7 5 1



.

 

Solution. Minor of element 13 2a   : 
1 4

5 28 23
7 5

    ; 

Minor of element 22 4a  :  
3 2

3 14 17
7 1


    . 

The algebraic adjunct of some element of the determinant is the minor of this 

element multiplied by , where i is the row number, and j is the column 

number at the intersection of which the element is located. The algebraic adjunct of 

the element aij  is denoted by ijA .  

Theorem. The determinant is equal to the sum of the products of elements of 

any row (or column) by their algebraic adjuncts. 

                                 1 1 2 2 ...i i i i in ina A a A a A     . 

 

Algorithm for finding the inverse matrix A
-1

 

1. Calculate the determinant A . If 0A  , then matrix A has an inverse. If 

0A  , then matrix A has no inverse. 

2. Find algebraic adjuncts to all elements of the matrix A. 

ji )1(
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3. Replace all elements of the matrix A with their algebraic adjuncts and  

transpose the resulting matrix (that is, swap rows and columns). 

4. Divide all the elements of the resulting matrix by the determinant of the  

matrix A: 

111 21

212 22
1

1 2

n

n

n n nn

AA A

A A A

AA A

A A AA

A A A

A A A



 
 
 
 
 

  
 
 
 
 
  . 

Comment. It can be shown that, for a non-singular second-order matrix

a b
A

c d

 
  
 

 , the inverse matrix is 1 1 d b
A

c aA


 

  
 

. 

 

Elementary matrix transformations 

Elementary transformations of the matrix are the following transformations: 

1) transposition of rows (i.e., a procedure in which two arbitrary rows of the  

matrix are swapped); 

2) multiplication of any row of the matrix by a non-zero number; 

3) adding to any row of the matrix any other one multiplied by any number; 

4) crossing out the row consisting of only zeros. 

If the matrix  B is obtained from  A as a result of elementary transformations, 

then it is said that that A is equivalent to B: A ~ B. 

A step-matrix is a matrix that satisfies the conditions: 
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1) if the i-th row is zero (that is, it consists of all zeros), then the (i + 1)-th row is 

also zero, 

2) if the first nonzero elements of the i-th and (i + 1) -th rows are arranged in 

columns with the numbers k and l, respectively, then k < l.  

 

Theorem. Any matrix can be brought to a stepwise form using elementary 

transformations. 

Proof. Let us consider a matrix  

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

n

n

n

k k k kn

a a a a

a a a a

a a a a

a a a a

 
 
 
 
 
 
 
 

. To the i-th row of 

the matrix (i = 2, 3, 4, ..., k) we add the first row multiplied by 1

11

ia

a
 , so we obtain the 

matrix 

11 12 13 1

22 23 2

32 33 3

2 3

0
0

0

n

n

n

k k kn

a a a a

a a a

a a a

a a a

 
   
 
   
 
 
    

,   
1

1
11

i
ij ij j

a
a a a

a
  

. 

In this matrix, to the i-th row (i = 3, 4, ..., k) we add the second row multiplied by

2

22

ia

a





, thereby obtaining the matrix: 

11 12 13 1

22 23 2

33 3

3

0
0 0

0 0

n

n

n

k kn

a a a a

a a a

a a

a a

 
   
 
  
 
 
   

,   
2

2
22

i
ij ij j

a
a a a

a


   

 . 
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Then to the i-th row (i = 4, ..., n) we add the third row multiplied by 3

33

ia

a





, continuing 

this process, we arrive at a step matrix. 

 

1.1.4 Systems of linear equations 

1.1.4.1 General information about systems of linear equations 

Consider a system of n linear equations with n unknowns: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...
...

...

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   


   


    

. (1.1) 

The numbers aij (i, j = 1, 2, ..., n) are called the coefficients of the system, and 

the numbers bj are called the free terms. 

The solution of the system is the set of numbers x1, x2, ..., xn, by substitution of 

which into the system we get the correct equalities. 

A system that has a solution is called a joint. A system that does not have a 

solution is called disjoint.  If all free terms are equal to 0, then the system is called 

homogeneous, otherwise - inhomogeneous. 

Comment. A homogeneous system of linear equations is always joint. It 

necessarily has a zero solution (maybe not the only one). 

 

1.1.4.2 Matrix notation of a system of linear equations 

Let‟s introduce the following notations: 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 

, 

1

2

n

x

x
X

x

 
 
 
 
 
 

, 

1

2

n

b

b
B

b

 
 
 
 
 
 

. 

The system (1.1) can be written in the following matrix form: 
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A X B  . 

If  det 0A  , then 1A  exists, and  by multiplying both sides of the equation by 1A  

we obtain 

1 1 1 1

E

A A X A B E X A B X A B   



           . 

1.1.4.3 Cramer Formulas 

It was shown above that the solution of system (1.1) if  det 0A   can be found 

in the form 1X A B , which explicitly gives 

 

 

 

11 1 21 2 1

12 1 22 2 21

1 1 2 2

1 ...

1 ...

1 ...

n n

n n

n n nn n

A b A b A b
A

A b A b A b
AX A B

A b A b A b
A



 
   

 
 

   
   

 
 
   
 
 

, 

so 
 1 1 2 2

1 ... i
i i i ni nx A b A b A b

A


    

  where A   is the determinant of the 

matrix A, and  

11 1, 1 1 1, 1 1

21 2, 1 2 2, 1 2

1 , 1 , 1

i i n

i i n

i

n n i n n i nn

a a b a a

a a b a a

a a b a a

 

 

 

 

 

is the determinant, obtained 

from the determinant   by replacing the i-th column with a column of free terms. 

Thus, the obtained results  

                                                    
i

ix





;  i = 1, 2, ... n. 
 

are called Cramer formulas. 
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1.1.4.4 Gauss method (method of elimination of unknowns) 

Let us consider a system of k linear equations with n unknowns: 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...
...

...

n n

n n

k k kn n k

a x a x a x b

a x a x a x b

a x a x a x b

   


   


    

. (1.2) 

Let‟s write the matrix of this system: 

                                 























knkk

n

n

aaa

aaa

aaa

A

...
............

...

...

21

22221

11211

. 

The matrix, obtained from matrix A as a result of attributing the column of free 

terms to the right is called the extended matrix of the system and is denoted by А : 

                                 























kknkk

n

n

baaa

baaa

baaa

A

...
...............

...

...

21

222221

111211

. 

The Gauss method is as follows. First of all we should eliminate the variable 1x  
from all equations of the system, starting with the second. Then we should eliminate 

the variable 2х  from all equations of the system, starting with the third, and so on. In 

other words, we bring the expanded matrix of the system to a stepwise form. 

If the number of equations of the system is equal to the number of unknowns 

and is equal to n, then finally we obtain a system 

                                

11 1 12 2 1 1

22 2 2 2

...
...

n n

n n

nn n n

a x a x a x b

a x a x b

a x b

   
     


  

, 
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from which it is easy to find the variables 121 ,,...,, xxxx nn   consistently. 

 

1.2. Random processes and correlation functions 

A random quantity is a quantity that can take different values with different 

probabilities. A function  x t  of a real variable t  is a random function if at each 

value of the variable t   x t  is a random quantity. If the variable t  is time, the 

random function  x t  is a random process.  

The one-dimensional probability density of a random process  x t  is the 

quantity  1 1 1,x t  such that  1 1 1,x t dx  is the probability of  1x t  to take values 

between 1x  and 1 1x dx , i.e.  

                                  1 1 1 1 1 1 1 1, ( ) ( , )x t dx P x t x x dx    .                     (1.3)              

The two-dimensional probability density of a random process  x t  is the 

quantity  2 1 1 2 2, ; ,x t x t  such that  1 1 2 2 1 2, ; ,x t x t dx dx  is the probability of the fact 

that    1 1 1 1,x t x x dx   and at the same time    2 2 2 2,x t x x dx  : 

   2 1 1 2 2 1 2 1 1 1 1 2 2 2 2, ; , ( ) ( , ), ( ) ( , )x t x t dx dx P x t x x dx x t x x dx      . (1.4) 

From (1.4) it is obvious that 

   2 1 1 2 2 2 2 2 1 1, ; , , ; ,x t x t x t x t  . (1.5) 

Similarly, the n -dimensional probability density of a random process  x t  is 

the quantity  1 1 2 2, ; , ;...; ,n n nx t x t x t  such that 

 1 1 2 2 1 2, ; , ;...; , ...n n n nx t x t x t dx dx dx   

 1 1 1 1 2 2 2 2( ) ( , ), ( ) ( , ),..., ( ) ( , )n n n nP x t x x dx x t x x dx x t x x dx       . 
(1.6) 

The probability density satisfies the normalization: 
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 1 2 1 1 2 2... ... , ; , ;...; , 1n n n ndx dx dx x t x t x t
  

  

   , (1.7) 

whose physical meaning is that the sum of all possible probabilities is equal to 1. 

Generally speaking, a random process is described by the probability densities 

of all dimensions. However, it is very hard to work with probability densities of high 

dimensions. That is why random processes are often described only by the one- and 

the two-dimensional probability density. Moreover, there are a lot of random 

processes that are rigorously described only by the one- and the two-dimensional 

probability density, and the probability densities of all the other dimensions can be 

described in terms of the one and the two-dimensional one. 

The mathematical expectation (the average value) of a random process  x t  

is the quantity  x t : 

     1 ,xx t m t dxx x t




   . (1.8) 

The average value of a function of a random process is defined as 

      1 ,f x t dxf x x t




  . (1.9) 

For example, the mean square of a random process according to (1.9) is 

   2 2
1 ,x t dxx x t





  . (1.10) 

It should be noticed that if the values of a random process  x t  are taken at different 

instants, then the average value of the corresponding product is defined in terms of 

the two-dimensional probability density rather than in terms of the one-dimensional 

one: 

     1 2 1 2 1 2 2 1 1 2 2, ; ,x t x t dx dx x x x t x t
 

 

   . (1.11) 
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The variance  xD t  and the mean-square deviation  x t  of a random 

process  x t  are defined as 

     
22

xD t x t x t  ,    xt D t  . (1.12) 

The correlation function is introduced in the literature by different ways. In 

some books, the correlation function  1 2,xR t t  of a random process  x t  is defined 

as      1 2 1 2,xR t t x t x t , in others it is defined as      1 2 1 2,xR t t x t x t 

   1 2x t x t . It should be noticed that if the average value   0x t   for each t , 

then these definitions coincide with each other, but they do not coincide with each 

other in the general case. For definiteness, we define the correlation function of a 

random process  x t  as  

     1 2 1 2,xR t t x t x t . (1.13) 

A random process is stationary if for the probability densities of all the 

dimensions the following property is valid: 

     1 1 2 2 1 1 2 2, ; , ;...; , , ; , ;...; ,n n n n n nx t x t x t x t x t x t        , (1.14) 

i.e. if we add the same value to all the time arguments of the probability density, the 

probability density does not change. Such processes are often called strictly 

stationary processes.  

However, as mentioned before, for simplicity random processes are often 

described in terms of only the one- and the two-dimensional probability density. A 

random process is a wide sense stationary random process if the property (1.14) is 

valid only for 1,2n  . Wide sense stationary processes are also called weakly 

stationary processes. If a random process is strictly stationary, it is also wide sense 

stationary, but, generally speaking, the converse is not true.  

Let us show that the average value of a stationary random process is time 

independent. Let us consider the average values at two arbitrarily taken different 

instants  1xm t  and  2xm t . By the definition of (1.8) 



24 
 

   1 1 1,xm t dxx x t




  ,    2 1 2,xm t dxx x t




  .  (1.15) 

Choosing 2 1t t    in (1.12), we obtain 

     1 1 1 1 1 1 2 1 1 1 2, , ( ) ,x t x t t t x t      . (1.16) 

From (1.15) and (1.16) we have 

   1 2x xm t m t .  (1.17) 

So the average value of a stationary process is the same for two arbitrarily taken 

different instants, that is why it is time independent. 

Now let us show that the correlation function  1 2,xR t t  of a stationary 

process  x t  depends only on the time difference 2 1t t . From (1.11) and (1.13) 

we have 

   1 2 1 2 1 2 2 1 1 2 2, , ; ,xR t t dx dx x x x t x t
 

 

   . (1.18) 

Choosing 2t    in (1.14), we obtain 

   2 1 1 2 2 2 1 1 2 2, ; , , ; ,0x t x t x t t x   . (1.19) 

From (1.19) and (1.18) we have  

     1 2 1 2 1 2 2 1 1 2 2 1 2, , ; ,0x xR t t dx dx x x x t t x R t t
 

 

     , (1.20) 

which was to be proved. From (1.20) it can be seen that the correlation function of 

a stationary random process is a one-variable function rather than a two-

variable one; from (1.20) it can be seen that 

    1 2 1 2 2 1 2, ; ,0xR dx dx x x x x  
 

 

   . (1.21) 

Choosing t   in (1.14), we obtain 

   2 1 2 2 1 2, ; ,0 , ; ,x x x t x t     , (1.22) 
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and from (1.22) and (1.21) we have 

       1 2 1 2 2 1 2, ; ,xR dx dx x x x t x t x t x t   
 

 

     . (1.23) 

It should be noticed that the result (1.23) is widely used. 

Let us show that the correlation function of a stationary process is an even 

one. From (1.21) we have 

   1 2 1 2 2 1 2, ; ,0xR dx dx x x x x  
 

 

    . (1.24) 

From (1.14) we have 

     2 1 2 2 1 2 2 1 2, ; ,0 , ; ,0 ,0; ,x x x x x x             , (1.25) 

which with account for (1.24) gives 

     1 2 1 2 2 1 2 1 2,0; ,xR dx dx x x x x x x  
 

 

       

   2 1 2 1 2 2 1 1 2 1 2 2 2 1,0; , ,0; ,dx dx x x x x dx dx x x x x   
   

   

     . 
(1.26) 

From (1.26) and (1.5) we obtain 

     1 2 1 2 2 1 2, ; ,0x xR dx dx x x x x R   
 

 

    , (1.27) 

which was to be proved. 

The cross-correlation function of two random processes  x t  and  y t  is the 

function  1 2,xyR t t  defined as 

       1 2 1 2 1 2, , ; ,xyR t t x t y t dxdyxy x t y t
 

 

     (1.28) 

where  1 1 2 2 1 2, ; ,x t y t dx dy  is the probability of the fact that    1 1 1 1,x t x x dx   and  

at the same time    2 2 2 2,y t y y dy  . Obviously,  
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   1 2 2 1, ; , , ; ,x t y t y t x t  . (1.29) 

It should be stressed that in the literature the cross-correlation function is not always 

defined as in (1.28). The definition          1 2 1 2 1 2,xyR t t x t y t x t y t   is also 

often used, but for definiteness, we will use the definition (1.28). These two 

definitions coincide in the case where  x t  or  y t  is a stationary random process 

with a zero average value. 

If both processes  x t  and  y t  are stationary, then it is often assumed that the 

probability density  1 2, ; ,x t y t  obeys the property 

     1 2 1 2, ; , , ; ,x t y t x t y t      . (1.30) 

In such a case, the cross-correlation function of two stationary processes 

obeys the following properties: 

   1 2 1 2,xy xyR t t R t t  ,      xyR x t y t   ,    xy yxR R   . (1.31) 

Let us prove them. From (1.30) we have 

   1 2 1 2, ; , , ; ,0x t y t x t t y   . (1.32) 

From (1.32) and (1.28) it can be seen that 

     1 2 1 2 1 2, , ; ,0xy xyR t t dxdyxy x t t y R t t
 

 

     , (1.33) 

so the first property in (1.31) is proved. As can be seen from (1.33), the cross-

correlation function of two stationary processes is a one-variable function rather than 

a two-variable one: 

   , ; ,0xyR dxdyxy x y  
 

 

   . (1.34) 

From (1.30) we obtain 

   , ; ,0 , ; ,x y x t y t     , (1.35) 

which with account for (1.34) leads to 
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       , ; ,xyR dxdyxy x t y t x t y t   
 

 

     , (1.36) 

so the second property in (1.31) is proved. From (1.34) we see that 

   , ; ,0yxR dxdyxy y x  
 

 

    . (1.37) 

From (1.30) and (1.29) we have 

       , ; ,0 , ; , ,0; , , ; ,0y x y x y x x y               , (1.38) 

so with account for (1.38), (1.37) and (1.34) we have 

   xy yxR R   . (1.39) 

So the third property in (1.31) is proved.  

It should be stressed that the above-mentioned definitions of average values are 

assembly average definitions. The time average definition for a realization of a 

stationary process  x t  is also used: 

   
1lim

2

T

t T
T

x t dtx t
T






  . (1.40) 

In fact, the definition (1.40) is similar to the well-known definition of the average 

value of a function over the whole time axis. The definition of (1.40) is valid if the 

corresponding limits exist.  

For stationary processes, a time correlation function,  x  , and a time cross-

correlation function,  xy  , are introduced, the idea of their definitions is based on 

(1.23) and (1.36): 

     
1lim

2

T

x
T

T

dtx t x t
T

 





   ,      
1lim

2

T

xy
T

T

dtx t y t
T

 





   ,  (1.41) 

the definitions (1.41) are valid if the corresponding limits exist. 

It should be stressed that the time average may be different for different 

realizations of a random process. Moreover, the time average may not coincide with 
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the assembly average. But there exists a wide class of stationary random processes 

called erdogic ones. The time average and the assembly average coincide in the case 

of an ergodic process. For ergodic processes the time correlation function coincides 

with the correlation function and the time cross-correlation function coincides with 

the cross-correlation function, i.e. for ergodic processes  

   
t

x t x t  ,    x xR   ,    xy xyR   . (1.42) 

 

1.3. Spectral density of a stationary ergodic random process 

Consider a stationary egrodic random process  x t  whose correlation function 

is  xR t . Then by definition the spectral density of this process is the Fourier 

transform  xS   of the correlation function  xR t :  

    i t

x xS dtR t e 






  .  (1.43) 

The correlation function can be expressed in terms of the spectral density by the 

inverse Fourier transform: 

   
1

2
i t

x xR t dtS e 






  .  (1.44) 

Let us show that  xS   is an even function of  . Let us rewrite (1.43) as 

         cos sinx x xS dtR t t i dtR t t  
 

 

   .  (1.45) 

The second integral on the right-hand side of (1.45) vanishes because  xR t  is an 

even function of time,  sin t  is an odd function of time and the corresponding 

integrand is an odd function of time. So, only the first integral on the right-hand side 

of (1.45) “survives”. Then it is obvious that  xS   is an even function of   because 

 cos t  is an even function of  .  
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Now let us illustrate the physical meaning of the spectral density. Let we have a 

resistor r  across which a voltage  U t  is applied,  U t  is a stationary random 

process. Then the active power on the resistor is 

   2P t U t r ,  (1.46) 

the average value of this power is 

   21
P t U t

r
 ,  

(1.47) 

and the correlation function of  U t  is 

         20U UR U t U t R U t     .  (1.48) 

So (1.47) can be rewritten as 

   
1 0UP t R
r

 .  
(1.49) 

On the basis of (1.44) we have 

     
0

1 10
2U U UR S d S d   
 

 



   ,  (1.50) 

the last equality in (1.50) is due to the fact that  US   is an even function of  . So 

from (1.50) and (1.49) we see that 

   average
0

1
UP t P S d

r
 





   .  (1.51) 

In fact, the right-hand side of (1.51) is the sum of the elementary powers, each equal 

to  
1

US d
r

 


, and the sum is taken over all the frequencies from 0   to   

. So, up to a constant factor,  US   is the power within the frequency range from   

to d  . It should be stressed that if for a signal  x t   0 0xS   , then the 

frequency 0  is absent in the signal  x t .  

Now let us obtain the spectral densities of some signals. 
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1. White noise    xR t C t ,  C  is a constant and  t  is the Dirac delta 

function. 

Let us recall some facts about the delta function. The delta-function is the  

function  t  such that 

    
, 0

0, 0
t

t
t


 

 


,    1dt t




 . (1.52) 

The delta-function obeys the properties 

        dxf x x a f a




  ,  
1 1

2 2
i t i tt d e d e   

 

 



 

   , 

   t t   .  

(1.53) 

On the basis of (1.43) and (1.53) we have 

     i t i t

x xS dtR t e C dte t C  
 

 

 

    .  (1.54) 

So, the spectral density of white noise is a constant. 

2. Constant signal   0 constx t x  . Obviously,  

      2 2
0 0

1 1lim lim const
2 2

T T

x
T T

T T

R dtx t x t x dt x
T T

 
 

 

        (1.55) 

and from (1.43) and (1.53) one can obtain 

     2 2
0 0

12 2
2

i t i t

x xS dtR t e x dte x     


 

 

 

     .  (1.56) 

So the spectral density of a constant signal is proportional to    . Physically, such 

a result is evident because the only frequency within the constant signal is 0  . 

3. Sine signal    1sinx t A t   . This signal is a periodical one, so we can do 

averaging only over one period during the calculation of the correlation function: 
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2

1 1 1
0 0

1 sin sin
T T

x

A
R dtx t x t dt t t

T T
             , 

2
T




 .  (1.57) 

On the basis of a well-known formula 

 
1sin sin cos( ) cos( )
2

x y x y x y      
(1.58) 

we can rewrite (1.57) as 

     
2 2

1 1 1
0 0

cos cos 2 2
2 2

T T

x

A A
R dt dt t

T T
         .  (1.59) 

Obviously, the second summand on the right-rand side of (1.59) is equal to zero, so 

   
2

1cos
2x

A
R   .  

(1.60) 

From (1.43) and (1.53) we have 

   
1 12 2

1cos
2 2 2

i t i t
i t i t

x

A A e e
S dt t e dt e

 
  

  
 

 


   

         1 1

2 2

1 1
1

2 2 2
i t i tA A

dt e e
    

     



  



      .  

(1.61) 

So  xS   contains two delta-maximums at 1   , for all the other frequencies the 

spectral density is equal to zero. Obviously, negative values of   are unphysical, and 

all the power of the signal is “gathered” at the frequency 1 , which is physically 

evident. 

4. Periodic signal  x t  with a period 0T . In such a case the signal can be 

expanded into a Fourier series  

   0
1

sink k k

k

x t A A t 




   , 
0

2
k

k

T


  . (1.62) 

By a straightforward calculation on the basis of (1.58) it can be shown that all the 

harmonics of a Fourier series are independent, i.e.  
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k m∀ ≠  ( ) ( )
0

0

sin sin 0

T

k k m mt tω ϕ ω ϕ+ + =∫ . (1.63) 

On the basis of (1.63) it is evident that 

( ) ( ) ( ) ( ) ( )
0 02

2

0

10 00 0

1
sin sin

T T

k
x k k k k k

k

A
R dtx t x t A dt t t

T T
τ τ ω ωτ ϕ ω ϕ

∞

=

= + = + + + + =∑∫ ∫

( )
2

2

0

1

cos
2

k
k

k

A
A ω τ

∞

=

= +∑   

(1.64) 

which leads to 

( ) ( ) ( ) ( )( )
2

2

0

1

2
2

k
x k k

k

A
S Aω π δ ω π δ ω ω δ ω ω

∞

=

= + + + −∑ .
  

(1.65) 

So the signal contains only a zero frequency and frequencies that are multiples of 

0
2 Tπ . 

It should be stressed that if a signal does not contain periodical components then 

its spectral density does not contain delta-maximums. If a signal contains periodical 

components (for example, a sum of white noise and the sine function) then its 

spectral density is a sum of a continuous function and delta-maximums at frequencies 

of the periodical harmonics. 

 

1.4 Adaptive signal processing and digital adaptive filter 

The general structure of the adaptive filter is shown in Fig. 1.1. The discrete 

input signal x(k) is processed by a discrete filter, resulting in an output signal y(k). 

This output signal is compared with the reference signal d(k), the difference between 

them forms the error signal e(k). The task of the adaptive filter is to minimize the 

reproduction error of the reference signal. To do this, the adaptation unit, after 

processing each sample, analyzes the error signal and additional data from the filter, 

using the results of this analysis to adjust the parameters (coefficients) of the filter. 

Another adaptation option is possible, in which the reference signal is not used. 

This mode of operation is called blind adaptation or unsupervised learning. Of 
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course, in this case, some information is needed about the structure of the useful input 

signal (for example, knowledge of the type and parameters of the modulation used). It 

is obvious that blind adaptation is a more complex computational task than adaptation 

using the reference signal. We will not consider these algorithms. 

 

Figure 1.1 – General structure of the adaptive filter 

It may seem that the algorithms using the reference signal are devoid of practical 

meaning, since the output signal must be known in advance. However, there are a 

number of practical problems in solving which the reference signal is available. It 

should be noted that in some cases, the useful signal is not the output signal of the 

filter, but the error signal, that is, the difference between the sample signal and the 

output signal of the adaptive filter. 

The filter most commonly used in the structure shown in Fig. 1.1 is a non-

recursive digital filter. One of the main advantages of this option is that the non-

recursive filter is stable for any values of coefficients. However, it should be 

remembered that the adaptation algorithm in any case introduces feedback into the 

system, as a result of which the adaptive system as a whole may become unstable. 

There are adaptive algorithms for recursive filters; however, when developing 

them, serious problems arise, primarily related to stability, therefore such filters are 

not widely used. Another class of adaptive systems is neural networks, which to some 

extent simulate the functioning of the nervous system of living organisms. 
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Next, we will consider three adaptive algorithms using the reference signal, 

often used in practice in various information processing systems. 

 

1.5 Correlation matrix. Eigenvalues and eigenvectors of correlation matrix  

1.5.1 Correlation matrix 

Adaptive digital filter algorithms use in their equations the input signals of a 

linear adder (Fig. 1.2), measured at discrete points of time k. The results of these 

measurements form a vector of samples of input signals 

        1 2, ,...,
t

N NX k x k x k x k .  
(1.66) 

 

                           Figure 1.2 – Linear Adder 

If the adaptive filter in its structure is a single-channel FIR filter, then the vector 

               1 2, ,..., , 1 ,..., 1
t t

N NX k x k x k x k x k x k x k N       
(1.67) 

represents the delayed samples of the input signal of this filter, that is, a discrete 

stochastic process. 

If the adaptive filter is a multichannel filter with one weighting factor (WF) in 

each channel, then 

               1 2 1 2, ,..., , ,...,
t t

N N MX k x k x k x k x k x k x k    
(1.68) 

where N=M. 
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 If the adaptive filter is M-channel filter with a finite impulse response (FIR 

filter) with an unequal number of WF Nm  in the channels, then 

        1 2
, ,...,

M

t
t t t

N N N NX k x k x k x k   
(1.69) 

where  

        , 1 ,..., 1
m

t

N m m m mx k x k x k x k N    , 1,2,...,m M ; 
1

M

m

m

NN


 . 

In this case, the signals may have the same or different (same within the channels) 

statistical characteristics. 

Thus, in the general case, signals  nx k  (see Fig. 1.2) may have different 

statistical characteristics. The correlation matrix of these signals is defined as 

            

            

            

2 * *
1 1 2 1

2* *
2 1 2 2

2* *
1 2

N

N

N

N N N

E x k E x k x k E x k x k

E x k x k E x k E x k x k
R

E x k x k E x k x k E x k

 
 
 
 

  
 
 
 
 

  
(1.70) 

where {}E  is the operation of averaging over the ensemble of realizations and * 

denotes the complex conjugation.  

If the signals ( )nx k , n = 1, 2, ..., N,  have the same statistical characteristics, 

then the correlation matrix (1.70) is defined as                               

(0) (1) (2) (3) ( 1)
( 1) (0) (1) (2) ( 2)
( 2) ( 1) (0) (1) ( 3)

( 2) ( 3) ( 4) ( 5) (1)
( 1) ( 2) ( 3) ( 4) (0)

N

R R R R R N

R R R R R N

R R R R R N
R

R N R N R N R N R

R N R N R N R N R

 
 

 
 
   

  
 
        
 

        

  
(1.71) 
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In the matrix (1.71)       *
n mR n m E x k x k  , these are samples of the 

mutual correlation function, if the vector is determined by equation (1.68), and  

      *1 1R n m E x k n x k m       are the samples of the autocorrelation 

function, if the vector ( )NX k  is defined by equation (1.67). The diagonal elements 

R(0) of the matrix (1.71) are the same. They are equal to the rms values of the input 

signals of the linear adder, that is, they are real positive numbers. The remaining 

elements of  R(1), ..., R(N–1), R(–1), ..., R(–N + 1) are real or complex depending on 

whether signals of the linear adder are real or complex. For these elements, the 

relation is always valid ( ) (0)R n m R  , since they represent the values of the side 

lobes of the auto or mutual correlation function, which in absolute value do not 

exceed the values of the main lobe R(0) of this function. The correlation matrix has a 

number of properties, the main ones without proof are given below.   

 Property 1. The correlation matrix is Hermitian, that is, 

H

N NR R . 

 A square matrix is called Hermitian (or self-adjoint) if each of its elements is 

complexly conjugated to an element that is symmetric to this relative to the main 

diagonal; in other words, the matrix A is Hermitian, if  

*
ik kia a . 

Property 2. The correlation matrix of a stationary discrete stochastic process is 

a Toeplitz one.  A Toeplitz matrix is a matrix, in which the same elements on the 

main diagonal and the elements on each of the diagonals parallel to the main one are 

also the same. 

Property 3. The correlation matrix is positively semidefinite, that is, the 

condition 0H

N N Nh R h   is satisfied. If 0H

N N Nh R h  , then the matrix RN is positive 

definite.  
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In practice, the matrix RN is positively defined except for the rare cases when the 

signals in the vector (1.66) are linearly dependent. Positive definiteness means that 

the matrix is nonsingular, that is, its determinant  det 0NR   which means that there 

exists an inverse matrix because 

   

11 21 1

1 21 22 2

1 2

ˆ ˆ ˆ

ˆ ˆ ˆ1 1ˆ
det det

ˆ ˆ ˆ

N

N
N N

N N

N N NN

R R R

R R R
R R

R R

R R R



 
 
 

   
 
 
 

 
(1.72) 

where ˆ
NR  is the adjoint matrix made up of algebraic complements of the matrix NR . 

To obtain an adjoint matrix, you need to transpose the original NR  matrix, and then 

replace all elements of the transposed matrix with algebraic adjuncts. 

Property 4. The correlation matrix of signals of a multichannel filter can be 

represented as a cell matrix. 

From equations (1.69) and (1.70) it follows that the correlation matrix of signals 

of a multichannel filter is defined as 

1 1 2 1

2 1 2 2

1 2

M

M

M M M

N N N N N

N N N N N

N

N N N N N

R R R

R R R
R

R R R

 
 
 

  
 
 
 

  (1.73) 

where     
j j j

H

N N NR E x k x k ,     
i j i j

H

N N N NR E x k x k . 

From (1.73) it can be seen that on the main diagonal of the correlation matrix of 

a multichannel filter are located the square correlation matrices of the input signals of 

individual channels, and the remaining elements are matrices of mutual correlation of 

signals between the channels. The matrix structure (1.73) indicates that the design of 

adaptation algorithms should take into account the relationship between the signals of 

the filter channels.        
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1.5.2 Eigen-values and eigenvectors of the correlation matrices 

One of the important properties of the correlation matrix is that this matrix can 

be decomposed into eigen-values and the corresponding eigenvectors. 

The number   is called the eigen-value of the matrix RN, if the condition 

N N NR q q   (1.74) 

is satisfied where 0Nq   is the eigenvector corresponding to this eigen-value. 

Equation (1.74) means that the Hermitian matrix RN  performs linear transformation 

of the vector 
Nq

 
into a vector Nq , that is, into a vector that coincides in direction 

with the original non-transformed vector, since it will be shown later that the eigen-

values of the matrix are real and non-negative.  

Equation (1.74) can be represented as  

 N N N N N NR q q R I q      (1.75) 

Equation (1.75) is a homogeneous linear equation with unknown 
Nq . It has a 

non-trivial solution 0Nq   only if  

 det 0N NR I    (1.76) 

Equation (1.76) is called the characteristic equation of the matrix RN and is an 

Nth-degree polynomial 

  1
1 1 0...N N

N Np a a a a   

     . (1.77) 

Equation (1.76) has N roots (not necessarily different), 1 , 2 ,…,
N   called 

eigen-values of the matrix RN. 

Each vector , 0N nq   where 1,2, ...,n N , satisfying the equation 

, ,N N n n N nR q q . (1.78) 

is called the eigenvector corresponding to the eigen-value n .  

 Each eigenvector corresponds to only one eigen-value, while one eigen-value 

corresponds to an infinite set of eigenvectors. 
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The eigen-values n   and eigenvectors ,N nq  of the correlation matrix RN of a 

stationary discrete stochastic process are characterized by a number of properties, 

which we present without proof. 

Property 1. If 1 , 2 , …, 
N  are the eigen-values of the correlation matrix RN, 

then for any integer 0k  , the eigen-values of the matrix ...k

N N N N

k

R R R R   are equal 

to 1
k , 2

k , …, k

N .   

Property 2. The non-zero eigenvectors ,1Nq , ,2Nq , …, ,N Nq  of the correlation 

matrix RN, corresponding to different eigen-values 1 , 2 , …, 
N , are linearly 

independent. Vectors ,N nq  are linearly dependent if there exist 0ia  , 1,i N  such 

that 

1 ,1 2 ,2 ,... 0N N N N Na q a q a q    . (1.79) 

If equality (1.79) holds only for all 0ia  , then the vectors ,N iq  are linearly 

independent.  

Property 3. The eigen-values 1 , 2 , …, 
N  of the correlation matrix RN are 

non-negative and real. 

Property 4. The eigenvectors ,1Nq , ,2Nq , …, ,N Nq  of the correlation matrix RN, 

corresponding to different eigen-values 1 , 2 , …, 
N , are orthogonal to each other. 

Orthogonality means that 

, , 0H

N n N mq q   if  n m . (1.80) 

As noted earlier, each eigen-value n  corresponds to an infinite set of vectors 

,N naq  with 0a  . Therefore, without loss of generality, in what follows we will 

consider only normalized eigenvectors, that is, those for which realized the following 

condition holds: 
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* *
, , , ,

1

1,
0,

m
H

N n N m i n i m mn

i

m n
q q q q

m n





   


   (1.81) 

for all n = 1,2, ..., N  and  m = 1,2, ..., N. Vectors that satisfy condition (1.81) are 

called orthonormalized. 

Property 5. If the eigenvectors
 ,1Nq , ,2Nq , …, ,N Nq  of the correlation matrix RN, 

corresponding to different eigen-values, are represented by the matrix 

 ,1 ,2 ,3 ,, , ,...,N N N N N NQ q q q q  of orthonormalized vectors (1.81), and the eigen-values 

are represented by the diagonal matrix 

 

1

2
1 2

0 0
0 0

diag , ,...,

0 0

N N

N




  



 
 
   
 
 
 

,  (1.82) 

then the matrix RN can be reduced to a diagonal form H

N N N NQ R Q   . 

The condition (1.81) means that the vectors ,1Nq , ,2Nq , …, ,N Nq  form an 

orthonormalized set.  Using the definition of a matrix NQ , the system of equations 

(1.78) can be represented as a matrix equation 

N N N NR Q Q  .  (1.83) 

According to (1.81) we have 

,1 ,1 ,1 ,2 ,1 ,

,2 ,1 ,2 ,2 ,2 ,

, ,1 , ,2 , ,

1 0 0
0 1 0

0 0 1

H H H

N N N N N N N

H H H

N N N N N N NH

N N N

H H H

N N N N N N N N N N

q q q q q q

q q q q q q
Q Q I

q q q q q q

   
   
     
   
    

  

.  (1.84) 

from where 

1H

N NQ Q .  (1.85) 

From  (1.85) it follows that 1H

N N N N NQ Q Q Q I  . A complex matrix with 

property (1.85) is called unitary, and the analogous real matrix is orthonormalized. 
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If equation (1.83) is multiplied to the right of the matrix QH
N

, i.e., 

H H

N N N N N NR Q Q Q Q   then using (1.84) we get  

, ,
1

N
H H

N N N N n N n N n

n

R Q Q q q


   .  (1.86) 

Equation (1.86) is the spectral decomposition of the matrix RN or the 

decomposition on eigen-values and eigenvectors. 

Similarly, using the equality (1.78) and property 1 as k k

N N N NR Q Q  , it can be 

shown that 

, ,
1

N
k H k H k k H

N N N N N N N n N n N n

n

R Q Q Q Q R q q


    .  (1.87) 

From (1.86) it follows that the average value of the square of the modulus of the 

output signal of the adaptive filter is defined as 

           
2 * H H H H

N N N N N N N NE y k E y k y k E h x x h h E x x h   

2

, , , , ,
1 1 1

( )( )
N N N

H H H H H H

N N N N n N n N n N n N N n N n N n N N n

n n n

h R h h q q h h q q h h q  
  

      ,  
(1.88) 

that is, it is equal to the sum of the squares of the modules of the scalar products of 

the WC filter vector and the eigenvectors of the correlation matrix of its signals, 

weighted by the eigen-values. 

Using equation (1.85) and the property of invertible square matrices 

 
1 1 1

N N N NA B B A
   ,  (1.89) 

from (1.86) we can define the inverse matrix 1
NR

 
as 

 
11 1 1

, ,
1

N
H H H

N N N N N N N n N n N n

n

R Q Q Q Q q q


  



     .  (1.90) 

Property 6. The sum of the eigen-values  1 , 2 , …, 
N   of the correlation 

matrix RN is equal to the trace of the matrix. 

The trace of the square matrix AN  is the sum of its diagonal elements: 
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1

Tr
N

N nn

n

A a


 . 

Property 7. The product of the eigen-values
 1 , 2 , …, 

N   of the correlation 

matrix RN is equal to the determinant of this matrix: 

   
1

det det
N

N N i

i

R 


   . (1.91) 

The information in the first chapter should help the reader gain a deeper 

understanding of the subsequent chapters. 
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Chapter 2. Analog methods of adaptive filtration 

2.1. Linear stationary filters 

In what follows we understand a filter as a physical device or a program that 

enhances the useful signal from a mixture of the useful signal and a noise or makes a 

prediction of future values of the useful signal. 

Suppose that for an input signal  1x t  the filter generates an output signal  1y t , 

and for an input signal  2x t  it generates an output signal  2y t . Let the input signal 

be a linear combination of the signals  1x t  and  2x t :       1 2x t Ax t Bx t   

where A , B  are some constants. Then the filter is linear if its output signal is a linear 

combination of the corresponding signals  1y t  and  2y t  with the same constants 

A , B :      1 2y t Ay t By t  . 

Suppose that the input signal lags by some time. Then the filter is stationary if 

its output signal lags by the same time. In other words, suppose that for an input 

signal  x t  the filter generates an output signal  y t . Let the input signal be equal to 

 x t t  . Then the filter is stationary if it generates the output signal  y t t  .  

For simplicity, in what follows we consider only analog signals that are defined 

on the whole time axis from   to  . Let the input and output signals of a linear 

stationary filter be  x t  and  y t , respectively. Then the weight function of that 

filter is the function  h t  such that 

     y t d h x t  




  .  (2.1) 

Let us show that a filter described by (2.1)  is a linear stationary one. Let an 

output signal  1y t  correspond to an input signal  1x t , and an output signal  2y t  
correspond to an input signal  2x t . According to (2.1) 
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     1 1y t d h x t  




  ,       2 2y t d h x t  




  . (2.2) 

Let the input signal be equal to 

     1 2X t Ax t Bx t   (2.3) 

where A , B  are some constants. Let us calculate the output signal  Y t  that 

corresponds to the input signal  X t . According to (2.1) – (2.3), we have 

             1 2Y t d h X t A d h x t B d h x t        
  

  

          

   1 2Ay t By t  ,  

(2.4) 

so it is proved that the filter is linear. 

From (2.1) it is clear that  

       y t t d h x t t  




      ,  (2.5) 

so the filter is stationary. 

The weight function of a linear stationary filter obeys the property 

   0 0h t   .  (2.6) 

This property is a consequence of the causality principle, which states that a 

change in the output function must not occur earlier than a change in the input 

function. Let us consider a simple example where the input function is 

      0x t t t  ,  (2.7) 

so the input function is nonzero only at the instant 0t t , and on the basis of the 

causality principle we have 

    0 0y t t  .  (2.8) 

From (2.1), (2.7) and (1.53), we obtain 
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          0 0y t d h t t h t t   




      (2.9) 

which with account for (2.8) leads to:  

    0 0h t t   if 0t t . (2.10) 

From (2.10) it is clear that the weight function of a negative argument is indeed equal 

to zero. 

 

2.2. The Kolmogorov-Wiener filter 

Let the input signal  x t  be a sum of a useful signal  s t  and a noise  n t :  

     x t n t s t  , (2.11) 

 s t
 and  n t

 are stationary random processes. The cross-correlation function  snR t  

of the processes  s t
 and  n t

 is considered to be stationary. For simplicity, we 

consider only analog signals for times  ,t   , and all the processes are 

supposed to be ergodic. It is assumed that the useful signal and the noise are not 

known, but the cross-correlation function  sxR t  of the processes  s t
 
and  x t

 
and 

the correlation function  xR t  of the process  x t
 
are known.  

The Kolmogorov–Wiener filter is a linear stationary filter which can both 

enhance the useful signal from a mixture of the useful signal and a noise and predict 

future values of the useful signal. The aim of the filter is to generate the output 

signal  y t  closest to the useful signal  s t   where 0   is a specified 

parameter. The word “closest” should be understood as “having the smallest mean-

square deviation”. The physical meaning of the parameter   is the time interval for 

which the prediction is made. 

As mentioned in the previous section, the output and the input signals of a linear 

stationary filter are related as 
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     y t d h x t  




  . (2.12) 

As mentioned above, the aim of the filter is to minimize the mean-square deviation 

 
2( ) ( ) min

t

s t y t     . (2.13) 

So our aim is to find an equation for the weight function  h   on the basis of (2.12) 

and (2.13). 

Obviously, 

 
2 2 2( ) ( ) ( ) 2 ( ) ( ) ( )

tt tt

s t y t s t s t y t y t            (2.14) 

and with account for (2.14) and (2.12) we obtain 

1 2 3      ,   
2

1 ( )
t

s t   ,     2 2 ( )
t

s t d h x t    




    , 

       3
t

d d h h x t x t      
 

 

      . 

(2.15) 

Now we should calculate 1 , 2  and 3 . The processes are considered to be ergodic, 

so the assembly average and the time average coincide. From the definition (1.10) 

and the property (1.14) we have 

   2 2 2
1 1 1( ) , ,

t
s t dss s t dss s t      

 

 

        

 2 2
1 , ( )

t
dss s t s t





  . 

(2.16) 

At the same time we have that the correlation function  sR 
 is  

    2( ) ( ) 0 ( )s st t
R s t s t R s t     . (2.17) 

So on the basis of (2.16) and (2.17) we have  

 1 0sR  . (2.18) 

As for 2 , on the basis of (2.15) we have 
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       2 2 ( ) 2 ( )
t t

s t d h x t d h s t x t        
 

 

         

   2 ( )
t

d h s t x t   




    , 

(2.19) 

the last equality in (2.19) is valid because the averaging is made over the parameter t  

and  h   is independent of t .  

From (1.28) and (1.30) we have 

   ( ) , ; ,
t

s t x t dsdxsx s t x t    
 

 

      

       , ; , sxt
dsdxsx s t x t s t x t R      

 

 

         . 

(2.20) 

So from (2.20) and (2.19) it can be seen that  

   2 2 sxd h R    




   . (2.21) 

Similarly, on the basis of (2.15) we have  

       3
t

d d h h x t x t      
 

 

      

       
t

d d h h x t x t     
 

 

      . 

(2.22) 

From (1.11), (1.14) and (1.23) we can obtain 

     1 2 1 2 2 1 2, ; ,
t

x t x t dx dx x x x t x t    
 

 

       

       1 2 1 2 2 1 2, ; , xt
dx dx x x x t x t x t x t R      

 

 

           , 

(2.23) 

so on the basis of (2.22) and (2.23) it can be seen that 

     3 xd d h h R      
 

 

     . (2.24) 

Finally, from (2.15), (2.18), (2.20) and (2.23) we have  
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( ) 0 2s sx

x

h R d h R

d d h h R

      

     





 

 

    

   



 

. (2.25) 

As can be seen from (2.25), the mean-square deviation   is a functional of the filter 

weight function  h  . Our aim is to minimize this functional, i.e. to find the function 

 h   for which the mean-square deviation   takes the minimal value. The idea of 

this minimization is as follows. Let  h   be the weight function that minimizes the 

functional (2.25). If we take another weight function in the form    h g    where 

  is an arbitrary number and  g   is an arbitrary function, then the following 

inequality must hold: 

 , ( )g   
    ( ) ( ) ( )h h g       , (2.26) 

because the function ( )h   minimizes the functional (2.25). 

On the basis of (2.25) we have  

   ( ) ( ) ( )h h g       

 

           0 2s sx xR d h R d d h h R         
  

  

         

        0 2s sxR d h g R     





    




           xd d h g h g R         
 

 


       


  .

 

(2.27) 

After removing brackets in (2.27) we obtain 

   ( ) ( ) ( )h h g       

 

         2 sx xd g R d d h g R          
  

  


       


  

(2.28) 
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           2
x xd d g h R d d g g R            

   

   


        


    .

 

 xR   is an even function, so  

   x xR R       , (2.29) 

which leads to 

           x xd d h g R d d g h R           
   

   

           , (2.30) 

so (2.28) takes the form 

   ( ) ( ) ( )h h g       

 

         2 sx xd g R d d h g R          
  

  

 
        

 
  

     2
xd d g g R      

 

 

     ,

 

(2.31) 

and from (2.31) and (2.26) it can be seen that the following inequality must hold: 

 , ( )g 
           2 sx xd g R d d h g R          

  

  

 
      

 
  

     2 0xd d g g R      
 

 

      .

 

(2.32) 

Let us consider the term multiplying 2 . From (2.23) we have 

             x t
d d g g R d d g g x t x t           

   

   

                       

       

   

2

0

t

t

d g x t d g x t

d g x t

     

  

 

 





     

 
   

 

 



                                                                 (2.33)
 

so  , ( )g   the term in (2.32) which contains 2  is non-negative.   
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So, the term in (2.32) which contains   must also be non-negative for any 

number   and for any function ( )g  . The number   can be either positive or 

negative, so such a requirement is valid only if the sum in parentheses multiplying   

is zero: 

( )g 
            0sx xd g R d d h g R         
  

  

         (2.34) 

which leads to  

( )g 
          0sx xd g R d h R       
 

 

 
       

 
  . (2.35) 

The equality (2.35) must be valid for any function ( )g  , so the sum in parentheses 

must vanish: 

        0sx xR d h R     




     . (2.36) 

On the basis of (2.36) and (2.6) we finally obtain 

       
0

sx xR d h R     


    . (2.37) 

So the weight function that minimizes the functional (2.25) obeys the obtained 

integral equation (2.37). Equation (2.37) is called the Wiener–Hopf equation. In other 

words, the Kolmogorov-Wiener filter weight function  h   obeys the Wiener–Hopf 

equation (2.37).  

Let us recall that in (2.37)  sxR   is the cross-correlation function between the 

input and the useful signal and  xR   is the correlation function of the input signal. 

The output signal of the Kolmogorov–Wiener filter can be obtained by the 

following algorithm. First of all, the filter weight function should be obtained on the 

basis of the Wiener–Hopf equation. Then the filter output can be found on the basis of 

the obtained weight function and the expression (2.12).  
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It should be stressed that up to this point only analog signals for times from   

to   were considered. In the case of a discrete signal defined only for 0,1,2,...,t T

, the integral in (2.37) should be replaced with a sum and the infinite limits of 

integration should be replaced with finite bounds of summation: 

       
0

T

sx xR h R


    


    ,         
0

T

y t h x t


 


  ,  (2.38) 

so in such a case we deal with a set of linear equations for  h  , 0,1,2,..,T  , and 

the output signal is the corresponding sum. 

 

2.3. Scalar Kalman–Bucy filter 

In fact, the Kalman–Bucy filter is similar to the Kalman one, but in contrast to 

the latter, the former is applied to continuous systems rather than to discrete ones. 

The scalar discrete Kalman filter is described in detail with an illustrative example in 

Sec. 3.6, so here we restrict ourselves to a general description of the Kalman–Bucy 

filter. For simplicity, we will consider only a scalar Kalman–Bucy filter, i.e. we will 

consider the case where the system under consideration is completely described by 

one parameter. 

Let us have a system described by one continuously variable parameter x , and 

on the basis of some physical considerations the “ideal” law of the time evolution of 

this parameter can be written as 

  
         

( )dx t
a t x t b t u t

dt
   (2.39) 

where  u t  is the known quantity that governs the system evolution;  a t  and  b t  

are some known functions. The parameter  x t

 
is measured by a device whose 

readings are  z t . Let  t  be a random stationary process whose physical meaning 

is the device error. Let  t  be a random stationary process that describes the 

random character of the system evolution. So we have 
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( )dx t
a t x t b t u t t

dt
   ,           z t c t x t t   (2.40) 

where the known function  c t  ant its physical meaning is the device gain 

coefficient. In fact, the filter input is the function  z t  and the aim of the filter is to 

generate the output function  optx t  closest to  x t . The word “closest” should be 

understood as “having the smallest mean-square deviation”. 

The filter error is introduced as 

  
       opte t x t x t   (2.41) 

and the aim of the filter is to minimize the quantity 

  
  

t
 

2 ( ) mine t  . (2.42) 

The following assumptions are made: 

1. The correlation functions of the processes  t  and  t  have the form  

  
       ,R t Q t t     ,      ,R t R t t      (2.43) 

where  Q t  and  R t  are known functions. In fact, the processes  t  and  t  are 

assumed to behave as white noise. It should also be noticed that these processes may 

not be stationary. 

2. The average values of  t  and  t  are zeros: 

  
  

t
  

( ) 0t  , ( ) 0t  . (2.44) 

3. The processes  t ,  t  and  e t  are independent ones:   

  
  1 2,t t

  1 2 1 2( ) ( ) ( ) ( ) 0t t t t     , 1 2 1 2( ) ( ) ( ) ( ) 0t e t t e t   , 

1 2 1 2( ) ( ) ( ) ( ) 0e t t e t t   . 
(2.45) 

The time derivative of  optx t  is sought in the form 

  
                  

opt
opt opt( )dx t

K t z t c t x t a t x t b t u t
dt

     (2.46) 
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where the unknown function  K t  is the Kalman coefficient, which is sought on the 

basis of (2.42). On the basis of (2.40), (2.41) and (2.46) we can obtain 

  
                

opt( ) ( ) ( )de t dx t dx t
a t K t c t e t t K t t

dt dt dt
       . (2.47) 

Let us take the integral of both sides of (2.47): 

        
( )t dt t dt

t t

de
d d a K c e

d


     



 

     

     
t dt t dt

t t

d d K     
 

   , 

(2.48) 

here 0dt   is a very small time increment. 

Obviously, 

  
     

( )t dt

t

de
d e t dt e t

d








   . (2.49) 

Let us consider the expression  
t dt

t
d 



 . The function     may be expressed in 

terms of a Taylor polynomial in the vicinity of the point t : 

   
     

 
   

t

d
t t o t

d


 
    




     . (2.50) 

From (2.49) and (2.50) we obtain 

   
     

 
   

t dt t dt t dt t dt

t t t tt

d
d t d d t d o t

d


 
        



   



        

 
 

 2

0

, ,
0,

dt

t

t d d
d

t t dt d o dt
d

t dt dt 

   
 

    


  

    
 

          
     

  

 
 

     
2

2 2

2
t

d dt
t dt o dt t dt O dt

d


 
 




     , 

(2.51) 

so on the basis of (2.51) we have  
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                     2

t dt

t

d a K c e a t K t c t e t dt O dt    


    . (2.52) 

It should be stressed that the functions  a  ,  K  ,  c  ,  e   are assumed to be at 

least once differentiable. The functions     and     may not be differentiable 

because they behave as white noise, so we may not use the procedure (2.51) for them. 

From (2.48), (2.49) and (2.52) we have 

   
              1

t dt

t

e t dt a t K t c t dt e t d 


          

     2
t dt

t

d K O dt   


  . 

(2.53) 

It should be stressed that the first three terms in (2.53) are independent ones because 

the only random processes on the right-hand side of (2.53) are  e t ,     and    , 

these processes are independent, see (2.45). After squaring and averaging the cross 

terms “die” (see the detailed description in Sec. 3.6) and we obtain 

   
              

2
22 21

t dt

t

e t dt a t K t c t dt e t d 
 

        
 
  

     
2

2
t dt

t

d K O dt   
 

  
 
 . 

(2.54) 

On the basis of (1.13), (2.43) and (2.51) we obtain 

  
         

2

,
t dt t dt t dt t dt t dt

t t t t t

d d d d d R           
     

      
 
      

         2
t dt t dt t dt

t t t

d d Q d Q Q t dt O dt       
  

        . 

(2.55) 

Similarly, we obtain 

  
           

2

2 2
t dt

t

d K K t R t dt O dt   
 

  
 
 , (2.56) 
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it is assumed that  Q t  and  R t  are at least once differentiable. 

So on the basis of (2.54) – (2.56) we obtain 

   
                2 21 2e t dt f K t a t K t c t dt e t Q t dt             

     2 2K t R t dt O dt  . 
(2.57) 

The aim of the filter is to minimize  2e t dt , i.e. 

   
    minf K t    . (2.58) 

We will use an idea similar to that used for the minimization of the functional 

(2.25). Let  K t  be the function that minimizes the functional  f K t   . If we take 

another function in the form    K t g t  where   is an arbitrary number and  g t  

is an arbitrary function, then the following inequality must hold: 

 ,  g t  
      f K t f K t g t        , (2.59) 

because the function  K t  minimizes the functional  f K t   . It should be stressed 

that we deal only with the zeroth and the first orders in dt , the term  2O dt  is 

negligibly small. Neglecting  2O dt ,  we have 

   
  

 ,  g t         f K t g t f K t          

             2 2 22 0g t dt c t e t K t R t g t R t dt      
  . 

(2.60) 

From (2.43) and (1.13) we have  

           2, 0R t t t t t R t       , (2.61) 

obviously  2 0t  ,  0 0    , so  R t  is non-negative, which leads to the 

fact that the term on the right-hand side of (2.60) that contains 2  is non-negative. So 

the term that contains   must also be non-negative   and  g t , which leads to the 

requirement 
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              2 0c t e t K t R t  , (2.62) 

see the same idea in the description of (2.34). From (2.62) we obtain 

        
   

 

2c t e t
K t

R t
 , (2.63) 

so the differential equation for  optx t  takes the form  

       
   

 
              

2opt
opt opt( ) c t e tdx t

z t c t x t a t x t b t u t
dt R t

    . (2.64) 

We also need a differential equation for  2e t . On the basis of (2.57) and 

(2.63) we have  

   2 2e t t e t       
   

 
   

22 2
2 22

c t e t
a t e t Q t t O t

R t

 
      
 
 

. 

(2.65) 

which leads to 

     
   

2 2 2
2

0
lim 2
t

d e t e t t e t
a t e t

dt t 

  
  


 

   

 
 

22 2c t e t
Q t

R t
  . 

(2.66) 

So the differential equation for  2e t  is  

   
   

 
       

2 2
22 22

d e t c t
e t a t e t Q t

dt R t
    . (2.67) 

This is a Riccati differential equation. It should be stressed that in some cases this 

equation admits an analytical solution. 

To summarize the above-mentioned, let us describe the whole algorithm. First of 

all, the function  2e t  is found on the basis of the Riccati equation (2.67). Then the 
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filter output  optx t  is found on the basis of the differential equation (2.64), which 

contains the function  2e t . 

 

2.4. Transfer function, frequency transfer functions and amplitude-

frequency response of a linear stationary filter 

Let us have a linear stationary filter. As is known, the filter input  x t  and 

output  y t  are related as  

            y t d h x t  




   (2.68) 

where  h   is the filter weight function, see (2.1). All the processes are assumed to 

be stationary and ergodic. On the basis of (2.68) we have 

            y t d h x t    




    , (2.69) 

which with account for (2.68) and (1.23) leads to the following expression for the 

correlation function of the filter output: 

                    yR y t y t d d h h x t x t        
 

 

       . (2.70) 

From (1.14) we can obtain  

            1 2 2 1 2, ; ,x t x t dx dx x t x t      
 

 

        

     1 2 2 1 2, ; ,dx dx x t x t x t x t      
 

 

         

 xR      , 

(2.71) 

so from (2.70) and (2.71) we obtain the relation between the correlation functions of 

the filter output and input 
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              y xR d d h h R       
 

 

    . (2.72) 

On the basis of (2.72) and (1.43) we can obtain the relation between the spectral 

densities of the input and the output signal. Obviously, 

                i i

y y xS d R e d d d h h e R           
   

 

   

       . (2.73) 

After multiplying the integrand in (2.73) by    i i
e e
        and making the following 

change of variables: 

         ,     ,         (2.74) 

we can obtain that 

              i i i

y xS d h e d h e d e R        
  

 

  

    .  (2.75) 

Obviously, 

          i

x xd e R S  






 , (2.76) 

and we should introduce some definitions in order to understand the other multipliers 

on the right-hand side of (2.75). 

By definition, the transfer function  W s  of a linear stationary filter is the 

Laplace transform of its weight function: 

          
0

tW dth t e 


  . (2.77) 

By definition, the frequency transfer function of a linear stationary filter is the 

Fourier transform of its weight function. The frequency transfer function is equal to  

 W i  because 



59 
 

            
0

i t i tW i dth t e dth t e 
 

 



   , (2.78) 

here the property (2.6) is taken into account. So 

          id h e W i  






 ,     * iW i d h e   




  , (2.79) 

the superscript *  denotes the complex conjugation. On the basis of (2.79), (2.76) and 

(2.75) we see that 

            
2

y xS W i S   . (2.80) 

The obtained expression is the well-known relation between the spectral densities of 

the input and output signals of a linear stationary filter. 

The physical meaning of  W i  can be illustrated on the basis of the following 

example. Let the input and output signals of a linear stationary filter be   

          in 1sinx t A t ,     out 1siny t A t   .  (2.81) 

It should be stressed that the linear stationary filter may change the amplitude and 

the phase of a signal, but not its frequency! Here we will not prove this fundamental 

fact, but in what follows we will illustrate it by several examples (see, for example, 

the description at the end of Sec. 2.5.2). 

  The spectral densities of the signals (2.81) can be written on the basis of (1.61): 

      
2
in

1 12x

A
S


          ,

      
2
out

1 12y

A
S


          . 

(2.82) 

So from (2.80)  and (2.82) we see that 

             out

in

A
K W i

A
   .  (2.83) 

As can be seen,  W i  is the output-to-input amplitude ratio at the frequency  . 

This quantity is called the amplitude-frequency response of a linear stationary 

filter. 
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2.5. Linear stationary analog electronic filters 

2.5.1. Different types of analog filters 

A low-pass filter is a filter that passes signals with a frequency lower than a 

given cutoff frequency and attenuates signals with frequencies higher than the cutoff 

frequency. 

A high-pass filter is a filter that passes signals with a frequency higher than a 

given cutoff frequency and attenuates signals with frequencies lower than the cutoff 

frequency. 

 

Table 2.1 – Amplitude-frequency responses for ideal filters 
Low-pass filter 

 
с   is the cutoff frequency 

 

High-pass filter 

 
с   is the cutoff frequency 

Band-pass filter 

 
с1 , с2  are the cutoff frequencies 

Band-stop filter 

 
с1 , с2  are the cutoff frequencies 

 

A band-pass filter is a filter that passes frequencies within a certain range and 

attenuates frequencies outside that range. 

A band-stop filter is a filter that attenuates frequencies within a certain range 

and passes frequencies outside that range. 
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The amplitude-frequency response  K   for the corresponding ideal filters are 

shown in Table 2.1. 

But, unfortunately, the ideal filters cannot be realized in practice. In practice the 

most popular filters are the Butterworth filter, the Chebyshev filters (of type I and 

type II) and the elliptic filter. For simplicity, in what follows we will restrict 

ourselves only to the description of low-pass filters. 

The Butterworth filter is designed to have the amplitude-frequency response as 

flat as possible in the passband. Its amplitude-frequency response contains no ripple 

in the passband, and in the most of the passband the behavior of the Butterworth filter 

is rather close to the behavior of the ideal one. In the stopband, there is no ripple 

either. But the rolloff of the amplitude-frequency response of the Butterworth filter is 

rather slow, so in the vicinity of the cutoff frequency the behavior of the Butterworth 

filter is rather far from the ideal one. 

The elliptic filter has a fast rolloff of the amplitude-frequency response, so in 

the vicinity of the cutoff frequency the behavior of the elliptic filter may be rather 

close to the ideal one. But the amplitude-frequency response of the elliptic filter has a 

ripple both in the passband an in the stopband. 

The Chebyshev filter is an “intermediate” filter between the Butterworth and 

the elliptic ones. The rolloff of the Chebyshev filter is faster than that of the 

Butterworth filter, but slower that of the elliptic filter. The amplitude-frequency 

response of the Chebyshev filter of type I contains a ripple in the passband, but there 

is no ripple in the stopband. The amplitude-frequency response of the Chebyshev 

filter of type II contains a ripple in the stopband, but there is no ripple in the 

passband. 

Schematic graphs and analytical expressions of the amplitude-frequency 

responses for the corresponding filters are given in Table 2.2.  
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Table 2.2 – Amplitude-frequency responses for the Butterworth, Chebyshev and 

elliptic filters. The figures are given for the filters of the same orders. 

Butterworth filter of order n  
    

1 22B
с1 n

nK   


   

 

Chebyshev filter (type I) of order n  

    
1 22CI

с1n nK T   


   
 

 

 
Chebyshev filter (type II) of order n  

    
1 22CII

с1n nK T   


   
 

 

 

Elliptic filter of order n  
    

1 22E
n c1 ,nK R    



   
  

 

 
 

In Table 2.2 the following designations are used: с   is the cutoff frequency, 

 0,1    is the ripple factor,   nT x  is the Chebyshev polynomial of the first kind, 

1   is the selectivity factor,  ,nR x  is the rational elliptic function and 

 ,n nL R   .  

Let us explain why  
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       CI

2

1 ,1
1c

nK
 




 
 

 
 ,   CII

2
0,

1c
nK

 







 
 

 
. (2.84) 

As is known, the explicit form of the Chebyshev polynomials of the first kind is  

              2 21 1 1
2

n n

nT x x x x x
 

      
 

.  (2.85) 

Let us write the first few polynomials on the basis of  (2.85): 

          0 1T x  ,   1T x x ,   2
2 2 1T x x  , etc.  (2.86) 

Let us show that 

            cos cosnT n   .  (2.87) 

This can be seen as follows: 

              2 21cos cos 1 cos cos 1 cos
2

n n

nT i i
 

            
 

          
1 cos sin cos sin cos
2

n i n n i n n          .  
(2.88) 

On the basis of (2.87)  it can be seen that   1nT x   if  0,1x . So  

            
c

с 1,1nT
 

 


    (2.89) 

and   

          
 

CI

2 2 2
с

1 1 ,1
1 1

n

n

K
T


   

 
  

  
 if c  . (2.90) 

Similarly, 

          
  

CII

2 22
с

1 0,
11

n

n

K

T




  


 
  

 

 if c  . (2.91) 

The detailed mathematical description of  E
nK   is very cumbersome, so here 

we restrict ourselves only to the description of the most important facts concerning 
the elliptic filter. The explicit expressions for the first two rational elliptic functions 
are 
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          1 ,R x x  ,   
 
 

2 2

2 2 2

1 1 1
,

1 1 1

x
R x

x










  


   
. (2.92) 

The explicit expression for  ,nR x  is very cumbersome, and so it is not given here. 

Nevertheless, it should be stressed that the following property holds: 

            lim ,n nR x T x





 . (2.93) 

For example, by a straightforward calculation it can be seen from (2.92) that  

            2
2 2lim , 2 1R x x T x





   , (2.94) 

see also (2.86). On the basis of (2.93) and the explicit expressions given in Table 2.2 

one can see that if   , then the elliptic filter coincides with the Chebyshev filter 

of type I. If   is finite, then the rolloff of the elliptic filter is faster than the rolloff of 

the Chebyshev filter with the same ripple factor. The peak-to-peak ripple in the 

passband of the elliptic filter depends only on the ripple factor, while the 

corresponding peak-to-peak ripple in the stopband depends both on the ripple and on 

the selectivity factors. The closer is the selectivity factor to unity, the faster is the 

elliptic filter rolloff.  

 

2.5.2. Electronic Butterworth filter of order 2 

In this subsection 

we describe an electronic 

realization of the 

Butterworth filter of 

order 2. A schematic of 

this filter is given in Fig. 

2.1; in  is the input 

potential, out  is the output potential. The operational amplifier is considered to be 

 
Figure 2.1 



65 
 

ideal. It equalizes its “+” and “–” input potentials, and its input current is equal to 

zero. 

Obviously, the circuit in Fig 2.1 is described by the following set of equations: 

     1 2I t I t I t  ,       in 1t t I t R    ,       out 1 1t t q t C   , 

   1 1q t I t ,      out 2 2t t I t R    ,  
 2

out
2

0
q t

t
C

   ,    2 2q t I t , 
(2.95) 

1,2q  are the charges of the capacitors 1,2C , respectively;  here and in what follows the 

designations 

   f t df t dt ,    2 2f t d f t dt  (2.96) 

 are used. After expressing all the time-dependent quantities in (2.95) in terms of 

 2q t , the following differential equation for  2q t  and the following expression of 

 out t  in terms of  2q t  can be obtained: 

    
 

 2
2 1 2 1 2 1 2 in

2

q t
q t C R R q t R R t

C
    ,  

 2
out

2

q t
t

C
  . (2.97) 

Let the input potential be  

   in cost A t  . (2.98) 

Then eq. (2.97) can be rewritten as 

       2 2 2 cosq t aq t bq t c t   ,  
 1 2

1 2 1

0
R R

a
C R R


  , 

2 1 1 2

1 0b
R R C C

  , 
1 2 1

A
c

C R R
 . 

(2.99) 

This is a non-uniform second-order differential equation with constant coefficients.  

Let us recall how one can solve equations of this type. As is known, the general 

solution of the equation 

      0ax t bx t cx t   , , , consta b c   (2.100) 

is 



66 
 

  

    

1 2

1 1

2
1 2

2
1 2

2
1 2

, 4

, 4

cos sin , 4

k t k t

k t k t

t

A e A e b ac

x t A te A e b ac

e A t A t b ac  

  


  


 

  (2.101) 

where  1A , 2A  are arbitrary constants, 1.2k   are the roots of the characteristic 

equation 

2 0ak bk c     (2.102) 

in the case where 2 4b ac , and i   ( ,   ) are the roots of Eq. (2.102) in the 

case where 2 4b ac . If we have a non-uniform equation 

       ax t bx t cx t f t   , , , consta b c  , (2.103) 

then the general solution of (2.103) is the sum of the general solution of the 

corresponding uniform equation (2.100) and a partial solution of (2.103). 

So let us consider the uniform equation which corresponds to (2.99): 

     2 2 2 0q t aq t bq t     (2.104) 

The corresponding characteristic equation is 

2 0k ak b   , (2.105) 

and in the case where 2 4a b  the roots are as follows: 

2

1,2
4 0

2
a a b

k
  

  , (2.106) 

this inequality takes place because 0a   and 0b  . So both roots are negative, and 

according to (2.101) in the case where 2 4a b  the general solution of (2.104) 

attenuates exponentially. In the case where 2 4a b  the roots of (2.105) are 

2
1,2 4

2 2
a i

k b a    , 1,2Re 0k  , (2.107) 

so according to (2.101) in this case the general solution of (2.104) also attenuates 

exponentially. To summarize the above-mentioned, the general solution of the 

uniform differential equation which corresponds to Eq. (2.99) attenuates 
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exponentially in any case. This means that that the solution is negligible after the 

relaxation time. 

Let us seek a partial solution of (2.99) in the form  

     2 cos sinq t t t     . (2.108) 

After taking the first and second derivatives of (2.108) and substituting the results 

into (2.99) one can obtain  

           2 2cos sin cost b a t b a c t                  , (2.109) 

which leads to the following set of linear algebraic equations 

 2b a c       ,   2 0b a       . (2.110) 

The solution of (2.110) is  

 

2

22 2 2

b
c

a b




 




 
,  

 
22 2 2

a
c

a b




 


 
, (2.111) 

so the partial solution of (2.99) is (2.108) with the coefficients (2.111). As can be 

seen, this solution is not-attenuating, so this solution is the solution of (2.99) in a 

steady state, i.e. after the relaxation time of the solution of (2.104). In what follows 

only a steady state of the system is considered. 

Expression (2.108) with account for (2.111) can be rewritten as 

     
2

2 cos sinc b a
q t t t

 
 

  

 
  

 
,   

22 2 2a b     . (2.112) 

The following equality holds: 

2 22

1b a 

 

   
    
  

, (2.113) 

so we can introduce a parameter   as follows: 

2

cosb 





 , sina




 , 2tan a

b








 (2.114) 
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and rewrite (2.112) as 

 
 

 2 22 2 2
cosc

q t t

a b

 

 

 

 

. (2.115) 

Then according to (2.97) we obtain the output signal 

 
 

 out 22 2 2
2

cosc
t t

C a b

  

 

 

 

, (2.116) 

and from here it is obvious that the amplitude-frequency response of the filter is 

 
 

22 2 2
2

c
K

AC a b



 



 

. (2.117) 

On the basis of (2.99) this result can be rewritten as 

 
   

222 2 2
2 1 2 1 2 1 2

1

1
K

С R R C С R R



 

 

  

    
1 22 22 2 4

2 1 2 1 2 1 2 1 2 1 21 2С R R C С R R C С R R 


     
 

. 

(2.118) 

As can be seen from Table 2.2, the amplitude-frequency response of the Butterworth 

filter of order 2 is 

    
1 24

с1K   


  , (2.119) 

so by comparing (2.118) and (2.119) one can obtain that 

 
22

2 1 2 1 2 1 22С R R C С R R  ,  1 2 1 21c C С R R  . (2.120) 

To summarize the above-mentioned, if the first equality in (2.120) holds, then 

the circuit in Fig. 2.1 is an electronic analog Butterworth filter of order 2 with the 

cutoff frequency  
1 2

1 2 1 2c C С R R


 . 

Now on the basis of an example of the Butterworth electronic filter we will 

explain why the linear stationary filter does not change the frequency of a signal. The 

filter is described by the linear differential equation with the input potential on the 

right-hand side (see (2.97)), and the steady-state solution of such an equation is of the 
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frequency which coincides with the frequency of the input potential. As can be seen 

from the following sections, the same physical picture takes place in other linear 

stationary filters. So a linear stationary filter cannot change the signal frequency. 

 

2.5.3. Electronic Chebyshev filter (type I) of order 2 

In this subsection we describe an electronic realization of the Chebyshev filter 

(type I)  of order 2.  Let us 

consider the circuit in Fig. 2.2. 

In this circuit in  is the input 

potential, out  is the output 

potential, and the operational 

amplifier is considered to be 

ideal. The circuit is described 

by the following set of 

equations: 

       1 2 3I t I t I t I t   ,     1 1q t I t ,     2 2q t I t ,  

     in 1t t I t R    ,   
 2

2

0
q t

t
C

   ,   
 1

out
1

0
q t

t
C

  ,  

     1 30t I t R   ,      out 3 2t t I t R   , 

(2.121) 

1,2q  are the charges of the capacitors 1,2C , respectively. By expressing all the time-

dependent quantities in (2.121) in terms of  1q t  and after putting  

   in cost A t    (2.122) 

one can obtain the following: 

       1 1 1 cosq t aq t bq t c t   ,    out 1 1t q t C   , 

2 1 2 3

1 1 1 1
a

C R R R

 
   

 
,  

1 2 3 2

1
b

C C R R
 , 

2 3 1

A
c

C R R
 . 

(2.123) 

As can be seen from the previous section, the steady-state solution of eq. (2.123) is 

 
Figure 2.2 
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 1 22 2 2
cosc

q t t

a b

 

 

 

 

, 2tan a

b








.  (2.124) 

On the basis of (2.123) and (2.124) it is obvious that 

 
 

 out 22 2 2
1

cosc
t t

C a b

   

 

  

 

,  (2.125) 

and 

 
 

22 2 2
1

c
K

AC a b



 



 

. (2.126) 

After substituting the explicit expressions for a , b  and c  from (2.123) into (2.126)  

by a lengthy straightforward calculation one can obtain that 

 

1 22 2
4 23 1 1 1 1

1 3
2 2 3 1 2 2

2R R C R R
K x R R x

R C R R R R




      
          
       

, 

1 2 3 1x C C R R . 

(2.127) 

As can be seen from Table 2.2 and (2.86), the explicit expression for the amplitude-

frequency response of a Chebyshev filter (type I) of order 2 is 

 

1 2 1 22 4 22
2 2 2 2

2
c c c

1 2 1 4 4 1K
  

    
  

 

        
              
           

. (2.128) 

The expressions (2.127) and (2.128) should coincide. For example, such coincidence 

can be obtained as follows. Let us assume that  
1 2

c 1 2 3 1C C R R


 , then cx    

and 

 
1 22 4 2 2 24 4 1K x x   


      , cx   . (2.129) 

Then by equating the coefficients multiplying 4x , 2x  and 0x  in (2.129) and (2.127) 

we can obtain the following expressions: 
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24 1  , 
2

2 3 11 1
1 3

2 2 2 3 1

4 2 R RR C
R R

R R C R R


 
    

 
, 

2
21

2

1R

R


 
  

 
, (2.130) 

which lead to  

1
2

  , 
2

1
1 3 3

2 3 1

55 1
2

C
R R R

C R R

 
    

 

, 1

2

5
2

R

R
 . (2.131) 

To summarize the above-mentioned, if the equalities (2.131) hold, then the 

circuit in Fig. 2.2 is a Chebyshev filter (type I) of order 2 with the cutoff frequency 

 
1 2

c 1 2 3 1C C R R


  and ripple factor 0.5  . 

For example, if we put 1 3R R R   and 2C C  in Fig 2.2, then the other circuit 

parameters should be as follows: 

2 2 5R R ,     
2

1 4 5 1 4 5C С   . (2.132) 

It should also be stressed that a Butterworth filter of order 2 can be designed on the 

basis of the circuit in Fig. 2.2. 

 

2.5.4. Electronic Chebyshev filter (type II) of order 2 

Let us consider the circuit in Fig. 2.3.  

 
Figure 2.3. 
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It should be stressed that if 7 8R R  . then a Chebyshev filter of type I or a 

Butterworth filter can be designed on the basis of this circuit, in such a case the 

output potential is out2 . If 7 2 1 3R R R R , then a Chebyshev filter of type II or an 

elliptic filter can be designed on the basis of this circuit, and in such a case the output 

potential is out1 . This subsection is devoted to the construction of a Chebyshev filter 

(type II) of order 2. The circuit in Fig. 2.3 can be described by the following 

equations: 

       in 1 1 7 7 8 80 R R Rt I t R I t R I t R     ,  
       2 2 3 3 1 10 R Rt I t R I t R q t C    ,  

     out1 4 4 5 50 R Rt I t R I t R   ,      вых2 6 6 2 20 Rt I t R q t C   , 
       1 2 6 1R R RI t I t I t q t   ,  

     7 3 4R R RI t I t I t  ,      8 5 2R RI t I t q t   

(2.133) 

where  RjI  is the current through the resistor jR , 1,8j  , and 1,2q  are the charges of 

the capacitors 1,2C , respectively. After expressing all the time-dependent quantities in 

(2.133) in terms of   2q t  by a cumbersome calculation one can obtain the following 

differential equation for  2q t : 

      4
2 2 2

1 2 1 2 3 5 6

1 R
q t q t q t

C R C C R R R
  

   3 3 5 54 4
in in

1 3 5 1 2 7 2 8 4 5 7 8 4

1 1 1R R R RR R
t t

C R R R R R R R R R R R R
 

   
       

   
. 

(2.134) 

As indicated above, in the case of construction of a Chebyshev filter of type II or an 

elliptic filter, the following equality should be valid: 

7 2 1 3R R R R . (2.135) 

On the basis of (2.135) by putting 

   in cost A t    (2.136) 

one can obtain that (2.134) can be rewritten as 
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         2 2 2 cos sinq t aq t bq t c t d t     , 

1 2

1 0a
C R

  , 4

1 2 3 5 6

0R
b

C C R R R
  , 

1 2 8

A
c

C R R
 , 54

5 7 8 4

1 RR
d A

R R R R


 
  

 
. 

(2.137) 

The solution of the corresponding uniform equation exponentially attenuates; see the 

corresponding description in Sec. 2.5.2. So in a steady state the general solution of 

(2.137) coincides with the partial solution of (2.137) which is sought in the form 

     2 cos sinq t t t     . (2.138) 

After taking the first and second derivatives of  (2.138) and substituting the results 

into (2.137) one can obtain  

         2 2cos sint b a t b a                  

   cos sinc t d t   , 
(2.139) 

so we have the following set of linear algebraic equations 

 2b a c       ,   2b a d       , (2.140) 

whose solution is 

 

 

2

22 2 2

c b da

a b

 


 

 


 
,  

 

 

2

22 2 2

ca d b

a b

 


 

 


 
. (2.141) 

The output potential  out1 t  can be expressed in terms of  2q t  on the basis of 

(2.133): 

 
 

 in
out1 5 2

8

t
t R q t

R




 
   

 
. (2.142) 

On the basis of (2.138), (2.141), (2.142) and (2.136) the following result for the 

output potential may be obtained: 

   
2

2 2
out1 5

8

cosA
t R t

R
     

 
     

 
, 

 8

tan
A R








, (2.143) 
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the derivation of (2.143) is similar to that of (2.115). Expression (2.143) leads to the 

fact that the amplitude-frequency response of the system is  

 
2

2 25

8

R A
K

A R
   

 
   

 
. (2.144) 

After substituting the expressions for  ,  , a , b , c , d  from (2.141) and (2.137) 

into (2.144) by a cumbersome calculation one can obtain that 

 
2

2 2 24 4 4
2 2

7 1 2 3 6 8 2 1 1 2 3 5 6

1R R R
K

R C C R R R R C C C R R R
   

 
    

 
. (2.145) 

The obtained expression is the explicit dependence of  K   for the circuit under 

consideration in the case where 7 2 1 3R R R R . 

As can be seen from Table 2.2 and from (2.86), the explicit expression for the 

amplitude-frequency response of the Chebyshev filter (type II) of order 2 is 

 
  

1 2

22 2 2
c

11
2 1

K 
  



 
   
 

  

 

 

2 2
c

2 4 2 2 2 2 4
c c

2

4 4 1

  

      




   
. 

(2.146) 

As can be seen from (2.146) and (2.145), an ideal Chebyshev filter of type II cannot 

be built on the basis of the circuit under consideration, because the coefficient 

multiplying 4  under the square root in the denominator of (2.146) equals 2 1   

while the same coefficient in (2.145) is equal to 1. Nevertheless, on the basis of this 

circuit we can obtain a system whose characteristics are very close to the 

characteristics of a Chebyshev filter of type II. To see this, let us put  

4

7

R

R
  ,  7

с
1 2 6 3 82

R

C C R R R
   (2.147) 

and 
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 8 5R R , 4 4
2

1 2 2 6 3 8 7

21 1R R

C R C R R R R

 
  

 
,  4

7

1R

R
. (2.148) 

In such a case expression (2.145) can be rewritten as 

 
2 2

c

2 4 2 2 2 4
c c

2

4 4
K

  


     




 
, (2.149) 

and the only difference between (2.149) and (2.146) is the coefficient multiplying 4  

within the square root in the denominator. If the circuit parameters are such that 

4 7 1R R  , then  2 1 1    and the expressions (2.149) and (2.146) are 

approximately equal. 

So, to summarize the above-mentioned, if  (2.148)  and (2.135) hold, then with a 

good accuracy the circuit in Fig. 2.3 is a Chebyshev filter of type II with the ripple 

factor and the cutoff frequency c  described by expressions (2.147). The output 

potential of the circuit is out1 . 

 For example, if the parameters 1 6R   and 2C  are given and the inequality   

1 3
4

2

R R
R

R
 (2.150) 

holds, then all the other circuit parameters should be taken as 

1 3
7

2

R R
R

R
 , 8 5R R , 

12
4 2 4

1
2 6 3 8 7

2 1R R R
C

C R R R R



  
   

  

 (2.151) 

in order to construct the above-mentioned Chebyshev filter of type II. 

 

2.5.5. Electronic elliptic filter of order 2 

As mentioned in the previous section, the circuit in Fig. 2.3 with the output 

potential out1  can be a basis for the construction of an elliptic filter if equality (2.135) 

holds. This subsection is based on the corresponding result (2.145) for the amplitude-

frequency response of the circuit under consideration.  
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As can be seen from Table 2.2 and (2.92), the explicit expression for the 

amplitude-frequency response of an elliptic filter of order 2 is 

  
 

 
 

1 222 2
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(2.152) 

The result (2.145) can be rewritten as 

  2 4 24 4 4
2 2
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. 

(2.153) 

By equating (2.152) and (2.153) we obtain 

4
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1R
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R
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  ,    

2 221 1 1       , 

    2 2 4
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         , 

 
2
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(2.154) 

From (2.154) and (2.153) we can derive that 
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,  (2.155) 

and 

28

5

1R

R
  , 24

7

1 1R

R
    , 4

с
1 2 6 3 8

R

C C R R R
  . (2.156) 

To summarize the above-mentioned, if equalities (2.155) and (2.135) hold, then the 

circuit in Fig. 2.3 is an elliptic filter of order 2 with the ripple factor  , selectivity 

factor   and the cutoff frequency с  given by the expressions (2.156) . 
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For example, if the parameters 1 3,5,6R 
,   and 2C   are given, then all the other 

circuit parameters should be taken as  

1 3
7

2

R R
R

R
 ,  2

4 7 1 1R R     ,  

  

2
4 7

8 5 2

4 7

1
1

2

R R
R R

R R


 


, 

 

 

122
4 782 4 4

1
2 6 3 8 5 7 4 7

12
2

R RRR R R
C

C R R R R R R R



   
    

    

 

(2.157) 

in order to construct the above-mentioned elliptic filter. 
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Chapter 3. Digital Adaptive Filters 

3.1 Algorithm of linear digital filtering 

The linear stationary system converts the input signal x(t) into the output 

y(t), equal to the convolution of the function x(t) and the impulse response h(t). 

The impulse response of the system h(t) is the response of the system to the 

input signal ( )t .  

The convolution of two functions x(t), h(t) is as follows: 

 
       y t x t h t d 





   (3.1) 

A linear digital filter (DF) is a discrete system (program or physical device) that 

converts the xk sequence of numeric samples of the input signal into a sequence yk of 

output signal samples. 

The impulse response of the DF is a discrete signal hk, which is the response 

of the DC to the “single impulse” (1,0,0,...): 

   0 1 21,0,0,... , , ,...h h h . 

DF is a linear one, if the sum of the input signals, multiplied by arbitrary 

coefficients, is converted into a sum of responses to individual terms: 
(1) (1) ( ) (1) (1) ( )

1 2 1 2... ...N N

k k n k k k n kx x x y y y             

for any coefficients 1 , 2 , …, N . 

A linear DF is stationary if, when an input single pulse is shifted by any number 

of sampling intervals, the impulse response shifts in the same way, without changing 

in form: 

   0 1 20,1,0,0,... 0, , , ,...h h h ,    0 1 20,0,1,0,0,... 0,0, , , ,...h h h , … 

The properties of linearity and stationarity imply a general linear digital filtering 

algorithm: let 0 1 2( , , ,...)kx x x x  be some signal at the input of the DF with a known 

impulse response, then, based on the properties of linearity and stationarity, the m-th 

sample of the output signal yk: 
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0

m

m k m k

k

y x h 



 . (3.2) 

Expression (3.2) has the following meaning: at the time of each sample, the DF 

performs a weighted summation of all previous values of the input signal, and the 

“weights” are counts of the impulse response. That is, the DF has some “memory” in 

relation to past input influences. For physically realizable DFs, the impulse response 

cannot be non-zero at the points preceding the input pulse impulse time. 

 

3.2 Frequency Coefficient of Transmission. System function. Impulse 

response  

Frequency Coefficient of Transmission of DF 

Let the harmonic sequence of the form:  i k

kx Ae
 

 , unlimitedly extended in 

time (k = 0, 1, 2, ..) be fed to the input of a linear DF. Define the output signal of 

the DF:  

   i k i i k

m k m k m k m k

k k k

y x h Ae h Ae e h n m k
   

  
 

  

  

        
 

 i m ni i i m i n i n

n n m n

n n n

Ae e h Ae e e h x e h
    

  
      

  

     , 

 
which with account for the fact that 0 0nh    leads to 

0

i n

m m n

n

y x e h


 



  . 

That is, the output samples are obtained from the input by multiplying by the 

complex value  K i : 

 
   

0

i n

n

n

K i e h


 



 . (3.3) 

where  K i  is the frequency coefficient of transmission of the DF. 

Analyzing (3.3) we get:  K i
 is a periodic function of frequency with a 

period equal to the sampling frequency 2d   ;   K i  depends on the impulse 

response of the system. 
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System function of DF 

Let us associate with discrete signals xk, yk, hk their Z-transformations X(z), Y(z), 

H(z), respectively. The output signal yk is a convolution of the input signal xk and the 

impulse response hk, then, based on the 3rd property of the Z-transform, the function 

( ) ( ) ( )Y z H z X z  corresponds to the output signal. The system function H(z) of a 

stationary linear DF is the ratio of  Z - conversion of the output signal to Z - 

transformation of the signal at the input: 

 
  

 
 

  0

k

k

k

Y z
H z h z

X z






  . (3.4) 

that is, the system function of the DF is the Z-transform of the impulse response. 

In order to obtain the frequency coefficient of transmission of the DF from the 

system function, it is necessary to make a substitution in (3.4): iz e  . 

Example 

DF has impulse response (1, 1,0,0,...)kh   , find the system function and 

transmission coefficient of the DF. 

  1 2
0 2

0

1... 1 1k

k

k

h h
H z h z h z

z z z







         ,   1 iK i e     . 

  
3.3 Filters with finite impulse response 

 Filters of this type work in accordance with the algorithm: 

 
  0 1 1 2 2 ...j j j j m j my a x a x a x a x       (3.5) 

where a0, a1, a2,…am is the sequence of coefficients, m is the order of DF. 

A non-recursive FC performs weighted summation of previous input signal 

samples and does not use past output signal samples. 

Apply the Z-transformation to both sides of (3.5), then the system function of 

the non-recursive DF will be: 

 
 

 

 

1 2
0 1 2 ...m m m

m

m

Y z a z a z a z a
H z

X z z

    
  . (3.6) 
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The main blocks of the DF are the blocks of delay of the sampling values by one 

sampling interval Z
-1, and the large-scale blocks that perform the multiplication 

operations by the corresponding coefficients ai in digital form. 

Algorithm of functioning of non-recursive DF: 

 

 

 

 

 

 

 

                        Figure 3.1 - Block diagram of non-recursive DF 

The transverse structure of the DF gave the second name to the non-recursive 

DF - transversal. 

From the outputs of the large-scale blocks, the signals go to the adder, where the 

output is a count of the output signal. 

Based on (3.6), the impulse response of the non-recursive DF can be 

determined. Analysis (3.6) shows that each term of the function H(z) makes a 

contribution equal to the corresponding coefficient an, shifted by n positions in the 

direction of delay, then the impulse response of the non-recursive DF is: 

 
   0 1, ,...,k mh a a a , (3.7) 

moreover, the impulse response of the non-recursive DF contains a finite number of 

terms. 

 In the expression for the system function, let‟s introduce a change of variable 
iz e  , then the frequency coefficient of transmission of the non-recursive DF 

will be: 

 
    2

0 1 2 ...i i mi

mK i a a e a e a e             . (3.8) 

 

yk 

am a3 a2 a1 a0 

xk 
Z-1 Z-1 Z-1 Z-1 
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3.4 Filters with infinite impulse response 

 To form the i-th sample of the output signal yi, the previous values of not only 

the input signal, but also the output signal are used: 

 
  0 1 1 2 2 1 1 2 2... ...j j j j m j m j j n j ny a x a x a x a x b y b y b y              (3.9) 

where the coefficients b1,…, bn, which determine the recursive part of the 

filtering algorithm, are not equal to zero simultaneously. Recursion is a mathematical 

method consisting in cyclically referring to data obtained in the preceding stages. 

System function of the recursive DF 

Perform a Z - transformation over (3.9), then the system function will be: 

 
  

 
 

 

1 2
0 1 2

1 2
1 2

...
...

n n n n m

m

n n n

n

Y z a z a z a z a z
H z

X z z b z b z b

  

 

   
 

   
. (3.10) 

 The structural scheme of the recursive DF is presented in Fig. 3.2. The upper 

part of the structural scheme corresponds to the non-recursive part of the filtering 

algorithm. Its implementation requires, in general, m+1 scale blocks (multiplication 

operations) and m memory cells in which the input samples are stored. 

The recursive part of the algorithm corresponds to the lower part of the 

structural scheme, where n consecutive values of the output signal are used, which in 

the process of filter operation move from cell to cell by shifting. 

 

3.5 Criteria for the operation of adaptive filters 

The main purpose of the adaptive filter is to find its own parameters, as a rule, 

the vector of weight coefficients (WC) hN(k), at which the output signal y(k) 

minimizes the given target function. The target function is usually a function of the 

input, output, and desired signals, i.e.  ( ), ( ), ( )F f x k y k d k . It must be non-

negative and real, i.e. 0F   for all x(k), y(k) and d(k). The adaptive algorithm 

minimizes the target function so that the output signal of the adaptive filter 

approximates the desired signal, and ,( )N N Oh k h  where ,N Oh
 is coordinate vector of  
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the minimum of the multidimensional target function in the space of the WC. The 

target function can be considered as a function of errors, i.e.
 

 ( )F f e k . 

 

 

 

 

 

 

 

 

Figure 3.2 - Structural scheme of the recursive DF 

 

There are many different ways to determine the target function of an adaptive 

filter, which ultimately affect the complexity of its minimization algorithms. The the 

most commonly used target functions are as follows: 

1.    
2

( )F f e k e k   – standard error (MSE), 

2.    
2

1

( )
k

t

F f e k e t


   – least squares (Least Squares, LS), 

3.    
2

1

( )
k

k t

t

F f e k e t 



    – weighted least squares (Weighted Least 

Squares, WLS), 

4.    
2

( )F f e k e k 
 
 – squared instant error. 

Achieving a minimum of the targetpower function is a criterion for the operation 

of the adaptive filter. 

Other criteria are also used, for example, the criterion of constancy of the 

module of information symbols (Constance Modulus, CM) used in adaptive signal 

processing in digital communication systems. This criterion is also based on 

minimization of the error function between the modulus value (amplitude) of the 

bn b3 b2 b1 

yk 

am a3 a2 a1 a0 

xk Z-1 Z-1 Z-1 Z-1 

Z-1 Z-1 Z-1 Z-1 
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output signal of the adaptive filter and the known modulus value (envelope) of 

information symbols raised to a certain power. This minimization ensures that the 

output envelope of the adaptive filter approaches the known constant envelope value 

of the information symbols. Therefore, this criterion got its name for the desired end 

result, i.e. the output signal envelope of the adaptive filter, which allows one to 

correctly recognize (detect) received information symbols in this signal. 

The choice of quadratic target functions is largely due to the fact that as a result 

of their use, adaptive filtering algorithms can be obtained in the form of recurrent 

calculations that do not contain logical operations, which distinguishes such 

algorithms from general-purpose computing procedures. In addition, these target[- 

„ functions are unimodal, which guarantees the convergence of adaptive filtering 

algorithms based on them to a single optimal solution. 

Strictly speaking, the MSE function is only a convenient mathematical concept, 

since its computation requires an infinite amount of data, since obtaining this function 

implies averaging over the ensemble of realizations of the observed signals. MSE-

function 1 is used, for example, in optimal Wiener filtering. 

The target functions 2 - 4 differ in both the complexity of implementing 

adaptive algorithms based on them, and the convergence characteristics, and the 

residual errors in the steady state of these algorithms. Thus, the square of the 

instantaneous error is the simplest, in terms of the implementation of algorithms, 

target function. But algorithms based on this function are characterized by slow 

convergence due to the highly simplified target function. The LS target function is 

usually used when processing stationary signals, and the WLS one is usually used 

when processing slowly changing signals. Adaptive algorithms that use target 

functions 3 and 4 are often referred to as least-squares algorithms. 

 

3.6 Scalar discrete Kalman filter 

For clarity, let us consider a simple example, which is not quite physical. Let us 

have a radio-controlled car whose motion is one-dimensional, i.e. it can move only 

forward or backwards. It is assumed that the instantaneous velocity of the car is 
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completely controlled by a joystick. Of course, such an example is not physical 

because the velocity cannot change instantly. Nevertheless, we consider it because it 

clearly demonstrates the idea of the scalar Kalman filter. 

In the example under consideration, the motion of the car is completely 

described by one parameter which is its coordinate x . Let the coordinate be 

measured at time instants nt n t    where t  is a small time interval between two 

neighboring instants. In fact, we have a discrete set of the measurements  n nx x t . 

Physically, the coordinate varies as follows: 

 
  1n n nx x t     (3.11) 

where  n nt   is the velocity at the instant nt  that is “governed” by the joystick. 

Equation (3.11) describes the change in the coordinate in the “ideal” case where the 

motion of the car is completely controlled by the joystick. But there are some small 

perturbations acting on the car (wind, road irregularities, and so on). With account for 

such perturbations, we have  

 
  1n n n nx x t       (3.12) 

where n  is the term which is due to the above-mentioned perturbations, n  is a 

discrete random process. 

Let the coordinate be measured by a sensor. The sensor reading nz  is 

 
  n n nz x    (3.13) 

where the random discrete process n  is the sensor error. For example, it may occur 

due to radio noise. 

In fact, we have a set of the measured values nz , and we need a filter that 

generates the true coordinate values nx . This filter is called the Kalman filter. 

The above-mentioned example is given just for clarity. Now let us describe the 

scalar Kalman filter more generally. 

Let us have a system described by one parameter x  that changes discretely, and 

on the basis of some physical considerations the “ideal” law of change in this 

parameter can be written as 
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  1t t tx ax bu    (3.14) 

where tu  is the known quantity that governs the system evolution; a , b  are some 

known constants (in the above-mentioned example t tu  , 1a  , b t  ). The 

parameter x

 
is measured by a device whose readings are tz . Let t  be a random 

stationary process whose physical meaning is the device error. Let t  be a random 

stationary process that describes the random character of the system evolution. So we 

have 

  
  1t t t tx ax bu     ,   t t tz cx    (3.15) 

where the constant c  is the known device gain coefficient.  

In fact, the input for the Kalman filter is the set tz . The aim of the filter is to 

generate the output set 
opt
tx  closest to the set tx . The word “closest” should be 

understood as “having the smallest mean-square deviation”. 

Let us denote the filter error as te :  
  

opt
t t te x x  . (3.16) 

The following assumptions are made: 

1. The variances 2
  and 2

  
of the processes t  and t , respectively, are known. 

2. The average values of the processes t  and t  are zeros: 

  
  

0t  ,   0t  . (3.17) 

3. The processes t , t  and the filter error te  are independent, i.e. 

  
   1 2,t t

   
1 2 1 2

0t t t te e   ,   
1 2 1 2

0t t t te e   , 

1 2 1 2
0t t t t     . 

(3.18) 

It should be stressed that (3.18) follows from (3.17). 

The Kalman filter is based on a recurrent algorithm. Let us suppose that we have 

calculated opt
tx  and 2

te . We have to calculate opt
1tx   and 2

1te  . We seek opt
1tx   in the 

following form: 

  
    opt opt

1 1 1t t t tx Kz Kc ax bu      (3.19) 
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where K  is an unknown constant called the Kalman coefficient. It should be stressed 

that the Kalman coefficient may be different for different steps of the algorithm. As 

mentioned above, the following mean-square deviation should be minimized:  

  
  

opt 2 2
1 1 1( ) mint t tx x e     . (3.20) 

The Kalman coefficient K  should be found on the basis of the condition (3.20). 

From (3.19) and (3.15) we have 

  
    opt opt

1 1 1 1 1t t t t t t t t te x x ax bu Kz Kc ax bu            

     opt
1 1 1t t t t t t tax bu K cx Kc ax bu          

      opt
1 1t t t t t t t t tax bu K c ax bu Kc ax bu              

(3.21) 

which after removing brackets with account for (3.16) leads to 

  
     1 11 1t t t te Kc ae Kc K       . (3.22) 

From (3.22) we have 

  
     

2 22 2 2 2 2 2
1 11 1t t t t te Kc a e Kc K G         (3.23) 

where tG  are the so-called “cross terms”: 

  
       

2
1 12 1 2 1 2 1t t t t t t tG a Kc e a Kc Ke Kc K         . (3.24) 

It should be stressed that the only random processes in (3.22) – (3.24) are t , te  and 

t , so on the basis of (3.18) and (3.23) we have  

  
       

2
1 12 1 2 1 2 1 0t t t t t t tG a Kc e a Kc K e Kc K          , 

   
2 22 2 2 2 2 2

1 11 1t t t te Kc a e Kc K       . 
(3.25) 

From (3.25) it is clear why we do seek opt
1tx   in the form (3.19)! This form leads to the 

expression (3.22) with three independent terms on the right-hand side, and after 

squaring and averaging the cross terms “die”.  

Obviously on the basis of the fact that t  is a stationary process and from (3.17) 

we have 

  
  

22 2 2
t t t      ,  

22 2 2 2
1t t t t         ,  (3.26) 

which with account for (3.25) leads to 
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2 22 2 2 2 2 2

1 1 1t te Kc a e Kc K        . (3.27) 

We should minimize 2
1te 

, so K  is found as follows 

2 2 2 2
1

2 2 2 2 2 2
0t t

t

e a e
K c

K c a e c



 



 

 
  

  
. (3.28) 

So opt
1tx   is calculated by (3.19) where the Kalman coefficient K  is given by 

(3.28). We also have to calculate 2
1te 

. On the basis of (3.27) and (3.28) by a 

straightforward calculation it can be shown that  
2 2 2

2 2
1 2 2 2 2 2 2

t

t

t

a e
e

c c a e





 




 





 
 (3.29) 

Obviously, we need some initial values for the filter output optx  and for the 

mean square error 2e . They are usually chosen as  

2 2
0e  ,  

opt
0 0x z . (3.30) 

To summarize the above-mentioned, let us repeat the whole recurrent algorithm. 

First of all, the initial values for the filter output optx  and for the mean square filter 

error 2e  are specified. Usually they are specified by (3.30). On the basis of the 

initial values 2
0e  and opt

0x  the values 2
1e  and opt

1x  are calculated: 

  
    opt opt

1 1 0 01x Kz Kc ax bu    , 

2 2 2
0

2 2 2 2 2 2
0

a e
K c

c a e c



 



 




 
; 

2 2 2
02 2

1 2 2 2 2 2 2
0

a e
e

c c a e





 




 




 
. 

(3.31) 

Then 2
2e  and opt

2x  are calculated on the basis of opt
1x  and 2

1e , and so on. At  

step n , 2
ne  and opt

nx  are calculated on the basis of the above-calculated opt
1nx   and 

2
1ne   by the formulas 
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    opt opt

1 11n n n n n nx K z K c ax bu     , 

2 2 2
1

2 2 2 2 2 2
1

n

n

n

a e
K c

c a e c



 



 








 
; 

2 2 2
12 2

2 2 2 2 2 2
1

n

n

n

a e
e

c c a e





 




 








 
, 

(3.32) 

here we write the subscript n  on nK  in order to stress that the Kalman coefficient 

may be different at different steps of the algorithm.  

 

3.7 Vector discrete Kalman filter 

In the previous section we considered the case where the system was described 

by one parameter. The aim of the vector Kalman filter is similar to that of the scalar 

one, but it deals with a system that is described by more than one parameter. 

Let us consider a system described by n

 
parameters 1x , 2x , …, nx , 1n  , that 

change discretely. 

The system vector of state is the column that contains all the parameters that 

describe the system: 

,1

,2

,

t

t

t

t n

x

x
x

x

 
 
 
 
 
 

  (3.33) 

where the subscript t  indicates that the corresponding quantity is taken at the instant 

t .  

In what follows, we will deal with the covariance matrix. The covariance 

matrix  cov x  of a random vector (column) x  is the matrix whose components are 

defined as  

   cov cov i jij ji
x x x x   . (3.34) 

The discrete vector Kalman filter can be described by a simple analogy with the 

scalar one: 
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Table 3.1 – Analogy between the vector and the scalar discrete Kalman filters 

Scalar filter Vector filter 

The change in the parameters with 

time: 

1t t t tx Ax Bu      

x  is the parameter describing the 

system; t  is a random process that 

describes the random character of 

the system evolution; tu  is the 

known quantity that governs the 

system evolution; A , B  are known 

constants. 

The change in the parameters with time: 

1t t t tx Ax Bu     , (3.35) 

x  is the system vector of state; 

the physical meaning of all the other quantities 

is the same as in the scalar filter, but it should 

be mentioned that A  and B  are n n  matrices 

and tx , tu , t  are column vectors. Equation 

(3.35) is written in matrix form! 

The device readings: 

t t tz Cx    

z  is the device reading,  t  is the 

device error, and the constant C  is 

the device gain coefficient. 

The device readings: 

t t tz Сx   , (3.36) 

the physical meaning of all the quantities is the 

same as in the scalar filter, but it should be 

mentioned that С  is a n n  matrix,  and tx , tz

, t   are column vectors. Equation (3.36) is 

written in matrix form. 

The filter error and the aim of the 

filter:

  opt
t t te x x  ,  t

 

2 minte  .
  

The filter error and the aim of the filter 

opt
t t te x x  ,  t

2
,

1

min
n

t j

j

e


 , (3.37) 

te  is a column vector. 

The assumptions of the theory: 

2
  and 2

  
are known; 

0t  ,   0t  ; 

1 2,t t

   
1 2 1 2

0t t t te e   , 

The assumptions of the theory: 

 cov t  and  cov t  are known, 

1,2,..,i n 

 
, 0t i   , 0t i  ; (3.38) 

, 1,2,..,i j n 

    
1 2,t t

 
(3.39) 
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1 2 1 2
0t t t te e   ,

 
1 2 1 2

0t t t t     . 

1 2 1 2, , , , 0t i t j t i t je e   ,   

1 2 1 2, , , , 0t i t j t i t je e   , 

1 2 1 2, , , , 0t i t j t i t j     . 
 

The recurrent relation for the output 

  opt opt
1 1 1t t t tx Kz KС ax bu     ,  

the Kalman coefficient K  is found 

from the condition 2
1 minte    

The recurrent relation for the output 

opt
1 1t tx Kz  

  opt
t tI KС Ax Bu   , 

(3.40) 

I  is an identity matrix,  

the Kalman coefficient K  is a n n  matrix, 

and it is found from the condition  

2
1,

1

min
n

t j

j

e 



 . (3.41) 

The recurrent relation (3.40) is given in matrix 

form.  

 

It should be mentioned that in the general case the matrices A , B  and C  may depend 

on time, but for simplicity we consider the case where they are constant ones.  

Let us consider the quantity 1 1
T

t te e  ; here and in what follows, the superscript T  

indicates that the corresponding matrix is transposed. We have 

 

1,1

1,2 2 2 2 2
1 1 1,1 1,2 1, 1,1 1,2 1, 1,

1

1,

... ...

t

n
tT

t t t t t n t t t n t j

j

t n

e

e
e e e e e e e e e

e





        





 
 
      
 
 
 

 , (3.42) 

so from (3.42) it can be seen that the condition (3.41) can be rewritten as 

1 1 minT

t te e   . (3.43) 

Similarly to the derivation of the formula (3.22) on the basis of  (3.35)–(3.37) 

and (3.40), we can obtain 

   1 1t t t te A KСA e I KС K       , (3.44) 
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during the derivation of (3.44) and in what follows we should remember that the 

multiplication of matrices is not commutative, i.e. we are not allowed to change the 

order of the matrices in their product! 

On the basis of the well-known properties 

 
T T TAB B A ,   

T T TA B A B    (3.45) 

and from (3.44) we have 

   1 1
T TT T T T T

t t t te e A KСA I KС K       . (3.46) 

From (3.46) and (3.44) we can obtain  

         1 1
TT T

t t t te e e A KСA A KСA e     

    1 1
TT T T

t t t t tI KС I KС K K G        

   
 

(3.47) 

where tG  contains the “cross terms”: 

            1
T TT T

t t t t tG e A KСA I KС e A KСA K       

          1
T TT T

t t t tI KС A KСA e I KС K        

   1 1
T T T T

t t t tK A KСA e K I KС       . 

(3.48) 

First of all, it should be stressed that each term in tG
 is a number rather than a 

matrix. Let us consider the first term in (3.48).  T

te  is a 1 n  matrix,  
T

A KСA  is 

an n n  matrix,  I KС  is an n n  matrix, and t  is an 1n  matrix, so their 

product has the structure        1 1 1 1n n n n n n         . Similarly, it can be 

shown that each term on the right-hand side of (3.48) is a number. Moreover, 

similarly it can be shown that each term on the right-hand side of (3.47) is a number. 

Let us consider the average value of the first term on the right-hand side of 

(3.48). By the well-known Einstein summation rules we have 

             , ,
T TT T

t t t i t kij jk
e A KСA I KС e A KСA I KС      ,

 
(3.49) 

here and in what follows, the summation is performed over the repeated matrix 

subscripts. So on the basis of (3.49) we obtain 

             , ,
T TT T

t t t i t kij jk
e A KСA I KС e A KСA I KС        (3.50) 
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    , , 0T T

t i t kij jk
A KСA I KС e    

 
due to (3.39). Similarly it can be shown that the average values of all the terms in tG  

are zeros, so on the basis of (3.47) we have  

           1 1
TT T

t t t te e f K e A KСA A KСA e        

    1 1
TT T T

t t t tI KС I KС K K        .
   

 
(3.51) 

It should be stressed that the result (3.51) justifies the fact that opt
1tx   is sought in 

the form (3.40): after averaging all the cross terms “die”.  

Now we have to minimize the function of matrix  f K  due to (3.43). We will 

use an idea similar to that used for the minimization of the functional (2.25). Let K  

be the matrix that minimizes the function  f K . If we take another matrix in the 

form K k  where   is an arbitrary number and k  is an arbitrary n n  matrix, then 

the following inequality must hold: 

 , k      f K f K k  , (3.52) 

because the matrix K  minimizes the function (3.51). 

On the basis of (3.51) we have 

         
TT

t tf K k f K e A K k СA A K k СA e               

     
TT

t tI K k С I K k С        

        1 1
T TT T

t t t tK k K k e A KСA A KСA e                                                                      
    1 1

TT T T

t t t tI KС I KС K K       

   
 

(3.53) 

which after removing brackets with account for (3.52) leads to 

 , k           TT

t tf K k f K e kСA A KСA e      

   
T TT T

t t t te A KСA kСAe I KС kС       
    1 1 1 1

TT T T T T

t t t t t tkС I KС k K K k              

            2
1 1 0T T T

t t t t t tkСAe kСAe kС kС k k         .
   

(3.54) 
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First of all, let us consider the terms multiplying 2 . k , С  and A  are n n  matrices, 

te  is an 1n  matrix, so 
tkСAe  is a column vector ( 1n  matrix): 

 

1

2 2

1

0
n

T

t t t j

j

n

b

b
kСAe kСAe kСAe b

b



 
 
    
 
 
 


 
. (3.55) 

Similarly, it can be shown that 

    0T

t tkС kС   ,     1 1 0T

t tk k    , (3.56) 

so the part of (3.54) that contains 2  is non-negative. Let us consider the terms 

multiplying   in (3.54). Obviously, each of them is a number rather than a matrix. 

Let us denote  

     1 , TT

t ta k K e kСA A KСA e   ,    2 , TT

t ta k K e A KСA kСAe   , 
 

   3 , TT

t ta k K I KС kС    ,       4 , TT

t ta k K kС I KС    ,  
 5 1 1, T T

t ta k K k K   ,   6 1 1, T T

t ta k K K k   .
  
 

(3.57) 

In fact, on the basis of (3.54)–(3.57) we can conclude that the matrix K  that 

minimizes the function (3.51) must obey the property 

   , k       
6

1

, 0a k K





 . (3.58) 

Obviously,  

   1 1, ,Ta k K a k K , (3.59) 

because  1 ,a k K  is a number. At the same time, from (3.57) we have 

     1 2, ,TT T

t ta k K e A KСA kСAe a k K    . (3.60) 

So, on the basis of (3.60) and (3.59) we have  

   1 2, ,a k K a k K . (3.61) 

Similarly, it can be shown that 
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   3 4, ,a k K a k K ,    5 6, ,a k K a k K .  (3.62) 

From (3.58), (3.57), (3.61) and (3.62) we have that the matrix K  that minimizes the 

function (3.51) must obey the property 

   , k            1 3 5, , , 0a k K a k K a k K    . (3.63) 

The number   can be either positive or negative, so such a requirement is valid only 

if the sum in parentheses multiplying   is zero: 

      1 1 0T TT T T T

t t t t t te kСA A KСA e I KС kС k K          , (3.64) 

here, the explicit expressions (3.57) are used. 

Let us consider the expression 1 1
T

t tQ  
 where Q  is a non-random n n  

matrix. By the Einstein summation rules we have 

1 1 1, 1, 1, 1, 1, 1,
T T T

t t t i ij t j ij t i t j ij t j t iQ Q Q Q                   

    1 1cov Tr covij t tji
Q Q     , 

(3.65) 

Here and in what follows TrA denotes the trace of a matrix A . Similarly, 

  Tr covT

t t tQ Q    ,    Tr covT

t t te Qe Q e  .  (3.66) 

On the basis of the relations (3.66) and (3.65) the condition (3.64) can be rewritten as 

follows: 

k                  Tr cov Tr covT T

t tkСA A KСA e kС I KС       
  1+Tr cov 0T

tk K     . 
(3.67) 

On the basis of the well-known properties 

   Tr =TrAB BA ,      Tr =Tr TrA B A B   
(3.68) 

the expression (3.67) can be rewritten as 

k        Tr cov T

tA KСA e СA   
    

     1cov cov 0T T

t tI KС С K k  
   
  

(3.69) 

which leads to  
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          1cov cov cov 0T T

t t tA KСA e СA I KС С K        . (3.70) 

 From (3.70) by a straightforward calculation it can be shown that 

  
1

1covT T

t t tK PС СPС 


  ,    cov covT

t t tP A e A   .  (3.71) 

It is also very important to calculate  1cov te   because, as can be seen from 

(3.71) and (3.40), opt
2tx   depends on  1cov te  . 

On the basis of (3.44) we have 

   1, , , 1,t i t j t j ij t jij ij
e A KСA e I KС K       . (3.72) 

From (3.72), (3.34) and (3.39) we have  

       1 1, 1,cov cov T

t t i t l tij klil jk
e e e A KСA e A KСA      

 
       1cov covT T

t ij t klij kljk jk
I KС I KС K K      . 

(3.73) 

which with account for (3.71) leads to  

   1 1cov t t te I K С P   .
 

(3.74) 

We also need initial conditions for  cov e  and optx . They are usually chosen as  

   0 0cov cove  ,  opt
0 0x z . (3.75) 

To summarize the above-mentioned, let us repeat the whole recurrent algorithm. 

First of all, the initial values for the filter output optx  and for the covariance matrix of 

the filter error  0cov e  are specified. Usually they are specified by the relations 

(3.75). Then at each step the filter output and the covariance matrix of the filter error 

are calculated by the recurrent formulas 

  opt opt
1 1 1 1t t t t t tx K z I K С Ax Bu       , 

  
1

1 1covT T

t t t tK PС СPС 


   ,    cov covT

t t tP A e A   , 

    1 1cov t t te I K С P   , 

(3.76) 

here, we write the subscript 1t   on 1tK   in order to stress that the Kalman 

coefficient may be different at different steps of the algorithm. It should be stressed 
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that if the matrices A , B  and C  depend on time, the derivation of the formulas is the 

same, and the following result can be obtained:  

  opt opt
1 1 1 1t t t t t t t t tx K z I K С A x B u       , 

  
1

1 1covT T

t t t t t t tK PС С PС 


   ,    cov covT

t t t t tP A e A   , 

    1 1cov t t t te I K С P   . 

       (3.77) 

 

3.8 Adaptive Filter Structures 

Like filters with fixed weighting factors (WC) described earlier (Sec. 3.3, 3.4), 

there are two main structures of adaptive filters. These are filters with finite impulse 

response (FIR), or transversal, and filters with infinite impulse response (IIR), or 

recursive. The structure of the single-channel adaptive FIR filter is shown in Fig. 3.3. 

The output signal y(k) of the adaptive filter is formed as linear 

combination of delayed samples of the input signal x(k –n+1), taken with weights 

hn(k–1), calculated at previous iterations (k–1) with respect to current iterations k, i.e., 

as 

         *

1

1 1 1
N

H

n N N

n

y k h k x k n h k x k


      ,   (3.78) 

where N is the WC number of the filter,  

          1 2 11 1 , 1 ,..., 1 , 1
tH

N N Nh k h k h k h k h k       
is the WC vector and 

          , 1 ,..., 2 , 1
t

Nx k x k x k x k N x k N       
is the vector of signals in the filter. The filter order is defined as N–1, i.e., by the 

number of delay lines. Vectors hN(k) and xN(k) are complex in the general case. 

Hereinafter, the superscript “t” will be used to denote the transposition of a 

vector or matrix, and the superscript H wil be used to denote the Hermitian 

conjugation operation, that is, transposition and complex conjugation, denoted by the 

“*” symbol, of vector or matrix elements. The first subscript N in the notation for 

vectors and matrices will indicate the number of elements in a vector or the number 
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of elements in a square matrix, defined as N×N. The number of elements in a 

rectangular matrix will be denoted by the first two subscripts. For example, the 
t

NMA  

entry will denote the transposition of the ANM matrix, i.e., the matrix
t

MN NMB A . 

Thus, the subscripts in the matrix notation will indicate the number of elements of the 

untransposed matrices. In some cases, the subscript N will also be used in the 

notation of scalar variables, indicating that these variables are functions of N-

dimensional vectors to distinguish like scalar variables that are functions of (N+1)-, 

N- or (N–1)-dimensional vectors in fast adaptive filtering algorithms. 

 

Figure 3.3 - Single-channel adaptive FIR filter 

 

Subscripts in the elements of matrices and vectors will denote the numbers of 

these elements in matrices and vectors according to the generally accepted numbering 

system. As other signs in the notation of vectors, matrices or their elements, various 

symbols in the subscript can be used, followed by a comma after designation of the 

size of a vector or matrix or the numbers of their elements, as well as symbols in the 

subscript. The unit matrix (a square diagonal matrix with units on the main diagonal 

and zero remaining elements) will be denoted by IN, zero matrices (matrices 

containing only zero elements) - ON and ONM, a unit vector (vector containing all 
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ones) - iN, and the zero vector (a vector containing only zero elements) is represented 

by the symbol 0N. By the vector we will usually understand a column vector. 

Using the output signal of the adaptive filter (3.78), it is possible to calculate 

the signal of a priori simulation error of the required signal d(k) as 

           1H

N Nk d k y k d k h k x k      . (3.79) 

As you can see, the terms "a priori" and "a posteriori" are associated with the values 

of the WC of the adaptive filter, calculated respectively at the previous and current 

iterations of the algorithm of the adaptive filtering. 

 In practice, during the operation of the adaptive filter, a priori errors (3.79) are 

observed at its output, since the current value of the output signal of the filter y(k) is 

generated from the WC values calculated at the previous iteration. A posteriori errors 

are commonly used in WC calculation algorithms and when forming the target 

function of an adaptive filter, for example, the mean square error (Mean Square 

Error, MSE)    2*( ) ( ) ( )F E e k e k E e k   where E is the averaging operation over 

the ensemble of realizations. In the case of FIR filters, such a function is a real 

unimodal quadratic function in the space of real or complex WC, that is, it is 

characterized by a single minimum. 

We will consider mainly adaptive filters with complex WC, unless otherwise 

specified separately. This is due to some mathematical subtleties used in obtaining 

WK calculation algorithms for such filters, and the fact that the transition from 

adaptive algorithms for filters with real WC to algorithms for filters with complex 

WC is often not obvious, despite the fact that it reduces mainly to the correct 

arrangement of operations of complex conjugation of some variables used in 

algorithms. 

Therefore, in this book, the theory of adaptive filtering will be described in 

relation to filters with complex WC, since in most literature sources adaptive 

algorithms are considered mainly for filters with real WC. Transition from the 

description of filters with complex WC to the description of filters with real WC is 

trivial and usually reduces to the exclusion of all operations of complex conjugation 
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in matrices, vectors and scalar variables. This transition will be accompanied by the 

appearance of a fixed factor of 2 in some mathematical expressions, which is absent 

in the mathematical expressions of algorithms for adaptive filters with complex WC. 

Complex signals are processed in adaptive antenna arrays (AAA) or echo-

compensators and equalizers of digital quadrature modulated communication 

systems. This naturally leads to the need to use adaptive filters with complex WC. 

In the general case, adaptive FIR filters can be multichannel and, at the same 

time, contain an unequal number of WCs in the channels (Fig. 3.4). WC vector of 

such M-channel adaptive filter 

          1 2 1
1 1 , 1 ,..., 1 , 1

M M

t
t t t t

N N N N Nh k h k h k h k h k


     
 

is formed from a sequence of WC channel vectors 

          11, 2, , ,1 , 1 ,..., 1 , 1
m M M

t

N m m N m N mh k h k h k h k h k


    

 and a vector of signals 

          1 2 1
, ,..., ,

M M

t
t t t t

N N N N Nx k x k x k x k x k



 

is formed from a sequence of channel signal vectors 

          , 1 ,..., 2 , 1
m

t

N m m m m m mx k x k x k x k N x k N      . 

The total number of VK multichannel filter is defined as 
1

M

m

m

T N


 . 

The unequal number of WCs in the channels of a multichannel adaptive filter, 

on the one hand, is often dictated by the physical nature of the problem, and on the 

other hand, due to the always existing limitations on the computational complexity of 

the implementation of filters. Since in adaptive filters computational complexity is a 

function of the total number of WC N, this number should not be increased, unless 

there are any reasons, despite the fact that a number of algorithms, for example, for 

multichannel adaptive filters with the same number of WCs in channels are 

mathematically (algorithmically) “much simpler” than algorithms for filters with 

unequal number of WC in channels. 

The computational complexity of the DSP algorithms, to which the adaptive 

filtering algorithms belong, is understood to be the number of arithmetic operations 

(usually additions, subtractions, multiplications and divisions, and sometimes more 
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complex operations, such as extracting square roots) required to perform one iteration 

of the algorithm. 

 

  

 

Figure 3.4 - Multichannel adaptive FIR filter 

  

Two particular structures of the adaptive filter should be noted (see Fig. 3.4). 

This is a multichannel filter with one WC (Nm = 1, m = 1, 2, ..., M) in each channel, 

which is used in narrowband AAA, and a multichannel filter with the same number of 

WC in channels N1 = N2 =… = NM > 1, which is used in broadband acoustic gratings 

or multichannel acoustic echo cancellers. The structure of a multichannel filter of a 

general form (see Fig. 3.4) is also used when implementing nonlinear polynomial 

adaptive filters, in which nonlinear cores are sets of multichannel filters with the 

number of WCs in the channels varying from N1 = 1 to NM = N with a step equal to 

one WC. Besides, in addition, a near- and far-echo signal compensator in modems for 

wired communication channels or an equalizer with feedback can also be considered 

as a two-channel adaptive filter with a different WC number in the channels. 
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 Adaptive IIR filters to date have not yet found wide application in practice, 

since, in addition to problems with stability, they are characterized by the problem of 

multi-extremality (i.e. non-unimodality) of the target function, which does not 

generally guarantee the convergence of the WC calculation process to the global (i.e. 

best) solution. 

 

3.9. Gradient methods of search for a function minimum 

and their use in the filtration theory 

Problems of the filtration theory are often reduced to a search for a minimum of 

a multivariable function. The corresponding numerical search can be realized on the 

basis of gradient algorithms.  

For clarity, let us consider a two-variable function  ,f x y . Let us consider x  

and y as the Cartesian coordinates on a plane. Let us take a point with coordinates 

 ,X Y  and let us move from this point in its small vicinity. As is known, during this 

movement  ,f x y  increases fastest if we move in the direction of the gradient 

vector, and  ,f x y  decreases fastest if we move in the direction opposite to the 

gradient vector. The gradient vector is as follows:  

 
   

,
, ,

, ,
grad , x yx X y Y

x X y Y x X y Y

f x y f x y
f x y e e

x y 

   

 
   

 
 (3.80) 

where xe  and ye  are the unit vectors of the corresponding axes.  

A numerical search for a function minimum is as follows. We start from an 

arbitrary point  0 0,x y , and in its vicinity we move in the direction opposite to the 

gradient vector. 

 We “arrive” at a point  1 1,x y  such that 

   
0 0

1 0 1 0 0 ,
; grad ,

x x y y
x x y y f x y

 
    , (3.81) 

which with account for (3.80) leads to  
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0 0

1 0 0
,

,

x x y y

f x y
x x

x


 


 


,   

0 0

1 0 0
,

,

x x y y

f x y
y y

y


 


 


, (3.82) 

0  is a positive number, the choice of such numbers is described in what follows. We 

moved in the direction of the fastest function decrease, so 

   1 1 0 0, ,f x y f x y . (3.83) 

Then, similarly to the above-mentioned procedure, we move from the point 

 1 1,x y  in its vicinity in the direction opposite to the gradient vector. We “arrive” at 

the point  2 2,x y  which is as follows: 

   
1 1

2 1 2 1 1 ,
; grad ,

x x y y
x x y y f x y

 
    ,  1 0  , 

 

1 1

2 1 1
,

,

x x y y

f x y
x x

x


 


 


,   

1 1

2 1 1
,

,

x x y y

f x y
y y

y


 


 


, 

(3.84) 

and we have 

     2 2 1 1 0 0, , ,f x y f x y f x y  , (3.85) 

and so on. At the n th step we move from the point  ,n nx y  to the point  1 1,n nx y   

   1 1 ,
; grad ,

n n
n n n n n x x y y

x x y y f x y   
    ,  0n  , 

 
1

,

,

n n

n n n

x x y y

f x y
x x

x


 


 


,   

1
,

,

n n

n n n

x x y y

f x y
y y

y


 


 


, 

     1 1 0 0, , ... ,n n n nf x y f x y f x y     , 

(3.86) 

it should be stressed that in such a numeration the movement from  0 0,x y  to 

 1 1,x y is the zeroth step of the algorithm. The algorithm stops if the following 

condition is satisfied: 

   1 1, ,n n n nf x y f x y      (3.87) 

where   is a given algorithm accuracy. The corresponding minimal value of the 

function is  min 1 1,n nf f x y  . 

Let we have a function of N  variables  1 2, ,..., Nf x x x , the superscript here is 

just  a variable number, not a power. The algorithm is similar to the case where 
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2N  . Sowe start from a point  1 2
0 0 0, ,..., Nx x x  and at each step we move from the 

point  1 2, ,..., N

n n nx x x  to the point  1 2
1 1 1, ,..., N

n n nx x x  
 as follows: 

 0 1

1

, ,...,

i i
n

N

j j

n n n j

x x

f x x x
x x

x





 


,  , 1,2,...,i j N ,  0n  , 

     0 1 0 1 0 1
1 1 1 0 0 0, ,..., , ,..., ... , ,...,N N N

n n n n n nf x x x f x x x f x x x      , 

(3.88) 

and the algorithm stops if the following condition is satisfied: 

   0 1 0 1
1 1 1, ,..., , ,...,N N

n n n n n nf x x x f x x x      , (3.89) 

  is a given algorithm accuracy and the calculated minimal value of the function is 

 0 1
min 1 1 1, ,..., N

n n nf f x x x   . 

Now let us consider the choice of the numbers n . By trial and error they are 

chosen in order to make the algorithm converge as fast as possible. Some popular 

choices are: 

1. Constant step method 0 1 2 ... сonst       

2. Fractional step method. By trial and error, constants  0,1   and  0,1   

are chosen. The n th step is as follows. Initially, n  is specified as 0 . Then the 

following condition is checked: 

 
2

1i i i i
n n

N
j j

n n n nj j
jx x x x

f f
f x f x

x x
 

 

    
             

 . (3.90) 

If (3.90) is valid. then n  is chosen as 0n  . If (3.90) is not valid, then n  is 

specified as 0  , and (3.90) is checked again. If it is valid, then n  is chosen as 

0n   . If it is not valid, then n  is specified as 2
0   and so on. It should be 

stressed that the above-mentioned constants are often chosen as 0.5  , 0.95  .  

3. Method of quickest descent. n  is chosen in order to minimize the expression 

min
i i

n

j

n n j

x x

f
f x

x




 
    

. (3.91) 



105 
 

Let us consider the discrete Kolmogorov–Wiener problem as an example of the 

application of the gradient method to the filtration theory. The problem is as follows. 

Let the filter input be a stationary ergodic signal  

     x t s t n t   (3.92) 

where  s t  is a useful signal and  n t  is a noise. The input signal is defined at 

discrete instants 0,1,2,...,t N . The output signal  

     
0

N

y t h x t


 


   (3.93) 

is sought such that  the mean-square deviation is a minimum 

    
2

min
t

s t y t  , (3.94) 

the corresponding weight coefficients  h j , 1,j N  are to be found. The correlation 

functions  xR t  and  sxR t  are supposed to be given. As is known, in order to obtain 

the weight coefficients, we should solve the linear equation set (2.38). An alternative 

method of solution is the gradient method. 

From (3.93) and (3.94) we have 

            
2 2 22

tt tt

s t y t s t s t y t y t    

       2

0

2
N

tt
s t h s t x t



 


           
0 0

N N

t
h h x t x t

 

   
 

    . 
(3.95) 

On the basis of (1.23) we have 

         2 0 consts st t
R s t s t s t R        , (3.96) 

from (1.36) and (1.39) we obtain 

       xs sxt
R x t s t R      , (3.97) 

and similarly to (2.23) we have 

     xt
x t x t R        , (3.98) 

So on the basis of (3.95) – (3.98) we see that the following function of N  variables 

should be minimized: 
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     0 1

0 0 0

, ,..., 2 min
N N N

N

sx xxf h h h h R h h R  

  

  


  

      , 

 jh h j . 
(3.99) 

We can use a gradient method in order to minimize the function (3.99). For example, 

let us use the method of quickest descent. It should be stressed that in the framework 

of the problem under consideration the numbers n  can be found analytically! Let us 

rewrite (3.99) in matrix form:  

  2 T T

sx xf h h R h R h    (3.100) 

where the superscript T  denotes transposition and 
0

1

N

h

h
h

h

 
 
 
 
 
 

, 

 

 

 

0
1

sx

sx

sx

sx

R

R
R

R N

 
 
 
 
  
 

, 

       

       

       

       

0 1 2 ...
1 0 1 ... 1
2 1 0 ... 2

1 2 ... 0

x x x x

x x x x

x x x x x

x x x x

R R R R N

R R R R N

R R R R R N

R N R N R N R

 
 

 
  
 
 
   

, 

(3.101) 

here the fact  

   x xR R    (3.102) 

is used. The gradient vector is the column vector with the components 

 
 0 1, ,...,

grad
N

j j

f h h h
f h

h





. (3.103) 

On the basis of (3.99) we have 

     
0 0 0

grad 2
N N N

j sx xj j

h h h
f h R R

h h

  

  

  


  

 
    

 
 

     
0 0 0

2
N N N

j sx j j xR h h R 

  
  

     




  

      

     
0 0 0 0 0

2
N N N N N

j sx j x j xR h R h R 

  
    

       




     

         , 

(3.104) 
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1,
0,j

j

j








 


. 

On the basis of (3.102) we have 

     
0 0 0 0 0 0

N N N N N N

j x j x j xh R h R h R  

  
     

        
 



       

         , (3.105) 

and from (3.104) and (3.105) we can obtain 

     
0

grad 2 2
N

j sx xf h R j R j h






    , (3.106) 

so in matrix form 

 grad 2 2sx xf h R R h    . (3.107) 

Let us find an expression for n . Condition (3.91) can be rewritten in matrix form: 

 grad ( ) minf h f h   , (3.108) 

here and in what follows the subscript n  is omitted for simplicity. On the basis of 

(3.100) we have 

   grad ( ) 2 grad ( ) T

sxf h f h h f h R       
 

   grad ( ) grad ( )T

xh f h R h f h      , 
(3.109) 

which by a straightforward calculation leads to 

 grad ( ) 2T T

x sxf h f h h R h h R      
    2 grad ( ) grad ( ) grad ( )T T T

sx x xf h R f h R h h R f h     
 2 grad ( ) grad ( )T

xf h R f h  . 

(3.110) 

As can be seen from (3.101), xR  is a symmetric matrix, so 

T

x xR R ,    grad ( ) grad ( ) grad ( )
T

T T T T

x x xf h R h h R f h h R f h  . 
(3.111) 

Obviously, grad ( )T

xh R f h  is a number (1 1  matrix), so on the basis of (3.111) we 

have 

T

x xR R ,      grad ( ) grad ( ) grad ( )
T

T T T

x x xf h R h f h R h h R f h  , 
(3.112) 

which with account for (3.110) leads to 

 grad ( ) 2T T

x sxf h f h h R h h R      
(3.113) 
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  2 grad ( ) grad ( )T T

sx xf h R h R f h  

 2 grad ( ) grad ( ) minT

xf h R f h   , 
so 

   

 

grad ( ) grad ( ) grad ( )
0

grad ( ) grad ( )

TT

x sx

T

x

df h f h h R f h f h R

d f h R f h






     
  

 
, (3.114) 

it should be mentioned that both the numerator and the denominator of (3.114) are 

numbers rather than matrices. 

To summarize the above-mentioned, the discrete Kolmogorov–Wiener problem 

can be reduced to a search for a minimum of the multivariable function (3.99). Such a 

problem can be solved on the basis of a gradient method. In the case of the method of 

quickest descent, the numbers n  can be analytically expressed as follows: 

 

 

grad ( ) grad ( )

grad ( ) grad ( )
j j

n

TT

x sx

n T

x h h

h R f h f h R

f h R f h




   


 
. (3.115) 

At the end we should mention that gradient methods may be applied to a search 

for a maximum of a multivariable function. In such a case, we should move in the 

direction that coincides with the gradient vector rather than in the direction opposite 

to the gradient vector. 

 

3.10 Discrete digital filter adaptation algorithms 

Before considering the actual adaptation algorithms, it is necessary to determine 

the optimal filter parameters to which these algorithms should strive. The approach to 

the optimal filtering problem can be both statistical and deterministic. First, consider 

the statistical approach. 

Let the input discrete random signal x(k) be processed by a non-recursive 

discrete filter of order N, the coefficients of which can be represented by the column 

vector  0 1, ,.., t

Nw w w w . The output of the filter is 

( ) ( )ty k u k w
 

(3.116) 
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where  ( ) ( ), ( 1),..., ( ) t
u k x k x k x k N    is the column vector of the filter's delay 

line at the k-th step. 

 In addition, there is an exemplary (also random) signal d(k). The sample 

playback error is equal to 

( ) ( ) ( ) ( ) ( )te k d k y k d k u k w    . 
(3.117) 

It is necessary to find such filter coefficients w, which ensure the maximum 

proximity of the output signal of the filter to the exemplary one, that is, minimize the 

error e(k). Since e(k) is also a random process, it is reasonable to take the average 

square as a measure of its value. Thus, the optimized functionality looks like this: 

  2 ( ) minJ w e k   

Error square equals 

 
22 2( ) ( ) ( ) ( ) 2 ( ) ( ) ( ) ( )t t t te k d k u k w d k d k u k w w u k u k w      

 Statistically averaging this expression, we get the following: 
  2 2( ) ( ) 2 ( ) ( ) ( ) ( )t t tJ w e k d k d k u k w w u k u k w    . (3.118) 

The averaged values included in the resulting formula have the following meaning: 

- 2 2( ) dd k    – the average square of the exemplary signal; 

- ( ) ( )t td k u k p  – transposed column vector p of mutual correlations 

between the k-th sample of the sample signal and the contents of the filter delay line. 

If the considered random processes x(t) and d(k) are jointly stationary, the vector of 

mutual correlations does not depend on the number of step k; 

- ( ) ( )tu k u k R  - the correlation matrix of the signal having a size (N + 1) × 

(N + 1). For a stationary random process, the correlation matrix has the form of a 

Toeplitz matrix, that is, the same values are on its diagonals: 

       

       

       

       

0 1 2
1 0 1 1
2 1 0 2

1 2 0

x x x x

x x x x

x x x x

x x x x

R R R R N

R R R R N
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         Taking into account the introduced notation, (3.118) takes the following form: 
  2 2 t t

dJ w p w w Rw   . (3.119) 

This expression is a quadratic form in w, and therefore, with a non-singular 

matrix R has a unique minimum, for finding which it is necessary to equate the 

gradient vector to zero: 

                                     gradJ(w) = −2p+ 2Rw = 0. 

 From here we get the desired solution for optimal filter coefficients: 
1w R p . 

(3.120) 

Such a filter is called a Wiener filter. Substituting (3.120) into (3.119) gives the 

minimum achievable error signal variance: 
2 2 1

min( ) t

de k p R p   . (3.121) 

It is also easy to show that ( ) ( ) 0e k x k  , that is, that the error signal for the 

Wiener filter is uncorrelated with the input and output signals of the filter. 

 

3.10.1 LMS Algorithm 

 Least Mean Square (LMS) algorithm belongs to the class of algorithms for 

stochastic gradient coordinate search for the minimum of the target function. 

 It is one of the most common adaptive algorithms based on finding the 

minimum of the target function (3.118) using the steepest descent method. When 

using this optimization method, the filter coefficient vector w(k) should be 

recursively updated as follows: 

 ( 1) ( ) grad ( ) ( ) ( )
2

w k w k J w k w k p Rw k


       , (3.122) 

where   is a positive coefficient called step size. A detailed analysis of the 

convergence of this process shows that the algorithm converges if 0 <μ <2/λmax, 

where λmax is the maximum eigenvalue of the correlation matrix R. The convergence 

rate depends on the spread of the eigenvalues of the correlation matrix R - the smaller 

the ratio λmax / λmin, the faster the iterative process converges. 
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However, to calculate the gradient, it is necessary to know the values of the 

matrix R and the vector p. In practice, only estimates of these values obtained 

frominput data can be available. The simplest estimates of this type are the 

instantaneous values of the correlation matrix and the vector of mutual correlations 

obtained without any averaging: 

( 1) ( ) ( ) ( ) ( ) ( ) ( )tw k w k d k u k u k u k w k     

( ) ( )( ( ) ( ) ( ))tw k u k d k u k w k   .    
(3.123) 

 The expression in brackets, according to (3.117), is the difference between the 

exemplary signal and the filter output signal at the k-th step, that is, the filtering error 

e(k). With this in mind, the expression for recursively updating filter coefficients is 

very simple: 

                                   w(k +1) = w(k) +µe(k)u(k).                                               (3.124) 

The adaptive filtering algorithm based on formula (3.124) is called LMS (Least 

Mean Square, the least squares method). An analysis of the convergence of the LMS 

algorithm shows that the upper limit for step size µ in this case is smaller than when 

using true gradient values. This border is approximately equal to 

   max 2

2 2 2
Tr 1k x

k

R N


 
  


    (3.125) 

where λk are the eigenvalues of the correlation matrix R, and 2
x  is the average square 

of the input filter signal. The main advantage of the LMS algorithm is extreme 

computational simplicity - to adjust the filter coefficients at each step, you need to 

perform N +1 pairs of multiplication-addition operations. The price for simplicity is 

slow convergence and increased, as compared to the minimum attainable value 

(3.121), error variance in steady state - filter coefficients always fluctuate around 

optimal values (3.120), which increases the level of output noise. 

There are a large number of modifications of the LMS algorithm aimed at 

accelerating convergence or reducing the number of arithmetic operations. 

Acceleration of convergence can be achieved by improving the gradient estimation 

used, as well as by converting the input signal to make its samples uncorrelated. 
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Reducing the computational complexity can be achieved, in particular, by using in 

(3.124 only the signs of the error signal and the contents of the filter's delay line. This 

allows one to completely get rid of multiplication operations when updating filter 

coefficients. In general, it should be noted that the requirements for accelerating 

convergence and reducing computational costs are contradictory. 

 

3.10.2 Deterministic optimization problem 

Considering the statistical optimization problem, we considered the input 

signal as a random process and minimized the mean square of the exemplary signal 

reproduction error. However, a different approach is possible without using statistical 

methods. 

Let, as before, the sequence consisting of K samples x(k) be subjected to 

processing.  The coefficients of a non-recursive filter form a column vector w, and 

the samples of the exemplary signal are equal to d(k). The output signal of the filter is 

determined by formula (3.116), and the error of reproduction of the sample signal is 

determined by formula (3.117). Now the optimization problem is formulated as 

follows: one needs to find filter coefficients w such that the error norm of the 

exemplary signal reproduction is minimal: 

 
1

2

0

( ) min
K

k

J w e k




  . (3.126) 

 To solve the problem in expressions (3.116) and (3.117), it is necessary to go 

to the matrix notation along the k coordinate, obtaining the formulas for the column 

vectors of the output signal y and for the playback error of the input signal e: 

 ,ty U w

   

.te d U w             (3.127) 
 Here d is the column vector of samples of the exemplary signal, and U is the 

matrix, the columns of which represent the contents of the filter delay line at different 

times: 

 (0), (1), , ( 1)U u u u K  .  

Expression (3.126) for the error norm can be rewritten in a matrix form as follows: 
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 ( ) mintJ w e e  .                           (3.128) 
Substituting (3.127) into (3.128), we have                                  

( ) ( ) ( ) .t t t t t t t t tJ w d U w d U w d d w Ud d U w w UU w        
 To find the minimum, it is necessary to calculate the gradient of this functional 
and equate it to zero: 
                                           gradJ(w) = −2Ud+ 2UU

t w = 0. 

 From here, the desired optimal solution is easily obtained: 

                                             w = (UU
t )−1 Ud.                                                     (3.129) 

 In formula (3.129), there is a close relationship with formula (3.120), which 

describes the statistical Wiener filter, which is statistically optimal. Indeed, if we take 

into account that (UU
t )−1 / K gives an estimate of the correlation matrix of the signal 

obtained by a single signal implementation by temporal averaging, and Ud / K is a 

similar estimate of the mutual correlations between the exemplary signal and the 

contents of the filter delay line, then formulas (3.129 ) and (3.120) match. 

 

  3.10.3 RLS Algorithm 

In the process of receiving a signal, at each successive step, the coefficients of 

the filter can be recalculated directly according to formula (3.129), but this is 

associated with unnecessarily large computational costs. Indeed, the size of the 

matrix U is constantly increasing and, moreover, it is necessary each time to re-

calculate the inverse matrix (UU
t )−1. 

It is possible to reduce computational costs if we note that at each step only one 

new column is added to the matrix U, and one new element is added to the vector d. 

This makes it possible to organize calculations recursively. The corresponding 

algorithm is called the Recursive Least Square Method (RLS). 

Without giving a detailed derivation of the formulas describing the RLS 

algorithm, here we present only the main idea of the method. When using the RLS 

algorithm, the estimate of the inverse correlation matrix P = (UU
t )−1  is recursively 

updated, and the derivation of the formulas is based on the following matrix identity: 
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1 1 1 1 1 1 1( ) ( )A BCD A A B C DA B DA− − − − − − −
+ = − +

 
(3.130) 

where A and C are square non-singular matrices (not necessarily of the same size), 

and B and D are matrices of compatible sizes. 

The use of formula (3.130) for the recursive update of the inverse correlation 

matrix P in combination with the original formula (3.129) for calculating the optimal 

filter coefficients gives the following sequence of steps of the adaptive RLS 

algorithm. 

1 When new input data u(k) are received, the signal is filtered using the current 

filter coefficients w (k −1) and the exemplary error value is reproduced: 

 ( ) ( ) ( 1)ty k u k w k= − ,

 

( ) ( ) ( ).e k d k y k= −  

2 Calculate the gain column vector (it should be noted that the fraction 

denominator in the following two formulas is a scalar, not a matrix): 

 
( 1) (k)

( )
1 ( ) ( 1) ( )t

P k u
K k

u k P k u k

−
=

+ −

.              (3.131) 

 3 The estimation of the inverse correlation matrix of the signal is updated: 

                                       ( ) ( 1) ( ) ( ) ( 1).tP k P k K k u k P k= − − −          (3.132) 

 4 Finally, the filter coefficients are updated:  

                                             ( ) ( 1) ( ) ( )w k w k K k e k= − + . 

 The initial value of the vector w is usually taken to be zero, and the diagonal 

matrix of the form CI/ 2

xσ  is used as the initial estimate of the matrix P, where C >> 1 

(C is recommended ≥100). 

 In formulas (3.126) and (3.128), the same weight is attached to the error values 

on all time ticks. As a result, if the statistical properties of the input signal change 

with time, this leads to a deterioration in the quality of filtering. To enable the filter to 

track a non-stationary input signal, one can apply in (3.126) an exponential 
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forgetting, at which the weight of past values of the error signal exponentially 

decreases: 

1
21

0

( ) ( )
K

K k

k

J w e k


 



 ,
 
0 1  .

 

 When using exponential forgetting, formulas (3.131) and (3.132) take the 
following form: 

( 1) ( )( )
( ) ( 1) ( )

P k u k
K k tu k P k u k




 
,

  

 1( ) ( 1) ( ) ( ) ( 1)tP k P k K k u k P k


    .  

 The main advantage of the RLS algorithm is fast convergence. However, this is 

achieved due to a significantly higher (compared to the LMS algorithm) 

computational complexity. With optimal computation, updating the filter coefficients 

at each cycle requires (2.5N
2 + 4N) pairs of multiplication – addition operations. 
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Chapter 4.  Practical applications of adaptive filters 

The basic configuration of an adaptive filter, operating in the discrete-time 

domain k, is illustrated in Figure 4.1. In such a scheme, the input signal is denoted 

 

Figure. 4.1 – Basic block diagram of an adaptive filter 

 

by x(k), the reference signal d(k) represents the desired output signal (that usually 

includes some noise component), y(k) is the output of the adaptive filter, and the error 

signal is defined as e(k) = d(k)− y(k). 

 The error signal is used by the adaptation algorithm to update the adaptive filter 

coefficient vector w(k) according to some performance criterion. In general, the 

whole adaptation process aims at minimizing some metric of the error signal, forcing 

the adaptive filter output signal to approximate the reference signal in a statistical 

sense. 

 It is interesting to notice how this basic configuration fits perfectly in several 

practical applications such as system identification, interference canceling, channel 

equalization, and signal prediction, which are detailed as follows. 

 For instance, Figure 4.2 depicts a typical system identification configuration, 

where wo is an ideal coefficient vector of an unknown plant, whose output is 

represented by yo(k), and n(k) denotes the observation or measurement noise. In this 

setup, the plant and the adaptive filter receive the same input signal. After 

convergence, the output signals of both systems become similar, and consequently 
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the adaptive transfer function becomes a good model for the input–output relationship 

of the plant.  

 Another application of an adaptive filter is interference canceling or signal 

enhancement represented in Figure 4.3. In this problem, a signal of interest s(k) is 

corrupted by a noise component n(k). A cleaner version of s(k) is desired but cannot 

be obtained directly in practice. The noisy signal, s(k) + n(k), is then employed as the 

reference signal for the adaptive filter, whose input must be another version ˆ( )n k , of 

the noise signal, strongly correlated to n(k). The adaptive mechanism adjusts the filter 

coefficients in such a manner that the filter output y(k) approximates n(k), thus 

forcing the error signal e(k) to resemble signal s(k). 

 
Figure 4.2 – System identification configuration of an adaptive filter: The adaptive 

coefficient w vector estimates the unknown system coefficient vector wo. 

In practical communications systems, a transmitted signal can be heavily 

distorted by the transmission channel. One may attempt to recover the original signal 

by employing an adaptive filter in the channel equalization configuration, as depicted 

in Figure 4.4. In such a framework, a training sequence s(k) known by the receiver is 

sent via a given channel generating a distorted signal. The same sequence s(k), after a 

proper time shift to compensate for transmission delays, is used as a reference signal 

in the receiver for the adaptive filter, whose input is the distorted signal. When the 

error function approximates zero, the output signal y(k) resembles the transmitted 
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signal s(k), indicating that the adaptive filter is compensating for the channel 

distortions. After this training process, the desired information can be sent through 

the channel, which is properly equalized by the adaptive filter. 

 

 
Figure 4.3 – Interference cancelation configuration of an adaptive filter: The error 

signal e(k) approximates the desired signal component s(k) if n(k) and ˆ( )n k are 

correlated. 

 

The adaptive predictor configuration is depicted in Figure 4.5. In this case, the 

adaptive filter input signal x(k) is a delayed version of the reference signal d(k). 

 

 
Figure 4.4 – Channel equalization configuration of an adaptive filter: The output 

signal y(k) estimates the transmitted signal s(k) 
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Figure 4.5 – Predictor configuration of an adaptive filter: The output signal y(k) 

estimates the present input sample s(k) based on past values of this same signal 

 

Therefore, when the adaptive filter output y(k) approximates the reference, the 

adaptive filter operates as a predictor system. 

From the discussion so far, one observes that the reference signal, through the 

definition of the error signal, acts as a general guide for the entire adaptation process. 

The four configurations illustrated above indicate how one can determine the desired 

output signal in several practical situations. In all cases, one can clearly identify the 

adaptive filter block given in Figure 4.1. To completely characterize this common 

basic cell, three main aspects must be defined: 

1. Adaptive filter structure: This book will focus on the adaptive transversal 

FIR structure, whose input–output relationship is described by 

0 1
0

( ) ( ) ( 1) ... ( ) ( ) ( )
N

t

N i

i

y k w x k w x k w x k N w x k i w x k


        

 where N is the filter order and x(k) and w are vectors composed by the input-signal 

samples and the filter coefficients, respectively; that is 

   ( ), ( 1),..., ( ) t
x k x k x k x k N   ,   0 1, ,..., t

Nw w w w .  

In cases of complex implementations, the output signal is represented as w
H
x(k), 

where the superscript H denotes the Hermitian operator (transpose and complex 

conjugate). 
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 2. Error metric: As mentioned before, the adaptation algorithms adjust the 

adaptive filter coefficients in an attempt to minimize a given error norm. Different 

metrics yield adaptation processes with quite distinct characteristics. 

 3. Adaptation algorithm: Several optimization procedures can be employed to 

adjust the filter coefficients, including, for instance, the least mean-square (LMS) and 

its normalized version, the data-reusing (DR) including the affine projection (AP), 

and the recursive least-squares (RLS) algorithms. 

Let us consider in more detail the practical application of adaptive filters. 

 

4.1 Using RLS Adaptive Filters for System Identification  

Adaptive filters are used for non-stationary signals and environments or in 

applications where a sample-by-sample adaptation of a process or a low processing 

delay is required. The characteristics of digital filters can easily be changed by 

modifying the filter coefficients. The basic concept of an adaptive filter is shown in 

Figure 4.6.  

 

Figure 4.6 – Adaptive filter 

 

The objective is to filter the input signal, x(n), with an adaptive filter in such a 

manner that it matches the desired signal, d(n). The desired signal, d(n), is subtracted 
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from the filtered signal, y(n), to generate an error signal. The error signal drives an 

adaptive algorithm that generates the filter coefficients in a manner that minimizes 

the error signal. The least-mean-square (LMS) or recursive-least-squares (RLS) 

adaptive filter are two of the most popular ones.  

Identifying an unknown system has been a central issue in various application 

areas such as control, channel equalization, echo cancellation in communication 

networks and teleconferencing etc. Identification is the procedure of specifying the 

unknown model in terms of the available experimental evidence, that is, a set of 

measurements of the input output desired response signals and an appropriately error 

that is optimized with respect to unknown model parameters. Adaptive identification 

refers to a particular procedure where we learn more about the model as each new 

pair of measurements is received and we update the knowledge to incorporate the 

newly received information.  

      In the wide range of available adaptive algorithms, gradient descend methods, 

including the popular least mean squares (LMS) and recursive-least-squares (RLS) 

adaptive filter, are used. 

 

4.1.1 RLS Adaptive Filter 

 The recursive least square error (RLS) filter is a sample-adaptive, time-update, 

version of the Wiener filter. For stationary signals, the RLS filter converges to the 

same optimal filter coefficients as the Wiener filter. For non-stationary signals, the 

RLS filter tracks the time variations of the process. The RLS filter has a relatively 

fast rate of convergence to the optimal filter coefficients. Figure 4.7 illustrates the 

configuration of an adaptive filter where y(m), x(m),    

 0 1 1( ) ( ), ( ),..., ( ) t

Pw m w m w m w m  and P denote the filter input, the desired signal, 

the filter coefficient vector and the filter length, respectively. The filter output can be 

expressed as 
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ˆ( ) ( ) ( )tx m w m y m=    (4.1) 

where ˆ( )x m  is an estimate of the desired signal x(m). The filter error signal is defined 

as  

ˆ( ) ( ) ( ) ( ) ( ) ( )te m x m x m x m w m y m= − = − .   (4.2) 

The adaptation process is based on the minimization of the mean square error 

criterion defined as 

{ }2
2[ ( )] ( ) ( ) ( )tE e m E x m w m y m = − = 

(0) 2 ( ) ( ) ( )t t

xx yx yy
r w m r w R m w m= − + . 

  (4.3) 

For stationary signals, the result of this minimization is given as  

                                                  1

yy yx
w R r−=  ,                                                                    (4.4) 

where, Ryy is the autocorrelation matrix of the input signal and ryx is the cross-

correlation vector of the input and the target signals. For a block of N sample vectors, 

the correlation matrix can be written as  

                                            
1

0

( ) ( )
N

t t

yy

m

R Y Y y m y m
−

=

= =∑                                         (4.5) 

where ( )( ) ( ),..., ( )
t

y m y m w m P= − . Now, the sum of vector product in (4.5) can be 

expressed in recursive fashion as  

                                                   ( ) ( 1) ( ) ( )t

yy yy
R m R m y m y m= − + .                                (4.6)  

To introduce adaptability to the time variations of the signal statistics, the 

autocorrelation estimate in (4.6) can be windowed by an exponentially decaying 

window:  

                                                ( ) ( 1) ( ) ( )t

yy yy
R m R m y m y mλ= − +                                  (4.7)  

where  λ is the so-called adaptation, or forgetting factor, which lies in the range 

0<λ≤1. Similarly, the cross-correlation vector is given by  
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1

0

( ) ( )
N

yx

m

r y m x m




 .                                             (4.8) 

Figure 4.7 – Configuration of an adaptive filter 

 

    The sum of products in Equation (4.8) can be calculated in recursive form as   

                                                   ( ) ( 1) ( ) ( )yx yxr m r m y m x m   .                                   (4.9) 

Again this equation can be made adaptive using an exponentially decaying forgetting 

factor λ:       

                                             ( ) ( 1) ( ) ( )yx yxr m r m y m x m   .                            (4.10) 

For a recursive solution of the least square error Equation (4.10), we should 

obtain a recursive time-update formula for the inverse matrix in the form  

                                                     1 1( 1) Update( )yy yyR R m m    .                                  (4.11) 

 

4.1.2 Recursive Time-update of Filter Coefficients 

The least square error filter coefficients are  

                                     1( ) ( ) ( ) ( ) ( )yy yx yy yxw m R m r m Ф m r m  .                            (4.12) 
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Substituting the recursive form of the correlation vector into Equation (4.12) from 

Equation (4.10) yields  

   ( ) ( ) ( ) ( ) ( )yy yxw m Ф m r m y m x m    .                        (4.13) 

Now substitution of k(m)=Φ(m)y(m) and the recursive form of 
1 1( ) ( 1) ( ) ( ) ( 1)t

yy yy yyФ m Ф m k m y m Ф m      into Equation (4.13) yields  

1 1( ) ( 1) ( ) ( ) ( 1) ( 1) ( ) ( )t

yy yxw m Ф m k m y m Ф m r m k m x m           .   (4.14) 

Substitution of w(m–1)=Φ(m–1)ryx(m–1) into (4.14) yields  

( ) ( 1) ( ) ( ) ( ) ( 1)tw m w m k m x m y m w m       .   (4.15) 

This equation can be rewritten in the following form  

( ) ( 1) ( ) ( )w m w m k m e m   .   (4.16) 

Equation (4.16) is a recursive time-update implementation of the least square error 

Wiener filter. 

 

4.1.3 The Steepest-Descent Method 

The mean square error surface with respect to the coefficients of an FIR filter is 

a quadratic bowl-shaped curve, with a single global minimum that corresponds to the 

LSE filter coefficients as shown in Figure 4.8. The steepest descent search is based 

on taking a number of successive downward steps in the direction of negative 

gradient of the error surface. The steepest-descent adaptation method can be 

expressed as  

          
( )( 1) ( )
( )

E m
w m w m

w m

 

    
 

,                                        (4.17) 

where, μ is the adaptation step size.  

The gradient of the mean square error function is given by  
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2[ ( )] 2 2 ( )
( ) yx yy

E e m
r R w m

w m


  


.                                     (4.18)  

  

  Substituting (4.18) into (4/17) yields 

 

        ( 1) ( ) ( )yx yyw m w m r R w m       .                                   (4.19) 

 

      Figure 4.8 – Coefficient updating in a steepest-descent-based algorithm. 

 

Let w0 denote the optimal LSE filter coefficient vector, we define a filter 

coefficients error vector ( )w m  as  

                                                       0( ) ( )w m w m w  .                                                     (4.20)  
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For a stationary process, the optimal LSE filter w0 is obtained from Wiener filter, as  

                                                           1
0 yy yxw R r .                                                            (4.21) 

By substituting (4.19) into (4.20), we get  

                                                      ( 1) ( )yyw m I R w m     .                                     (4.22) 

 

Figure 4.9 A feedback model of the variation of coefficient error with time 

 

The parameter  μ, the adaptation step size, controls the stability and the rate of 

convergence of the adaptive filter. Too large a value for μ causes instability; too small 

a value gives a low convergence rate. The correlation matrix can be expressed in 

terms of the matrices of eigenvectors and eigenvalues as  

                                                         t

yyR Q Q  ,                                                            (4.23) 

where, Q is an ortho-normal matrix of the eigenvectors of Ryy, and Λ is a diagonal 

matrix with its diagonal elements corresponding to the eigenvalues of Ryy. 

Substituting Ryy from Equation (4.23) into Equation (4.22) yields  

                                         ( 1) ( )tw m I Q Q w m                                                   (4.24)                



127 
 

 Multiplying both sides of Equation (4.24) by Qt and using the relation Qt
Q = 

=QQ
t = I yields  

  ( 1) ( )t tQ w m I Q w m    .                             (4.25) 

Let us denote 

( ) ( )tv m Q w m . (4.26) 

Then  

                                                  ( 1) ( )v m I v m    .                                   (4.27)  

 As Λ and Ι are both diagonal matrices, Equation (4.27) can be expressed in 

terms of the equations for the individual elements of the error vector v(m) as  

                                          ( 1) ( )k k kv m I v m   ,                                       (4.28)  

where λk is the kth eigenvalue of the autocorrelation matrix of the filter input y(m). 

 

4.2 Applications of Adaptive Filters  

 The most important driving forces behind the developments in adaptive filters 

throughout their history have been the wide range of applications in which such 

systems can be used. The major applications of adaptive filters are system 

identification, inverse modeling, linear prediction and feed-forward control.  

 

4.2.1 System Identification 

 Figure 4.10 shows the general problem of system identification. In this 

diagram, the system enclosed by dashed lines is a “black box,” meaning that the 

quantities inside are not observable from the outside. Inside this box is an unknown 

system which represents a general input-output relationship and the signal η(n), 

called the observation noise signal because it corrupts the observations of the signal 

at the output of the unknown system.  
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 Let d‟(n) represent the output of the unknown system with x(n) as its input. 

Then, the desired response signal in this model is  

 

Figure 4.10 – System Identification 

 

( ) ( ) ( )d n d n n  . (4.29) 

 The task of the adaptive filter is to accurately represent the signal ( )d n  at its 

output. If ( ) ( )y n d n , then the adaptive filter has accurately modeled or identified 

the portion of the unknown system that is driven by x(n). 

 Let both the unknown system and the adaptive filter be FIR filters, such that  

                                           ( ) ( ) ( ) ( )t

optd n W n X n n                                                 (4.30)  

where, ( )t

optW n is an optimum set of filter coefficients for the unknown system at time 

n. In the system identification there are two major applications, one is channel 

identification and the other is adaptive noise cancellation. 

 

4.2.2 Inverse Modelling 

The inverse modelling system is shown in Figure 4.11. In this diagram, a 

source signal s(n) is fed into an unknown system that produces the input signal x(n) 

for the adaptive filter.   
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 The output of the adaptive filter is subtracted from a desired response signal 

that is a delayed version of the source signal, such that  

                                           d(n) = s(n–Δ)                                                         (4.31)  

Figure 4.11 – Inverse Modeling 

 

where Δ is a positive integer value. The goal of the adaptive filter is to adjust its 

characteristics so that the output signal is an accurate representation of the delayed 

source signal.  

 

4.2.3 Feedforward Control 

Another problem area combines elements of both the inverse modeling and 

system identification tasks and typifies the types of problems encountered in the area 

of adaptive control known as feedforward control. Figure 4.12 shows the block 

diagram for this system, in which the output of the adaptive filter passes through a 

plant before it is subtracted from the desired response to form the error signal. The 

plant hampers the operation of the adaptive filter by changing the amplitude and 

phase characteristics of the adaptive filter‟s output signal as represented in e(n).  

  Thus, knowledge of the plant is generally required in order to adapt the 

parameters of the filter properly. 
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Figure 4.12 – Feed forward Control 

 

 

                                           Figure 4.13 – Linear Prediction  

 

  

4.2.4 Linear Prediction 

A third type of adaptive filtering task is shown in Figure 4.13. In this system, 

the input signal x(n) is derived from the desired response signal as  

                                                 x(n) = d(n–Δ),                                                   (4.32)  

where, Δ is an integer value of delay. In effect, the input signal serves as the desired 

response signal, and for this reason it is always available. In such cases, the linear 
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adaptive filter attempts to predict future values of the input signal using past samples, 

giving rise to the name linear prediction for this task. 

 If an estimate of the signal x(n+Δ) at time n is desired, a copy of the adaptive 

filter whose input is the current sample x(n) can be employed to compute this 

quantity. However, linear prediction has a number of applications besides the obvious 

application of forecasting future events.  

 

4.3 Interference Cancellation 

Interference cancellation refers to situations where it is required to cancel an 

interfering signal/noise from the given signal which is a mixture of the desired signal 

and the interference. The principle of interference cancellation is to obtain an 

estimate of interfering signal and subtract that from the corrupted signal. 

Feasibility of this idea relies on the availability of a reference source from 

which the interfering signal originates. Figure 4.15 depicts the concept of interference 

cancellation, in its simplest form. There are two inputs to the canceler: primary and 

reference. The primary input is the corrupted signal, that is, the desired signal plus 

interference. The reference input, on the other hand, originates from the interference 

source only. In some applications of interference cancellation, there might also be 

some leakage of the desired signal to the reference input. Here, we have ignored this 

situation for simplicity. The adaptive filter is adjusted so that a replica of the 

interference signal that is present in the primary signal appears at its output, y(n). 

Subtracting this from the primary input results in an output which is cleared from 

interference, thus the name interference cancellation. 

We note that the interference cancellation configuration of Figure 4.15 is 

different from the previous cases of adaptive filters, in the sense that the residual error 

(which was discarded in other cases) is the cleaned-up signal, here. The desired signal 

in the previous cases has been replaced here by a noisy (corrupted) version of the 

actual desired signal. 
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                                 Figure 4.14 – ADPCM encoder–decoder. 

 

    

                                Figure 4.15 – Interference cancellation. 

 

Moreover, the use of the term reference to refer to the adaptive filter input is 

clearly related to the role of this input in the canceler. 

In the rest of this section, we present some specific applications of interference 

canceling. 
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4.3.1 Echo Cancellation in Telephone Lines 

Echoes in telephone lines mostly occur at points where hybrid circuits are used 

to convert four-wire networks to two-wire ones. Figure 4.16 presents a simplified 

diagram of a telephone connection network, highlighting the points where echoes 

occur.  

 

Figure 4.16 – Simplified diagram of a telephone network. 

 

The two wires at the ends are subscriber loops connecting customers‟ 

telephones to central offices. It may also include some portions of the local network. 

The four wires, on the other hand, are carrier systems (trunk lines) for medium-to-

long-haul transmission. The distinction is that the two-wire segments carry signals in 

both directions on the same lines, while in the four-wire segment signals in the two 

directions are transmitted on two separate lines. Accordingly, the role of hybrid 

circuit is to separate the signals in the two directions. Perfect operation of the hybrid 

circuit requires that the incoming signal from the trunk lines should be directed to the 

subscriber line and that there should not be any leakage (echo) of that to the return 

line. In practice, however, such ideal behavior cannot be expected from hybrid 

circuits. There would always be some echo on the return path. In the case of voice 
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communications (i.e., ordinary conversation on telephone lines), effect of the echoes 

becomes more obvious (and annoying to the speaker) in long-distance calls, where 

the delay with which the echo returns to the speaker may be in the range of a few 

hundred milliseconds. In digital data transmission, both short- and long-delay echoes 

are serious. 

As was noted before and also can clearly be seen from Figure 4.17, the 

problem of echo cancellation may be viewed as one of system modeling. An adaptive 

filter is put between the incoming and outgoing lines of the hybrid. By adapting the 

filter to realize an approximation of the echo path, a replica of the echo is obtained at 

its output. This is then subtracted from the outgoing signal to clear that from the 

undesirable echo. 

Echo cancelers are usually implemented in transversal form. The time spread 

of echoes in a typical hybrid circuit is in the range of 20–30 ms. If we assume a 

sampling rate of 8 kHz for the operation of the echo canceler, an echo spread of 30 

ms requires an adaptive filter with at least 240 taps (30 ms×8 kHz). This is a 

relatively long filter, requiring a high-speed digital signal processor for its realization. 

Frequency domain processing is often used to reduce the high computational 

complexity of long filters.  

 

 

                              Figure 4.17 – Adaptive echo canceler. 
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The echo cancelers described previously are applicable to both voice and data 

transmission. However, more stringent conditions have to be satisfied in the case of 

data transmission. To maximize the usage of the available bandwidth, full-duplex 

data transmission is often used. This requires the use of a hybrid circuit for 

connecting the data modem to the two-wire subscriber loop, as shown in Figure 4.18.  

 

                             Figure 4.18 – Data echo canceler 

 

The leakage of the transmitted data back to the receiver input is thus inevitable 

and an echo canceler has to be added, as indicated in Figure 4.18. However, we note 

that the data echo cancelers are different from the voice echo cancelers used in 

central switching offices for many ways. For instance, because the input to the data 

echo canceler are data symbols, it can operate at the data symbol rate that is in the 

range of 2.4–3 kHz (about three times smaller than the 8 kHz sampling frequency 

used in voice echo cancelers). For a given echo spread, a lower sampling frequency 

implies a smaller number of taps for the echo canceler. Clearly, this greatly simplifies 

the implementation of the echo canceler. On the other hand, the data echo cancelers 

must achieve a much higher level of echo cancellation to ensure reliable transmission 

of data at higher bit rates. In addition, one should also take care of echoes returned 

from the other side of the trunk lines. Detailed discussions on these issues can be 

found in Lee and Messerschmitt (1994) and Gitlin, Hayes, and Weinstein (1992). 
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4.3.2 Acoustic Echo Cancellation 

The problem of acoustic echo cancellation can be best explained by referring to 

Figure 4.19, which depicts the scenario that arises in teleconferencing applications. 

The speech signal from a far-end speaker, received through a communication 

channel, is broadcast by a loudspeaker in a room and its echo is picked up by a 

microphone. This echo must be canceled to prevent its feedback to the far-end 

speaker. The microphone also picks up the near-end speaker(s) speech and possible 

background noise, which may exist in the room. An adaptive transversal filter with 

sufficient length is used to model the acoustics of the room. A replica of the 

loudspeaker echo is then obtained and subtracted from the microphone signal before 

the transmission. 

 

 Figure 4.19 – Acoustic echo cancellation 

 

Clearly, the problem of acoustic echo cancellation can also be posed as one of 

system modeling. The main challenge here is that the echo paths spread over a 

relatively long length in time. For typical office rooms, echoes in the range of 100–
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250 ms spread is quite common. For a sampling rate of 8 kHz, this would mean 800–

2000 taps! Thus, the main problem of acoustic echo cancellation is that of realizing 

very long adaptive filters. In addition, as speech is a lowpass signal, it becomes 

necessary to use special algorithms to ensure fast adaptation of the echo canceler.  

 

4.4 Channel Equalization 

As can be seen from Fig. 4.15, channel equalization or inverse filtering consists 

of estimating a transfer function to compensate for the linear distortion caused by the 

channel. From another point of view, the objective is to force a prescribed dynamic 

behavior for the cascade of the channel (unknown system) and the adaptive filter, 

determined by the input signal. The first interpretation is more appropriate in 

communications, where the information is transmitted through dispersive channels. 

The second interpretation is appropriate for control applications, where the inverse 

filtering scheme generates control signals to be used in the unknown system. 

In the ideal situation, where n(k) = 0 and the equalizer has sufficient order, the 

error signal is zero if 

                                         W(z)H(z) = z−L
                                                         (4.33) 

where W(z) and H(z) are the equalizer and unknown system transfer functions, 

respectively. Therefore, the ideal equalizer has the following transfer function 

                                              ( )
( )

Lz
W z

H z



 .                                                      (4.34) 

From the above equation, we can conclude that if H(z) is an IIR transfer function with 

nontrivial numerator and denominator polynomials, W(z) will also be IIR. If H(z) is 

an all-pole model, W(z) is FIR. If H(z) is an all-zero model, W(z) is an all-pole 

transfer function. 

By applying the inverse Z-transform to equation (4.33), we can conclude that 

the optimal equalizer impulse response convolved with the channel impulse response 
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produces an impulse as a result. This means that for zero additional error in the 

channel, the output signal y(k) restores x(k−L) and, therefore, one can conclude that a 

deconvolution process took place. 

      

Figure 4.20 – Channel equalization 

 

  The delay in the reference signal plays an important role in the 

equalization process. Without the delay, the desired signal is x(k), whereas the signal 

y(k) will be mainly influenced by old samples of the input signal, since the unknown 

system is usually causal. As a consequence, the equalizer should also perform the 

task of predicting x(k) simultaneously with the main task of equalizing the channel. 

The introduction of a delay alleviates the prediction task, leaving the equalizer free to 

invert the channel response. In practice, the reader should try different delays. 

 In the case the unknown system is not of minimum phase, i.e., its transfer 

function has zeros outside the unit circle of the Z plane, the optimum equalizer is 

either stable and noncausal, or unstable and causal. Both solutions are unacceptable. 

The noncausal stable solution could be better approximated by a causal FIR filter 

when the delay is included in the desired signal. The delay forces a time shift in the 

ideal impulse response of the equalizer, allowing the time span, where most of the 

energy is concentrated, to be in the causal region. 

 If channel noise signal is present and is uncorrelated with the channel‟s input 

signal, the error signal and y(k) will be accordingly noisier. However, it should be 

noticed that the adaptive equalizer, in the process of reducing the MSE, disturbs the 



139 
 

optimal solution by trying to reduce the effects of n(k). Therefore, in a noisy 

environment the equalizer transfer function is not exactly the inverse of H(z). 

In practice, the noblest use of the adaptive equalizer is to compensate for the 

distortion caused by the transmission channel in a communication system. The main 

distortions caused by the channels are high attenuation and intersymbol interference 

(ISI). The ISI is generated when different frequency components of the transmitted 

signals arrive at different times at the receiver, a phenomenon caused by the 

nonlinear group delay of the channel. For example, in a digital communication 

system, the time-dispersive channel extends a transmitted symbol beyond the time 

interval allotted to it, interfering in the past and future symbols. Under severe ISI, 

when short symbol space is used, the number of symbols causing ISI is large. 

The channel impulse response is a time spread sequence described by h(k) with 

the received signal being given by 

 
,

( ) ( ) ( ) ( ) ( ) ( )
k j

l l k

re k J x k h J x l h k J l n k J


 

               (4.35) 

where J denotes the channel time delay (including the sampler phase). The first term 

of the above equation corresponds to the desired information, the second term is the 

interference of the symbols sent before and after x(k). The third term accounts for 

channel noise. Obviously only the neighboring symbols have significant influence in 

the second term of the above equation. The elements of the second term involving 

x(l), for l > k, are called pre-cursor ISI since they are caused by components of the 

data signal that reach the receiver before their cursor. On the other hand, the elements 

involving x(l), for l < k, are called post-cursor ISI. 

In many situations, the ISI is reduced by employing an equalizer consisting of 

an adaptive FIR filter of appropriate length. The adaptive equalizer attempts to cancel 

the ISI in the presence of noise. In digital communication, a decision device is placed 

after the equalizer in order to identify the symbol at a given instant. The equalizer 

coefficients are updated in two distinct circumstances by employing different 
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reference signals. During the equalizer training period, a previously chosen training 

signal is transmitted through the channel and a properly delayed version of this 

signal, that is prestored in the receiver end, is used as reference signal. The training 

signal is usually a pseudo-noise sequence long enough to allow the equalizer to 

compensate for the channel distortions. After convergence, the error between the 

adaptive-filter output and the decision device output is utilized to update the 

coefficients. The resulting scheme is the decision-directed adaptive equalizer. It 

should be mentioned that in some applications no training period is available. 

Usually, in this case, the decision-directed error is used all the time. 

A more general equalizer scheme is the decision-feedback equalizer (DFE) 

illustrated in Fig. 4.16. The DFE is widely used in situations where the channel 

distortion is severe. The basic idea is to feed back, via a second FIR filter, the 

decisions made by the decision device that is applied to the equalized signal. The 

second FIR filter is preceded by a delay, otherwise there is a delay-free loop around 

the decision device. Assuming the decisions were correct, we are actually feeding 

back the symbols x(l), for l < k, of equation (4.35). The DFE is able to cancel the 

post-cursor ISI for a number of past symbols (depending on the order of the FIR 

feedback filter), leaving more freedom for the feedforward section to take care of the 

remaining terms of the ISI. Some known characteristics of the DFE are: 

- The signals that are fed back are symbols, being noise free and allowing 

computational savings. 

- The noise enhancement is reduced, if compared with the feedforward-only 

equalizer. 

- Short time recovery when incorrect decisions are made. 

- Reduced sensitivity to sampling phase. 

The DFE operation starts with a training period where a known sequence is 

transmitted through the channel, and the same sequence is used at the receiver as the 

desired signal. The delay introduced in the training signal is meant to compensate for 

the delay the transmitted signal faces when passing through the channel. During the 
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training period the error signal, which consists of the difference between the delayed 

training signal and signal y(k), is minimized by adapting the coefficients of the 

forward and feedback filters. After this period, there is no training signal and the 

desired signal will consist of the decision device output signal. Assuming the 

decisions are correct, this blind way of performing the adaptation is the best solution 

to keep track of small changes in the channel behavior. 

 

 

Figure 4.21 – Decision-feedback equalizer 

 

In the examples given below, we will verify the effectiveness of the Wiener 

solution in environments related to the applications of noise cancellation, prediction, 

equalization, and identification. 

(a) In a noise cancellation environment a sinusoid is corrupted by noise as 

follows 

     0 1cosd k k n k   

with 
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     1 1 1n k an k n k    , 

|a| < 1 and n(k) is a zero-mean white noise with variance 2 1n  . The input signal of 

the Wiener filter is described by 

     2 2 1n k an k n k     

where |b| < 1. 

 (b) In a prediction case the input signal is modeled as 

x(k) = −ax(k − 1) + n(k), 

with n(k) being a white noise with unit variance and |a| < 1. 

 (c) In an equalization problem a zero-mean white noise signal s(k) with 

variance c is transmitted through a channel with an AR model described by 

 ˆ ˆ( ) ( 1) ( )x k ax k s k     

with |a| < 1 and the received signal given by 

 ˆ( ) ( ) ( )x k x k n k   

whereas n(k) is a zero-mean white noise with variance d and uncorrelated with s(k). 

 (d) In a system identification problem a zero-mean white noise signal x(k) with 

variance c is employed as the input signal to identify an AR system whose model is 

described by 

v(k) = −av(k − 1) + x(k) 

where |a|<1 and the desired signal is given by 

d(k) = v(k) + n(k). 

Repeat the problem if the system to be identified is an MA whose model is described 

by 

v(k) = −ax(k−1) + x(k) 
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 For all these cases describe the Wiener solution with two coefficients and 

comment on the results. 

Solution: 

 Some results used in the examples are briefly reviewed. A 2×2 matrix inversion 

is performed as 

 

22 121

21 1111 22 12 21

1 r r
R

r rr r r r


 

  
  

, 

 

where rij is the element of row i and column j of the matrix R. For two first-order AR 

modeled signals x(k) and v(k), whose poles are respectively placed at −a and −b with 

the same white noise input with unit variance, their cross-correlations are given by 

   
 
1

l
a

E x k v k l
ab


    

 

 

for l >0, and 

   
 
1

l
b

E x k v k l
ab




    
 

for l <0. 

(a) The input signal in this case is given by n2(k), whereas the desired signal is 

given by d(k). The elements of the correlation matrix are computed as 

   
 

2 2 21

l
b

E n k n k l
b


    

. 

The expression for the cross-correlation vector is given by 
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The coefficients corresponding to the Wiener solution are given by 

1
0

1 11 1
1

11

b ab
w R p b a

b a
ab

ab



 
                  

 

. 

The special case where a = 0 provides a quite illustrative solution. In this case 

0

1
w

b

 
  
 

, 

so that the error signal is given by 

          2
0 0

2

( )
cos

( 1)
t

n k
e k d k y k k n k w

n k


 
      

 
 

       0 2 2cos 1k n k n k bn k       

           0 2 2 0cos 1 1 cosk n k bn k n k bn k k         . 

 As can be observed, the cosine signal is fully recovered since the Wiener filter 

was able to restore n(k) and remove it from the desired signal. 

(b) In the prediction case the input signal is x(k) and the desired signal is x(k + 

L). Since 

   
 

21

L
a

E x k x k L
a


    

, 

the input signal correlation matrix is 
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2
2 2

2

2 2

1
1 1 1

11 1
1 1

a
E x k E x k x k a a
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Vector p  is described by 
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. 

The expression for the optimal coefficient vector is easily derived. 

1
0w R p   
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, 

where in the above equation the value of L is considered positive. The predictor result 

tells us that an estimate ˆ( )x k L of x(k + L) can be obtained as 

     ˆ L
x k L a x k   . 

According to our model for the signal x(k), the actual value of  x(k+L) is 

         
1

0

L
L i

i

x k L a x k a n k i




      . 

 The results show that if x(k) is an observed data at a given instant of time, the 

best estimate of  x(k + L) in terms of  x(k) is to average out the noise as follows 

             
1

0

ˆ
L

L i L

i

x k L a x k E a n k i a x k




 
        

 
  



146 
 

because   0E n k i    . 

(c) In this equalization problem, matrix R is given by 

     

     

2
2 2

2

2 2

1
1 1 1

11 1
1 1

a
c d cE x k E x k x k a a

R
aE x k x k E x k c c d
a a

 
               

              
  

. 

 By utilizing s(k−L) as desired signal and recalling that it is a white noise and is 

uncorrelated with the other signals involved in the experiment, the cross-correlation 

vector between the input and desired signals is 

   

   

 

 
1 1

1
1 1

L L

L L

E x k s k L a c
p

E x k s k L a c
 

         
          

. 

The coefficients of the underlying Wiener solution are given by 

1
0w R p   

 

 

2 2

2 1 1
2

2 22 2

1
11 1 1

1 12
1 11 1

L L
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c d c
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  2 2

2 1
2 1

2 2 2 2

1 1 1

2
1 1 1 1

L L

c c
d
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c cd ac a c
d a d

a a a a




 
    

  
     

    

 

 
1 12

2
2 2

1

2
1 1

L L da c

a d a cc cd
d
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. 

If there is no additional noise, i.e. d = 0, the above result becomes 

   
10 2 1

0

1 1L L
w

a a
 

 
  
  
 

. 



147 
 

That is, the Wiener solution is just correcting the gain of the previously received 

component of the input signal, namely x(k−1), while not using its most recent 

component x(k). This happens because the desired signal s(k−L) at instant k has a 

defined correlation with any previously received symbol. On the other hand, if the 

signal s(k) is a colored noise, the Wiener filter would have a nonzero first coefficient 

in a noiseless environment. In case there is environmental noise, the solution tries to 

find a perfect balance between the desired signal modeling and the noise 

amplification. 

(d) In the system identification example the input signal correlation matrix is 

given by 

0
0
c

R
c

 
  
 

. 

With the desired signal d(k), the cross-correlation vector is described as 

   

   1

E x k d k c
p

caE x k d k

     
           

. 

The coefficients of the underlying Wiener solution are given by 

1
0

1 0 1
10

cc
w R p

ca a

c



 
    

      
     

 
 

. 

 Note that this solution represents the best way in which a first-order FIR model 

can approximate an IIR model because 

  1
0 1W z az   

and 

1 2 2
1

1 1 ...
1

az a z
az
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 On the other hand, if the unknown model is the described FIR model such as 

v(k)=−ax(k −1)+x(k), the Wiener solution remains the same and corresponds exactly 

to the unknown system model. 

 In all these examples, the environmental signals are considered wide-sense 

stationary and their statistics is assumed to be known. In a practical situation, not 

only the statistics might be unknown, but the environments are usually nonstationary 

as well. In these situations, the adaptive filters come into play because their 

coefficients vary with time according to measured signals from the environment. 
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