MiHicTepcTBO OCBiTH | HAYKHM Y KpaiHu
HanionanbHuii TexHiuyHMi yHiBepcuTeT
«/IHINPOBCHKA MOJIITEXHIKA

[HCTUTYT eNIeKTPOCHEPTETHKHU

(1HCTHTYT)

dakynbpTeT iHOOPMaAIHHIX TEXHOJIOTIH

(dpakynsrer)

Kadenpa [TporpamHoOro 3a0€3MneueHHs] KOMIT IOTEPHUX CUCTEM

(noBHa Ha3Ba)

MHHOACHIOBAJIBHA 3AIIUCKA
KBaJi(ikaniiiHoi po00TH CTyNEeHs

mazicmpa
(Ha3Ba OCBITHBO-KBaTi(iKALIHHOTO PiBHS)

CTyJIeHTAa Pyos Bauecnasa Bacunvosuua
(ITIB)
aKaJeMivHOI rpynu 12/M-19-1
(umcpp)
crneniajabHOCTI 121 Inocenepis npoepamuozo 3abe3neyenHs

(ko[ 1 Ha3Ba CHEiATLHOCTI)

HA TeMy: Memoou, aneopummu ma npogpamte 3abe3nedeHis

07151 OIOHIYHO020 XANAHHS 3 YHUKHEHHAM NepeutKoo

30 00NOMO2010 depee OKmManmie ma 21uboK020 HaABYAHHS

B.B. Pyow
OuiHka 32 KaJI0K0
KepiBHuku IIpi3Buie, iHiniaJgn | pedTHHr | iHCTHTYHI Higmuce

0BOIO HHOI0

pO3I1LTiB

KBaTiikauiiHo1

poboTu

cneniajJabHuii Hom. Cupotkina O.1.

€KOHOMIYHMH Jou. Kacesanenko JI.B.

\ Penensenr \ \ ‘

\ HopMoxkoHTpOJI€Ep \ Jlou. Cupotkina O.1. \ \

JHinpo
2020




MiHicTepcTBO OCBITH i HAYKM YKpaiHH
HanionanbHuii TexHivyHMii yHiBepcuTeT
«/IHINPOBCHKA MOJIITEXHIKA

3ATBEPIKEHO:
3aBigyBau kadeapu
[IporpaMHOro 3abe3neYeHHs] KOMIT FOTEPHUX CHCTEM

(ToBHA Ha3Ba)

I.M. VY noBuk
(mignumc) (mpi3BuILe, iHIIiaTN)
« » 20 20 Poky

3ABJIAHHA

HA BUKOHAHHA KBaJdidikauniiHoi podoTn MmaricTpa

CreniajJabHOCTI 121 Inorcenepis npoepammnozo 3abe3nevenis
(k00 i Ha36a cneyiatbHOCMi)

CTYJ€HTYy 121M-19-1 Pyorw Bsuecnasy Bacunvosuuy
(rpyma) (mpi3BuIIe Ta iHIIiaTM)

Tema kBagipikaniinoi podoTu Memodu, aneopummiu ma npocpamHe 3a0e3neqeHHs

07151 OIOHIYHO20 XANAHHS 3 YHUKHEHHSAM NepeuKoo

30 00NOMO2010 depee OKMAaHmMie ma 21uboK020 Ha8UAHHS

1 IMACTABU JIA TIPOBEJAEHHSA POBOTH
Haka3 pextopa HTY «/lninpoBchbka nomitexika» Big 22.10.2020 p. Ne 888
2 META TA BUXIJIHI JAHI IJISI TIPOBEJIEHHS POBIT

O0’ekT aAocaiIKeHb — MpolieC ONTHMI3alli Ta MOKpPAUIEHHS TOYHOCTI PyXy Ta
YHUKHEHHS MEePELIKO/ Il MaHIMyJIsITOpa 3 MPUCTPOEM XaNaHHS .

IIpenmer gocaixkeHb — CUCTEMHU YIPABIIIHHS poOOTaMU-MaHIMYJISATOPAMHU.

Meta po6oTn — miiBHIEHHS €EKTUBHOCTI CHCTEMH DPO3IMi3HABAHHS TEPEIIKOJ Ta
IUIAaHYBaHHS IUISIXYy A0 TOYKM XamaHHs s poOOoTa-MaHIMyssiTopa Ha OCHOBI JiepeBa
OKTaHTIB BUKOpPHUCTOBYIOuUU cuctemy ROS.

3 OUIKYBAHI HAYKOBI PE3YJIbTATHU

HaykoBa HOBH3HA TMOJSTaE y TOMY, IO YJAOCKOHAJICHO METOAM XallaHHS Ta
IUTAHYBaHHS PyXy JUIsl pOoOOTa MaHIMMyJIsATOpa HAa OCHOBI JepeBa OKTAHTIB Ta TIMOOKOTO
HaBYAHHA.

IIpakTnyna wiHHICTBH pPE3yJbTATIB TOJATAE Y TOMY, IO 3alpPOTOHOBaHA CHUCTEMa
po3mi3HaBaHHS 00’€KTa, IJIaHYBAHHS PyXy Ta XalaHHs JI03BOJIsE €ECKTUBHO PO3ITi3HABATH
00’€KTH, 3HAXOJIUTH TO3Yy JUIS XallaHHS, TUIAHYBATH NUISX 3 YHUKHCHHSIM PO3IMi3HAHUX
NepenKo;] Ta 3abe3nevuyBaTy HaliiiHe XanaHHS.



4 ETAIIM BUKOHAHHA POBIT

Crtpoku
. . . BHKOHaHHS PoOiT
HaiimenyBaHHs eTamiB po0iT
(mo4aTok —
KiHelb
AHaJi3 TEMHU Ta IIOCTAHOBKA 3a7a4l 12.09.2020-30.09.2020

[TobynoBa cucremu T1aHyBaHHsS 1nisixy juis  Hairamii | 01.10.2020-31.10.2020
MOOUTBHUX pOOOTIB

CTBOpeHHsI aBTOMATHU30BaHOI cUcTeMHU il BupimeHHs 3amadi | 01.11.2020-07.12.2020
11eHTU(IKALIHHOT eKCIIEPTH3U OCH3UHIB

3aBaHHs BUIAB Cupomcxina O.1.
(riammc) (mpi3BwiIIle, iHIIIAIH)

3aBaaHHsA IPUNHSAB 10 BUKOHAHHS Pyos B.B.
(mignmc) (mpi3BuiLe, iHiiaMN)

Jarta Bugaui 3aBmanss:  12.09.2020 p.

Tepmin nmomganHs kBamidikaiiiaoi podotu 7o EK _ 10.12.2019




PE®EPAT

HosicuoBaabha 3anucka: 100 crop., 36 puc., 4 nonatka, 46 mxepen.

Metor0 gociaiizkeHHsl € MIABUIICHHS €(EKTUBHOCTI MPOIECYy PO3Mi3HABAHHS
00’€KTiB, pO3Mi3HaABaHHS MO3MUIIN IS X 3aXOIUICHHS, PO3MI3HAHHS MEPEIIKOJI, PYXY
JI0 TO3M XalaHHS 3 YHUKHEHHSM MEePeIIKo/l Ta HaJIHHOTO XarmaHHs 00’ €KTY.

O0’exkTOM [JOCTIIKEHHSI € MpoLeC 3axXOIUIEeHHS pPOOOTU30BaHOI PYKU B
CKJIAQJHUX YMOBAaX 13 BUKOPHCTAHHSIM JIepeBa OKTAHTIB ISl IJIAHYBaHHS MUISAXY 3
YHUKHEHHSM TEePEIIKOI.

IIpenmeroM pocCHiIKeHHS € MOJENl Ta METOAU BHUSIBJICHHS IOJIOKEHHS
3aXOIUICHHS, CIPUUHATTSA TEPelIKOJ Ta IUIaHyBaHHSA INUIAXY 3aXOIUICHHS Ta
YCHIIIHOTO 3aXOIJIEHHS 00’ €KTA.

Metoau npocaimkeHHsi. /[t BUpilIeHHS 1i€l MPOOJIEMHU BUKOPUCTOBYIOTHCS
Taki METONH, SIK TOIIYK IUISIXiB, BCTAHOBIIEHHS TOPOTiB, BEHBJIET-MEPETBOPEHHS,
BUJTYYEHHSI 0COOJMBOCTEH, IITYYHI HEMPOHHI MEPEX1 Ta MAIIMHHE HABYAHHS.

HaykoBa HOBH3HA. 1osirae y ToOMy, IO yIOCKOHAJIEHO MpoIiece PO3MI3HABAHHS
00’€KTIB, PO3MI3HABAHHS MO3MIIHN IS X 3aXOIUIEHHS, PO3IMi3HAHHA NEPELIKOl, pyXy
JI0 TIO3M XalaHHS 3 YHUKHEHHSIM TIEPEeIKo/l Ta HaJAIHOTO XaraHHs 00’ €KTY.

IIpakTuyHe 3HAYeHHS pE3YyJbTATIB MOJIATA€ Yy TOMY, IO 3aIPOIIOHOBAHA
CUCTEeMa po3Mi3HaBaHHs OO0 ’€KTIB, PO3MI3HABAHHS MO3UIIM Ui 1X 3aXOIJICHHS,
pO3Mi3HAHHS MEPELIKOA, PyXy A0 MO3M XalaHHSd 3 YHUKHEHHSIM MEpelIkoja Ta
HaJIIHHOTO XamaHHs 00’ €KTy €(heKTUBHO BUKOHY€E CBOI 3a/1aui.

Y po3nini «ExoHOMiKa» TPOBEIECHO PO3PAXYHKU TPYAOMICTKOCTI pO3pOOKHU
mporpamMHoro 3adesneueHHs, BUTpaT Ha ctBopeHHs [10 1 TpuBaiocTi HOro po3pooKy.

CnmcoK KJIIOYOBHX CJIiB: pooot, Manimysrop, ROS, Movelt, YOLO, Fin-Ray
edeKT, XamaHHs, pO3IMi3HAHHS 00 €KTIB, YHUKHEHHS IEPENIKOMA, JIEPEBO OKTAHTIB,

xMapa To4ok, 3D-npyk.



ABSTRACT

Explanatory note: 100 pages, 36 Figures, 4 applications, 46 sources.

Purpose of the master's thesis. Increase the efficiency of the process of
recognizing objects, recognizing positions to capture them, recognizing obstacles,
moving to the grasping position with the obstacle avoidance, and secure grasping of
the object.

The research object is a process of robotic arm grasping in a complex
environment using octrees for path planning to avoid obstacles.

The research subject is the models and methods of detecting grasping position,
obstacle perception, and path planning to grasp and successfully grasp the object.

Research methods. There are methods used to solve this problem, such as
pathfinding, thresholding, wavelet transform, feature extraction, artificial neural
networks, and machine learning.

Originality of research is determined by improved approach of object
recognition, grasp pose detection, obstacle recognition, a movement to the grasping
position with the avoidance of obstacles, and secure grasping.

Practical value is that the proposed system of object recognition, grasp pose
detection, obstacle recognition, a movement to the grasping position with obstacle
avoidance, and secure grasping of the object effectively performs its tasks.

In the Economics section, the complexity of software development, software
development costs, and the actual development duration are calculated.

Keywords: robot, manipulator, ROS, Movelt, YOLO, Fin-Ray effect, grasping,

object recognition, obstacle avoidance, octant tree, point cloud, 3D printing.



CONTENTS

LIST OF ABBREVIATIONS ...ttt e e arn e e e 9
INTRODUCTION ...t e e e e e e e e e e e e e e e e e e e e e e e e e e 10
SECTION 1. ANALYSIS OF ROBOTIC ARM CONTROL METHODS................ 12
1.1. RODOLIC QraSPiNg ...cccveeiveeiiieiie ittt ettt te et rreeae e sraesraesneeanee s 12
11,1, FIN-RAY EFFECT.....ciiieeeeee e e 14
1.1.2. FINQEr MAterial ........ccveeiieiiiie et e 16

1.2. Object detection and SEgMENTALION .........cccveiiuiriieiierie e 16
1.3. Grasp POSE SEIECLION.......cciiiiiiie e 18
1.4. Obstacle detection and avoidanCe ...........cccveveiieriiienise e 18
1.4.1. RODOt AESCIIPLION ...o.vvieiieiie sttt 19
1.4.2. ENVIroONMENt PEIrCEPLION ......civiiiie ettt 21
1.4.3. POINE ClOUd.......ueiiieiie et 22
1.4.4. VOXEIS ANU OCIIEE ......eeveeiie ettt snee e 22

1.5, AT MOTION 1.ttt ettt et st e et sreenbeeneenre e 25
1.5.1. Forward and inverse KINEMatiCS ........cccocviiviieeiiesie e 25
1.5.2. MOtION PIANNING ....ooiiieiiccec e 26

1.6. Grasp and SHip deteCtion .........cccvoiieiii i 27
1.7. Conclusions to the fIrSt SECHION ......cccvveiiiiice e 29
SECTION 2. DEVELOPMENT OF THE ARM CONTROL ALGORITHM........... 31
2.1. RODOLIC PIAtFOIM ..o 31
Y (Y LT T 1 1 OO ROURTRPURRS 33
2.2.1. MOtION INTEITACE ..o 33

B T €T o] o 1= OSSPSR PSPPI 34
2.4. RODOt Operating SYSIEM .......cciiiiieiieie e 36
2.4.1. ROS FIlESYSIEM......oiiiiiiiiie et 37
2.4.2. TransSformMation TTEE......ueiiiiieeie ettt sae e 39

2.5. Environment perception using RealSeNSse .........cccvvvvvveieivene e, 41

2.5.1. Post-processing of point cloud With PCL ..........ccccoeviiiiiiiiecic e, 42



2.6. Object segmentation With YOLO.......cccccoiiiiiiiieie e 42
2.7. Grasp POSE AEECLION ......eeiveeiiieiieeie e 43
2.8. Environment description with OCtOmMap ........cccccveveeiieiie e 45
2.9. Motion planning with obstacle avoidance using Movelt!............ccccccoeiviienee. 46
2.9.1. CONFIQUIALION ....ocuiieiic et et e e 47
2.9.2. Move Group INtEraCtioNS .........cccveveeiieiiie i e e s e seesee e sre e sre e e e 49
2.9.3. MOLION PIANNING ...viiiieiiecie et snae e 50
2.9.4. ENVIrONMENT PEICEPLION .....viivieie ettt 54
2.9.5. ColliSION CNECKING......coiiiiiiiiieiie e e 55
2.10. ViSUAHZAtION IN RVIZ....coeiiiiie it 56
2.10.1. MoVEIt! RVIZ PIUGIN ..o 56
2.11. SImulation iN GAzZeD0 ........covv i 58
2.12. Slip detection with ToF and Tactile sensor using Deep Learning................. 59
2.13. Conclusions to the SecoNd SECION .......cccvviiierierie e 60
SECTION 3. RESULTS OF THE DEVELOPED SOLUTION.........covvvvviiiiiiiinrrienee, 63
I S ] (= 0 LTS (o TSP PRPR 63
311 SIMUIALION L.t sree e 63
3.2  RUNNING oottt et e e st e et e e be e reesreesnneanne s 65
3.2.1 SIMUIATION .eeiviiiice e 65
3.2.2. REAI FODOL ... 68
3.3. Conclusions to the third SECTION .........ccvviiiiiiiee e 69
PO3JIIJT 4. EKOHOMIKA ...t e e e e e e 72
4.1. BusHaueHHs TPyJOMICTKOCTI pO3pOOKH MPOTrpaMHOro 3a0€3MEUEHHH ........... 72
4.2. BuTpaTu Ha CTBOPEHHS POTPAMHOTO 320C3IMEUCHHM ... .vvveevvieessireresireeessenns 76

4.3. MapKeTUHTOBl JIOCTIJKEHHSI PUHKY 30yTy pO3pO0JICHOTO MPOrpamMHOTO

1000100116 ) 2P OT R OURTTTRR TR 78
4.4. OuiHka  €KOHOMIYHOI  €(EeKTMBHOCTI  BIPOBAIKEHHS  MPOTrPamMHOro
T (030 (S5 () 1 £ (PR OT R OURTPURP PRI 80
CONCLUSTONS L.ttt ettt ettt sttt e saeenneeebeesaeas 82

REFERENCES ... .ottt e era e e e e e e e e 84



APPENDIX A. SOURCE CODE ... esee s sess s eesee e 89
JIOJIATOK B. BIAI'YK KEPIBHUKA EKOHOMIUYHOI'O PO3JAUTY ... 98
APPENDIX C. STRUCTURE OF THE DEVELOPED SOLUTION ........ooovvvoe...... 99

APPENDIX D. LIST OF FILES ON THE DISC ......cccoooiiiiiiiiecicieccieee, 100



LIST OF ABBREVIATIONS

FK — Forward Kinematics

IK — Inversive Kinematics

ROS — Robot Operating System

CAD — Computer-Aided Design

API — Application Programming Interface

YOLO - You Only Look Once

R-CNN — Region-Based Convolutional Neural Network
TOF — Time of Flight

LSTM — Long Short-Term Memory

DOF — Degree of Freedom



10

INTRODUCTION

The relevance of research. Controlling a robot arm is one of the essential parts
of robotic software development. It consists of next problems: object recognition, grasp
pose selection, obstacle detection, motion planning. This study considers problems of
integration of independent arm control systems. The areas of manipulator arm control
are detecting objects and obstacles, detecting objects to grasp, determining objects to
grasp, finding good poses of the gripper to grasp the object, motion planning to the
grasp pose using detected obstacles, and slip detection or detection of secure grasping.

This issue is a modern problem primarily in the fields of industry, general-purpose
robots, and experimental robots.

There are existing researches and developments for the mentioned problems. But
combining all existing solutions and approaches might be a more complex task. The
final solution should combine the most appropriate solution in each area and bring them
together as a complete system.

The purpose of the research is an improvement of current approaches for
robotic arm grasping. There should be a complete method for controlling the robot's
arm. The method should include objects to grasp detection, obstacle detection, poses
of the gripper for grasping, motion planning to chosen pose, slip detection of the chosen
object in the gripper.

The object of research is a process of robotic arm grasping in a complex
environment using octrees for path planning to avoid obstacles.

The subject of research is the models and methods of detecting grasping
position, obstacle perception, and path planning to grasp and successfully grasp the
object.

Methods of research. There are methods used to solve this problem, such as
pathfinding, thresholding, wavelet transform, feature extraction, artificial neural

networks, and machine learning.



11

The originality of the research is determined by improved object recognition
approach, grasp pose detection, obstacle recognition, a movement to the grasping
position with the avoidance of obstacles, and secure grasping.

This study considers current publications that address these issues. EXxisting
algorithms and approaches have been found in managing both parts of the robot
manipulator and solutions that combine several areas or integrate several existing
approaches. There is a brief review of current literature and publications on the above
algorithms and approaches. The advantages and disadvantages of the considered
methods and approaches are determined. There are solutions that cover either some
areas or only one of them, which does not meet the problem'’s requirements.

The researched problem is relevant in robotic arm development. It was found
that some studies and literature mention the stated problem. But almost all of them are
concentrated on independent solutions, while the problem is the integration of small
target solutions in a complete system.

The practical value is that the proposed object recognition system, grasp pose
detection, obstacle recognition, movement to the grasping position with obstacle
avoidance, and secure grasping of the object effectively performs its tasks.

The personal contribution of the author:

1.  Scientific results of the work are obtained by the author independently.

2. Choice of research methods and implementation technologies.

3. Development of the theoretical part of the work, which explores and
systematizes knowledge of existing approaches of object detection, grasp pose
detection, motion planning, and slip detection.

4, Development of the new system for object detection, grasp pose detection,
motion planning, and slip detection.

5.  Testing and evaluation of the results.

Structure and scope of the work. The work consists of an introduction, four
sections, and conclusions. It contains 100 pages, including 71 pages of text of the main
part with 36 figures, a list of used sources with 46 items on 4 pages, 4 appendices on
11 pages.



12

SECTION 1
ANALYSIS OF ROBOTIC ARM CONTROL METHODS

1.1. Robotic grasping

One of the most significant areas of interaction between robot and environment
is the manipulation of objects. Manipulation can be a part of many highly useful
processes: assembling, sorting, moving (Fig. 1.1.), ordering, cargo loading, etc. These

processes are used in industrial and casual robots.

Fig. 1.1 End-effector with a three-finger gripper

Robotic manipulators should have an end effector, also known as End of Arm
Tooling. Robot end-effectors are subdivided into next types [1]:

- Impactive: physically grasp by applying direct force to the object.



13

— Ingressive: penetrate a surface of the object to pick it up.

— Astrictive: attractive forces are applied, like vacuum or magnetism.

- Contigutive: requires direct contact for adhesion.

The considered problem is related to the impactive type of gripper.

This type of gripper can be implemented as gripping fingers. In most common
cases, there are two fingers with one movable join on each. With this configuration,
you can clamp and securely hold most objects [2].

The force required to hold the object can be calculated with the following

formula [3]:

F=22 (1.1)

where:

- F — is the force required to grip the object,

- m — is the mass of the object,

— a — is the acceleration of the object,

- W — is the coefficient friction,

- n — is the number of fingers in the gripper.

The shape of the fingers can be chosen based on the shape of objects to grasp.
But multi-purpose robot usually interacts with different shapes. In this case, the good
point is to have an adjustable finger shape. It can be done with additional joints or with
flexible fingers for the gripper. During the research, the research group has been using
flexible fingers for the gripper as the most straightforward implementation of an
adjustable gripping surface.

In the real world, we may have additional forces. One force we usually have is
gravity. So more complete question should consider gravitational force. Hence, another

term is introduced, and the formula becomes [4]:



14

__m(a+g)
un

(1.1)
where:

- F — is the force required to grip the object,

— m — is the mass of the object,

- a — is the acceleration of the object,

- K — Is the coefficient friction

— n — is the number of fingers in the gripper,

— g — gravity acceleration.

1.1.1. Fin-Ray effect

The Fin-Ray effect is an effect that describes a flexible construction that bends
around an object when force toward the flexible structure is applied. Such construction
gives an additional contact area that provides additional friction. Rays of fish fins
inspired the structure. Fish fins have a structure with two bones that are attached to
each other with elastic tissue. The tail fin is the main point to apply force for the
movement. The tin consists of several basic structures stacked one above the other. The
structure must be light but strong enough since excess weight would produce
unnecessary energy loss. The design, which copies a fish fin, consists of two attached
longitudinal fibers. There are cross fibers among the longitudinal fibers that keep the
whole structure after assembly. The cross and longitudinal fibers are connected
flexibly, which allows the required movement between them [5].

Fin-Ray Effect structure can be used in two ways. One way is to use it when the
structure forms a manipulator. The second way is when the structure forms a finger
gripper, which adaptively adjusts the shapes of objects transmitted.

To create a gripper, at least two fingers must act against each other and thereby

maintain the objects carrying.



15

Fig. 1.2. The structure bends over an object

To move the manipulator endpoint is necessary to change the relative position
of the beginning of the longitudinal fibers. It is a structure with two longitudinal fibers;
the manipulator only allows two-dimensional motion. To achieve special three-
dimensional motion must be a structure supplemented by other longitudinal fibers that

is perpendicular to the two original fibers.

Fig. 1.3. The structure leans with applied force

The Fin-Ray effect was invented in 1997 by Leif Kniese and patented by
EvoLogics GmbH Berlin [6].

Such finger construction provides a bigger contact spot that provides more
traction with a gripped object. It provides a more secure grasp or decreases the required
force that should be applied to the grasp.



16

1.1.2. Finger material

The research team was faced with a choice of how to produce fingers for the
gripper. 3D printing was chosen as the most straightforward way which meets all
requirements. 3D printing is a part of additive technologies; it is one of the easiest ways
to make a piece of product or a prototype. The idea of the technology is to make a
volumetric object by adding a substance layer by layer [7]. The process consists of next
steps: modeling in CAD software, export from the CAD application, checking for
model errors, processing with slicer — software to convert a model to series of thin
layers described in G-code for a 3D printer, printing, finishing — adding more fine
details with subtractive technologies.

Most used types of filaments:

- ABS — durable, impact-resistant, quite flexible, lightweight. Melts at 210-

250 °C.

- PLA — easy to print, low flexibility. Melts at 180-230 °C.

- Nylon — strong, flexible, and high durable. Melts at 220-260 °C.

— TPU — thermoplastic polyurethane. Durable, very flexible. Melts at 190-
220 °C [8].

Authors [9] propose a way to print 3d models with multiple materials. It can be
useful to print fingers, where transverse lintels could be done with less flexible plastic

while the body is done using the most flexible plastic.

1.2. Object detection and segmentation

Object detection is a task for computer vision and image processing. The task is
to detect instances of objects on an image. It is an essential task in computer vision.

In the perspective of this study, object detection is necessary to detect an object
to grasp. We need to separate all objects camera sees and the target object to grasp. The
chosen method should label all objects and provide their masks. Then mask can be used

to filter out all data except object-related data.



17

Image classification assigns a class label to an image, and object localization
provides a bounding box around one or more objects in an image. Object detection is
more challenging and combines these two tasks, draws a bounding box around each
object of interest within the image, and assigns them a class label. Together, all these
problems are referred to as object recognition. The next step is masking the object of

interest, what called object segmentation [10].

Object recognition
Object Localization l
Qbject Detection

.

Object Segmentation

Image classifiacaion

Fig. 1.4. Image processing tasks

So that we have the next computer vision tasks, which are also represented in
Fig. 1.4..

— Image Classification — recognize the type (class) of the object on the
image. As an output, we retrieve labels of recognized objects.

- Object Localization — locate the object on the image. The output is
bounding boxes on images around objects.

- Object Detection — locate and label the object. The output is bounding
boxes with labels.

- Object segmentation — locate, label, and mask objects. As an output, we
have a bitmap where one color means there is an object, and another color is for another

space.



18

1.3. Grasp pose selection

Grasping an object is an everyday task, which humans and some animals perform
subconsciously with both ease and reliability. By watching adults and gathering their
own experiences, children rapidly learn how to grasp objects without the need to
develop complex calculation models, solve complicated equations, or remember every
object encountered so far by heart. With robots becoming progressively more
intelligent in interacting with their environment, the need for a robust solution for
grasping everyday objects is of utmost importance. Nevertheless, robotic grasping still
provides many challenges for researchers and is still among the most demanding
modern robotics problems. Finding a general solution would open up many new
possibilities for robots to autonomously explore their environment and would enable
them to perform better at assisting humans [10, 11].

While for humans and some animals, grasping is a routine task and is not difficult
to perform, for robots, it is a complicated problem that requires in-depth research.
People can know objects and know how to grip them, or when an object is unknown,
people can decide how to take the item basing o similarity to previously known objects.

The same solution can be used for robots. There are two ways to detect poses for
the gripper to grasp the object [12]:

- Finding previously known objects.

- Finding similarity of detected objects to geometrical primitives [3].

1.4. Obstacle detection and avoidance

The most crucial goal for operating the arm is to be safe — the robot should not
touch any object except the target. There two possible collisions [13]:

- The robot itself — many arms have enough freedom to touch itself or other
parts of the robot.

- Environment objects — any objects in the working environment except the

robot.



19

We should take into account both parts of the obstacles.

1.4.1. Robot description

Usually, a robot is described as a hierarchical 3d object. This description can be
used to avoid collisions with the environment and self-collisions. Modern robot
software is using 3d description if it moves any part of the robot. In ROS (described in
section 2.4), there is a special format for such a description — URDF and xacro files
[14].

Robot elements are described as links and joints. The structure of them is

presented in Fig. 1.5.

>~ Link 2

Fig. 1.5. Example hierarchy

URDF is acronym for Unified Robot Description Format, which is an XML
format for representing a robot model. The robot in the image is a tree structure
described with URDF below:

<robot name="test robot">
<link name="1linkl1l" />
<link name="1link2" />
<link name="1ink3" />
<link name="1link4" />

<joint name="jointl" type="continuous">
<parent link="1link1"/>



<child link="1link2"/>
</joint>

<joint name="joint2" type="continuous">
<parent link="1link1l"/>

<child link="1ink3"/>

</joint>

<joint name="joint3" type="continuous">
<parent link="1ink3"/>

<child link="1ink4"/>

</joint>

</robot>

20

Xacro is an XML macro language. It provides a way to construct more readable

XML files by using macros that expand to larger XML expressions.

After parsing xacro files and XML descriptions, it is one constructed tree.

urdf_to_graphiz can visualize it graphically, as presented in Fig. 1.5.

link4

Fig. 1.6. Example hierarchy from the description

Having the information about arm parts and their positions in the space makes it

possible to avoid self-collisions. There are many already developed approaches for

self-collision avoidance [16, 4], or they can be a part of a complete obstacle avoidance

algorithm [17].



21

1.4.2. Environment perception

The next problem is to detect and store information about the environment. The
system should scan the environment with perception input devices, represent it as a
data structure and process to avoid obstacles during path planning.

Since the robotic arm can move in 3D space, it should be full of volumetric
obstacle detection. Usually is done by binocular or monocular 3D scanning using
SLAM.

SLAM - simultaneous localization and mapping, is an approach to process
multiple frames and sensor positions to build a volumetric model of the
environment [15].

Visual slam can be performed even with a single camera (monocular) setup. It
is cheap and straightforward. Depth is not fully available from one image; instead, we
need multiple images to match them and compute a disparity [18].

With two cameras, it is even easier — we have a fixed distance between cameras

Having the disparity, we can set a distance from the camera for each point and,
based on it, build a 3D representation of an image for the current frame.

The whole SLAM approach implies building a full map. SLAM can use multiple
different types of sensors, and the powers and limits of various types of sensors have
been a significant driver of new algorithms. Statistical independence is required to cope
with metric bias and noise in measurements. Data from different types of sensors can
be processed by different SLAM algorithms whose approaches are more compatible
with the sensors. Laser scanners or visual features provide details of many points within
an area, sometimes rendering SLAM inference is unnecessary because shapes in these
point clouds can be quickly and unambiguously aligned at each step via image
registration. At the opposite extreme, tactile sensors are too sparse as they contain only
information about points very close to the agent. Hence, they require strong models to
compensate in pure tactile SLAM. Most applicable SLAM tasks are somewhere

between these visual and tactile areas [19].



22

We can use odometry, GPS, and localization based on joint angles for
localization, based on camera images.

Loop closure is the problem of localization itself when recognizing a previously
visited location. It can be complicated because of discrepancies and errors in input
localization data. Typical loop closure methods consist of applying a second algorithm
to compute some type of sensor measure similarity and re-set the location priors when
a match is detected [20].

1.4.3. Point cloud

After the robot received any depth data from the image, it should store this data.
One way is a point cloud — a set of points in space. When a camera (or it is generated
with multiple frames) captured a depth image, each pixel of the depth image can be
converted to a point in space relative to the camera position. Then this data could be
added to previously generated point clouds from previous frames [21].

But if the robot only captures and adds the data, data will become bigger and
bigger. Even when the camera sees the same object, it will add more and more points.

It is an unnecessary significant amount of data.

1.4.4. VVoxels and Octree

To represent flat images, we often use raster graphics — a two-dimensional
regular rectangle grid, where each cell is called a pixel.

With high resolution, this data can be significant; there are several compression
algorithms to decrease its size. One of them is quadtree.

Quadtree is a recursive algorithm of subdivision of one big quad exactly to four
smaller equal quads. Subdivision occurs only when there are different colors in the area
of the quad, and the maximum depth is not achieved [22].

Step by step:

1. Make one big quad with the size of the image.



23

2. Check if the depth is not maxed, and it has different colors. If no —
finished.
3. Subdivide into four quads.

4, Check each quad if the depth is not maxed, and it has different colors

- Has different colors — Go to 3.

— Has the same colors or depth is maxed — finished.

In the end, we have a tree structure, where the root node is the biggest quad,
which was subdivided into smaller ones (Fig. 1.6). In case if it's an optimization of an
image, it stops when the quad size achieves pixel size. When the input is not a raster

image, it should have a specific depth limit.

Fig. 1.7. Quadtree example

One of the ways to represent a 3D environment discretely is voxels. A voxel is
a volumetric pixel. Basically, a voxel is a value in the regular grid. Usually, the value
is a flag if it is occupied; additionally, it can contain any data, like color. In the typical
case, if we have a voxel grid, the voxel does not represent a real position in 3d space;

it contains only its position instead. Such an approach can be more efficient than more



24

common polygonal graphics, but sometimes it can be more computationally expensive
[23].

One way of optimization of the voxels is also tree data structure — octree. It is
like a quadtree approach, but for octants: each internal node has exactly eight equal
children. Octant here can be understood as variable size voxel. In this case, in the
beginning, we have one big scene-size root octant and recursively subdivide it until the
desired depth is achieved. In the image below (Fig. 1.7), you can see an example octant
with a different depth for octree octants. Octants are subdivided only when they contain

some object inside, but not the whole octant is occupied by that object [24, 25].

° \/

\/

Fig. 1.8. Octree on sample data

-~

In the illustration below (Fig. 1.8), you can see how each level of subdivision
ads more fine details. But at the same time, when each subdivided octant would be

occupied, there is no need to subdivide it at all; this octant will be kept as one piece.



25

Octree Octree Octree
level 1 level 2 level 3

323 643 1283

Fig. 1.9. The variable density of octree

1.5. Arm motion

The critical part of controlling the robotic arm is the motion planning of the arm.
It includes problems as forward and inverse kinematics and motion planning itself.
Forward and inverse kinematics is the way of representation of the arm's state with
joint angles or with a cartesian pose of the end joint or end effector. Motion planning
iIs building a plan of arm's movement to the required position set by joint angles or with

the end joint or end effector's cartesian pose.

1.5.1. Forward and inverse kinematics

Forward kinematics is a process of defining an end-effector position from angles
on each joint on the arm [26].

Inverse kinematics is a process of defining the rotation of the required angles
from the desired end-effector position (Fig. 1.9.) [26].



26

Inverse kinematics

Forward kinematics

cartesian space joint space

Fig. 1.10. Directions of transformation in FK and IK

Accordingly, these processes are the opposite. FK defines the position in
cartesian space by joint space, and IK defines joint-space positions from cartesian
space [26]. On the lowest level, there is FK because the only way to move the arm is
to set angles for each joint. But usually, there is a target end effector should achieve,
and it exists in cartesian space; in this case, IK can provide angles to achieve the desired

position.

1.5.2. Motion planning

Motion planning or path planning is a computational problem to find a sequence
of available actions that moves from a source position to a destination.

For mobile robots, this problem contains the only movement of solid shape in an
environment while motion planning for robotics arm works with arms with multiple
degrees of freedom, avoiding collision with itself and the environment [27].

A robust motion planning approach is sampling-based planning. It means that
the robot makes random points (samples) it can achieve in a workspace, stores positions
to achieve them, and builds a path, including these samples [28].



27

1.6. Grasp and Slip detection

The robotic gripper can perform activities that are not available for humans, but
some activities are not available or difficult to perform. One such problem is a
perception of a secure grasp; it means that the grasped object is robustly fixed in the
gripper and is not moving.

The robotic hand is considered a mechatronic instrument that can do some
activities that are impossible for humans. The robotic hand is widely used in
manufacturing and dangerous nuclear industries, as well as in precise applications such
as military or medical implementations. In addition, repetitive and maintenance tasks
could be achieved with high-performance accuracy. Consequently, evolving robotic
hand is required to cover a wide range of tasks and provide a robotic hand with special
types of sensors to measure the grasping force for a particular object. Grasping objects
could be achieved using the dexterous robotic hand presented with the ability to grasp
both soft and hard objects. In gripping operation has been implemented by robotic
hands that use particular types of tactile sensors, which employ physical properties and
events through contact with objects. Many tactile sensors have been developed, and the
sensor hardware has evolved to achieve specific gripping tasks.

Moreover, to accomplish the gripping mechanism using a robotic hand, some
efforts have been expended in developing tactile pressure sensor structures, such as in.
In most recent studies, advanced robotic manipulations have used tactile pressure
sensors implemented in different applications. The main exciting issue in advanced
robotic manipulation tasks is that the robotic hand is required to be equipped with
distributed tactile pressure sensors that can continuously provide information about the
magnitude and direction of forces at all contact points between the sensing area and a
subjected object. Numerous studies have reported the proposed method that uses tactile
sensor information through physical contact between the sensor and an object to detect
both pressure force and hardness of the object. In addition, several studies have
documented that tactile pressure sensors have been utilized successfully in different

design concepts and action principles. These tactile sensors have presented the process



28

of determining physical features with the environment, measuring applied forces
exerted over an object, and the art in tactile sensing and investigating trends [29] [30].

Grasp is successful when the object is in the gripping area between fingers, they
are closed, and there is no sliding of the gripped object. There are two types of sensors
considered to use for it:

- ToF sensor measures the distance to an object using a light trip duration
from a source to a receiver.

- A tactile sensor measure is a device that measures information arising
from physical interaction with its environment.

An optical ToF sensor can be used to detect the object's presence between the
gripper's fingers. There are various types of ToF sensors out there, but most are Time
of Flight cameras and laser scanners that use a technology called Lidar (Light detection
and ranging) to measure the depth of various points in an image by illuminating with
infrared light [30].

Data is generated and captured with ToF sensors are beneficial. Such data can
provide pedestrian detection, authenticate users based on facial features, perform
environment mapping using SLAM algorithms, and many more.

ToF sensors use a tiny laser to fire out infrared light where the light produced
out will bounce off any object and return to the sensor. Based on the time difference
between the light emission and its return to the sensor after being reflected by an object,
the sensor can measure the distance between the object and the sensor.

Tactile sensors are generally modeled after the biological sense of cutaneous
touch, which is capable of detecting stimuli resulting from mechanical stimulation,
temperature, and pain (although pain-sensing is not common in artificial tactile
sensors). Tactile sensors are used in robotics, computer hardware, and security systems.
A typical application of tactile sensors is in touchscreen devices on mobile phones and
computing.

The flexible tactile sensor has been extensively investigated as a critical
component for emerging electronics applications such as robotics, computer hardware,

wearable devices, and security systems [31].



29

The active sensors require external power for their operation, which is called an
excitation signal. The sensor modifies that signal to produce the output signal. The
active sensors sometimes are called parametric because their own properties change in
response to an external effect, and these properties can be subsequently converted into
electric signals. It can be stated that a sensor's parameter modulates the excitation
signal, and that modulation carries information of the measured value. For example, a
thermistor is a temperature-sensitive resistor. It does not generate an electric signal, but
by passing an electric current through it (excitation signal), its resistance can be
measured by detecting current and/or voltage variations across the thermistor. These
variations (presented in ohms) directly relate to temperature through a known transfer
function. Another example of an active sensor is a resistive strain gauge in which
electrical resistance relates to a strain. An electric current must be applied to it from an

external power source to measure a sensor's resistance [32].

1.7. Conclusions to the first section

This section is devoted to algorithms and approaches that can be used for
researched problems. Attention is paid to gripper's fingers structure and material, object
segmentation methods, grasp pose selection, obstacle detection and avoidance
approaches, arm motion algorithms, and slip detection solutions.

The shape of the fingers can be chosen based on the shape of objects to grasp.
But multi-purpose robot usually interacts with different shapes. In this case, the good
point is to have an adjustable finger shape. It can be done with additional joints or with
flexible fingers for the gripper. During the research, the research group has been using
flexible fingers for the gripper as the most straightforward implementation of an
adjustable gripping surface. The Fin-Ray effect is an effect that describes a flexible
construction that bends around an object when force toward the flexible structure is
applied. Such construction gives an additional contact area that provides additional

friction.



30

The research team was faced with a choice of how to produce fingers for the
gripper. 3D printing was chosen as the most straightforward way which meets all
requirements. 3D printing is a part of additive technologies; it is one of the easiest ways
to make a piece of product or a prototype.

In the perspective of this study, object detection is necessary to detect an object
to grasp. We need to separate all objects camera sees and the target object to grasp. The
chosen method should label all objects and provide their masks. Then mask can be used
to filter out all data except object-related data.

While for humans and some animals, grasping is a routine task and is not difficult
to perform, for robots, it is a complicated problem that requires in-depth research.
People can know objects and know how to grip them, or when an object is unknown,
people can decide how to take the item basing o similarity to previously known objects.
The same solution can be used for robots. There are two ways to detect poses for the
gripper to grasp the object [12]:

- Finding previously known objects.

- Finding similarity of detected objects to geometrical primitives [3].

The most crucial goal for operating the arm is to be safe — the robot should not
touch any object except the target. There two possible collisions [13]:

- The robot itself — many arms have enough freedom to touch itself or other
parts of the robot.

- Environment objects — any objects in the working environment except the
robot.

Usually, a robot is described as a hierarchical 3d object. This description can be
used to avoid collisions with the environment and self-collisions. Modern robot
software is using 3d description if it moves any part of the robot.

The next problem is to detect and store information about the environment. The
system should scan the environment with perception input devices, represent it as a
data structure and process to avoid obstacles during path planning.Since the robotic
arm can move in 3D space, it should be full of volumetric obstacle detection. Usually

is done by binocular or monocular 3D scanning using SLAM.



31

SECTION 2
DEVELOPMENT OF THE ARM CONTROL ALGORITHM

2.1. Robotic platform

During the research, we have been working on the robot of the RT-Lions team
of Reutlingen University. The robot was built for participation in the RoboCup
championship.

The basement of the robot is an omnidirectional moving platform Neobotix
MPO-700 (Fig. 2.1.). Its four Omni-Drive-Modules enable it to move exceptionally
smoothly in any direction. This robot is even capable of rotating freely while driving
to its destination. The Omni-Drive-Modules of the MPO-700 feature essential benefits

compared to other omnidirectional drive kinematics.

Fig. 2.1. Mobile platform MPO-700

Depending on the intended application, the MPO-700 can be used on its own, in

combination with other robot vehicles, and in combination with stationary systems.



32

Furthermore, application-specific extensions can be integrated into the basic platform.
These might be a customized cargo area, a robot arm, or special sensors.

The MPO-700 may only be used in laboratories, test halls, or similar
environments. It is not recommended to use the MPO-700 in any other surroundings,
especially not outdoors.

MPO-700 has a computer with preinstalled ROS packages to move the robot.
We can access this computer with a remote desktop connection and run preinstalled
software.

On top of it, we placed a general-purpose robot platform that contains the main
software module. This platform is a central part of the robot, which orchestrates the
whole system. The platform uses Linux 16.04 with ROS Kinetic.

Mechanically it is done with an aluminum body. On the body, we have
ventilation holes, ports, emergency stop buttons. There is a router with a Wi-Fi antenna

inside. So, we can connect remotely to the robot without cables.

Fig. 2.2. 3D model of the used robot



33

The next level is the robotic manipulator, which represented Sawyer arm. It also
has its own computer with required ROS nodes. Usually, we do not have and need
access to the robot. Everything can be done via API. This part is not a subject of this

work, so it does not require a comprehensive description.

2.2. Sawyer arm

During the research, the team was able to use Sawyer Arm made by Rethink
Robotics. It is 7 degrees of freedom robotics arm. It is provided with built-in software
Intera.

In most common cases, there are 6 degrees of freedom for the robotics arm; it is
enough minimum to achieve any desired position in the workspace. An additional
degree of freedom can be considered additional flexibility, more positions to avoid
obstacles, and properly grasping an object. But existing software for motion planning
works better with arms that have 6 degrees of freedom. More degrees of freedom also
requires more computations for planning, so it can be slower to find the best way to
approach the object.

The Intera 5 software platform provides an easy-to-deploy approach to industrial
automation. The software innovation drives manufacturing productivity worldwide and
enables a high acceptance of its new robot co-workers. Rethink Robotics GmbH
provides increased functionality and capabilities through frequent software releases.
To this day, the Intera 5 software platform developed to control Sawyer remains the

most innovative operating system in collaborative robotics [33].

2.2.1. Motion interface

The Sawyer arm is supplied with a built-in motion interface. The Motion
Interface enables the user to easily generate smooth motions for Sawyer by specifying
a sequence of waypoints: the motion controller on Sawyer will automatically generate

and run a trajectory that passes through the waypoints. The user can specify a variety



34

of options, such as a maximum speed or requiring that the endpoint move on a linear
path between the waypoints.

With this API, user can set joint angles or cartesian pose of the end of the arm.

2.3. Gripper

The gripper is a custom solution based on fingers with the Fin-Ray effect (Fig.
2.3.). The fingers can adapt to these spherical objects in two dimensions when gripping
them. This is achieved through semi-circular recesses in the struts of the fingers. In
addition, the fingers have a pocket-shaped recess on the inside, which makes it easier
to grip spherical objects. The two joints at the top have no semi-circular recesses, but
they are provided with constrictions to prevent the finger from twisting when gripping
small objects.

The research group has been using flexible gripper fingers as the most
straightforward implementation of an adjustable gripping surface during the research.
The fingers are done with FDM 3D printing with TPU and ABS material. Other parts

of the case are made with aluminum and ABS plastic.

Fig. 2.3. The gripper

On the top of the gripper, we can mount a Realsense D435 camera (described in
section 2.5) on a rotatable connection. This camera can be used for building the octree

or object recognition for grasp pose detection.



35

Sensors and motor are connected to an Arduino board (Fig. 2.4.), which retrieves
data from sensors, converts it to the needed format, and sends it to the main computer.
The central computer can send a signal to open or close fingers to the Arduino board,

The main body covered with a big box contains the mechanism to close the

fingers. It is driven by one motor and several gears (Fig. 2.5.).

Fig. 2.4. Gripper without the body

Fig. 2.5. The mechanical structure of gripper



36

2.4. Robot Operating System

ROS is a platform for robot development. It provides a framework for robot
software communication and a variety of built-in software. ROS, as a platform, can be
subdivided into three parts [2]:

- Tooling for package distribution.

— ROS client library for compatible languages.

- Packages for several purposes, such as visualization, navigation, message
publishing, etc.

Despite the fact that it is called an operating system, it is not an operating system
in the usual sense. But it provides more abilities than just a framework; it provides OS-
like functions such as hardware abstraction, package management, developer
toolchain, strict file organization, which is even called file system (when it is rather a
file organization structure).

ROS framework is organized as many nodes that work in separate processes. A
node can send and receive messages through topics; provide services; call services
provided by another node; set and receive data in parameter server. The main process
called ROS Master orchestrates all mentioned above; it should be run first. ROS Master
register nodes; set up inter-node communication with topics and services and control
parameter server updates. Inter-node communication is peer-to-peer between nodes
after they were registered.

A ROS node is a single process running the ROS graph. Every node must have
a name; it is the very first step during registration. Multiple nodes with different names
can exist only under different namespaces. If the node is defined as anonymous, it will
randomly generate an additional identifier to add to its given name. Nodes are the main
part of ROS programming; each ROS node takes actions based on information received
from other nodes, sends information to other nodes, or sends and receives requests for
actions to and from other nodes.

The message system in ROS consists of topics — buses through which nodes can

send and receive messages. The topic must have a unique name within its namespace



37

as well as nodes. To send messages to the topic node should register the publisher. To
receive messages it must subscribe to a topic. The topic has its data format, it can be
built-in message types or user-defined with msg files. The content of the mentioned
messages can be next: data from sensors, control commands for a motor, state
information, actuator commands, or anything else.

The other way to communicate between nodes is through services. A service is
a function or procedure registered with a unigue name and can be called by its name.
The service can require input data via parameter and return data after its call. Services
are used for rare actions but not for constant processing of continuous data stream.

Besides the framework, ROS also provides a variety of tools that allow
developers to visualize and record data, easily navigate the ROS package structures,
and create scripts automating complex configuration and setup processes. These tools
provide solutions to many common robotics development problems that significantly
increases the capabilities of systems using ROS. Examples of built-in packages:

— RViz — is a three-dimensional visualizer used to visualize almost any data.
Out of the box, it can visualize robots, the environments they work in, and sensor data.
It is a highly configurable and extendable tool; it can be configured for many different
purposes and supports extensions with plugins.

- rosbag is a command-line tool used to record and playback ROS message
data. rosbag uses a file format called bags, which log ROS messages by listening to
topics and recording messages as they come in. After data is recorded, you can play it
again, i.e., publish the same messages in the same order as it was during the record.
Besides the command line tool rosbag, rgt_bag provides a GUI interface to rosbag.

- catkin is a build system for ROS packages. It is based on environments

where you can store

2.4.1. ROS Filesystem

A package is a unit of ROS software. A package contains one or more ROS

programs (nodes), libraries, configuration files, etc., organized together as a single unit



38

(Fig. 2.7.). Packages are an atomic build and release element in ROS software (Fig.
2.6.). The package is defined with a package manifest that contains information about
the package, author, license, dependencies, compilation flags, and so on. The

package.xml file inside a ROS package is the manifest file for that package [34].

ROS File System Level

Meta Packages

Packages

Package

Manifest Messages Services

Fig. 2.6. Ros Filesystem [34]

The term metapackage refers to one or more related packages that can be loosely
grouped. In principle, metapackages are virtual packages that do not contain any source
code or typical files usually found in packages. The metapackage manifest is very close
to the package manifest, but the difference is that it can include packages inside it as
runtime dependencies and declare an export tag [2, 34].

ROS message is a structured piece of information that can be sent between

nodes. It can be defined with a ".msg" file inside a "msg" folder in a package folder.



39

The ROS service is a kind of request-response interaction between processes.
Request and response data can be defined in "srv" folder inside the package folder with

" srv" extension.

talker.py talker.cpp
listener.py listener.cpp

Fig. 2.7. Structure of typical C++ package

2.4.2. Transformation Tree

Any robot will have a lot of subsystems, such as a mobile base; perception
devices like laser scanners, lidars, cameras attached to the base to provide the ability
for it to navigate through the environment, and a manipulator arm with an end-effector
that will do the actual grabbing of items. A really good item-fetching robot might have
many more features than mentioned before; items are enough to make coordinate
frames a critical concern.

In our 3D world, a position is a vector of three numbers (X, y, z) that describe
how far we have translated along each axis, concerning some origin. Similarly,

orientation is a vector of three numbers (roll, pitch, yaw) that describe how far we have



40

rotated about each axis, again concerning some origin. Taken together, a (position,
orientation) pair is called a pose. For clarity, this kind of pose, which varies in six
dimensions (three for translation plus three for rotation), is sometimes called a 6D pose.
Given the pose of one thing relative to another, we can transform data between their
frames of reference, a process that usually involves some matrix multiplications.

We need to know: what is the pose of the origin of the laser with respect to the
pose of the base? That's not all, of course. And if we're going to use the base-mounted
camera to find items in the environment, then we likely need to know the camera'’s pose
with respect to the base. If we're going to use the locations of items found by the camera
to send goals to the hand, then we further need to know the pose of the camera with
respect to the hand. This case is especially interesting because the camera-to-hand
relationship might be changing all the time as the arm moves the hand with respect to
the camera. Then you have the mobile base moving around in the world (e.g., defined
by a map), so there's a base-to-world relationship that is also continually changing.

We also need a message format to use when publishing information about trans-
forms. In tf, we use tf/tfMessage, sent over the /tf topic. You don't need to know the
details of this message because you're unlikely ever to manipulate one manually. It's
enough to know that each tf/tfMessage message contains a list of transforms,
specifying for each one the names of the frames involved (referred to as parent and
child), their relative position and orientation, and the time at which that transform was
measured or computed. Time turns out to be extremely important when we talk about
sensor data and coordinate frames. If you want to combine a laser scan from one second
ago with a scan from five seconds ago, then you had better keep track of where that
laser was overtime and be able to convert the scan data between its one-second-ago
pose and its five-seconds-ago pose. We don't want every node that works with
transform data to reinvent the publishing, subscribing, remembering, or computing
transforms. So, tf also provides a set of libraries that can be used in any node to perform
those common tasks. For example, if you create a of listener in your node, then, behind
the scenes, your node will subscribe to the /tf topic and maintain a buffer of all the

tf/tfMessage data published by other nodes in the system. Then you can ask questions



41

of tf, like: Where is the laser with respect to the base? Or, where was the hand with
respect to the map two seconds ago? How does this point cloud be taken from the depth
camera look in the laser frame? In each case, the tf libraries handle all the matrix
manipulations for you, chaining together transforms and going back in time through its
buffer as needed. As is often the case for a robust system, tf is relatively complex, and
there are a variety of ways in which things can go wrong. Consequently, there many
tf-specific introspections and debugging tools to help you understand what's
happening, from printing a single transform on the console to rendering a graphical

view of the entire transform hierarchy [35].

2.5. Environment perception using Realsense

The Intel RealSense depth camera D435 is a stereo solution, offering quality
depth for various applications. It is a wide field of view that is perfect for applications
such as robotics or augmented and virtual reality, where the most important part is
seeing as much as possible. With a range of up to 10m, this small form factor camera
can easily be integrated into any solution and comes complete with Intel RealSense
SDK 2.0 and cross-platform support [36].

The Intel RealSense D435 depth camera has a wider FOV at approximately 85°
field of view.

D435 depth camera has a global shutter. Cameras with a rolling shutter record
all the pixels in a scene by rapidly scanning either left and right or vertically. This will
usually happen for a couple of frames, but the data will be saved as a single frame.
Global shutter cameras operate differently in that they snapshot the whole scene in a
single frame, so every pixel is captured simultaneously. In practice, because rolling
shutter cameras capture an image in sections slightly divided by time, it can lead to odd
image artifacts when something in the scene is moving rapidly.

The output of the Realsense camera is a colored point cloud.



42

2.5.1. Post-processing of point cloud with PCL

The density of the produced point cloud could be too big to process it further.
Also, the camera can capture objects which are out of the available workspace of the
arm. Both problems lead to additional unnecessary computation.

To solve these problems, we use PCL — Point Cloud Library. It is a set of
algorithms for point cloud data, including filtering, feature estimation, surface
reconstruction, registration, model fitting, and segmentation [37].

The large density of the objects can be solved by downsampling the raw point
cloud with the VoxelGrid filter. The VoxelGrid class creates a 3D voxel over the input
point cloud data. Then, in each voxel, all the points present will be approximated (i.e.,
downsampled) with their centroid. This approach is slightly slower than approximating
them with the voxel center, but it represents the underlying surface more accurately.

Points that are outside of the workspace are removed with the PassThrough filter.

This filter simply deletes all points where coordinates out of set limits.

2.6. Object segmentation with YOLO

One family of object detection approaches is YOLO what stands for You Only
Look Once. This approach's advantage is speed,; it is usually faster than another popular
R-CNN approach, although it is less accurate.

Joseph Redmon first described the YOLO model in 2015 with a paper titled
"You Only Look Once: Unified, Real-Time Object Detection." [38]. During the work
on this paper, they achieved the 45 FPS performance.

The detection system uses classifiers to perform detection. This system takes a
classifier for that object and evaluates it at various locations, and scales in a test image
to detect an object. At the same time, systems such as Deformable Part Models (DPM)
use a sliding window approach where the classifier runs at evenly spaced locations

throughout the image.



43

Later approaches like R-CNN use region techniques to create potential bounding
boxes in the image and then run a classifier on those suggested rectangles. After
classification, post-processing is used to refine the bounding boxes, eliminate duplicate
detections, and re-evaluate the boxes based on other objects in the scene. Those
complex pipelines are slow and difficult to optimize because each component must be
trained separately. YOLO learns from full images and directly optimizes detection
performance. This unified model has several advantages over traditional object
detection methods. First, YOLO is very fast. Since it treats detection as a regression
problem, it doesn't need a complex pipeline. It merely runs a neural network on a new
image during testing to predict the detection. Second, YOLO considers globally about
the image when making predictions. In contradistinction to sliding window and region
proposal-based techniques, instead, YOLO sees the entire image during the training
and test time, so it implicitly encodes contextual information about classes as well as
their appearance. Fast R-CNN is a top detection method, mistakes background patches
in an image for objects because it cannot see the larger context. YOLO makes less than
half the number of background errors compared to Fast R-CNN. Third, YOLO learns
generalizable representations of objects. When it is trained on natural images and tested
on the artwork, YOLO successfully outperforms top detection methods like R-CNN
and DPM by a wide margin. Since YOLO is highly generalizable, it does not tend to
break down when applied to unexpected inputs or new domains.

YOLO still performs behind state-of-the-art detection systems in terms of
accuracy. But it can quickly identify objects in images, it struggles to localize some

objects, tiny ones, precisely.

2.7. Grasp pose detection

Before grasping any object, the object should be recognized and chosen. It is a

problem in robotics arm control to solve. Approaches to grasp perception can be

subdivided into the following ways [12]:



44

— With known models. Based on the recognition of predefined loaded
models. The method tries to find similar objects among predefined CAD models. It can
be more accurate with known objects but usually does not work if the object is not
recognized.

- Without known models. When the system allows finding a grasping
position for the object even if it is an unknown object, but at the same time, it can also
support the detection of known objects.

There is an implementation of the second approach — the Grasp Pose Detection
(GPD) package. It provides 6-DOF grasp poses for objects. It means that an object can
be grasped from any side with any orientation if the arm can provide such a pose. At
the moment, it supports only two-finger parallel grippers, which is appropriate for the
gripper we use. Besides, the gripper is not a parallel jaw gripper, rather a scissors-type
[3].

As an input, GPD consumes point cloud data and outputs available grasp poses.

The main strengths of GPD are:

- works for novel objects (no CAD models required for detection),

- works in dense clutter, and

- outputs 6-DOF grasp poses (enabling more than just top-down grasps).

If we use just raw point cloud in GPD, it will cause excessive grasp poses, like
grasping the table or other objects. We need to filter it out. It can be done by setting
the workspace, which includes only objects on the table. A different and more useful
approach is filtering out all points from the point cloud that are not related to the target
object. The filtering approach is explained in part 2.6

As the output, we have several scored grasp poses. The score shows how likely
grasp candidate can be grasped. We choose a candidate with the best score. With
further work, we can introduce an additional value — the cost of movement, which is a
sum of angle differences for each joint. And Select the grasp pose, which also is closer

to the current arm position.



45

2.8. Environment description with Octomap

The OctoMap library implements a 3D occupancy grid mapping approach by
providing data structures and mapping algorithms in C ++, especially suitable for
robotics. The implementation of the map is based on an octree and is designed to satisfy
the next requirements [39]:

- Full 3D model. Octomap can model arbitrary environments without any
prior assumptions about it. It represents occupied areas as well as free space. New areas
of the environment are implicitly encoded in the map to build. While the distinction
between free and occupied space is crucial for safe robot navigation, information about
unknown areas is essential, e.g., for autonomous exploration of an environment.

- Updatable. It can add new information or sensor readings at any time.
Modeling and updating are done in a probabilistic manner. This took into account a
sensor noise or measurements which result from dynamic changes in the environment,
e.g., because of dynamic objects. Moreover, multiple robots can contribute to the same
map, and a previously recorded map will be extended when new areas are explored.

- Flexible. The size of the map is not necessary to be known in advance.
Instead, the map is dynamically expanded upon need. The map is variable-resolution
so that, for instance, a high-level planner can use a rough map, but a local planner may
operate using a sufficient resolution. This also allows for efficient visualizations that
scale from rough overviews to detailed close-up views.

— Compactness. The map is stored efficiently, as well as in RAM and
persistent storage. It is possible to generate a well-compressed file for usage later or
for convenient exchange between robots even under bandwidth constraints.

In the research, we are not using Octomap directly, but we use it inside the

Movelt framework.



46

2.9. Motion planning with obstacle avoidance using Movelt!

Movelt is an easy-to-use open-source robot manipulation platform for

commercial application development, prototyping, and testing algorithms [40].
The picture below (Fig. 2.8) shows a high-level system architecture for the

primary node move_group. This node serves for integration purposes: it connects all

components.

Moveit Commander

>

o

User / Al

r

Raw Action

Rviz Plugins

\/

y

‘ Move Group |[=

Planning Scene

Y,

Planning Pipeline ’ >
b 2%
4 Planning Interface

[ Trajectory Execution Manager

T

b

Controllers

Legend

SBPL
Search-Based
Planning Libra

CHOMP
‘Covariant Hamiltonian
Optimization

¥

FCL
Flexible Collision
Libral

PCD
Proximity Collision

Detection

moveit_ros
Package

moveit_core External Package
Package Dependency

Fig. 2.8. — Movelt structure



47

The pipeline is:
1. receiving the action from outside (operator, software call, etc.);
2. call chosen motion planner to build appropriate motion;

3. execute the motion on the arm via robot controllers.

[ ROS Param Serverj

w | w by
ol al €
|l [e]
S|a| S
User Interface ... Y v v
E’love _group_interfactj ‘ MoveGroupAction . E
(C++) : PickAction > _JointTrajectoryAction_ }D;
4 PlaceAction o - » E
: E @)
i [ moveit_commander | : o
(Python) B Get IK Service =S
3 Get FK Service s
: :___Get Plan Validity Service = g
i i . 5 Plan Path Service Ni Point Cloud Topic a
: [ N ki ] , Execute Path Service 4 g A
i Get Planning Scene Service o Q
i Other Interfaces | AttachedObject
e 41 CollisionObject !
PlanningSceneDiff
N

Fig. 2.9. move_group interaction

2.9.1. Configuration

To use Movelt! With any robotics arm, a configuration is needed. A robot arm
developer may provide it, or you can do it with Setup Assistant.

URDF configuration for Movelt! Should specify meshed for collision checking.
It is possible to provide meshes for visualization and or collision checking separately
in URDF. You can provide detailed visualization meshes, but collision meshes should

not be very detailed. The performance of checking collisions for robot link depends on



48

the number of triangles of collision meshes. The number of triangles in the robot
description should be less than a few thousand [41].

The SRDF or Semantic Robot Description Format complements the URDF. It
describes default robot configurations, joint groups, additional collision checking
information, and additional transforms that may be needed to specify the robot's pose
completely. The recommended way to generate an SRDF is by using the Movelt! Setup
Assistant.

Usually, URDF describes information only about the physical joints of the robot.
To define the pose of the root link on the robot accordingly to a world coordinate
system, you often may need additional joints. In this case, to specify this connection.
A virtual joint is used. For example, a mobile robot like the PR2, which can move
around in the plane, is specified using a planar virtual joint that attaches the world
coordinate frame to the robot's frame. If a robot is fixed (like an industrial manipulator),
it should be attached to the world using a fixed joint.

A group (sometimes called JointGroup or Planning Group) is a central Movelt!
Concept. Movelt! always applies an action on a particular group. The only joints
Movelt! will use are the joints in the group for planning. Other joints will be left
stationary. (To build a motion plan where all joints in the robot may move, creating a
group of all joints is necessary.) A group is simply a collection of links and joints. Each
group can be defined in one of the following different ways:

- Collection of Joints. The group automatically includes all the child links
of each joint.

- Collection of Links. The group automatically includes all the parent links.
All the parent joints of the links are also included in the group.

- Serial Chain. A serial chain is specified with the tip link and the base link
the tip link. The last chain of the chain is called the tip link. The parent link for the first
joint in a chain is called the base link.

- Collection of Sub-Groups. A collection of groups can be assigned to
another group. E.g., you can define as two groups, right_arm and left_arm, and then

you can define a new group named both_arms that includes these two groups.



49

Certain groups in a robot can be given a special designation as an end-effector.
An end-effector is typically connected to another group (like an arm) through a fixed
joint. There should be no common links between the end-effector and the parent group

it is connected to. It is necessary to check it when specifying groups.

In Setup Assistant, the Default Self-Collision Matrix Generator looks for pairs
of links on the robot definition that can be safely disabled from collision checking to
decrease motion planning processing time. Such pairs of links will be disabled when
they are:

- always in the collision;

- in collision in the robot's default position;

— when they are adjacent to each other on the given kinematic chain.

The sampling density determines the number of random positions of the robot to
check for self-collision. With higher densities, more computation time is required, but
on the other hand, lower densities give a higher possibility of disabling pairs that should
not be disabled. The default value is 10,000 collision checks. Collision checking is

done in parallel to reduce processing time.

2.9.2. Move Group interactions

move_group talks to the robot through ROS topics and actions. It communicates
with the robot to get current state information (positions of the joints, etc.), get the point
clouds and other sensor data from the robot sensors, and to talk to the controllers on
the robot.

move_group listens on the /joint_states topic for determining the current state
information - i.e., determining where each joint of the robot is. move_group is capable
of listening to multiple publishers on this topic even if they are publishing only partial
information about the robot state (e.g., separate publishers may be used for the arm and
mobile base of a robot). Note that move_group will not set up its own joint state

publisher - this is something that has to be implemented on each robot.



50

move_group monitors transform information using the ROS TF library. This
allows the node to get global information about the robot's pose (among other things).
E.g., the ROS navigation stack will publish the transform between the map frame and
base frame of the robot to TF. move_group can use TF to figure out this transform for
internal use. Note that move_group only listens to TF. To publish TF information from
your robot, you will need to have a robot_state publisher node running on your robot.

move_group talks to the controllers on the robot wusing the
FollowJointTrajectoryAction interface. This is a ROS action interface. A server on the
robot needs to service this action - this server is not provided by move_group itself.
move_group will only instantiate a client to talk to this controller action server on your
robot.

move_group uses the Planning Scene Monitor to maintain a planning scene,
which is a representation of the world and the current state of the robot. The robot state
can include any objects carried by the robot, which are considered to be rigidly attached
to the robot. More details on the architecture for maintaining and updating the planning
scene are outlined in the Planning Scene section below.

move_group is structured to be easily extensible - individual capabilities like
pick and place, kinematics, motion planning are actually implemented as separate
plugins with a common base class. The plugins are configured using ROS through a
set of ROS YAML parameters and through the use of the ROS pluginlib library. Most
users will not have to configure move_group plugins since they come automatically

configured in the launch files generated by the Movelt Setup Assistant [41, 42].

2.9.3. Motion planning

Movelt works with motion planners through a plugin interface. This allows
Movelt to communicate with and use different motion planners from multiple libraries,
making Movelt easily extensible. The motion planners' interface is through a ROS

Action or service (offered by the move_group node). The default motion planners for



o1

move_group are configured using OMPL and the Movelt interface to OMPL by the
Movelt Setup Assistant.

The motion plan request clearly specifies what you would like the motion
planner to do. Typically, you will be asking the motion planner to move an arm to a
different location (in joint space) or the end-effector to a new pose. Collisions are
checked for by default (including self-collisions). You can attach an object to the end-
effector (or any part of the robot), e.g. if the robot picks up an object. This allows the
motion planner to account for the motion of the object while planning paths. You can
also specify constraints for the motion planner to check - the inbuilt constraints
provided by Movelt are kinematic constraints:

- Position constraints - restrict the position of a link to lie within a region of
space

- Orientation constraints - restrict the orientation of a link to lie within the
specified roll, pitch, or yaw limits

- Visibility constraints - restrict a point on a link to lie within the visibility
cone for a particular sensor

— Joint constraints - restrict a joint to lie between two values

- User-specified constraints - you can also specify your own constraints
with a user-defined callback.

The move_group node will generate the desired trajectory in response to your
motion plan request. This trajectory will move the arm (or any group of joints) to the
desired location. Note that the result coming out of move_group is a trajectory and not
just a path - _move_group will use the desired maximum velocities and accelerations
(if specified) to generate a trajectory that obeys velocity and acceleration constraints at
the joint level.

The complete motion planning pipeline chains together a motion planner with
other components called planning request adapters (Fig. 2.10). Planning request
adapters allow for pre-processing motion plan requests and post-processing motion
plan responses. Pre-processing is useful in several situations, e.g., when a start state for

the robot is slightly outside the robot's specified joint limits. Post-processing is needed



52

for several other operations, e.g., converting paths generated for a robot into time-
parameterized trajectories. Movelt provides a set of default motion planning adapters

that each perform a particular function [42].

|
|

MotionPlanResponse _
(C++) !

MotionPlanRequest
(C++)

>

A
planning request adapters
e.g. time parameterization

E e.g. fix start time
motion_planner
planning request adapters

|

—

Fig. 2.10. The motion planning pipeline

The fixed start state bounds adapter fixes the start state within the joint limits
specified in the URDF. This adapter's need arises when the joint limits for the physical
robot are not correctly configured. The robot may then end up in a configuration where
one or more of its joints is slightly outside its joint limits. In this case, the motion
planner cannot plan since it will think that the starting state is outside joint limits. The
"FixStartStateBounds" planning request adapter will "fix" the start state by moving it
to the joint limit. However, this is obviously not the right solution every time - e.g.,
where the joint is really outside its joint limits by a large amount. The adapter parameter
specifies how much the joint can be outside its limits to be "fixable™.

The fix workspace bounds adapter will specify a default workspace for planning:
a cube of size 10 m x 10 m x 10 m. This workspace will only be specified if the planning
request to the planner does not have these fields filled in.



53

The fix starts state collision adapter will attempt to sample a new collision-free
configuration near a specified configuration (in a collision) by perturbing the joint
values by a small amount. The amount that it will perturb the values by is specified by
a "jiggle_factor" parameter that controls the perturbation as a percentage of the joint's
entire range of motion. The other parameter for this adapter specifies how many
random perturbations the adapter will sample before giving up [43].

This adapter is applied when the start state for a motion plan does not obey the
specified path constraints. It will attempt to plan a path between the robot's current
configuration to a new location where the path constraint is obeyed. The new location
will serve as the start state for planning.

The motion planners will typically generate "kinematic paths”, i.e., paths that do
not obey any velocity or acceleration constraints and are not time parameterized. This
adapter will "time parameterize™ the motion plans by applying velocity and
acceleration constraints.

There are many planners included in Movelt. All of them are part of OMPL (Fig.
2.11., 2.12.). We need to choose the best planners to use. A comparison of them is
made by Kajane Thinakaran in her thesis. RRTConnect, SBL, FMT, and BiTRRT were
shortlisted as the primary planners for the Sawyer arm. RRTConnect and SBL are the
fastest planners. FMT gives the best path qualities, while BiTRRT has a very high
solution probability in high-obstacle-density environments. The TRAC-IK kinematics
plugin is recommended as it generally shows a better performance than KDL or LMA
[44].

Planning Library

OMPL Planner Parameters
BiTRRTkConfigDefault - | cost_threshold inf
Frountier_node ratio 0,1
frountier_threshold 0
init_temperature 100
projection_evaluator joints(right_lo,right_l1,...
0,9

range

-

Fig. 2.11. Choosing of planner



54

Commands Query

Plan Select Start State:

Select Goal State:

Plan and Execute .
= <random valid= =

-

Update

Executed Clear octomap

Fig. 2.12. Rviz commands

2.9.4. Environment perception

The planning scene is used to represent the world around the robot and stores the
robot's state. It is maintained by the planning scene monitor inside the move group
node. The planning scene monitor listens to:

- State Information: on the joint_states topic

— Sensor Information: using the world geometry monitor described below

— World geometry information: from user input on the planning_scene topic
(as a planning scene diff).

The world geometry monitor builds world geometry using information from the
sensors on the robot and from user input. It uses the occupancy map monitor described
below to build a 3D representation of the environment around the robot and augments
that with information on the planning_scene topic for adding object information.

The Occupancy map monitor uses an Octomap to maintain the occupancy map
of the environment. The Octomap can actually encode probabilistic information about
individual cells, although this information is not currently used in Movelt. The
Octomap can directly be passed into FCL, the collision checking library that Movelt

USes.



55

User Interface

-

)
, (L)
E move_group_interface : 2 £
: — : = . . 0
: (C++) ] | é Point Cloud Topic E a
AN [ Q
(o] g Depth Image Topic 2 "8
L . - . AttachedObject E \% =
i [ moveit_commander | : - :
5 (Python) ] : CoII|.5|onOb|ec'F Zo —~
AN PlanningSceneDiff 8 P
: (0] c S
. OCJ g Joint States Topic S
p U ) e
[ GUI (Rviz Plugin) J ! wn § 1f [ Robot E
; 5 EO \2) State 2
. c (>~ Publisher
P LRRTERR IR . . Monitored Planning Scene 5 E 5
Other Interfaces 5 (Optionally Published) a |9 £
P 0
"""""""""""""" ' o £
i
0
3
—
............................... ~ )

Fig. 2.13. Planning Scene Monitor

2.9.5. Collision checking

Collision checking in Movelt is configured inside a Planning Scene using the
CollisionWorld object. Fortunately, Movelt is set up so that users never really have to
worry about how collision checking is happening. Collision checking in Movelt is
mainly carried out using the FCL package - Movelt's primary CC library [45].

Movelt supports collision checking for different types of objects, including:

- Meshes

- Primitive Shapes - e.g., boxes, cylinders, cones, spheres, and planes

- Octomap - the Octomap object can be directly used for collision checking

Collision checking is a very expensive operation, often accounting for close to
90% of the computational expense during motion planning. The Allowed Collision
Matrix or ACM encodes a binary value corresponding to the need to check for collision
between pairs of bodies (which could be on the robot or in the world). If the value

corresponding to two bodies is set to 1 in the ACM, this specifies that a collision check



56

between the two bodies is not needed. This would happen if, e.g., the two bodies are

always so far away that they would never collide with each other.

2.10. Visualization in Rviz

Rviz is a highly extensible 3D visualization tool widely used in ROS
development. Although the main task for the tool is visualization, it also can be an
input tool.

The Movelt! Rviz plugin allows us to set up virtual environments (scenes), create
start and goal states for the robot interactively, test various motion planners, and

visualize the output.

2.10.1. Movelt! Rviz plugin

The easiest way to get started using Movelt! is using its RViz plugin. This tool
is the primary visualizer in ROS and a handy tool for debugging robotics. The Movelt!
Rviz plugin allows you to set up virtual environments (also called scenes), create start
and goal states for the robot interactively, test all motion planners, and visualize the
built path. The most useful parts of the plugin are listed below. With interface on Fig.
2.14. you can choose a planner and set its parameters. On interface in Fig. 2.15. there

are motion planning, we can set the goal to achieve.

Planning Library

OMPL Planner Parameters
BiTRRTkConfigDefault - | cost_threshold inf
Frountier_node_ratio 0,1
frountier_threshold 0
init_temperature 100
projection_evaluator joints(right_lo,right_l1,...
0,9

range

-

Fig. 2.14. Choosing of planner



S7

(M interact | %7 Move Camera [ Select == Measure F =, @,
3 Displays
v & Global Options
Fixed Frame right_arm_base_link
Background Color W 48; 48; 48
Frame Rate 30
Default Light &
» v Global status: Ok
> @ Grid &
v 3 MotionPlanning &

» v/ Status: Ok

Move Group Namespace

Robot Description robot_description

Planning Scene Topic move_group/monitored_planning_scene
¥ Scene Geometrv

Add
$ MotionPlanning

Context | Planning | Manipulation =Scene Objects = Stored Scenes Stored States = Status

Commands Query Options head_ce  a_optical
Plan Select Start State: ‘\‘7 Planning Time (s):| 5,00 |
Execute Planning Attempts:| 10,00 =
= <current> =
Plan and Execute Velocity Scaling:| 0,60
= Update X z -
= Acceleration Scaling:| 0,50 -
AT T .
Select Goal State: N\ Allow Replanning
Allow Sensor Positioning
Time: 0.214 Clear octomap

] Allow External Comm.
¥ use Collision-Aware IK right_hand_ca:era_optical

Allow Approx IK Solutions
Path Constraints

None

Goal Tolerance: 0,00

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click:: Move Z. Shift: More options. 31fps

Fig. 2.15. Rviz commands

There are four different overlapping visualization approaches:

- The robot's configuration in the planning scene planning environment (is
active by default).

— The planned path for the robot (default setup).

- Green ghost: The start state for motion planning (disabled by default).

- Orange ghost: The goal state for motion planning (is active by default).

Each of these visualizations can be toggled on and off using checkboxes:

- The planning scene robot using the Show Robot Visual checkbox in the
Scene Robot tab.

- The planned path using the Show Robot Visual checkbox in the Planned
Path tab.

- The start state using the Query Start State checkbox in the Planning
Request tab.

- The goal state using the Query Goal State checkbox in the Planning
Request tab.



58

2.11. Simulation in Gazebo

Gazebo (Fig. 2.16.) is a 3D dynamic simulation software with the ability to
simulate robots' populations accurately and efficiently in complex indoor and outdoor
environments. While similar to game engines, Gazebo offers physics simulation at a
much higher degree of fidelity, a suite of sensors, and interfaces for both users and
programs.

Typical uses of Gazebo include:

- testing robotics algorithms,

- designing robots,

- performing regression testing with realistic scenarios

A few critical features of Gazebo include:

- a rich library of robot models and environments,

- several physics engines,

- a wide variety of sensors emulation,

- convenient programmatic and graphical interfaces.

Gazebo

World | Insert  Layers = | o ‘ . . . | L S |
GuI »
Scene
Spherical Coordinates
Physics
w Models
-

link
» sawyer
} Lights

Property
name

is_static
self_collide
} pose
P link ground_plane::link

Real Time Factor: Sim Time: Real Time: Iterations

Fig. 2.16. Gazebo interface



59

2.12. Slip detection with ToF and Tactile sensor using Deep Learning

To implement a robust method of grasping the object, we have chosen two types
of sensors — ToF and tactile sensor.

ToF sensor is used to recognize object presence between the gripper. Although
GPD may provide accurate enough poses to grasp, it can add additional precision. This
approach also decreases the requirements for calibration accuracy. ToF sensor could
also be used for slip detection, but it was considered excessive during the research.
Data from the tactile sensor is enough to detect a slip securely. We use VL6180X Time-
of-Flight Distance Sensor from Pololu.

The easiest way to achieve haptic perception is to use a tactile sensor. This can
be used to record the change of capacity or resistance of the gripper's fingers. We use
Force-Sensing Linear Potentiometer from Interlink Electronics.

The approach is described in Atmaraaj Gopal's thesis [46]. The approach is to
use machine learning to detect a slip.

To recognize the slip, there two general approaches: strict algorithm and
machine learning. We used the second one. Values from the tactile sensors are directly
processed with LTSM neural network. Without any additional filtering. The
advantages of such an approach:

- It is easy. We don't need to develop an algorithm. We don't even really
need filtering before. So it's decreases complexity.

— It does not need adjustments for other grippers. We can even use the same
model on different grippers.

We trained a model using a stable grasp and slip state. Slip data is obtained by
sliding the gripper along with the cylinder (Fig.2.17.). The average sliding velocity
values are 25mm/s, 100mm/s, and 500mm/s, which is done on cardboard, aluminum,
and plastic. When the gripper slides along the object, it produces fluctuations of signal,

which should be way bigger than values when the grasp is stable.



60

ClichSmart Plate + Sawyer rohotarm

Gripper + Sensors

Cylinder
(various materials)

Sliding path ‘
—

Fig.2.17. Data Acquisition

Stable (non-slip) data is done by stable gripping of the object when the object is
not moved relative to the gripper.
So that we have a dataset with values of the movement and when there is no

movement. It can be directly used to train NN.
2.13. Conclusions to the second section

The purpose is the development of the arm controlling algorithm. This section
explains the chosen approaches and implementations used to develop the system. All
areas of arm control are covered.

This study describes a used robot called LeonaRT, developed by the RT-Lions
team. The robot was built for participation in the RoboCup championship. The
basement of the robot is an omnidirectional moving platform Neobotix MPO-700 (Fig.
2.1.). Its four Omni-Drive-Modules enable it to move exceptionally smoothly in any
direction. This robot is even capable of rotating freely while driving to its destination.
The Omni-Drive-Modules of the MPO-700 feature essential benefits compared to other
omnidirectional drive kinematics.

During the research, the team was able to use Sawyer Arm made by Rethink
Robotics. It is 7 degrees of freedom robotics arm. It is provided with built-in software

Intera.



61

ROS is a platform for robot development. It provides a framework for robot
software communication and a variety of built-in software. ROS framework is
organized as many nodes that work in separate processes. A node can send and receive
messages through topics; provide services; call services provided by another node; set
and receive data in parameter server.

The Intel RealSense depth camera D435 is a stereo solution, offering quality
depth for various applications. It is a wide field of view that is perfect for applications
such as robotics or augmented and virtual reality, where the most important part is
seeing as much as possible. With a range of up to 10m, this small form factor camera
can easily be integrated into any solution and comes complete with Intel RealSense
SDK 2.0 and cross-platform support.

The density of the produced point cloud could be too big to process it further.
Also, the camera can capture objects which are out of the available workspace of the
arm. Both problems lead to additional unnecessary computation. To solve these
problems, we use PCL — Point Cloud Library. It is a set of algorithms for point cloud
data, including filtering, feature estimation, surface reconstruction, registration, model
fitting, and segmentation.

One family of object detection approaches is YOLO what stands for You Only
Look Once. This approach's advantage is speed; it is usually faster than another popular
R-CNN approach, although it is less accurate.

Before grasping any object, the object should be recognized and chosen. It is a
problem in robotics arm control to solve. There is an implementation of the second
approach — the Grasp Pose Detection (GPD) package. It provides 6-DOF grasp poses
for objects. It means that an object can be grasped from any side with any orientation
if the arm can provide such a pose. At the moment, it supports only two-finger parallel
grippers, which is appropriate for the gripper we use. Besides, the gripper is not a
parallel jaw gripper, rather a scissors-type.

The OctoMap library implements a 3D occupancy grid mapping approach by
providing data structures and mapping algorithms in C++, especially suitable for

robotics. The implementation of the map is based on an octree.



62

Movelt is an easy-to-use open-source robot manipulation platform for
commercial application development, prototyping, and testing algorithms.

Rviz is a highly extensible 3D visualization tool widely used in ROS
development. Although the main task for the tool is visualization, it also can be an
input tool. The Movelt! Rviz plugin allows us to set up virtual environments (scenes),
create start and goal states for the robot interactively, test various motion planners, and
visualize the output.

Gazebo (Fig. 2.16.) is a 3D dynamic simulation software with the ability to
simulate robots' populations accurately and efficiently in complex indoor and outdoor
environments. While similar to game engines, Gazebo offers physics simulation at a
much higher degree of fidelity, a suite of sensors, and interfaces for both users and

programs.



63

SECTION 3
RESULTS OF THE DEVELOPED SOLUTION

3.1. System setup

The developed system is tested on ROS Kinetic, which requires Ubuntu 16.04.

3.1.1. Simulation

The first step is adding the ROS repository.

sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $ (lsb release -sc)
main"™ > /etc/apt/sources.list.d/ros-latest.list’

If the command above does not work, you can use the next command.
Alternatively, you can use curl instead of the apt-key command, which can be

helpful if you are behind a proxy server.

curl -
sSL 'http://keyserver.ubuntu.com/pks/lookup?op=get&search=0xCl1CF6E31E6BADES8868B1
72BAF42ED6FBABL7C654"' | sudo apt-key add -

Make sure that the system is up to date

sudo apt-get update
Then on the development machine, we use a full installation

sudo apt-get install ros-kinetic-desktop-full
The ROS environment should set all variables automatically to each bash

session.

echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc
source ~/.bashrc

Now we have basic ROS functionality, but we need additional tools to manage
workspaces and packages. There are many tools and requirements that are distributed
separately. For example, rosinstall is a frequently used command-line tool that enables

you to easily download many source trees for ROS packages with one command.

sudo apt install python-rosdep python-rosinstall python-rosinstall-generator
python-wstool build-essential

To be able to use many ROS tools, we will need to initialize rosdep. It enables
us to install system dependencies if we want to compile packages from the source, and

it is required to run some core components in ROS.

sudo apt install python-rosdep



64

The following step is rosdep initialization

sudo rosdep init
rosdep update

Then next packages should be installed to work with the developed solution.

sudo apt-get update

sudo apt-get install git-core python-argparse python-wstool python-vcstools
python-rosdep ros-kinetic-control-msgs ros-kinetic-joystick-drivers ros-kinetic-
xacro ros-kinetic-tf2-ros ros-kinetic-rviz ros-kinetic-cv-bridge ros-kinetic-
actionlib ros-kinetic-actionlib-msgs ros-kinetic-dynamic-reconfigure ros-
kinetic-trajectory-msgs ros-kinetic-rospy-message-converter

sudo apt-get install gazebo7 ros-kinetic-gt-build ros-kinetic-gazebo-ros-control
ros-kinetic-gazebo-ros-pkgs ros-kinetic-ros-control ros-kinetic-control-toolbox
ros-kinetic-realtime-tools ros-kinetic-ros-controllers ros-kinetic-xacro python-
wstool ros-kinetic-tf-conversions ros-kinetic-kdl-parser ros-kinetic-sns-ik-1lib
sudo apt-get install ros-kinetic-moveit

sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-ros-control

Then we need to install Realsense plugin for Gazebo. We compile it from
sources. To compile it we need to create a build folder and make using CMAKE as

follows:

mkdir build
cd build
cmake

make

The plugin binaries will be installed so that Gazebo finds them. Also, the needed

models will be copied to the default gazebo models folder.

make install

Then we need configured packages in the workspace. Where {workspace} is a

path to the workspace.

cd {workspace}

git clone https://github.com/RethinkRobotics/intera sdk.git
git clone https://github.com/RethinkRobotics/intera common.git
git clone -b obstacle avoidance
https://github.com/ViacheslavRud/sawyer robot.git

git clone -b obstacle avoidance
https://github.com/ViacheslavRud/sawyer simulator.git

git clone -b obstacle avoidance
https://github.com/ViacheslavRud/sawyer moveit.git

git clone -b obstacle avoidance https://github.com/ViacheslavRud/realsense-
ros.git

cd

catkin make

In case if any errors with the Realsense library version, this line

find package (realsense2 2.35.2)

to this

find package (realsense2 2.34)



65

3.2. Running
3.2.1. Simulation

To run the simulation of the motion planning pipeline, you need to run the

simulated world in Gazebo. The following command runs it.

roslaunch sawyer gazebo sawyer world.launch

Fig. 3.1. Simulated robot in the initial pose

Then to move the manipulator to the appropriate starting position, the next

command is useful. It should be run in the second terminal.

rosrun intera examples joint torque springs.py

It should be disabled after the robot took the appropriate position.

rosrun intera interface joint trajectory action server.py



66

Fig. 3.2. Robot in a good starting position

At the next step, a new terminal should run the following command. This
command runs the Movelt interface in Rviz we can use to control the robot manually.

As a result, Rviz should be opened and show the same as in the image below (Fig. 3.3.).

roslaunch sawyer moveit config sawyer moveit.launch



67

Fig. 3.3. Simulation with octree

Then RViz will show the planning interface provided with the Moveit plugin.
Here we can set the parameters we need.

Alternatively, it can be done with a configuration file located at
catkin_ws/sawyer_moveit_config/config and then loaded in the
NAME_planning_pipeline.launch file. When the system is set-up on the robot, it
should use the configuration file.

The gripper is not represented in the simulation. We need to test it on the real

hardware.



68

3.2.2. Real robot

First, the operator's pc should be connected to the robot network, and the virtual
environment should be set to leonart. Then setup is similar to the simulation. The user

should run the next commands in individual terminals.

rosrun intera examples joint torque springs.py
rosrun intera interface joint trajectory action server.py
rosrun intera interface enable robot.py -e

Then we may need to setup the gripper.
. Connect gripper (Hand 2)
. Check port with Arduino IDE
. Connect hand camera

1
2
3
4, Start Remmina Remote Desktop Client
5 Connect to dutchman.local (LeonART)
6

Start camera node on LeonartPC

rosenv sawyer && roslaunch realsense2 camera rs_camera.launch

enable pointcloud:=true serial no:=844212070164"

7. Check the topic published on the DesktopPC with 'rostopic list | grep
camera’, topics with /camera* must be visible

Grasping Pipeline
(/home/deep/RTL/moveordie_ws/src/itchy _hands/scripts/pick_and_place.py)

1. Navigate to grasping package, 'ws ss cd itchy hands'

2. Open folder in VS Code, 'code’

3. View itchy _hands/scripts/pick_and_place.py

4, Get current end/effector pose with  'rosrun  tf  tf echo
right arm base link gripper tcp'

5. Get current joint states with 'rostopic echo /joint states’

6. Replace values in Python file accordingly (set workspace points, init and
detection joint_states)

7. Run file or (optional) set breakpoints in Python code and hit F5 to run.



69

3.3. Conclusions to the third section

As a result, we have a complete system that can find and grasp an object. This
has been accomplished with modern solutions in each area. The full structure is

presented in appendix B, and the brief structure is in Fig. 3.5. below.

Main Computer
Depth Image

Caontrol movement
via AP with Mowelt

Movement of robot

Arduino

Pl

[ MPO 750 ‘

Direct change of
angles

Serial Bus (USE)
) Read sensors and open/close gripper

o<
€

[ ToF Sensor ] h&!l:‘tile SEHSDF]

Fig. 3.5. The basic structure of the developed solution

The central component of the system is the main computer, which contains most
of the developed software. The main computer is located in the body placed on the
movable platform MPO 750. This computer has installed ubuntu 16.04. with ROS
Kinetic.

The critical part is an end-effector represented by the gripper with fingers based
on the Fin-Ray effect. They are done with TPU polymer. The movement of fingers is
driven by a single actuator that gives the symmetrical motion of two fingers. There are
two sensors on the gripper, ToF and tactile. They are used to recognize a secure grasp.
Sensors and motors are connected to the Arduino board, which communicates with the
main computer. The gripper is attached to Sawyer arm manipulator.

On top of the gripper, we have a Realsense camera, which provides pointcloud
data that used to detect objects and grasp poses.

We need to define a workspace and filter the object from the environment since
we need to grasp poses only for the target object. Filtering is done by YOLO and setting



70

the workspace in the GPD package. Then GPD package provides grasp poses for
grasping.

When we have the poses, it is time to move the arm to achieve the required pose.
Rethink Robotics provides Intera SDK can move the arm. It has built-in movement to
cartesian pose, but it does not meet all expectations. Instead, we use the Movelt
framework, which is the industry standard for robotic arm control. It can avoid
obstacles using Octomap generated from the point cloud we receive from the camera.

The developed algorithm (Fig. 3.6.):

1. Detect an object we need. It's done with YOLO. We need it to separate an
object from the environment.

2. Mask detected object. In this step, we should remove excessive points
from the point cloud.

3. Run GPD on masked point cloud to retrieve poses to grasp. At this step,
we have several grasp poses, with the score of each pose. We select the pose with the
best score.

4. We need pre and post grasp poses [43].

5. We move the gripper to pre grasp pose.

6. Move the arm to the object until it grasps.

7. When it approached the object, close the gripper.

8. Now the object can be taken to the post grasp pose, which is a bit farther
from the grasp pose.

Q. We continuously check if there is a slip as we move the arm to the post
grasp pose. If an object has fallen — repeat grasping from the pre grasp pose (step 5). If
the object is still in the gripper — move it further.

10. Check if there is a slip. If yes — increase the gripping force.



Q?)

Qbjects recognition

Start movement to
the post grasp pose

as the obje
fallen?

&

Open the gripper

Masking Close fingers
A
¥
Grasp Pose Movement to the
Detection Qrasp pose

h 4

F Y

Pre and post grasp
poses preparation

| Movement to the pre

grasp position

M

l

71

Increase gripping
force

Object can be moved

Fig. 3.6. The algorithm of grasping

The described approach is tested using simulation and real hardware. We have

satisfactory results of grasping different objects. The developed method described in

this study works as expected.



72

PO3JILI 4
EKOHOMIKA

[Ipu po3poOui mporpamuoro 3abesnedenHst (I13) BaknuBUMHU eTamamMu €
BU3HAUEHHS TPYJOMICTKOCTI pPO3pOOKH 1 pO3PAaXyHOK BHUTPAT HAa CTBOPEHHS

POrPaMHOTO MPOAYKTY.
4.1. BusHayeHHsI TPYAOMICTKOCTI po3po0KH NPOrpaMHoOro 3ade3nev4eHHsl

3amani gaHi:
1. mnepenbauyBane uucio oneparopis — 2300;
2. xoedilie€HT CKIaaHOCTI mporpamu — 1,7;
3. Koe]iIleHT KOPEeKIIli mporpamu B Xo/i ii po3pooku — 0,09;
4. roawHHA 3apo0iTHA TUIaTa Mporpamicrta, TpH/rox — 165;
5. Koe]ileHT 30UIbIIECHHS] BUTPAT Mpalll BHACIIJOK HEAOCTaTHHOTO OIMUCY
3amaul — 1,05;
6. xoedimieHT kBamidikaiii mporpamicta, 0OyMOBJICHHH Bij CTaXXy poOOTH
3 maHoi cneranbHocTl — 0,85;
7. BapticTh MammHO-roauHU EOM, rpH/Tom — 43.
HopmyBanns mpani B mpoueci cTBOpeHHs [I3 1CTOTHO yCKIagHEHO B CHITY
TBOPUYOTO XapakTepy mpaiii nporpamicra. ToMy TpyJOMICTKICTb PO3POOKH MOXKE OyTH
pO3paxoBaHa Ha OCHOBI CUCTEMHU MOJEJEeH 3 PI3HOIO TOUHICTIO OIIHKH.

TpynomicTkicTh po3po0ku 113 MoxkHa po3paxyBatu 3a GOpMYyJIOHO:

t =ty +ty + 1ty + ty + tor; + t, TFOAUHO-TONMH, (3.1)

ne 1, - BUTpaTH Mmpaili Ha MiATOTOBKY ¥ OMUC MOCTaBJIEHOI 3aa4il (MpUMMaEThCA
50);

t, - BUTpaTu mparii Ha JOCIIPKEHHsI alTOPUTMY PIllIEHHS 3a/1a4l;



73

t, - BUTpaTu npaiii Ha po3poOKy OJIOK-CXEMHU aIrOpUTMY;

t, - BUTpaTH mpaili Ha IporpaMyBaHHs 110 TOTOBIH OJIOK-cXeMmi;

toms - BUTPATH Mpalll Ha HaJaroakeHHs nporpamu Ha EOM;

t) - BUTpaTH mpari Ha MiATOTOBKY JOKYMEHTAIII].

CkJ1az10B1 BUTpATH Ipalll BU3HAYaAIOThCS YEPE3 YMOBHE uuciio onepartopis y 13,
SIKE€ PO3POOIIAETHCS.

YMOBHE YHUCIIO ONeparopiB (Miamporpam):

Q=qg*C*(1+p), (3.2)

ne ( - nependadyBaHe YHCIIO ONEepaTopiB;
C - xoe(imieHT CKIaHOCTI MPOTPaMH;

P - KoedilieHT KOPEKIIii MporpaMu B X011 ii po3poOKH.

Q=2300*1,7*(1+0.99) =4262, ntoarHO-TOTVH. (3.3)

Butpatu mpaii Ha BUBUYEHHS OMHCY 3ajadyi , BU3HAYAETHCS 3 ypaxXyBaHHSIM

YTOYHEHHS ONUCY 1 KBadi(ikalii mporpamicra:

t —Q*B 1{0) 0-TO (3.4)
= , IIOJTMHO-TO/IVH, :
" (75..85)*k

ne B - koedimienT 301IbIIEHHS BUTPAT Mpalll BHACHIIOK HEJJOCTATHHOTO OIHUCY
3aJ1aui;

k - koedimient kBamidikarii mporpamicra, 0OyMOBIICHHI Bijl CTaXy poOOTH 3

JTaHO]I CIIEeIajJIbHOCTI.



74

t —M—H JIFOIUHO-TO N H 35
Y 45*0,85 ’ ' (3:5)

Butpatu nparii Ha po3poOKy aJIrOpUTMY PIILICHHS 3a/]1a4l:

Q
t, =——~ — MOJMHO-TOMHH, :
=T (20.25) %k AT 0)
= % = 251, NIOAMHO-TOIMHA. (3.7)

Burtpatu Ha ckiiagaHHs IPOrpaMHu 1O TOTOBIN OJIOK-CXEMi:

3 Q
tn = m , JIOAUHO-TOOUH, (38)
4262
T 201, J1roAMHO-TOUHA. (3.9

Butpatu npaiii Ha HaJlaroKEHHs MPOTPaMu:

- 3da YMOBH aBTOHOMHOI'O HAJIAIOJKCHHA OAHOI'O 3aBIaHHA:

Q
{ =———— JHOJUHO-TOJMH, ,
™ = 4.5)*K A (3.10)
= 4262 =853, MOAUHO-TOANH; (3.11)

OTII 5 *1



75

- 34 YMOBHU KOMIIJICKCHOI'O HAJIaAroA>KCHHs 3aBAaHH:

th =15%*t

OTJI OTJI

, JTIOJAMHO-TOJIH, (3.12)

t¢ =1,5%853=1280, 10 MHO-TOIHH. (3.13)

Butparu mpaiii Ha miArOTOBKY JOKYMEHTAITI:

t =t » +1_  , IIOAUHO-TONMH, (3.14)

no 2

ne ty, - TpyAOMICTKICTb IIATOTOBKU MaTepialiB 1 pyKOMHKCY.

Q

tnp = m , JFOAUHO-TOAHNH, (315)
= ﬂ =85, moauHO-rogruHa 3.16
ap 20* O, 85 ? A ? ( . )

too - TPYZIOMICTKICTh pEaryBaHHsl, eYaTKH il 0(hOPMIICHHS TOKyMEHTAIlli:

t,=0,75% t,p» JIEOIMHO-TO/IMH, (3.17)

t,=0,75*251=189, moxuno-roaus, (3.18)



76

t, =251+189 =440, moauHo-ToAuH. (3.19)

Tenep po3paxyemo TpyaomicTkicts [13:

t =50+ 71+ 251+ 201+853+ 440 =1866 , nronuHO-TOIMH. (3.20)

4.2. BuTpaTu Ha CTBOPEHHS IPOrPaMHOI0 3a0e3ne4eHHs

Burparu na crtBopenHs [13 Kno BkIO4arOTh BUTpaTd Ha 3apoOiTHY ILIaTy
BUKOHABLS MporpamMu 33/71 1 BATPAT MALIMHHOIO Yacy, HEOOX1THOTO Ha HAJIArO>KEHHS

nporpamu Ha EOM:

Ko = 33q + 3yp TPH. (3.21)

3apo0iTHA MIaTa BUKOHABI(IB BUZHAYAETHCS 32 (hOPMYJIOHO:

33 =t*C,,, IpH, (3.22)

ne t - 3arajgpHa TPYAOMICTKICTb, JIFOAUHO-TOINH;

C,p - cepelnHs TOAMHHA 3apo0ITHA IUIaTa IporpamicTa, IpH/TOIUHA.

35, =1886*165 =3078890, rpH. (3.23)

BapticTh MalmmHHOTO Yacy, He0OX1THOTO JJIsl HAJIaro>KEeHHs MPOTpaMHu:



77

Bvs = torn ¥ Cyy s TPH, (3.24)

1€ tom, - TPYAOMICTKICT HasaroxxeHHs nporpamu Ha EOM, rog,
C,. - BapTicTh MammHoO-roauau EOM, rpa/rog,

C,w =35, rpa/ron.

3,5 =853%43=36679, rpn. (3.25)

Bu3HaveH1 B Takuid crioci0 BUTPATH HA CTBOPEHHS MPOrPaMHOI0 3a0€3MEYEHHS €

YaCTHUHOIO OJTHOPA30BUX KamiTadbHUX BUTpaAT Ha cTBOpeHHs: ACKII:

Ko =307890+36679 =344569, rpH. (3.26)

OuikyBaHuii niepion crBopeHHs [13:

T= B *F , Mic, (3.27)

ne By - uncio BukoHaBIiB (puitMaeThes 1),
Fp - micsaunnii ponn pobdodoro yvacy (mpu 40 rogMHHOMY POOOYOMY THIKHI

F,=176 ronun).

T 1866
1*176

=10,3, wmic. (3.28)



78

4.3. MapKeTHHIOBI J0CTiI’KeHHSI PUHKY 30yTy po3p0o0/1eHOr0 NporpaMHoOro

NPOAYKTY

Y upoMy migpo3auti Oyae mpoaHami30BaHO Ta MOCHIHKEHO PUHOK 30yTy Ta
MNOTEHIITHUX MOKYMI[IB pO3p00JIEHOT CUCTEMH, 10 37]aTHA aHaJI3yBaTH HABKOJUIIIHE
CEpelIOBUIIE, 3HAXOAUTH MEPEIIKOIN, 00 €KTU U1l B3aEMO/III, MO3M JJIsl XalaHHs, a
TaKOX INIAHYE PyX MAaHIMyJsITOpa 10 BU3HAYCHOI IMO3W Ta BU3HAYAE€ HAMIMHICTH
xamnaHHs 00’ €KTa.

MeTo10 Takoro JOCHIKEHHS € peaii3allis CTBOPEHOT0 MPOTrPaMHOTO MPOIYKTY
3alliKaBJICHUM MPOMHUCIOBUM HIANPUEMCTBAM 3 PI3HUX Tally3edl MPOMMCIOBOCTI /€
HEOOX1THO BHUKOHYBAaTHU 37a4l SIKI MOXXYyTh OyTH aBTOMAaTHM30BaHI 3a JOIOMOTOIO
PO3p00JICHOTO PIIlICHHS.

B xomi pobotu Oyna po3poOieHa cuCTeMa, sKa aHali3ye HaBKOJUIIHE
CEepeIOBHILIE, 3HAXOUTH MEPEIIKOIN, 00'€KTH I B3AEMO/I11, TIO3Y€ I 3aXOTUICHHS,
IJIaHY€E PYyX MaHIMyJIATOpa /10 MEBHOTO MOJIOKEHHS Ta 3a0e31euye HaliiHe CXOIJICHHS
o0'exkta. byli0 BUKOHaHO TECTYBaHHsS CHUCTEMH, I€pEBIpKa MPOTYKTUBHOCTI Ta
HaJalITyBaHHS HaWKpalluxX mapaMmeTpiB pe3yabTaTiB. OTpuMmaHa cucremMa Oyiia
po3pobiieHa mochiaauibkoro rpymoro RT-Lions, dakynster Technik, YHiBepcuret
Poritniareny. JlocnigHUIbKHM amapaTHUi amapat Bkiarodae kamepy Intel Realsense,
Maninynsarop Sawyer Arm Big Rethink Robotics Ta 3axormorounii mpuctpiid
BHYTPIIIHBOI PO3POOKH.

3apa3 BUKOPUCTaHHS MAHIMYJATOPIB € BAXKJIMBUM HAIPSIMOM y pOOOTOTEXHILI.
PoboToTexHiKa IIMPOKO BUKOPUCTOBYETHCA Yy pI3HUX o0Oactax. Bpaxkaerbes
YCTAJICHUM TOJLIT BCi€l pOOOTOTEXHIKHM Ha MPOMHUCIOBY (pOOOTH-MAHIMYJIATOPH) 1
CepBICHY (IMepCOHAJIBHI - HATPUKJIAJl, pOOOTH-TTUIIOCOCH; TPOECiitHI - IPOHU) TATy31
3T1AHO MPUKIIATHOTO MPU3HAYCHHSM.

OO06uABI TaTy31 NEepeKUBaAIOTh 3pOCTAaHHS, TPOTE MPUUYKUHU BOTO TJIMOOKO Pi3Hi.
[IpomuciioBa pobotoTexHika 3pocTae (B cepenHboMy Ha 15% B pik) 3a paxyHOK
CTpIMKOT poOOTH3aIil KUTANChKOI €KOHOMIKU 1, B TOM 4ac SIK 3pOCTaHHS CEPBICHOT

POOOTOTEXHIKM Ma€ OLIbII TNIMOOKI MPUYHUHU: BEJIMKA YaCTUHA CBITOBOI €EKOHOMIKH €



79

CEpBICHOIO eKOHOMIKOI. CaMe ToMy cepBiCHa POOOTOTEXHIKA IMOKA3y€e OLIbIIT 3HAYHE
3poCTaHHS Bke 3apa3 (Ha piBHI 25% B pIK) TP MO0 MEHIIUX B a0COJIOTHOMY
3Ha4YeHHI IM(pax y NOPIBHSAHHI 3 TPO-MHUCIICHHS.

[IpomucioBuii poOOT - 1€ aBTOMATHYHO KEPOBAHWM, OaratoIijIbOBUI
MaHIMyJIATOP, 3alporpaMOBaHMM 3a TpboMa 1 OuIbIIe ocsiMu. BiH moxke Oytu abo
3aIKCOBAaHUM B 3a/JIaHOMY MicCIli, a00 MOXK€ MaTH MOXKJIMBICTh IepecyBaTHCS IS
BUKOHAHHS TPOMHUCIOBUX 3aJad 3 aBTOMaTh3alii. SKIo TPOXU CHPOCTHTU
TEPMIHOJIOTIIO, TO TPOMHUCIOBA POOOTOTEXHIKA - 1€ BCE, IO 3HAXOJIUTHCA B
BUPOOHUYOMY II€XY; TOJIOBHUM YMHOM II€ pi3HI MaHimyasitopu. Ha choromuimiHii 1eHb
11¢ HAaUTIOIITMPEHIIIUI BU pOOOTIB - BCHOT'O B CBITI BCTAHOBJICHO MaiKe JIBa MiJTbHOHHU
MPOMHUCIIOBUX POOOTIB.

91% Bcix nmpomucnoBux poOoTiB B 2016 pori OyB BCTAaHOBJIEHH B CEKTOPI
00poOHOT TPOMHCIIOBOCTI. B 00p0o0OHi#i MPOMUCIOBOCTI Tally3i - JIiIEPH MO TMOKYIKaM
poOOTIB HE 3MIHIOIOTHCS B3KE OLIBIIE M'ATH POKIB: 11€ ABTOMOO1IbHA TPOMHUCIIOBICTS 1
esniekTpoHika. CepeAHbOPIYHUI TEMIT 3pOCTaHHS MPOIAaXiB MO BCIX rally3ax 0OpoOHOi
npomuciioBocTi B 2011-2016 pokax cknaB 13%; ansa aBromoOinedyayBanus - 12%, a
JUTSL €IIEKTPOHHOT TIpoMHUCIoBOCTi - 19%.

HaBenemo kisibka MpUKIIaJIIB OTNeparlii, siki MOXYTh BUKOHYBATHCSI pOOOTaMH:

- 3BaprOBaHHI 1 Maiika (JIyroBa, TOYKOBA, JIa3€pHA, 1HIIIE);

- O3B, HAMMWJICHHS, JO03yBaHHs (3a0apBJICHHS, €MAIIOBAHHS, 1HIIIE);

— o0OpoOka (pi3ka, ¢ppesepyBaHHs, UTI(DYyBaHHS, 1HIIIE);

- CKJIaZIaHHs Ta po30upaHHs (3alpecoBYBaHHS, MOHTAX, 1HIIIE);

- MepeMILIEHHS 1 yTaKOBKa.

OmaumMu 3 HAWOUIBII TOMITHUX BHUPOOHHMKIB MPOMHCIOBUX pPOOOTIB Ha
mikHapogHomy puHky € FANUC, Yaskawa, ABB, Festo, Sawer, Kuka, Rozum
Robotics, Universal Robots, Denso Tomo. Ha moro aymky, came xommaniss Rozum
Robotics Moxe cTati MOTEHLIWHUM TOKYIIIIEM HOBOI CHCTEMH, TaK SIK OCHOBHUMH
IpoayKTaMu KoMraHii € kosiabopatuBHi pobotu PULSE. T'onoBHI mepeBaru nepen
KOHKypeHTamu, Hacamnepen Universal Robots ([lanis), - 1e OiIbIl BHCOKE

criBBigHOMIEHHS Bark (8 Kr) i KOPHCHOrO HaBaHTaXeHHs (3 Kr) 1 OUIbII HU3bKA IIiHA,



80

IO JIOCSTAETHCSA 32 PAaXyHOK BUKOPHUCTAHHS €JIEKTPONPHUBOJIB BIACHOI PO3POOKH.
KomaGopatuBui pobGoTu MaTh 0araroniibOBe MPU3HAYEHHS 1  MOXYTh
BUKOPHCTOBYBATHCS TPU PIi3HUX pOOOTax: 3BapIOBaHHS, CKJIaJaHHS, HaHECCHHI
MOKPUTTIB, JO3yBaHHI, 00OpoOIl 1 pi3aHHIO, YIAKOBIIl, MaKeTyBaHHs 1 iH. JloJaTKOBO
KOMTIaHis TIPO/Ia€ CBOT €NIEKTPONIPUBOIN K CAMOCTIHHHIA MTPOTYKT.

Po3poOky HOBOi cuctemu il poOOTa-MaHIMyJATOpa MOXHA BIJIHECTH 0
CKJIQHOI TMPOTPaMHOI TMPOMYKINii, sIka MOTpeOye CreriaapHOTO HajdaropkeHHs. B
IbOMY BHUIAJKy HaiyacTilie TmporpaMHe 3a0e3ledYeHHs] PO3pOONIIEThCS 32

3aMOBJICHHSIM CIIOKKWBaya.

4.4. Ouinka eKOHOMIYHOI e)eKTUBHOCTI BIPOBA/IKEHHSI IPOrPAMHOI0

3a0e3MmeYeHHA

Y upomy posaini Oylae mNpoBeneHO aHami3 €(EeKTUBHOCTI BIPOBAIKEHHS
CTBOPEHOI HOBOi CUCTEMHU JJIsl poOOTa-MaHIMyJIsATOpa.

Yepes HasBHICTH JHUIIE YAOCKOHAICHO! CUCTEMHM Ta OCKUIBKH JaHa poOota
nepeadoavyae BIPOBAKEHHS pO3POOIECHOTO PIIIEHHS HA JOCHIIIHUIILKOMY pOoOOTi, Ta
HE BKJIIOYA€ B ceOe MPOMUCIOBUNA KOMILIEKC, SIKUM MOXHa BIIPOBAIUTH, HEMOKIUBO
pO3paxyBaTy eKOHOMIYHHM €(EKT, B IKOMY 00Cs131 HEOOX1IH1 IHBECTHUIIIT, SIKUI TEPMIH
OKYMHOCTI 1 O4iKyBaHUU MTPUOYTOK.

Tomy po3risiaeThCs TIIBKU COIIATbHUN e(eKT.

3a T1ONMOMOTroI0 MPOBAIKEHHS YOCKOHAJICHOI CHCTEMH JI0 TJIaHYBAaHHS IIJISXY

MOOUIBHUM pOOOTOM JIJisi HABIraIlii MOXxe:

3armo0irTd BAHUKHEHHIO HEIIACHOTO BUMA/KY Ha IMiIMPUEMCTBI;
— 30UTBIIUTU (PYHKITIOHAI Ta MOKIIUBOCTI MOOLTBHOTO POOOTa;
— MIABUIIUTH MPOAYKTUBHICTH TIpaIli;
— CKOPOTHUTH KUIbKICTh MPAalliBHUKIB.
MoskHa 3poOUTH BUCHOBOK, 1110 BIPOBAKEHHSI HOBOI CHCTEMH MTOBUHHO MAaTU

MO3UTUBHUM EKOHOMIYHMM e(EeKT ToMy, IO JaHa po3pol0Ka € aKTyalbHOI Ta



81

HEOOXITHOIO IS IIMPOKOTO CEKTOPY POOOTOTEXHIKHM SK HAMpSIMy, 3 aKTyaJbHUM
COLIIaJTbHUM €(DEKTOM.

BucHoOBOK:

Y pesynbrari BUKOHAHHS KBadidikauiiHoi poOOTH OyJ0 CTBOPEHO HOBY
cucTeMy Uil poOoTa-MaHImyJsaTopa. Y JdaHOMY €KOHOMIYHOMY pO3AiIl OyJio
BU3HAUCHO TPYJAOMICTKICTh Ha pPO3poOKYy d0JaTKy, mio ckiagae 1866 mrox-rog,
MIPOBENICHO IMiPaXyHOK BAapTOCTI POOOTH TO CTBOPEHHIO OIMKMCAHOI CHCTEMH, SIKi
ckinanu 423850 rpH. Ta pospaxoBaHO yac Ha Woro ctBopeHHs — 10,3 wmic. Bymo
IPOAHaNI30BaHO Ta JOCTIPKEHO PHUHOK 30yTy Ta MOTEHLIMHUX TOKYMI[B HOBOI
CUCTEMHU HaBiraiii MoOuIbHOro poOoTa. Bu3zHaueHno, mo came kommanis Rozum
Robotics Moxe cTaT MOTEHIIHHUM MOKYIIIIEM HOBOI CHCTEMH, TaK SIK OCHOBHHUMH
IPOAyKTaMHU KoMMaHii € poOoTu MaHimyastopu. CTBOpeHa cuUcTeMa € HalOLIbII
aKTyaJIbHOIO JUIsi MPOMHCIIOBUX 3aBJaHb. 1i BIPOBAKEHHS MOBUHHO TAKOXK MATH

MO3UTUBHHUM COL1aJIbHUN €(EKT.



82

CONCLUSIONS

The study consisted of considering and integrating existing methods and
algorithms to solve problems of robotic grasping, planning of movements with obstacle
avoidance, and recognition of slipping. The most appropriate algorithms and
implementations were identified.

The main approaches in each area are considered. There are practical
implementations of these algorithms that successfully solve the problem. However, the
main problem is the integration of these implementations into a single system. Some
integrations are already available in the systems under study, such as Octomap building
an octant tree that describes obstacles to motion planning in Movelt. However, a
complete system that would meet all the requirements and be suitable for this
equipment has not been identified.

The first step is to recognize the object. The main approaches to object
recognition are considered, their advantages and disadvantages are described. As a
result, YOLO was chosen as a fast and straightforward way to recognize objects in an
image.

Next, we need to find the positions to grab the object. The most advanced
solution to this problem is the GPD package. At the entrance, we get a point-cloud
where we distinguish objects and finds positions to grab. We can define a workspace
to remove unnecessary objects from view. We can also filter objects by removing
points from the point cloud on a mask taken from a specific object.

A special device has been developed for direct grasping. The fingers are created
using 3D printing in the form of a Fin-Ray structure that allows you to cover the object
to increase the contact area. The larger the contact area, the less slippage is possible,
and the less effort is required for a secure grip. The fingers are driven by a single
electric motor, which transmits force to them by gears. This configuration provides a

symmetrical closure of the grasping device.



83

To identify the object immediately in front of the grab, a ToF sensor is used,
which measures the distance to the object using the duration of the return of the emitted
light. This allows you to determine that the object is close enough to capture it.

When the object is in the process of grasping, you need to adjust the grasping
force to fix the object in the device securely. This is done by slip detection. Tactile
sensors are used for this purpose. If the object is moving, the sensors give higher values
than when the object is kept stable. These signals are processed by a deep neural
network. The signal is transmitted to the neural network almost raw, only normalized.
That is, no noise and error filtering. This approach has proven itself well, the system
works reliably and does not require fine-tuning. It is even possible to transfer the
trained model between different grasping devices.

The grasping device is mounted on the Sawyer Arm manipulator mounted on a
moving robot on the MPO-750 platform. This is a manipulator with 7 degrees of
freedom. It comes with your computer. The hand is controlled via this computer using
the Intera SDK, which is adapted for use with Movelt.

The central part of traffic planning is the Movelt framework. This is a
surprisingly flexible and advanced framework. It contains many built-in traffic
planners from the OMPL library. Among which the most suitable for the robot’s tasks
were selected.

The runtime of all software is ROS. This system creates a flexible environment
for running any program. Programs work as nodes that exchange messages through
topics or call each other’s services.

The described system was developed and tested on the basis of Leonart’s robot

developed by the RT-Lions team.



84

REFERENCES

1. Monkman G. J., Hesse S., Steinmann R., Schunk H. Robot Grippers /
G.J.Monkman. S. Hesse, R. Steinmann — Wiley-VCH, 2007 — 62 p.

2. Koubaa A. Robot Operating System (ROS) / A. Koubaa — Springer
International Publishing, 2016. — 728 p.

3. ten Pas A., Gualtieri M., Saenko K., Platt R. Grasp Pose Detection in Point
Clouds / A. ten Pas, M. Gualtieri, K. Saenko, R. Platt — The International Journal of
Robotics Research, 2017. — 17 p.

4, De Santis A., Albu-Schaffer A., Ott C., SicilianoB., Hirzinger G. The
skeleton algorithm for self-collision avoidance of a humanoid manipulator / A. De
Santis, A. Albu-Schaffer, C. Ott, B. Siciliano, G. Hirzinger — IEEE/ASME
international conference on advanced intelligent mechatronics, Zurich, 2007. — 6 p.

5. Pfaff O., Simeonov S., Cirovic I., Stano P., Application of finray effect
approach for production process automation / O. Pfaff, S. Simeonov, I. Cirovic, P.
Stano — Annals & Proceedings of DAAAM International, 2011 — 2 p.

6. Crooks W., Vukasin G., O'Sullivan M., Messner W., Rogers C., Fin ray®
effect inspired soft robotic gripper: From the robosoft grand challenge toward
Optimization / W. Crooks, G. Vukasin, M. O'Sullivan, W. Messner and C. Rogers —
Frontiers in Robotics and Al, 2016 — 9 p.

7. Decuirl F., Phelan K., Hollins B. Mechanical Strength of 3-D Printed
Filaments / F. Decuirl, K. Phelan, B. Hollins — 32nd Southern Biomedical Engineering
Conference, 2016 — 2 p.

8. Covestro Deutschland AG Processing of TPU by Injection Molding /
Covestro Deutschland AG — Dormagen, 2016 — 32 p.

Q. Takahashi H., Punpongsanon P., Kim J. Programmable Filament: Printed
Filaments for Multi-material 3D Printing / H. Takahashi, P. Punpongsanon, J. Kim —
UIST '20: Proceedings of the 33rd Annual ACM Symposium on User Interface
Software and Technology, 2020 — 13 p.



85

10. Voigtlaender P., Chai Y., Schroff F., Adam H., Leibe B., Liang-Chieh
Chen FEELVOS:. Fast End-to-End Embedding Learning for Video Object
Segmentation / P. Voigtlaender, Y. Chai, F. Schroff, H. Adam, B. Leibe, Liang-Chieh
Chen — CVPR, 2019 — 10 p.

11. Du G., Wang K., Lian S., Zhao K. Vision-based Robotic Grasping From
Object Localization, Object Pose Estimation to Grasp Estimation for Parallel Grippers:
A Review / G. Du, K. Wang, S. Lian, K. Zhao — Artificial Intelligence Review, 2020
-39p.

12.  Schmidt P., Vahrenkamp N., W'achter M., Asfour T. Grasping of
Unknown Objects using Deep Convolutional NeuralNetworks based on Depth Images
/ P. Schmidt, N. Vahrenkamp, M. W'achter, T. Asfour — IEEE International Conference
on Robotics and Automation (ICRA), 2018 — 8 p.

13. Gautam R., Gedam A., Zade A., Mahawadiwar A. Review on
Development of Industrial Robotic Arm / R. Gautam, A. Gedam, A. Zade, A.
Mahawadiwar — International Research Journal of Engineering and Technology
(IRJET), 2017 — 4 p.

14. Lalancette C., Loretz S. ROS URDF C. Lalancette, S. Loretz —
http://wiki.ros.org/urdf

15. Davison A. J. Real-Time Simultaneous Localisation and Mapping with a
Single Camera / A. J. Davison — IEEE International Conference on Computer Vision
(ICCV), 2003 - 8 p.

16. Yovchev K., Chikurtev D., Chivarov N., Shivarov N. Precise Positioning
of a Robotic Arm Manipulator Using Stereo Computer Vision and Iterative Learning
Control / K. Yovchev, D. Chikurtev, N. Chivarov, N. Shivarov — International
Conference on Robotics in Alpe-Adria Danube Region RAAD, Springer, 2017 — 8 p.

17. Safeea M., Neto P., Bearee R. On-line collision avoidance for
collaborative robot manipulators by adjusting off-line generated paths: An industrial
use case / M. Safeea, P. Neto, R. Bearee — Robotics and Autonomous Systems,
Elsevier, 2019, 119, pp.278-288.


http://wiki.ros.org/urdf

86

18. R. Mur-Artal J. D. Tardos Open-Source SLAM System forMonocular,
Stereo and RGB-D Cameras / R. Mur-Artal J. D. Tardos — IEEE Transactions on
Robotics, 2016 — 9 p.

19.  Mur-Artal R., Montiel J. M. M., Tardos J. D., ORB-SLAM: aversatile and
accurate monocular SLAM system / R. Mur-Artal, J. M. M. Montiel, J. D. Tardos —
IEEE Trans, 2015 Robot.,vol. 31, no. 5, pp. 1147-1163.

20. Newcombe R. A., Davison A. J., Izadi S., Kohli P., Hilliges O., Shotton
J., Molyneaux D., Hodges S., Kim D., Fitzgibbon A. KinectFusion: Real-time dense
surface mapping and tracking / A. Newcombe, A. J. Davison, S. lzadi, P. Kohli, O.
Hilliges,J. Shotton, D. Molyneaux, S. Hodges, D. Kim, A. Fitzgibbon — in IEEEInt.
Symp. on Mixed and Augmented Reality (ISMAR), 2011.

21. Xu T., Tian B., Zhu Y., Tigris: Architecture and Algorithms for 3D
Perceptionin Point Clouds / T. Xu, B. Tian, Y. Zhu - the 52nd Annual IEEE/ACM
International Symposium, 2019 — 14p.

22.  Dupuy J., lehl J.-C., Poulin P. Quadtrees on the GPU / J. Dupuy, J.-C.
lehl, P. Poulin — GPU Pro 360 (pp.211-222), 2018 10.1201/9781351052108-12.

23. Liu S., Ororbia A., Giles C. Learning a Hierarchical Latent-Variable
Model of Voxelized 3D Shapes / S. Liu, A. Ororbia, C. Giles - International
Conference on 3D Vision (3DV), 2017 — 13 p.

24. Koh N., Jayaraman, P. Zheng, J Parallel Point Cloud Compression Using
Truncated Octree / N. Koh, Jayaraman, P. Zheng — 2020 International Conference on
Cyberworlds (CW), 2020 — 1-8 p.

25. Dricot A., Ascenso J. Hybrid Octree-Plane Point Cloud Geometry Coding
/ A. Dricot, J. Ascenso — 27th European Signal Processing Conference (EUSIPCO),
2019 — 1-5 p.

26. Kucuk S., Bingul Z. Robot Kinematics: Forward and Inverse Kinematics
/' S. Kucuk, Z. Bingul — Industrial Robotics: Theory, Modelling and Control 2006,
10.5772/5015.



87

27. Boeuf A., Cortés J., Siméon T. Motion Planning / A. Boeuf, J. Cortés,
T. Siméon — Aerial Robotic Manipulation (pp.317-332), 2019 10.1007/978-3-030-
12945-3 23.

28. Liu S, Liu P. A Review of Motion Planning Algorithms for Robotic Arm
Systems / Liu S., Liu P. — The 8th International Conference on Robot Intelligence
Technology, Cardiff, 2020.

29. Abdulkareem A. Slip detection with accelerometer and tactile sensors in
a robotic hand model / A. Abdulkareem — IOP Conference Series: Materials Science
and Engineering, 2015 — 10 p.

30. KahlmannT., Oggier T., Lustenberger F., Blanc N., Ingensand H. 3D-ToF
sensors in the automobile / T. Kahlmann, T. Oggier, F. Lustenberger, N. Blanc,
Ingensand H. — Proceedings of SPIE - The International Society for Optical
Engineering, 2005 10.1117/12.607261.

31. Wang X. A flexible slip sensor using triboelectric nanogenerator approach
/ X. Wang — Journal of Physics: Conference Series, 2018 — 7p.

32. Fraden J. Handbook of Modern Sensors: Physics, Designs, and
Applications 4th ed / J. Fraden — Springer, New York, 2010.

33. Rethink Robotics Sawyer, the high performance collaborative robot /

Rethink Robotics — https://www.rethinkrobotics.com/sawyer

34. Joseph L., Cacace J. Mastering ROS for Robotics Programming: Design,
build, and simulate complex robots using the Robot Operating System, 2nd Edition /
L. Joseph, J. Cacace — Packt Publishing Ltd, 2018 — 580 p.

35. Foote T., Marder-Eppstein E., Meeussen W. ROS Transformation Tree /
T. Foote, E. Marder-Eppstein, W. Meeussen — http://wiki.ros.org/tf

36. Intel Depth Camera D435 / Intel -- https://www.intelrealsense.com/depth-
camera-d435/

37. Rusu R., Cousins S. 3D is here: Point cloud library (PCL) / R. Rusu
S. Cousins -- IEEE International Conference on Robotics and Automation 2011 (ICRA
2011), 2011 -- 10.1109/ICRA.2011.5980567.



https://www.rethinkrobotics.com/sawyer
http://wiki.ros.org/tf
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/

88

38. Redmon J., Divvala S., Girshick R., Farhadi A. You Only Look Once:
Unified, Real-Time Object Detection / J. Redmon, S. Divvala, R. Girshick, A. Farhadi
-- 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016
—10p.

39. Hornung A., Wurm K. M., Bennewitz M., Stachniss C., Burgard W.
OctoMap: An Efficient Probabilistic 3D Mapping Framework Based on Octrees / A.
Hornung, K. M. Wurm, M. Bennewitz C. Stachniss W. Burgard -- Autonomous
Robots, Springer, 2013 — 17 p.

40. Chitta, S. Movelt!: An Introduction / S. Chitta -- Robot Operating System
(ROS) (pp.3-27), 2016 — 25 p.

41. Moveit Tutorials — Kinetic Documentation
http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/index.html

42. GoOrner M., Haschke R. Movelt! Task Planning / M. Gorner, R. Haschke -
- ROSCon2018, 2018

43. Gorner M., Haschke R., Ritter H., Zhang J., Movelt! Task Constructor for
Task-Level Motion Planning / M. Gorner, R. Haschke, H. Ritter J. Zhang —2019
International Conference on Robotics and Automation (ICRA), 2019 — 7p.

44. Thinakaran K. 3D Visual System Navigation for Service Robotics:
Implementing the Movelt Motion Planner for a Simulated Robot Arm / K. Thinakaran
-- Reutlingen University, 2020 — 97 p.

45.  Pan J., Chitta S., Manocha D. FCL: A General Purpose Library for
Collision and Proximity Queries / J. Pan, S. Chitta, D. Manocha -- Proceedings - IEEE
International Conference on Robotics and Automation, 2012 — 8 p.

46. Gopal A. Employing Bionic Sensors for Deep Learning based Grasping
Slip Detection / A. Gopal — Reutlingen University, 2019 — 59 p.


http://docs.ros.org/en/kinetic/api/moveit_tutorials/html/index.html

89

APPENDIX A

SOURCE CODE

saywer_ gazebo.launch

<?xml v
<launch

<!--
example
<arg
<arg
<arg
<arg
<arg
<arg
<arg
sawyer

<l--
electri
<arg
<l--
<arg
<l -
<arg
<l —--
this fi
<arg
<l —--
<arg
def

ersion="1.0" encoding="utf-8"?>
>
these are the arguments you can pass this launch file, for

paused:=true -->

name="paused" default="false"/>

name="camera" default="true"/>
name="use sim time" default="true"/>

name="gui" default="true"/>

name="headless" default="false"/>

name="debug" default="false"/>

name="head display img" default="$ (find

gazebo) /share/images/sawyer sdk research.png"/>

This argument loads the electric gripper, for example

C _gripper:=true -->

name="electric gripper" default="false"/>

This argument loads sawyer's pedestal URDF -->
name="pedestal" default="true"/>

This argument fixes the robot statically to the world -->
name="static" default="true"/>

This argument dictates whether gazebo should be launched in

le ——>

name="load gazebo" default="true"/>

This argument sets the initial joint states -->
name="initial joint states"

ault=" -J sawyer::right jO -0.27

-J sawyer::right j1 1.05

-J sawyer::right j2 0.00

-J sawyer::right j3 0.49

-J sawyer::right j4 -0.08
-J sawyer::right 35 -0.06
-J sawyer::right j6 0.027
-J sawyer::head pan 0.00"/>

<param name="img path head display" value="§ (arg

head di
<I--
<!--

right e

robot d

<arg

splay img)"/>

Load the URDF into the ROS Parameter Server —-->
This xacro will pull in sawyer.urdf.xacro, and
nd effector.urdf.xacro
Note: if you set this to false, you MUST have set the
escription prior

to launching sawyer world -->
name="load robot description" default="true"/>



90

<param if="S$ (arg load robot description)"
name="robot description"
command="$ (find xacro)/xacro —--inorder $(find
sawyer description) /urdf/sawyer.urdf.xacro
gazebo:=true electric gripper:=$(arg electric gripper)
pedestal:=$ (arg pedestal) static:=$(arg static)
camera:=$ (arg camera)"/>
<!-- Load Parameters to the ROS Parameter Server -->
<rosparam command="load" file="S$ (find sawyer gazebo)/config
/config.yaml" />
<rosparam command="load" file="$(find
sawyer description)/params/named poses.yaml" />
<rosparam command="load" file="$ (find sawyer gazebo)/config
/acceleration limits.yaml" />
<param name="robot/limb/right/root name" value="base" />
<param if="$(arg electric gripper)"
name="robot/limb/right/tip name"
value="right gripper tip" />
<param unless="$ (arg electric gripper)"
name="robot/limb/right/tip name"
value="right hand" />

<param name="robot/limb/right/camera name"
value="right hand camera" />
<param if="$ (arg electric gripper)"
name="robot/limb/right/gravity tip name"
value="right gripper tip" />
<param unless="$ (arg electric gripper)"
name="robot/limb/right/gravity tip name"
value="right hand" />

<!-- We resume the logic in empty world.launch, changing the
name of the world to be launched -->
<include if="$ (arg load gazebo)" file="35(find
gazebo ros)/launch/empty world.launch">
<arg name="world name" value="$ (find
sawyer gazebo) /worlds/sawyer.world"/>
<arg name="debug" value="$ (arg debug)" />
<arg name="gui" value="$ (arg gui)" />
<arg name="paused" value="$ (arg paused)"/>
<arg name="use sim time" value="$ (arg use sim time)"/>
<arg name="headless" value="$ (arg headless)"/>
</include>

<!-- Publish a static transform between the world and the base
of the robot -->
<node if="$ (arg static)" pkg="tf2 ros"
type="static transform publisher"
name="base to world" args="0 0 0 0 0 0 1 world base" />

<!-- Run a python script to the send a service call to
gazebo ros to spawn a URDF robot -->



91

<node name="urdf spawner" pkg="gazebo ros" type="spawn model"
respawn="false" output="screen"

args="-param robot description -urdf -z 0.93 -model sawyer
$(arg initial joint states)" />
<!-- ros control sawyer launch file -->

<include file="S (find
sawyer sim controllers)/launch/sawyer sim controllers.launch">
<arg name="electric gripper" value="$ (arg
electric gripper)"/>

<arg name="gui" wvalue="$ (arg gui)" />
</include>
<!-- sawyer cameras launch file -->

<arg name="wrist camera" default="right hand camera" />
<arg name="head camera" default="head camera" />
<include file="$ (find

sawyer gazebo)/launch/sawyer sim cameras.launch">

<arg name="wrist camera" value="$ (arg wrist camera)" />
<arg name="head camera" value="$ (arg head camera)" />
</include>
<!-- Publish a static transform between the world and the base

of the robot -->
<node pkg="rosbag" type="play" name="io robot" args="-1 $(find
sawyer gazebo) /share/bags/robot io.bag" />

</launch>

sawyer moveit.launch
<?xml version="1.0"?>
<launch>
<arg name="config" default="true"/>
<arg name="rviz config" default="$(find sawyer moveit config
) /launch/moveit.rviz" />

<!-- By default, we do not start a database (it can be large) --

<arg name="db" default="false" />
<!-- By default, we are not in debug mode -->
<arg name="debug" default="false" />

<!-- By default we do not overwrite the URDF. Change the
following to true to change the default behavior -->

<arg name="load robot description" default="false"/>

<!-- Add controller box collision shape to check for 1link
collisions if set to true-->

<arg name="controller box" default="true"/>

<!-- Left and electric gripper arg. Set to true to check for
collisions for their links -->

<arg name="electric gripper" default="false"/>

<!-- Set the kinematic tip for the right arm move group -->



92

<!-- <arg name="tip name" if="$ (arg electric gripper)"
default="right gripper tip"/>

<arg name="tip name" unless="$ (arg electric gripper)"
default="right hand"/> -->

<node name="joint trajectory action server"
pkg="intera interface" type="joint trajectory action server.py"/>

<arg name="custom gripper" default="false"/>
<arg name="gpd" default="false"/>

<node 1if="$ (arg custom gripper)" pkg="tf2 ros"
type="static transform publisher" name="1linkl broadcaster" args="0
0 0 -1.5708 0 0 stp 021709TP00478 tip gripper tcp" />

<node 1if="$ (arg custom gripper)" pkg="tf2 ros"
type="static transform publisher" name="1link2 broadcaster" args="0
0 -0.17 0 0 0 right hand fake ee" />

<node 1if="$ (arg custom gripper)" pkg="tf2 ros"
type="static transform publisher" name="1ink3 broadcaster"
args="0.07 0 0 0 -1.9 3.14 right hand camera link" />

<!-- <node pkg="tf2 ros" type="static transform publisher"
name="1ink3 broadcaster" args="0.02 -0 0.27 0 0.38 0 head
camera link" /> -->

<arg name="tip name" if="$% (arg custom gripper)"
default="stp 021709TP00478 tip"/>

<arg name="tip name" unless="$ (arg custom gripper)"
default="right hand"/>

<!-- GPD Grasping server launch -->
<include if="$(arg gpd)" file="$(find
gpd ros)/launch/server.launch"/>

<!-- Add planning context launch file -->
<include file="$ (find sawyer moveit config
) /launch/planning context.launch">
<arg name="load robot description" value="S$ (arg
load robot description)"/>
<arg name="electric gripper" value="$ (arg electric gripper)"/>
<arg name="tip name" value="$ (arg tip name)"/>
<arg name="controller box" value="5$ (arg controller_box)"/>
<arg name="custom gripper" value="$ (arg custom gripper)"/>
</include>

<arg name="kinect" default="false" />

<arg name="xtion" default="false" />

<arg name="realsense" default="false" />

<arg name="camera link pose" default="0.15 0.075 0.5 0.0 0.7854
0.0"/>

<include file="$ (find sawyer moveit config
) /launch/move group.launch">

<arg name="kinect" value="$ (arg kinect)" />



<arg name="xtion" value="$ (arg xtion)" />
<arg name="realsense" value="$(arg realsense)" />
<arg name="camera link pose" default="$ (arg
camera link pose)"/>
<arg name="allow trajectory execution" value="true"/>
<arg name="fake execution" value="false"/>
<arg name="info" value="true"/>
<arg name="debug" value="$ (arg debug)"/>
</include>
<include file="$ (find sawyer moveit config
) /launch/moveit rviz.launch">

<arg name="config" value="$ (arg config)" />

<arg name="debug" value="$ (arg debug)"/>

<arg name="rviz config" value="S$ (arg rviz config)" />
</include>
<!-- If database loading was enabled, start mongodb as well -->

<include file="$ (find sawyer moveit config
) /launch/default warehouse db.launch" if="$ (arg db)"/>
</launch>

Motorsteuerung mit Sensoren.ino
//BAX-12 Servo Motor

#include
#include
#include
#include
#include

#define
#define
#define
#define
#define
#define

void set

{

pinMod
pinMod

Serial
delay (
Serial

"Arduino.h"
"AX12A.h"
<Wire.h>
"VL53L1X.h"
"fslp lib.h"

DirectionPin (10u)

BaudRate (1000000ul)

ID (1u)

IDB (2u)

LEDred 33 //immer an

LEDgreen 32 //nur an, wenn Objekt gegriffen

up ()

e (LEDred, OUTPUT) ;
e (LEDgreen, OUTPUT) ;

.begin (9600) ;
250) ;
.println("Starting Gripper");

axl?a.begin (BaudRate, DirectionPin, &Serial?);

Wire.b
Wire.s

sensor

if (!s

egin();
etClock (400000); // use 400 kHz I2C

.setTimeout (500) ;

ensor.init ())



Serial.println("Failed to detect and initialize sensor!");
while (1);
}

sensor.setDistanceMode (VL53L1X: :Long) ;
sensor.setMeasurementTimingBudget (50000) ;
sensor.startContinuous (50) ;

}

void executeCommand () {
if (SerialCommand != 0) {
//New Command

//Open gripper
if (SerialCommand == 1) {
Serial.println ("Open Gripper");

digitalWrite (LEDred, HIGH); //hier rote LED an
digitalWrite (LEDgreen, LOW); //hier griine LED aus

int notClosed = 1;
while (notClosed) {
currentPos -=5;
currentPosB +=5;
axl2a.move (ID, currentPos);
axl2a.move (IDB, currentPosB);
if (currentPos<450) {
notClosed = 0;
currentPos = 450;
}
if (currentPosB>900) {
notClosed = 0;
currentPosB = 900;
}
delay (25);
}
//Close Gripper
}else if(SerialCommand == 2) {
Serial.println("Closing Gripper");

digitalWrite (LEDred, HIGH); //hier rote LED an
digitalWrite (LEDgreen, LOW); //hier griine LED aus

int notOpened = 1;

while (notOpened) {
currentPos +=5;
currentPosB -=5;
axl?a.move (ID, currentPos);
axl2a.move (IDB, currentPosB);

if (currentPos>900) {
notOpened = 0;



currentPos = 900;
}
if (currentPosB<450) {
notOpened = 0;
currentPosB = 450;
}
delay (25);
}
//Print all data
lelse if(SerialCommand == 3) {

digitalWrite (LEDred, HIGH); //hier rote LED an

digitalWrite (LEDgreen, LOW); //hier griine LED aus

//Print gripper data

//reg = axl2a.readRegister (ID, AX PRESENT VOLTAGE,

//Serial.println(req);
for(int 1 = 1000;1i>0;1i--){
printData () ;
delay (10);
}
}
//Gripp object
else if(SerialCommand == 4) {

digitalWrite (LEDred, HIGH); //hier rote LED an

digitalWrite (LEDgreen, LOW); //hier griine LED aus

int notOpened = 1;

int pressureRight, pressureleft;
int *measurement;
measurement=getFSLP Right () ;
pressureRight=measurement [0];

measurement=getFSLP Left () ;
pressureleft=measurement[0];
int threshold = 35;
while (notOpened && (pressureRight<threshold &&
pressureleft<threshold)) {
int speed = 5;
currentPos +t=speed;
currentPosB —-=speed;
axl?a.move (ID, currentPos);
axl2?a.move (IDB, currentPosB);
if (currentPos>900) {
notOpened = 0;
currentPos = 900;
}
if (currentPosB<450) {
notOpened = 0;
currentPosB = 450;

95



delay (5);
measurement=getFSLP Right ();
pressureRight=measurement [0];
Serial.println (pressureRight) ;
measurement=getFSLP Left();
pressureleft=measurement[0];
Serial.println (pressureleft);
if (pressureRight or pressureleft > 1) {
delay (10);
}
}
digitalWrite (LEDred, LOW); //hier rote LED aus
digitalWrite (LEDgreen, HIGH); //hier griine LED aus
}

SerialCommand = 0;

void loop ()

{

//Get User Input
if (Serial.available() > 0) {

}

char rx byte = 0;
rx byte = Serial.read();

// check if a number was received

if ((rx _byte >= '0'") && (rx byte <= '9")) {
SerialCommand = rx byte - '0';

}

else {

Serial.println("Possible Commands :");
Serial.println(" 1 Open Gripper");
Serial.println(™ 2 : Close Gripper");
Serial.println(™ 3 Print all data");
Serial.println (" 4 Gripp Object");

}

delay (20);
executeCommand () ;

}

int
in
in
in
if

printData () {

t *measurement;

t pressRight,posRight;

t pressLeft,poslLeft;
(toggle==1) {

Serial.println ("Rechts");

measurement=getFSLP Right () ;

96



pressRight=measurement[0];
posRight= measurement[1];
toggle=!toggle;
}

else(
Serial.println("Links");
measurement=getFSLP Left();
pressLeft=measurement[0];
posLeft=measurement[1l];
toggle=!toggle;
}

/*

char report[180];

sprintf (report, "pressure left: %$5d position left: %$5d pressure
right %5d position right %5d Tof Sensor: %5d\n",

pressLeft,posleft,pressRight,posRight, sensor.read());

Serial.print (report);

*/

char report[180];

sprintf (report, "pressure: %$5d position: %5d\n",

measurement [0], measurement[1l]);

Serial.print (report);

if (sensor.timeoutOccurred()) { Serial.print (" TIMEOUT"); }

sprintf (report, "Tof Sensor : $5d\n", sensor.read());
Serial.print (report);

delay (250);



98

JIOJJATOK B

BIAI'YK
KePiBHUKA eKOHOMIYHOT0 PO3/iLy
Ha KBaJidikauniiny podoTy maricrpa
Ha Temy: «MojeJi, aJIrOpUTMH Ta MPOrpaMHe 3a0e3nev4eHHs sl
IVIAHYBAHHS LIAXY AJIs1 HaBiramgii MoOiJibHUX po0OTiB 3 YHUKHEHHAM
nepenKo/] HA OCHOBI iepeBa OKTAHTIB»

cryaenTa rpynu 121m-19-1 Pyns BsayecsaaBa BacuiboBuua

KepiBHHK eKOHOMIYHOT0 PO3/iTy

noueHt kad. INEII Ta ITVY, k.e.H. JL. B. KacpsiHeHKo



99

APPENDIX C

STRUCTURE OF THE DEVELOPED SOLUTION

. Image
Realsense Flugin i'nn__a cloud

Depth Image

Actuator

Sawyer Arm n

Direct n}m:um of
angles

Main computer

—

* GDP

>

, ‘

Provide fitered
point cloud

— L

Object Detection
And masking

——

Intera SDK.

, ,
" amperam | sawer computer]

Sawer Computer [

Set joints angles

Grasp _un_mmm\'A Top-level Control

Fitered Point cloud
[ to make octree \'A Movelt

Gripper control

\

Control movement

Translation of robot

* MPO 750 *

Arduino

A

Read sensors

N
Gripper 2C

ToF Sensor

Open/close gripper




100

APPENDIX D

LIST OF FILES ON THE DISC

Filename

Description

Explanatory documents

Thesis_RudViacheslav.docx

An explanatory note to the diploma project.
Word document.

Thesis_RudViacheslav.pdf

An explanatory note to the diploma project in
PDF format

Program

Arm.zip

Archive. Contains program codes and a
program

Presentation

Presentation_RudViacheslav.pptx

Presentation of the diploma project




