PO3/ILI 2

ITPOI'PAMHI 3ACOBH YIIPABJITHHSL, 3bOPY, ObPOBKHA
I HEPEJAYI IH®OGOPMAIIII

UDC 656.078.1

DEVELOPMENT OF AN INFORMATION SYSTEM TO JUSTIFY THE
CHOICE OF DATABASES WHEN USING CRM SYSTEMS

M. Alekseev, S. Ochkur, I. Hnennyi
(Ukraine, Dnipro, NTU «Dnipro Polytechnicy)

Introduction. This paper is about the development and research of a method for
evaluating the performance of databases that are used in CRM systems. The
development of a separate CRM system for each organization is determined by the
inability to solve the tasks on the basis of ready-made existing platforms. Finished
products are designed to solve typical problems, not suitable for all companies. While
individual development allows us to solve the main issues of the company related to
internal document management and customer relations.

The main goal is to develop an information system for the method of evaluating
and justifying the choice of a database model for CRM systems.

The main problem is that any database model can be used for each CRM system,
which can adversely affect the performance of the system as a whole.

The aim of this paper is to develop an information system to justify the choice
of databases when using CRM systems.

Ready-made solutions. While NoSQL databases have the speed and scalability
advantage, there have a number of drawbacks compared to traditional relational
databases. Leavitt lists these challenges [1]. He notes that NoSQL databases, even
though fast for simple tasks, are time-consuming for complex operations. Besides
queries for complex operations can be hard to form. The other drawback is the lack of
native support for consistency. Leavitt also notes that NoSQL is a technology that
many organizations are yet to learn and there is a lack of support and management
tools to help.

Bartholomew gives a tutorial introduction to the history of and differences
between SQL and NoSQL databases [2]. Sakr et al. discuss data management
solutions, including NoSQL, for cloud-based platforms [3]. They discuss the
challenges data management solutions face in the light of the cloud.

Hecht and Jablonski provide a use-case oriented survey of NoSQL databases [4].
They identify the difficulties in choosing a NoSQL database to fit a particular use-
case, and therefore focus their paper to address this. They use as the basis for their
comparison the data model, support for queries, partitioning, replication, and
concurrency controls. They compare in this light fourteen NoSQL databases,
including MongoDB, CouchDB, Cassandra and HBase.

47

Boicea et al. compare a NoSQL database against a SQL database. They choose
Oracle for the SQL implementation and MongoDB for the NoSQL implementation
[5]. They report that, with a large number of records, insertion time is a factor more
in Oracle and update and delete times are several factors more in Oracle.

Yahoo! Cloud Serving Benchmark is an open-source work-load generator tool
for comparing key-value stores [6].

Solve. In the study of performance of database management systems, the
following criteria will be the benchmarking criteria: adding, finding, modifying, and
deleting from a single table. All listed operations are present in MySQL and
MongoDB.

Several tests were compiled for the study. You must create two tables before
you start testing. The first table will consist of 30,000 entries with identical text and a
random foreign key in the range from 1 to 100,000. The second table will consist of
100,000 entries, the keyCol and valueCol fields of each row will be equal to each
other and take values from 1 to 100,000.

The text in the first table is only needed to increase the amount of data recorded.
The keyCol attribute of the second table is named to emphasize that it is not a
primary key. It is not the primary key for the reason that it will slow down the speed
of MySQL operations through additional integrity checks. The keyCol and valueCol
fields accept the same values just to simplify perception, conceptually it does not
affect anything.

It should be noted that the second table is larger than the first table. This is done
for several reasons. First, it should make searching for keyCol a little more
complicated. Secondly, due to the first fact, it will make it somewhat difficult to join
the two tables.

The first test will be adding up to 100,000 rows to the keyCol valueCol table.
The time commit is 1000 entries. The second test is to link two tables. In MySQL is
used LEFT JOIN, in MongoDB - $ lookup. In this test, the size of the
textCol out51deKeyC01 table will vary from 10,000 to 30,000 records.

The third test is to search up to 10,000 records in the keyCol valueCol table.

The fourth test changes the value of the valueCol column by keyCol to 10,000
rows. The last test is to delete entries in the keyCol valueCol table with keyCol for
up to 10,000 rows.

Since all tests, except the first, require a keyCol attribute search, the tests are
performed twice: with indexing of the attribute and without indexing.

For ease of testing, a Python program is written in three parts: the main program,
the module with the MySQL test function, the module with the MongoDB test
function.

Linux Ubuntu 18.04.3 LTS distribution was used as the server operating system.
MySQL 8.0.17 and MongoDB 4.2.0 are installed as local databases and can be
accessed through the computer's internal address. A computer with the following
configuration was used as the server:

— processor: Intel Pentium CPU B950 clocked at 2.10 GHz 2 cores;

— RAM: DDR3 6 Gb;

— Video Adapter: GeForce GT 540M 1 Gb.

Test results. The first test (using indexes) is to perform line insertion. Line
insertion runs in stages from 10,000 to 100,000 records. The test results are shown in
Figure 1.

48

INSERT

100,00

75,00 68,73 _ -

50,00

Yac, ¢

25,00

10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

K-cTb cTpok

® MongoDB A MySQL
Fig. 1. Chart of time of operation of INSERT operation on number of records

Based on the results above, we can conclude that the insertion operation runs
faster in MySQL almost 2 times than in MongoDB. It is also worth noting that as the
number of MySQL product lines increased, it declined less rapidly than MongoDB.

The second test (using indexes) is the binding operation. The test uses the left
link in stages from 10,000 to 30,000 rows. MySQL DBMS is a great time-consuming
bind operation.

In other tests, MySQL was also better than MongoDB. But when tested without
using indexes in a relational model, MongoDB showed an advantage in search,
update, and delete operations.

The result of the search operation test is shown in Figure 2.

SEARCH
80,00

64,30
57,89 56%5

60.00 51,46 50%9

45,05
39;31

44491

40,00

Yac, ¢

20,00
6,43

0,00

100 200 300 400 500 600 700 800 900 1000

K-cTb cTpOK

® MongoDB A MySQL

Fig. 2. Diagram of the execution time of a SELECT operation (not index) on the
number of entries

49

According to the results of this test, we can conclude that the search time
without indexing is almost the same in the two DBMSs, but MongoDB showed the
best time for this test.

The result of the upgrade operation test is shown in Figure 3.

UPDATE

125,00
104,87

100,00

75,00

Yac, ¢

50,00

25,00

0,00

100 200 300 400 500 600 700 800 900 1000

K-cTb cTpOK

® MongoDB A MySQL

Fig. 3. UPDATE (not index) operation time chart versus number of records

According to the results of the fourth test, MongoDB showed the best time. It
should be noted that with the increase in the number of records, the execution time of
the operation in MySQL increased more intensively than in MongoDB.

The result of the removal test is shown in Figure 4.

DELETE

125,00

105,31

100,00

75,00

Yac, ¢

50,00

25,00

0,00

100 200 300 400 500 600 700 800 900 1000

K-cTb cTpOK

® MongoDB A MySQL

Fig. 4. Chart of DELETE operation time (not index) on the number of entries

In the operation of deleting records without using indexes, MongoDB obtained a
time advantage.

50

Conclusions. MySQL is more suitable for CRM systems where the database
must be rigorously structured without the dynamic appearance of tables or schemas.
A prerequisite is to use indexes in tables. MongoDB is more suitable for CRM
systems where the database is dynamic in terms of data change, flexible, performs a
large number of searches and has no rigid structure. In this case, the indexes do not
play a big role.

REFERENCES:

1. N. Leavitt, “Will NoSQL databases live up to their promise?”” [Text],

Journal Computer, - IEEE Computer Society Press Los Alamitos, CA, USA, vol.
43, no. 2, pp. 12 —14, feb. 2010.

2. D. Bartholomew, “SQL vs. NoSQL,” [Text], Linux Journal, - Department
of Computer Science, Maharaja Surajmal Institute of Technology, Janakpuri,
N.delhi 110058, Indiano. 195, July 2010.

3. S.Sakr, A. Liu, D. Batista, and M. Alomari, “A survey of large scale

data management approaches in cloud environments,” [Text] Communications
Surveys Tutorials - 1IEEE, vol. 13, no. 3, pp. 311-336, 2011.

4. R. Hecht and S. Jablonski, “NoSQL evaluation: A use case oriented
survey” [Text], in Cloud and Service Computing (CSC), - 2011 International
Conference on, dec. 2011, pp. 336 —341.

5. A. Boicea, F. Radulescu, and L. 1. Agapin, “MongoDB vs Oracle —
database comparison” [Text], in Emerging Intelligent Data and Web Technologies
(EIDWT), - 2012 Third International Conference on, sept. 2012, pp. 330 —335.

6. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb” [Text], in Proceedings of the 1st
ACM symposium on Cloud computing, - ser. SoCC *10. ACM, 2010, pp. 143—-154.

YK 004.056.5: 004.414.22

MOPIBHSIJIbHUMA AHAJII3 EOEKTUBHOCTI METO/IIB BUSIBJIEHHS
HKIIJIUBUX ITPOIT'PAMHHUX 3ACOBIB

M. /1. Jauenko, C.B. Mamypka
(Yxkpaina, Jlninpo, Hamionansuuii TY «/IHIMpoBChKa MOTITEXHIKA)

IMocranoBka npodaemu. ILlopoky B CBITI CTBOPIOETHCA BENUYE3HA KIIbKICTh
KOMI'IOTEPHUX TMporpaM. Pa3om 3 1muM 3pocTa€e KUIbKICTh KOMI'IOTEPHUX BIPYCIB.
3rigHo 31 3BiTOoM McAfee Labs [1] 3a mepumuii kBapTtan 2019 poky B cBiTI 3'siBUjIOCA
noHaJ 65 MJIH OJMHUI LIKIJIUBOTO porpamuoro 3abesnedenss (mani 1II13). dani
npuseaeHi Ha Puc. 1. [le na 18% Oinbiiie, Hixk 3a octanHii kBapTan 2018 poky. [pu
npoMy 3araibHa KimbKicTh I3 mpaktuuno mocsrio 1 mapa. OpHiero 3 NpUYHMH
I[LOTO SIBUIIA € MOXJIMBICTh aBTOMATHU30BaHOI pO3pOOKM MIKIIMBUX mporpam. [Ipo
e cBiIunTh 1 Aadi Data Breach Investigation Report 3a 2016 pik [2]. V 3BiTi cka3aHo,
o Oinbiie 99% MKIATUBUX NPOrpaM ICHYIOTh Y HE3MIHHOMY BUTJISI TIPOTATOM 58
cexyHn 1 meHIre. [Ipu bomMy OULTBIIICTE TPOTPaM BUSBISIOTHCS JIMIIE OJJHOTO pasy.

51

