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LABORATORY RESEARCH 1

Studying of typical dynamic elements

1.1 Objective is to deepen students’ knowledge while studying the Chapter
“Characteristics of dynamic elements of the automated control systems”.

In the process of the activities, students should be able to:

— calculate transition process as well as logarithmic amplitude and phase-
frequency responses;

— acquire practical skills to study the automated systems using a computer;

— use a computer to identify the basic characteristics of the typical dynamic
elements (i.e. net delay; oscillating; integrating; and inertial differential); and

— 1identify effect of parameters of transfer functions of the units on their
characteristics.

1.2 Intput data to carry out the research are as follows:

— structural patterns and numerical parameters of the studied dynamic elements
(Fig.1.1, Table 1.1);

— application packages MATLAB and MathCAD to simulate the automated
control systems (ACSs) and perform computer-based mathematical calculations.

1.3 Operating procedures

Following order is recommended:

— apply the MathCAD application package to calculate transient processes,
amplitude-phase, logarithmic-amplitude frequency and phase frequency responses of
dynamic elements;

— half gradually and then double gradually net delay time, and the elements
intensification coefficient with delay; use the MATLAB application package to
evaluate effect of the parameters on the transient process;

— half gradually and then double gradually intensification coefficient as well as a
time constant of inertial differential element; use the MATLAB application package
to evaluate effect of the parameters on the transient process;

— half gradually and then double gradually intensification coefficient of
integrating element; use the MATLAB application package to evaluate effect of the
parameters on the transient process;

— half gradually and then double gradually intensification coefficient as well as a
time constant of oscillating; use the MATLAB application package to evaluate the
effect of the parameters on the transient process; and

— identify successively damping coefficient of the oscillating element d < 0.707;
0.707 < d <1 and d > 1; use the MATLAB application package to evaluate effect of
the parameters on the transient process.



Table 1.1

Input data
Dynamic element Ky | K, | K3 | Ky | 7,c |Ty,c|T,c| d
1 | oscillating ofnetdelay 0.5|1.0[/3.2 [4.0|/0.5 | 1.0 [1.5 |0.1
2 | integrating differential 1.713.7143 (08|15 | 2.0 [2.5 |0.2
3 | oscillatingofnetdelay 502209 [3.1|25 | 3.0 3.5 |03
4 | differential integrating 34(44]108 |28[45 |50 (15 |04
5 | oscillating of net delay 1.5140(2.7 [09]1.0 | 2.5 2.0 |05
6 | integrating differential 0.813.1[1.7 |0.6]3.0 | 1.5 4.0 [0.6
7 | oscillating of netdelay |2.715.0(3.6 [4.4]|50 | 0.5 [1.0 |0.7
8 | differential integrating 43124140 [3.7[2.0 | 3.5 3.0 |0.8
9 | oscillating of net delay 1.9119]05 [5.0]0.5 | 2.0 [45 [0.9
10 | integrating differential 0.6{09[50 |[45]|15 | 1525 |1.0
11 |oscillatingofnetdelay |3.5{1.3]25 [0.9(25 [ 25|10 |1.1
12 | differential integrating 1.5{3.7139 [25]|35 | 3.5 (3.0 [1.2
13 | oscillating of netdelay |2.0{3.210.8 [0.7(4.5 [ 45|05 |1.3
14 | integrating differential 3.0{05[19 |50]1.0 | 2.0 |40 |14
15 | oscillating of net delay 1.0{43]12.0 35|20 | 35|45 |15
16 | differential integrating 42125135 [08(3.0 | 1.5]05 |0.3
17 |oscillating of netdelay | 0.6[4.2|3.7 [2.5/0.5 | 40 |25 |0.8
18 | integrating differential 35105(25 |0.7]11.0 | 2.0 |4.0 |1.0
19 | oscillating of netdelay |2.112.6|14 [3.8{03 | 42 |1.7 [0.6
20 | differential integrating 4110825 [1.6/39 |24 |19 |0.1
_p
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Fig. 1.1 Schematic structure for the studied dynamic elements




1.4 Methodological explanations

Any element of the automated control, being considered from the viewpoint of
its dynamic characteristics, is a dynamic element. The dynamic elements, described
by differential first- and second-order mathematical expressions, integral
mathematical first-order expression or mathematical expression with a delay
argument, are considered as typical ones.

Theory of the automated control records differential ACSs equations as well as
their elements in operator form:

(anp™ + app™ '+ -+ ap+ Dy =
= bp"+ by p™+ -+ bip+ 1), (1.1)

wherex,y are the representation of input value and output value according to
Laplace; a;, b; are the coefficients; n, m is the polynomial order; and pis the
complex variable.

Physical implementation of the automated control system should involve the
fulfilment of n > m condition.

In terms of zero initial conditions, a ratio between Laplace representation of
output value and Laplace representation of input value is a transfer characteristic

W(p):

_ bmp™ 4 by ap™ A A bip +1 (12)
Coaptta,pt it et ap+1 '

W(p) =

R

Like differential equation (1.2) expression is an equation of dynamic balance
between output and input values if the input value varies in terms of any law.
Also, the transfer characteristic is represented as follows:

_ Yy _KN(p)
W) =2= o) (1.3)

where K is the total intensification coefficient; N(p),L(p) are the polynoms of
numerator and denominator of the transfer characteristic.

Transition function y(t) is a dynamic element response to a single step signal. A
transition function is inverse Laplace transformation of output value in terms of zero
initial conditions. It is

y(©) =L7G), (1.4)

where L1 is the operator of inverse Laplace transformation.
A single step signal is determined with the help of the mathematical expression:



x() = (11fE=0

0ift <O0.

Table 1.2 demonstrates the most commonly used Laplace functions.

Table 1.2

Representation of certain functions according to Laplace

:)_/ — f e_pty(t)dt y(t)
0
1 1
- 1
p
2 a
p? + a2 sin(at)
3 p
D2 ¥ a? cos(at)
4 1 e—at
pta
5 a
p? — o2 sh(at)
6 14
27— a? ch(at)
7 a
(0 + a)? + a? e *sin(at)
8 pra —at
b +a)? +a? e~ *cos(at)
T -
p
10 2pa :
m tsin(at)
11 2 —q?
ﬁ tcos(at))
12 1 _
Rk e
13 1 sin(at) — atcos(at)
(p? + a?)? 2a3
14 L an n
(=1 apn t"y(t)

(1.5)

If a sine wave signal with o frequency and amplitude, being equal to a unit x(?)
= sinwt = ¢, is applied to the input then output sine wave with similar ® frequency
but other A(w amplitude and ¢(®) phase will be available after the transient process

terminates:



y(t) = A(w) sin(wt + ¢(t)) = A(w)el(@t+e(@), (1.6)

According to (1.6), both input and output sine waves are described by means of
the complex expressions. Ratio of the expressions is a complex intensification
coefficient W (jw) (or a frequency transfer function):

_Y({w)  bp(Go)™ + by o)™+ + by (o) + 1
Cx(w)  a,o)* +a,_ (o) + 4 a,(jw) + 1

W(jw) - (1.7)

Formulas and graphs, characterizing response of element on a sine wave input
signal, are called -characteristics. Graphic representation of the complex
intensification coefficient within the complex plane in terms of P(w)
and jQ (w) coordinates is the amplitude and phase frequency response (APFR).

Graphic representation of changes in A(w) amplitude or ¢(w) phase of output
signal depending on ® frequency as an element response to an input sine wave with ®
frequency and amplitude, being equal to a unit, are called amplitude and phase
response (APR) or phase and frequency response (PFR). In practice, APRs are
represented usually in terms of L,,(w) = 20lgA(w); lgw coordinates; as for the
PFRs, ¢ (w); lgw coordinates are the most popular ones. The responses, constructed
in such a way, are logarithmic amplitude and frequency response (LAFR) and
logarithmic phase and frequency response (LPFR) respectively.

While analyzing and synthesizing, ACSs also apply dependence graphs of real
P(w) part and imaginary Q(w) part of the complex intensification coefficient of ®
frequency called real frequency response (RFR) and imaginary frequency response
(IFR) respectively.

Example 1.1. Calculate transient process, amplitude and phase frequency
response, logarithmic amplitude frequency response, and logarithmic phase
frequency response of the first-order aperiodic element. Intensification coefficient
and time constant of the aperiodic element are K = 5 and T = 2 s respectively.

Transfer function of the first-order aperiodic element is as follows:

W(p) = Y _ K 1.8
p)= ¥ Tp+1 (1.8)
Apply intensification coefficient value and time constant value to (1.8):
W(p) = Y _ > 1.9
P e T 1 (19)
Using (1.9) equation, determine Laplace representation of output value:
y = > ¢ 1.10
Y= +1” (110)



Representation of input single step signal is

el (1.11)
X =—=- .
p
Then
y = > (1.12)
Y~ @p+p |

Perform inverse Laplace transformation. For the purpose, represent (1.12)
denominator as (p; = 0; p, = —271 are the denominator roots):

5 5 2=
= - (1.13)

@+ 2+ e (p )

Represent a fraction in the right-hand side of mathematical expression (1.13) as
the total of the simplest fractions with the unknown coefficients:

1

25 4 + B (1.14)
—2 == — .
(p+3)p P @+
Add the fractions:
1
A B A(p+g)+Bp
. (1.15)

P o+h T ()

Fractions of (1.14) and (1.15) mathematical expressions are equal in value.
Since denominator of fraction of the left-hand side of (1.14) is equal to a fraction of
the right-hand side of (1.15), numerators of the fractions should also be equal. Derive
the equation:

1 1
ZE=A<p+E>+Bp. (1.16)

Transform the right-hand side of (1.16):

1 1
25=Ap+5A+Bp, (1.17)
1 1

25=([A+B)p+5A (1.18)



Equate coefficients in terms of p! and p° (free term), and obtain equation system
to identify A and B:

-1y
2 2 (1.19)
A+B=0

Using (1.19) system, determine A =5 and B = —5. The expression (1.14) is
represented as follows:

1

25 5, 75 (1.20)
(p+3)p P @+
Hence,
j=24 _i- (1.21)
P (p+3)
Define transition function, using 1 and 4 formulas from Table 1.2:
y@)=5—sa§=5(1—e§) (1.22)

Fig. 1.2 demonstrates a graph of the transient process calculated with the help of
MathCAD APs using (1.22) formula.

Fig. 1.2 The transient process graph

Fig.1.3 shows a structural pattern to simulate aperiodic elements under the
SIMULINK MATLAB application package; Fig.1.4 demonstrates graph of transient
process obtained as a modelling result.



1 o = | 5]
2s+1

Constant Transfer Fen Scope

Fig. 1.3 Structural pattern of aperiodic element modeling

Amplitude and phase frequency response of the aperiodic element is assumed by
means of the mathematical expression:

K - Ko
0?T2+1 w?T2+1

&R LPLPL ABE S

W(w) =

(1.23)

Toree ifet 0

Fig. 1.4 Transient process graph
Substitute values for K and T

- 5Sw
402 +1 202 +1

W(jw) = (1.24)

Fig. 1.5 explains graph of amplitude and phase frequency response.
Logarithmic amplitude and phase frequency response of aperiodic element is
specified with the help of the mathematical expression:

20lgA(w) = 20lgK — 20lg\/T?w? + 1. (1.25)

10



Substitute values for K and 7~

20lgA(w) = 201lg5 — 20lg+/ 4w? + 1. (1.26)

I I I
0 0.5 1 1.5 2

p(®)

Fig. 1.5 Graph of logarithmic amplitude and phase frequency
response

Fig. 1.6 demonstrates graph of logarithmic amplitude and frequency response.

I I I
-2 -1.2 —0.4 0.4 1.2 2

log(®)

Fig. 1.6 Graph of logarithmic amplitude and frequency response

Logarithmic phase and frequency response of aperiodic element is assumed
using the mathematical expression:

¢(w) = —arctgT w. (1.27)

Substitute values for K and T
¢(w) = —arctg2w. (1.28)

11



Fig. 1.7 demonstrates logarithmic phase and frequency response.

log ®)

Fig. 1.7 Graph of logarithmic phase and frequency response

1.5 Report contents.

Structural patterns of the analyzed dynamic elements.

Graphs of transient processes, amplitude and phase frequency characteristics,
logarithmic amplitude and phase frequency characteristics of the analyzed elements
have been calculated.

Graphs of transient processes of the analyzed elements, determined in the
process of computer-based modelling, have been constructed.

Graphs of transient processes of the analysed elements, determined in the
process of computer-based modelling, have been constructed in terms of changes in
their parameters.

1.6 Control questions

What is transfer function?

What is dynamic element?

What typical dynamic elements do you know?

What typical input signal are applied to study ACSs?

What is transient function?

What are frequency responses?

What are the coordinates to construct a logarithmic amplitude frequency
response?

What are the coordinates to construct a logarithmic phase frequency response?

What is the nature of net delay of APFR variation if a time constant varies?

What is the nature of a transient process at the output of aperiodic element if
intensification coefficient (time component) is increased (decreased)?

What is the nature of LPFR of integrating element variation if its intensification
coefficient is decreased (increased)?

What is the nature of LPFR of inertial differential element variation if
intensification coefficient (time constant) is decreased (increased)?

12



What is the difference between graphs of transient processes of oscillating

elementifd < 1,andd = 1?

LABORATORY RESEARCH 2

Analyzing stability of the automated control systems

2.10bjective is to deepen students’ knowledge while studying the Chapter
“Stability of the automated control systems”.

During the activities, students should be able to:

— identify characteristic polynom of the closed system of the automated control;

— make a matrix of Hurwitz coefficients;

— determine effect of the specified parameters of a linear automated system on
its stability using Hurwitz stability criterion;

— construct stability boundary, and define areas of stable and unstable areas of
the automated control system operation in terms of the specified coordinates;

— gain practical skills to analyze the automated systems using a computer.

2.2 Input data to perform the activities are the following:
— structural schemes and numerical parameters of the analyzed automated
systems (Fig.2.1, Table 2.1.); and
— the MATLAB and MathCAD application package for computer-based
simulation of regulating systems (RS) and mathematical calculations.

kl kz Yout

a *sp — .
’(%) " D "| T2p? + 2dTop 1
Xsp kq k, Yout
'( ) "Tp+1 [ TZp? + 2dTyp4 1

Fig. 2.1 Structural schemes of the analyzed automated systems:
a — astatic system of the automated control;
b — static system of the automated control.

v

y

v
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Input data

Table 2.1
Variant |Scheme Parameters of the elements Coordinate
system
kq k, T; T, d X,Y
20 | 10 | — | 20 | 06 | kT,
20 | 20  — | 30 | 07 | kT,
1.0 1.0 — 4.0 0.8 kyd
1.0 2.0 — 1.0 0.9 k, d
1.0 3.0 — 2.0 1.0 T,,d
40 | 05 | — | 1.0 | 11 | kyk,
05 | 05 | — | 40 | 12 | kyk
0.5 2.0 — 3.0 1.3 T,, kq
4.0 3.0 — 2.0 1.4 d, k,
35 20 | — | 20 | 05 d,T,

1.0 | 1.0 05| 1.0 | 13 | kT,
50 | 10 06 30 12 | k,T,
20 | 02 |07 20 | 11 ki, d
30 | 20 08 1.0 | 1.0 ky, d
40 | 1.0 | 09 | 40 | 09 T, d
1.0 | 1.0 1.0 | 3.0 | 08 ki k,
1.0 | 20 09| 20 07 T,T,
1.0 | 30 08| 1.0 06 kT,
30 | 40 |07 15 05 T, d
20 | 05 03| 1.0 | 1.0 | k,T,

St~ i N v i ey e e P =l L= BN TN IV F N VS S
oo o|cc oo oy |y vy v e o o e

2.3 Operating procedures
Following order is recommended:

record a transfer function of open system for the structural scheme specified
by a teacher;

record characteristic polynom for the closed system;

make a matrix of Hurwitz coefficients;

determine stability boundary of a linear system of the automated control
system as a function by the parameters of elements of the automated control
system;

construct stable and unstable areas of the automated control system,;

apply the MATLAB application package to identify transient process within
the system in terms of a single step signal for stable and unstable operation of
the automated system, and for the system operation in terms of the stable
boundary;

draw conclusions using the obtained results.

14



2.4 Methodological explanations.

Stability 1s among the most important characteristics of any automated system.
Unstable system cannot perform its functions. Moreover, it may cause emergency of
the controlled object. That is why, the problem to provide system stability is one of
the central ones in the theory of the automated control.

The automated system stability is its characteristic to get back to a balance after
the influence, caused the unbalance, is over. No unstable system can get back to a
balance state distancing from it continuously.

Algebraic Hurwitz criterion is one of the most popular in the context of
engineering practices determining stability. The criterion can be formulated as
follows: to make the automated system stable, it is necessary and quite sufficient for
each determinant of a matrix of Hurwitz coefficients to be positive. Even if one zero
determinant is available in the absence of negative determinants, the system of the
automated control will be within its stability boundary (i.e. output value will vary in
terms of a harmonic law with stable amplitude and frequency).

The matrix of Hurwitz coefficients consists of coefficients of characteristics
polynom of the closed automated control system being:

Dy(p) = agp™ + a;p™ ' + ..+ ay_1p +a, =0, (2.1)

where n is the order of the automated control system.

The order of the matrix of Hurwitz coefficients is n X n. Correspondingly,
coefficients of a characteristic polynom a; are diagonal elements of such a matrix c¢;;
(i = 1,n). Rows to the right of the diagonal elements are added by coefficients with
successively increasing even indices if the diagonal element is in the even row; if the
diagonal element is in the odd row, then coefficients with successively increased odd
indices add it. Rows to the left of the diagonal element are added by coefficients with
successively decreasing even indices, and coefficients with successively decreasing
odd indices if the diagonal element is in the odd row. The matrix elements are equal
to zero if coefficients of characteristic polynom, which indices are more than n or
less than zero, should be instead of them.

To obtain characteristic polynom of the closed automated control system, it is
required to record a transition function of an open automated system, and then sum
up numerator and denominator polynoms.

Example 2.1. Identify stability of the automated system which structural
scheme is in Fig. 2.2. Also, determine an equation of a stability boundary as k; =
f(T,) function and construct the areas of stable and unstable operation of the
automated control system in terms of (T,, k1) coordinates. The system parameters
arek, =1k, =1; k3 =2;T;, =1;and T, = 0.5.

15



Wi(p) Wa(p) Wi(p)

EA —
in kl N k2 - E y()llt R
% Tip+1 Lp+1 p

Fig. 2.2 Structural scheme for the example

Define transition function of the open automated control system:

1 k2 k3
X X —
T,+1 T,+1 p

Wop (p) = Wi ()WL (p)W3(p) =

_ kik,ks _ kikyks
NP3+ Tip?+Top?+p TTLpd+ (T +T)p+p

Identify characteristic polynom of the closed automated control system:
D (p) = TiTop* + (T + T)p? + p + kikyks. (2.2)

We get 3" order characteristic polynom where ay = Ty T,, a; =T, + T,, a, =
1, and a; = k,k, k3. Make a matrix of Hurwitz coefficients:

(Tl + TZ) k1k2k3 0
T, T, 1 0
0 (Tl + TZ) k1k2k3

Substitute the parameter values and calculate the matrix elements. Hence:

1.5 2 0
05 1 O
0 15 2/

Define determinants of the matrix of Hurwitz coefficients:
Ai=c11 =2>0;
A= 11 X Cyp — €13 X €1 = 0.5 > 0.
The latter (i.e. the third) determinant of the matrix is calculated using the
formula:
Az=A, X33 =1>0,.
All the determinants are positive. Thus, the system is stable.

16



Identify the areas of stable and unstable operation of the automated control
system in terms of (T,, k) coordinates. If the system is within its stability boundary,
then 2" order diagonal minor should be equal to zero:

(Tl + Tz) - k1k2k3T1T2 == 0 (23)

Using the abovementioned, identify an equation of stability boundary of the RS
in terms of the specified coordinates:

ot 14T,
V7 koksTyT, 2T,

(2.4)

Varying T, parameter, construct stability boundary of the automated system
operation in terms of (T, k;) coordinates (Table 2.2).

Data to calculate the stability boundary

Table 2.2
T,| 0.1 0.5 1| 1.5 2| 2.5/ 3] 3.5 1
ky| 5.5 1.5 0.83/0.75| 0.7/0.67/0.64{0.63

[—

It is obvious that stability of the automated control system will be in
correspondence with the graph area in terms of which following inequation is
fulfilled:

A2= (Tl + Tz) - k1k2k3T1T2 > 0.
Thus:

- T\+T, 14T,
Y kok, T, T, 2T,

The area of unstable operation of the RS will be determined using the
inequation:

A2= (Tl + Tz) - k1k2k3T1T2 < 0
Thus :

S ATy 14T
V7 kok,TyT, 2T,

Fig. 2.3 demonstrates the areas of stable and unstable operation of the
automated control system.

17
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Fig. 2.3 Areas of stable and unstable
operation of the automated system

Using the constructed graph, simulate operation of the automated system in
terms of a stable mode (0.5; 1), unstable mode (2; 3), and stability boundary (1; 1).
Fig. 2.4 demonstrates graphs of transient processes.

Unstable ACS

Stable ACS

ACS within
1ts stability

T 0f15ed: O

Fig. 2.4 Transient processes of a stable ACS; unstable ACS;
and ACS within its stability boundary
2.5 Report contents.
Structural scheme of the analyzed system.
Characteristic equation of the closed system.
Stability calculation of the specified automated system.
Equations of the system stability boundary.

18



Irregularities of stable and unstable operation of the automated system.

Graphs of areas of stable and unstable operation of the automated system.

Graphs of transient processes of stable and unstable system as well as a system
within its stability boundary represented in one coordinate system.

2.6 Control questions

What is understood as the automated system stability?

What is the system being considered as a stable one?

What is the system being considered as an unstable one?

What is the system being considered in terms of its stability boundary?
How can be determined a 3™ order critical intensification coefficient?

LABORATORY RESEARCH 3

Analyzing accuracy of static and astatic ACSs

3.1 Objective is to deepen students’ knowledge while studying the Chapter
“Accuracy of regulating systems”.

In the process of the activities, students should be able to:

— 1identify accuracy of both static and astatic regulating systems;

— determine operation areas of the regulating systems which provide the
specified accuracy of the regulating systems;

— develop the areas providing the specified accuracy of the regulating system in
terms of parameters of its elements as well as parameters of input effect;

— gain practical skills to analyze the automated systems using a computer.

3.2 Input data to perform the activities are the following:

— structural scheme and numerical parameters of dynamic elements of the
analyzed systems (Fig.3.1, Table 3.1.);

— the MATLAB and MathCAD application package to simulate the automated
control systems and perform computer-based calculations.

3.3 Operating procedures

Following order is recommended:

— calculate static errors for both static and astatic systems of the automated
control when a step signal is set to their inputs;

— construct a dependence graph of a static error of the static system upon the
intensification coefficient of an open part;

— determine dependence of the intensification coefficient upon the input effect to
provide the specified value of the static error;

— construct graphs of transient processes in terms of static and astatic systems
when the effect, varying according to a linear law, is provided to their effect inputs;

— test a hypothesis on the independence of a velocity error in terms of a stable
mode from a free coefficient of a law of input value variation;
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— calculate parameters of astatic system of the automated control providing the
velocity value as that not exceeding the specified one.

Xin Yout

Yout

Q
nl Rl
S
"~
] K
+
v

L
Xin 3_/ out
L

Fig. 3.1 Structural scheme to analyze accuracy of regulating systems:

a — a static system with step input effect;

b — an astatic system with step input effect;
¢ — a static system with linear input effect;

d — an astatic system with linear input effect.

3.4 Methodological explanations.

Provision of the required accuracy in terms of the stable mode is one of the
requirements as for the regulating systems. Error value in various standard modes is
applied to evaluate accuracy of a control system. Stable error is a difference between
the specified value of the controlled variable and actual one.

The stable error value within a static regulating system in terms of a step input
value is determined using the formula:

£y = — 3.1)
1+K,,
where &g 1s the static error; and K,,is the overall intensification coefficient of an
open part of the system.

When the transient process is over, the controlled variable value will be as

follows
xinKop

Yout = Xin — &st = 1+—K (3.2)
op
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If such linear signal as x;,(t) = a + k;t is set to the static system input, then a
static error &5 will vary with constant velocity. If the effect is quite long-term then
the systems stops to be efficient.

Table 3.1
Input data
Variant Parameters of elements

Xin kq k, ks T,c

1 1.0 0.5 1.5 0.5 0.70
2 1.5 0.8 1.0 1.0 0.50
3 2.0 1.1 0.5 0.7 0.60
4 2.5 1.4 2.0 1.2 0.40
5 3.0 1.7 2.5 0.9 0.35
6 35 2.0 3.0 1.3 0.30
7 4.0 2.3 35 0.7 0.25
8 4.5 2.6 4.0 0.4 0.20
9 4.0 2.9 4.5 0.4 0.20
10 35 2.6 4.0 0.7 0.25
11 3.0 2.3 35 1.3 0.30
12 2.5 2.0 3.0 0.9 0.35
13 2.0 1.7 2.5 1.2 0.40
14 1.5 1.4 2.0 0.7 0.60
15 1.0 1.1 0.5 1.0 0.50
16 0.5 0.8 1.0 0.5 0.70
17 1.0 0.5 1.5 1.0 0.50
18 1.5 0.8 1.0 0.7 0.60
19 35 2.6 1.0 0.7 0.35
20 2.0 1.7 35 1.3 0.60

As for the astatic regulating system, the static error value in terms of a step input
value x;,, = constis &; = 0; hence, y,,+ = X;,,. If a linear signal is set to the system
input, then the stable error will not increase temporally; when the transient process is
over, value of the error will have a value determined as a velocity value:

kq
op

Syl =

=

In terms of the stable mode, the controlled variable will experience its changes
according to the law:
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K,

k
Your () = a+ kit — e, = (a . > + k,t. (3.4)
op

Example 3.1. Calculate the accuracy of both static and astatic systems of the
automated control (Fig. 3.1, a and 3.1, b) if step effect is set to their inputs. Construct
a dependence graph of statistic error of the systems upon the intensification
coefficient of their open parts €(k,). Identify the dependence between reference-
input signal and intensification coefficient of the open part k,(x;;,) to provide the
specified error value &5,=0.1 input value is xz =5; and values of dynamic
coefficients of the elements are k, = 3; T; = 2; and k3 = 5.

The automated control systems, represented in Figures 3.1, a and 3.1, b are 1%
order and 2" order systems respectively having one-sign positive coefficients. Such
systems are of stable nature. Determine accuracy of the systems when step effect is
set to their inputs.

The automated control system, represented in Fig. 3.1, a is the static system.
Determine static error within the system using the formula (3.1):

e, = Xin —
T 1+k, 143

= 1.25. (3.5)

Verify the obtained results while simulating under the SIMULINK MATLAB
environment in terms of a scheme represented in Fig. 3.2.

3 " 1
5 | _ 1.25
2=+
Constant Transfar Fon Display

Fig. 3.2 Structural scheme to analyze the system accuracy

The simulation results have verified the calculations.

Calculate static error &g, while varying intensification coefficient k, of an open
ACS part. Construct dependence graph &(k,) using the MathCAD
environment
(Fig. 3.3).

It is understood from the graph in Fig. 3.3 that the increase in intensification
coefficient of an open ACS part results in the decrease of static error.

To define dependence between the reference-input signal and intensification
coefficient of an open k,(x;,) part in terms of the specified &g,= 0.1, reduce 3.5
expression to the following:

Xin — &st Xin — 011
k, = = . 3.6
2 - o1 (3.6)
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Fig. 3.4 demonstrates the dependence graph k,(x;,,) constructed in terms of the
MathCAD environment.

Verify the calculation results. Select any point within the graph, and determine
its coordinates within the help of a function 7race in the MathCAD application
package (Fig. 3.5).

K2 =0,001.20
5
D = (1+ K
6
45
skd) 3
15
1]
0 4 3 12 16 20
K2
Fig. 3.3 Dependence graph £(K;)
x=01,011.10
x—-01
K2 =
(9= —
41
30
k220
10
1]
01 0.8 1 66 244 322 4

X

Fig. 3.4 Dependence graph K, (x;,,)
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Fig. 3.5 Determination of the graph point coordinates
Hence, we have point coordinates x;, = 3 and k, = 29. Verify the obtained

results using simulating in the SIMULINK MATLAB application package in terms of
the abovementioned scheme (Fig. 3.2). Fig. 3.6 demonstrates the findings.

2 L

3 _—
2=+
Constant Transfer Fen Dizplay

Fig. 3.6. Structural scheme to verify the calculation results &5, = 0.1 has been
obtained

Thus, the automated control system, represented in Fig. 3.1, b is of astatic type.
In the context of the system, static error is equal to zero; moreover, it cannot depend
upon intensification coefficient of an open part K,, = k,k3 as well as upon a
reference-input signal x;,. Verify the statement using simulation in the SIMULINK
MATLAB application package with values of the reference-input signal and
intensification coefficients, specified by the example conditions (Fig. 3.7), and the
varied values (Fig. 3.8). As it is seen, the static error approaches zero in terms of both
cases.

Example 3.2. Linear effect x;,,(t) = a + k; has been set to the inputs of the
automated control systems (Figures 3.1, ¢, and 3.1, d). Use simulation in the
SIMULINK MATLAB application package to identify a velocity error &,; within the
systems. Verify independence of a velocity error €,,; from a coefficient for the astatic
ACS (Fig. 3.1, d), and separate an area within K, (k;) plane where ¢,; < &¢,. Values
of coefficients of input effect, parameters of the automated control system, and the
specified error values are as follows: a =3, k; =2, k, =3, k3 =5, T = 2,¢&5, =
0.1.
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Fig. 3.7 Structural scheme of ACS and a transient process graph for input values
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Fig. 3.8 Structural scheme of ACS and a transient process graph for the varied

parameter values

Fig. 3.9 demonstrates structural scheme to analyze static and astatic ACSs
(Figures 3.1, c, and 3.1, d) in the SIMULINK MATLAB application package. Such
manual switches as Manual Switch 2 and Manual Switch 3 help throw inputs of
Scope and Display to the inputs of elements of static and astatic systems.

Both static and astatic systems of the automated control have been simulated
according to the structural scheme. Fig. 3.10 represents graphs of the transient
process as well as graphs of changes in the input effect and time errors of the static
ACS. As it follows from the graphs, in terms of linear changes in the input effect, &,,;
error value increases infinitely.

Fig. 3.11 demonstrates graphs of the transient process as well as graphs of
changes in the input effect and time errors of the astatic ACS. As it follows from the
graphs, in terms of linear changes in the input effect, €,,; error value approaches zero.
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Fig. 3.10 Simulation results of the static ACS
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Fig. 3.11 Simulation results of the astatic ACS

Prove independence of the velocity error €,; from a parameter of the input effect
in terms of astatic systems of the automated control. For the purpose, apply
Spearman’s criterion. While varying values of a parameter, use the SIMULINK
MATLAB application package to identify corresponding values of the velocity error
&5 calculate Spearman’s rank correlation coefficient. Table 3.2 represents the
simulation results.

Table 3.2
Output data
a parameter 5 15 | 25 | 35 | 45 55 65 | 75 | 85| 95
Velocity error 0.13]0.16 | 0.08 | 0.06 | 0.03 | -0.15 | 0.04| 0.8 | 0 |-0.16
€l

Use the data from Table 3.2 to form ranks of a parameter (Table3.3) as well as
velocity error €, (Table 3.4).

Table 3.3
Value ranks of a parameter
a parameter 95 | 85 | 75 | 65 | 55 45 35 | 25 | 15 5
a; rank 1 2 3 4 5 6 7 8 | 9] 10
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Table 3.4
Value ranks of ¢,,; parameter

Velocity error 0.80.16{0.13]0.080.06| 0.04 [0.03| 0 | -0.15|-0.16
Epl

ebrank | 1| 2 |3 |45 6 [ 78] 9 |10

Make sequences of a and g,; ranks with the help of the data represented by
Tables 3.3 and 3.4. Table 3.5 demonstrates the rank sequences in addition to the
differences in the ranks as well as the squared differences of the ranks.

Table 3.5
Sequences of ranks a and &,,;
a; rank 1 2 3 4 5 6 7 8 9 10
gl, rank 10 8 1 6 9 7 5 4 | 2 3
Differences in the -9 1-6| 2 | -2|-4] -1 2 4 7 7
ranks
di = a; — &
The squared 81 | 36 4 4 16 1 4 16 |49 | 49
d? difference
Determine Spearman’s rank correlation coefficient:
6Y"d? 6 X 260
ps=1— =1- = —0.73, (3.7)

n3—n 103 —-10

where n = 10 is the sample size.

Test a zero hypothesis Hy as for zero equality of the general coefficient of
Spearman’s rank correlation p,.. Use a Table of Student’s t-distribution to find a value
of a critical point of two-sided critical region t..(a, k). In this context, ais a
significance level; k = n — 2 being degrees of freedom. Determine t.,.(a, k) = 3.36
if @ = 0.01 and k = 8. Calculate the critical point:

1—p,2 1—(—0.73)2
Tor = ter(a,k) |[———- =336 |—-———— =081, (3.8)

Since |p,| < T, there is no need to reject zero hypothesis concerning zero
equality of the general coefficient of Spearman’s rank correlation. Hence, there is no
rank correlation between a, and g, parameters. a parameter has no effect on
the €,,; velociity error.

Using coordinate plane K, (k;) to determine the area within which &, < 0.1.

According to (3.3), we have:
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kq

&yl = < 0.1. 3.9
vl Kop ( )
Using (3.9), we obtain:
kq
Kop = 01 (3.10)

In accordance with (3.10), K,, = k,0.171 the MathCAD software has been
applied to obtain K,, = k,0.171 dependence (Fig.3.12). Also, Fig. 3.12 shows the
area where g,; < 0.1 as well as the area where ¢,; > 0.1. Test accuracy of the
calculations while simulating using the SIMULINK MATLAB application package
according to 3.9 structural scheme. For the purpose, it is required to separate three
points within the coordinate plane where ¢,; < 0.1, ¢,; = 0.1, and ¢,; > 0.1. Table
3.6 demonstrates coordinates of the points, and relevant values of velocity errors. The
simulation results coincide with the calculations.

3.5 Report contents

Structural scheme to analyze accuracy of both static and astatic systems of the
automated control.

Calculations of static error for static and astatic automated control systems when
a step signal is set to their inputs.

Graph of dependence of a static error of the static automated control system
upon intensification coefficient of an open part.

Calculation of the intensification coefficient dependence upon the input effect to
provide the specified error value.

Graphs of transient processes within the static and astatic systems if the effect,
varying according to a linear law, is set to their inputs.

Calculations to test the hypothesis concerning the velocity error independence in
terms of the stable mode from a free coefficient of input value variation.

Calculations and graphs as for the separation of areas within K,,,(k;) plane

where velocity error is not more than the specified value.

3.6 Control questions

What is a system accuracy?

What is static error?

What is velocity error?

How is it possible to decrease the specified error within a static control system?

Is it possible to decrease the specified error within an astatic control system?
Why?

What is the nature of the specified error variation within a static control system
if time constant decreases (increases) in its dynamic elements?

How is it possible to decrease a velocity error within an astatic system?
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Table 3.6

Test results concerning velocity error of astatic ACS

Point 1 (2;40) 2 (4;40) 3 (4;20)
Velocity error 0.03 0.08 0.20
€l
LABORATORY RESEARCH 4

Analyzing series correctors

4.1

“Correctors and their synthesis method”.
In the process of the activities, students should be able to:

regulating system,;

30

Objective is to deepen students’ knowledge while studying the Chapter

master effect of series correctors on the operation of the regulating system,;
identify parameters of series correctors to provide the required quality of the

determine a transient process within the corrected system using a computer.



4.2 Input data th perform the activities are the following:

— structural schemes and numerical parameters of the analyzed systems (Fig. 4.1
and 4.2; Table 4.1);

— the MATLAB and MathCAD application package to simulate the regulating
systems, and perform computer-based mathematical calculations.

4.3 Operating procedures

Following order is recommended:

— calculate overall intensification coefficient of an open part of the regulating
system to provide the specified static control error and velocity control error;

— connect additional intensification element in series with the elements of an
open part of regulating system to achieve the required overall intensification
coefficient;

— evaluate stability of the corrected regulating system,;

— if the regulating system losses its stability, introduce a series corrector, and
calculate its parameters to make the system stable;

— use the SIMULINK MATLAB application package to determine a transient
process within the corrected regulating system;

— draw conclusions.

4.4 Methodological explanations

The structural changes in a regulating system, resulting from introduction of
additional elements, is one of the methods to achieve the required control quality.
There are the four types of such correctors: series; parallel; a corrector in terms of
external effect; and multiply feedback.

Series correctors are introduced to a regulating system in series with dynamic
elements of the open part. Several types of series correctors are available.

Introduction of derivative of an error is the simplest way to improve efficiency
of a transient process. In practice, it can be implemented with the help of inertial
differential element which transfer function is as follows W (p) = k.p(T.p + 1) 1.
Time constant T, should be quite less than the transient time of the regulating system.

Introduction of integral of an error is another way to improve ACS efficiency.
Implementation of the series corrector involves integral element which transfer
function is as follows W (p) = k.p~!. Introduction of integral of an error makes it
possible to increase the ACS astatism as well as accuracy control. However, negative
— /2 phase is introduced in the regulating system worsening its stability.

Such a series corrector as an isodromic element, which transfer function is
W(p) = k.; + keap™* can help improve the system efficiency without any
depreciation in its stability reserve.
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Fig. 4.1 Structural schemes of the analyzed systems:

a — output scheme of the automated control;
b - corrected scheme of the automated control.

Example 4.1. Identify the overall intensification coefficient K of the open ACS
part (Fig. 4.1, a) to provide statistic error Eg;=0.05. Achieve the system stability
while introducing a series corrector of derivative of error type to its structure (Fig.
4.1, b). The system parameters are as follows: g, =0.5; k; =2; k, =1; T, = 2s;
T, =3s;and d = 0.4.

The automated control system in Fig. 4.1 is of static type. If step effect g, = 0.5
is set to the system input, then error in terms of the stable mode will be:

_ 90
E“_1+K

(4.1

To provide E,; = 0.05, calculate the overall K coefficient of the regulating system
open part using the formula:

go—Es 05-0.05
E, 005

The intensification coefficient may be achieved when additional intensifying
element is introduced in the open part of the ACS. The intensification element is:

K =

(4.2)

Ckik, 1x2

ks 4.5, (4.3)

Test the stability of the system with the additional intensifying element by means
of Hurwitz criterion. Transfer function of the open system will be as follows:
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k k,

1
W) = i Tz andp 1 < 2 T
= 5 ZK - (4.4)
T1T3p% + (2T1T2d + T3) p? + (T1 + 2T, d)p + 1
Table 4.1
Input data
Variant The system parameters
Yo kq ky T,c d Es
1 2 1.5 2 0.2 0.4 0.2
2 3 0.5 2 0.2 0.5 0
3 4 4 5 0.4 1.3 0.1
4 6 1 2 0.5 0.8 0
5 9 2.5 3.2 0.7 0.85 0.5
6 5 1 1 0.4 0.7 0
7 4 0.5 6 0.8 0.35 0.5
8 7 4 0.5 0.8 1 0
9 8 5 3 1.2 1.4 0.2
10 2 2 0.5 0.2 0.5 0
11 1 3 1 0.1 0.4 0.1
12 3 0.5 4 0.5 0.8 0
13 8 0.3 50 0.3 1.4 0.2
14 5 4 0.25 0.4 0.7 0
15 2 4 0.75 0.9 0.4 0.2
16 7 0.4 5 0.8 1 0
17 9 80 0.1 0.9 0.85 0.5
18 8 1 1 0.4 0.7 0
19 5 1 1 0.4 0.7 0
20 9 2.5 3.2 0.7 0.85 0.5
Identify the characteristic polynoms:
D(p) = Ty Tp® + Ty Tod + TH)p?* + (T, + 2T,d)p+ (1 + K) =
= 18p3 + 13.8p% + 4.4 p + 10. (4.5)

Make a matrix of Hurwitz coefficients:

13.8 10 O
( 18 44 0 )
0 138 10/
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Define determinants for the matrix of Hurwitz coefficients:
A;=13.8> 0,
A,=13.8%x4.4—-18x%x 10 =60.72 - 180 < 0,

2" order determinant is negative. Hence, the system is unstable.

Test the calculation results with the help of simulation. Fig. 4.3 demonstrates
structural scheme to simulate the analyzed system using the SIMULINK MATLAB
application package. Fig. 4.4 demonstrates the simulation results explaining that
output value experiences its continuous time increase oscillating. Such changes
correspond to unstable system.

2 1
05 = > [ ]
I+ 25247 4s+1
Constant Transfer Fon Transfer Fonl Gain Scope

Fig. 4.3 Structural scheme of the analyzed system

J Scope
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100

200
=

ime affset; O

Fig. 4.4 Graph of the transient process

To provide stability of the regulating system, introduce corrector of error in series
with elements of the open part (see Fig. 4.1, b). Then, transfer function of the open
part of the system will look like:
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K X (1+ k.p)

W) = sy annd T+ (L + 2hap + 1. O
Identify the characteristic polynoms:
D(p) =T, T#p® + QT To,d + TH)p? + (T, + 2T,d + Kk )p + (1 + K) =
= 18p3 + 13.8p? + (4.4 + 9k.p) + 10. (4.7)

Make a matrix of Hurwitz coefficients:
13.8 10 0
< 18 (44+9k,) O )
0 13.8 10/ -

1 order determinant is A;= 13.8 > 0. To make the regulating system stable,
A,> 0, A;> 0 conditions should also be fulfilled. Record a mathematical expression
for 2" order determinant:

A,=13.8 %X (44 +9k.)—10x 18 > 0. (4.8)

Define k. using inequality (4.8)

>10><18—13.8><4.4 0.96 49
¢ 13.8% 9 T (4.9)

Thus, if coefficient is k. > 0.96, then A,> 0. The last A; determinator of the
matrix of coefficients is calculated according to the formula:

As= A, x (1 + K). (4.10)

If k., = 3,then A;= 2533.2 > 0.

Test the calculation results using simulation. Fig. 4.5 shows structural scheme to
simulate the analyzed area in the environment of the SIMULINK MATLAB
application package. Taking into consideration the fact that a correcting element (i.e.
differential element) with W(p) = 3p is such which cannot be implemented
physically, it has been replaced by an actual differential element where time constant
is more than two orders of magnitude less than time of a transient process within
W(p) = 3p(0.01p + 1)~! system. Such a replacement has no effect on time
characteristics of the automated control system.

Figures 4.6 and 4.7 represent the simulation results. It follows from the analysis
of a graph concerning error variation (Fig. 4.6) that it experiences its time decrease
oscillating and approaching the stable value. Fig. 4.7 shows the stable error value
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within a segment of the graph of error variation. In terms of the stable mode, the error
corresponds to the specified value Eg;= 0.05.
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Fig. 4.5 Structural scheme of the analyzed system
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Fig. 4.6 Graph of the error time variation
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Fig. 4.7 Fragment of the graph of the error time variation
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4.5Report contents.

Structural schemes of the analyzed regulating systems.

Calculation of the parameters of additional elements of the system to provide the
specified static error E;.

Graphs of transient processes of both uncorrected and corrected automated
systems.

4.6 Control questions

How is it possible to improve RS quality?

What are the additional elements introduced to RS to provide the specified
quality indices?

What is series corrector?

What types of series correctors do you know?

What is the effect of a derivative of an error on the operation of the closed
automated control system?

What is the result of integrating element introduction to the system?

Why isodromic element is introduced to the regulating system?

LABORATORY RESEARCH 5

Analyzing flexible feedback

5.1 Objective is to deepen students’ knowledge while studying the Chapter
“Parallel Correctors”.

5.2 In the process of the activities, students should be able to:

— master the effect of such parallel corrector as flexible feedback on the
characteristics of an oscillating element;

— calculate parameters of the parallel corrector as flexible feedback to meet the
requirements for the quality indices of a transient process within the specified
ACS area;

— identify the transient process within the corrected automated control system
using a computer.

5.3 Input data th perform the activities are the following:

— structural schemes and numerical parameters of the analyzed systems (Fig.

5.1, Table 5.1);

— application packages MathCAD for mathematical calculations and MATLAB
for computer-based simulation of the automated systems.

5.4 Operating procedures

Following order is recommended:
— identify a transfer function from ACS area with flexible feedback;
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— 1dentify intensification coefficient set of Kgj, feedback to provide values of a
damping coefficient d* of a transient process within ACS area in terms of the
specified range;

— construct a graph of dependence of intensification coefficient of flexible
feedback Ky}, upon the damping coefficient d*of the transient process;

— test the calculation results using computer-based simulation of the specified
ACS area.

K
T2p? + 2Tdp + 1

v

Kocp <

Fig. 5.1 ACS part with the flexible feedback

Input data
Table 5.1
it K T d dq d,
1 2.2 2.2 0.1 0.2 1.3
2 4.6 2.4 0.2 0.3 1.2
3 1.8 2.6 0.3 0.4 1.4
4 3.4 2.8 0.4 0.5 1.1
5 2.8 3.2 0.1 0.2 1.3
6 4.2 3.4 0.3 0.4 1.1
7 5.6 3.6 0.1 0.2 1.2
8 3.6 3.8 0.2 0.3 1.4
9 1.4 4.2 0.3 0.4 1.1
10 3.2 4.4 0.4 0.5 1.2
11 2.6 4.6 0.5 0.6 1.1
12 5.4 4.8 0.2 0.3 1.2
13 1.4 5.2 0.1 0.3 1.4
14 4.4 5.4 0.2 0.5 1.1
15 3.8 5.6 0.3 0.4 1.2
16 5.2 5.8 0.4 0.6 1.3
17 4.8 6.2 0.5 0.6 1.2
18 1.2 6.4 0.3 0.5 1.4
19 2.4 6.6 0.1 0.5 1.1
20 2.2 6.8 0.2 0.4 1.3
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5.4. Methodological explanations. Parallel correctors are implemented in the
form of additional local feedbacks. The following belongs to the parallel correctors:

— proportional feedback
Wy (p) = kpp; (5.1)

— 1inertial proportional feedback

Wrp (p) = ., (5.2)
Tepp + 1
— flexible feedback
Wrep, (p) = kfbpi (5.3)
— 1nertial flexible feedback
Wep(p) = % : (5.4)

where Wy, (p) is the transfer function of the parallel corrector; and kgy,, Ty, are the
intensification coefficient and time constant of the corrector respectively.

Generally, feedback is applied to increase oscillating element damping within
the corresponding ACS area. In this context, the transfer function of ACS area with
oscillating element and flexible feedback will look like:

K/(T?*p? +2TTp + 1) B K
1+ (kepKp/(T?p? +2Tdp + 1)) T2p2 + (2Td + ks, K)p + 1

W(p) = (5.5)

where K, T, and d are the intensification coefficient, time constant, and damping
coefficient of a transient process.

It follows from (5.5) that flexible feedback can vary neither structure of ACS
area, nor intensification coefficient K, nor time constant Tof the oscillating element.
However, damping coefficient varies and depends upon the intensification coefficient
of feedback ky;,. Moreover

2Td + kepK = 2Td", (5.6)
where d” is the new damping coefficient.
Use (5.6) to identify kg, for the provision of the specified d* value:

_2Td*—2Td _ 2T(d"—d)
/b= K - K

(5.7)
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Example 5.1. Such a parallel corrector as flexible feedback is connected to an
area of the automated control system with W (p) = 5(4p? + 0.8p + 1)~! transfer
function. Determine a set of intensification coefficient of flexible feedback k), to
provide a value of the new damping coefficient d*of a transient process within the
specified ACS area in terms of [0.3; 1.1]. Construct ks, = f(d*) dependence graph.
Verify the calculation results by means of computer-based simulation.

W(p) = 5(4p?+ 0.8p + 1)~ ! transfer function is a transfer function of
oscillating elements with K = 5, T =2, and d = 0.2 parameters.

Use (5.6) to identify a set of intensification coefficient of flexible feedback
kp to provide a value of the new damping coefficient d*of a transient process within

the specified ACS area in terms of [0.3; 1.1]. Thus,

2Td + kK kepK
=" — g4 D

2T 2T '’ (5:8)
then
03<d+ 814 5.8
. —_ 2T —_ bt} ( " )
or
03< 02+ 00> 14 5.9
3<0. T (5.9)
Identical transformations will result in
0.08 < ks, < 0.72, (5.10)

Hence, if kg, = 0.08 we obtain d* = 0.3; if k¢, = 0.72 then d* = 1.1.
Construct a dependence graph k¢, = f(d"). For the purpose, solve (5.6) relative
tok
fb

L 2T —d) :
fb = —K ’ ( '11)

Substitute values of K, T, and d parameters in (5.11)

2x2(d*—02) 2x2(d —02)
krp = 5 - 5

=0.8d* —0.16. (5.12)

Fig. 5.2 represents a dependence graph ks, = 0.8d" — 0.16, constructed in
the MathCAD environment.
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dx:=0,001.2

koo(d) = 0.8dx — 0.16

1.44

1.04

koo{dx) 0.64

024

\ d* < 0.7

\ 0.7<d <1

-0.16
0 0.5

1 1.5 2
i

Fig. 5.2 Dependence graph kg, = f(d")

Three line sections are singled out within the graph:

— d* < 07 being the oscillating transient process;

— 0.7 < d”* < 1 being the readjusted aperiodic transient process;

— d” < 0.7 being the aperiodic transient without readjustment.

Test the calculations using simulation by the SIMULINK MATLAB application
package. Fig. 5.3 represents a structural scheme of the analyzed ACS area; Table 5.2

shows parameters of the ACS area.

Fig. 5.4-5.6 demonstrate the simulation results. Graphs of the transient
processes correspond to the system parameters obtained as the calculation results.

Data to simulate ACS area

Table 5.2
# kep d* Type of a transient process
1 0.08 0.3 Oscillating transient process
2 0.40 0.7 Readjusted transient process
3 0.64 1.0 Transient process without readjustment

Fig. 5.4-5.6 demonstrate the simulation results. Graphs of the transient
processes correspond to the system parameters obtained as the calculation results.
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Fig. 5.3 Structural scheme of the analyzed ACS area
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Fig. 5.4 Oscillating transient process

=10l x|
leaElcer ABE B L &

Time affset; 0

Fig. 5.5 The readjusted transient process

42



i

|leallcrp AREBEO L &

Fig. 5.6 Transient process without readjustment

5.5 Report contents.

Structural scheme and output data of the ACS area.

Calculation parameters of flexible feedback.

Dependence graph kg, = f(d™).

Structural schemes and simulation results of the ACS area with corrector.

5.6 Control questions.

What types of correctors do you know?

What should be done for a parallel corrector introduction to the ACS?

What types of parallel correctors do you know?

What changes are experienced by the ACS area when flexible feedback
surrounds it?

What are the parameters of oscillating element effected by the flexible
feedback?

What are the parameters of aperiodic element effected by the flexible feedback?

LABORATORY RESEARCH 6

Analyzing stability of a linear regulating system with delay

6.1 Objective is to deepen students’ knowledge while studying the Chapter
“Regulating systems with delay”.

In the process of the activities, students should be able to:

— calculate critical delay time;

— calculate stability margin of the regulating system,;

— acquire practical skills to study the regulating systems using a computer.

6.2 Input data the perform the activities are the following:
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structural scheme, and numerical parameters of dynamic elements of the
analyzed system (Fig. 6.1; Table 6.1); and

the MATLAB application package for computer-based simulation of the
regulating systems.

K
0 Kl o2 et
Tp+1 p

Fig. 6.1 Structural scheme of the analyzed system

v
~

\]

v

v

6.3 Operatingp rocedures.
Following order is recommended:

calculate critical delay time;

calculate stability margin of the regulating system;

construct a graph for stability margin and unstable operation of the regulating
system;

use the MATLAB application package to evaluate transient processes within
the regulating system when the delay time is less and more than critical one;
use the MATLAB application package to evaluate transient processes within
the regulating system for the areas of its stable and unstable operations.

6.4 Methodological explanations

Mathematical models of the majority of production facilities in the mining and
processing industry involve a net delay element. Regulating systems of such objects
have transcendent characteristic equation; that is why algebraic criteria to determine
their stability are unacceptable. At the same time, Mykhailov and Nyquist stability
criteria maintain their values.

Mykhailov criterion is convenient to be applied for determination of stability
margins and areas of delay systems. Within a stability margin, Mykhailov curve
passes through a reference point in such a way that the whole following curve run
corresponds to the stability. Hence, in terms of some w value, it will be D (jw) = 0:

{X (w, costw, sintw) =0

Y (w, costw, sintw) = 0. (6.1)

Equations of (6.1) system determine the stability margin.
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Input data

Table 6.1
Variant K() K1 Kz T, T,
C C
| 1 0.5 2.0 0.5 0.4
2 1 0.7 2.2 0.6 0.3
3 1 1.0 1.8 0.7 0.2
4 1 1.2 2.4 0.4 0.3
5 1 1.4 1.6 0.7 0.4
6 1 1.5 2.5 0.6 0.2
7 1 1.3 1.7 0.5 0.3
8 1 1.6 2.1 0.8 0.4
9 1 1.0 1.3 0.9 0.2
10 1 0.9 1.9 0.6 0.3
11 1 0.8 2.2 1.0 0.4
12 1 0.6 2.3 1.2 0.4
13 1 0.9 2.0 1.3 0.3
14 1 1.2 1.3 1.1 0.2
15 1 1.4 1.6 1.0 0.3
16 1 1.5 1.5 0.9 0.2
17 1 1.3 1.4 0.8 0.4
18 1 1.2 1.0 1.2 0.4

Example 6.1. Identify stability margin of the closed regulating system with
delay in terms of [T; K] coordinates where transfer function of the open part is
W(p) =
= Ke ™ (p(Tp + 1))71. Assume that t = 3.

First, solve the problem in general terms. Make characteristic polynoms of the
closed regulating system

D(p) =Tp?*+p+ Ke ™, (6.2)
Record a characteristic vector
D(jw) = -Tw? + jow + Ke ™%, (6.3)
or
D(jw) = —Tw? + jw + K(costw — jsintw). (6.4)

Single out actual part and imaginary part in (6.4) and record an equation of the
regulating system stability

{X(w) = —Tw? + Kcostw = 0 6.5)
Y(w)= w — Ksintw = 0. '
We have from level two of the system (6.5)
w
K= - (6.6)

sintw

Identify T using equation one of the system
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Tw? = Kcostw, (6.7)

Kcostw
T = 2 . (6.8)

After substituting (6.6) into (6.8), we will obtain

COSTw w

. 6.9
w?  sinTw (6:9)

COSTW 1
T =— = . (6.10)
wsinTw  wtgrtw

To construct a graph, determine ® variation range using K > 0, andT > 0
conditions. We have

w(sinltw) >0 611
(wtgtw)~1 > 0. (611)
Since w > 0, then
{sinra) >0 612
tgtw > 0. (612)

Simultaneously, expressions within left sides of the inequalities (6.12) are more
than zero if 0 < tw < m/2. Thus, 0 < w < /(2 7).

Use (6.6) and (6.10) equations to construct stability margin for the specified T =
= 3 value within the coordinate plane [T; K] varying w from 0to /6 (Fig. 6.2).

Apply the graph data to identify coordinates of unstable operation of the system
[2; 0.5], stable operation of the system [2; 0.35], and the system operation within its
stability margin [2; 0.41]. Transient processes, represented in Fig. 6.3—6.5 correspond
to the coordinates.

Nyquist criterion is applicable to identify critical delay time 7., of a control
system. Delay time, in terms of which the control system is within its stability
margin, is critical one.

According to a Nyquist stability criterion, the closed automated control system
will be within its stability margin if amplitude and phase frequency response of its
open part passes through a point within the complex plane with [—1; jO] coordinates
in terms of some w, frequency. Then, if ® = ®y, a modular unit of the complex
intensification coefficient of the open ACS part will be equal to:

Alwy) = 1. (6.13)
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Fig. 6.3 Graph of a transient process of an unstable system
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Fig. 6.5 Graph of a transient process of a system within its stability margin

In terms of the similar frequency, the phase will be:

¢(wy) = —. (6.14)
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Net delay element cannot effect on a modular unit of the complex
intensification coefficient of the open ACS part. However, it varies its phase
according to

¢(w) = @o(w) — Tw. (6.15)

Then if w = wg,, we have

{ Ag(wg) =1 (6.16)

Yo(wg) — Terwo = —T,

where Ay(wy) and @y(wy) are modular unit and a phase of the complex

intensification coefficient of the open part of the automated control system

respectively in terms of w = w, frequency exclusive of the net delay element.
Equation two of (6.16) system helps obtain

T = T+ @o(wo) (6.17)
Wo

Example 6.2. Determine critical delay time z,, of the closed ACS which open
part has W(p) = K/((Tp + 1) e *P) transfer function. Values of the parameters

are K =2and T = 3.
First, solve the problem in general terms. Open ACS system consists of
aperiodic element and net delay element connected in series. Dependence of modular
unit of the complex intensification coefficient of aperiodic element upon frequency is

as follows

K
Ag(w) = —- 6.18
° VT?w? + 1 (618)
Determine w, for which Ay(w,) = 1. Thus, we have
K
— =1, (6.19)
T?wi + 1
After 1dentical transformation, we will obtain
K?2-1
Wy = T (6.20)

Dependence of the complex intensification coefficient phase of aperiodic
element upon frequency is

@o(w) = —arctg(Tw). (6.21)
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Use formula (8.17) to identify critical delay time

T+ @o(wo) _ T(m— arctg(VK? — 1)) _

Tor o —— (6.22)
Hence,
3(wr —arctg(v22 -1
r =X al D _ 408 (6.23)

22 -1

Fig. 6.6 represents simulation scheme of the unknown ACS; Fig. 6.7 represents

the transient process.
2 L]
1 — - -
3s+1 E%C
Constant Transfer Fen Transport Scope
Delay

Fig. 6.6 Block diagram of the closed ACS with delay

J Scope |z| |§| rgl
GBE oL ABE

Time offzet: 0

Fig. 6.7 Transient process within the ACS

6.5 Report contents

Structural scheme of the analyzed automated control system and output data.

Calculations of the critical delay time and boundary areas of stable and unstable
operations of the regulating system.

Graph of the areas of stable nd unstable operations of the regulating system.

Graph of transient processes for delay time being less than critical and more
than it.

Graphs of transient processes for the parameters of the regulating system
concerning stable area and unstable one.
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6.6 Control questions

What are the regulating systems with delay?

What is net delay element?

List the ways to connect net delay element to the regulating system.

Record differential equation of a positional delay element.

What are the methods applied to evaluate stability of the regulating system with

delay?

What is the critical delay time?
How 1is it possible to identify stable and unstable operation areas of the
regulating system?

LABORATORY RESEARCH 7

Analyzing FCS correctors with a linear delay object

7.1 Objective is to deepen students’ knowledge while studying the Chapter
“Systems of the automated control with delay”.
In the process of the activities, students should be able to:

calculate critical intensification coefficient, and oscillation period of output
value of FCS with PID-controller;

calculate parameters of PID-controller using Ziegler—Nichols method;
calculate critical intensification coefficient nd oscillation period of output
value of FCS with predicative PID-controller;

calculate parameters of predicative PID-controller using Ziegler—Nichols
method;

compare the controlling FCS quality with PID-controller and predicative
PID-controller;

acquire practical skills to analyze the automated control systems using a
computer.

7.2 Input data th perform the activities are the following:

structural schemes and numerical parameters of dynamic elements of the
analyzed automated control systems (Figures 7.1-7.2; Table 7.1); and

the MathCAD and MATLAB application package for computer-based
calculation and simulation of the automated systems.

7.3 Operating procedures
Following order is recommended:

expand a net delay element into 2™ order Pade series;
ealculate a critical intensification coefficient of the open FCS part with PID-
controller in terms of Hurwitz criterion,;
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calculate the oscillation period of the FCS output value of the output value
of FCS with PID-controller;

calculate PID-controller parameters using Ziegler—Nichols method;

specify PID-controller settings of FCS analogue within the SIMULINK
MATLAB environment;

use Nyquist criterion to formulate an equation to identify frequencies of
stable oscillations of output value in FCS with predicative PID-controller;
use the MathLLAB application package to solve a transcendent equation as for
the oscillation frequency;

calculate the critical intensification coefficient of a predicative PID-
controller;

calculate predicative PID-controller parameters using Ziegler—Nichols
method;

specify settings of predicative PID-controller using FCS analogue within the
SIMULINK MATLAB environment;

use the SIMULINK MATLAB environment to develop transient processes
within FCS with PID-controller and predicative PID-controller;

compare controlling quality of FCS with PID-controller and predicative PID-
controller.

— K,
fin yout
o(O) JKLGH | K™ .
poe p 5 Tp + 1
L» Kqp

Kp
fin —Tp yout
O L] & " el
\A D J Tp+1
1

Tp+1
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Fig. 7.2 Structural scheme of the analyzed FCS with predicative PID-controller

Input data
Table 7.1
Variant K T T
1 : 2.4 1,44
2 1.12 3.6 2.16
3 0.45 4.8 2.88
4 3.15 6.6 3.96
5 2.84 7.2 4.32
6 1.52 1.4 0.84
7 0.16 2.6 1.56
8 3.88 3.6 2.16
9 2.14 4.2 2.52
10 2.76 1.8 1.08
11 3.42 7.4 4.44
12 0.92 6.2 3.72
13 2.56 5.8 3.48
14 1.64 4.4 2.64
15 0.78 3.2 1.92
16 2.32 2.6 1.56
17 3.72 1.8 1.08
18 3.28 2.4 1.44
19 0.58 3.2 1.92
20 1.36 7.6 4.56

7.4 Methodological explanations

Numerous scientific papers concern the problem of delay object control. The
increased interest in the control of such objects is quite justifiable since the
availability of net delay within a control loop complicates heavily generation of the
efficient ACSs. Among the current methods of delay object control, the following can
be singled out:

1. relay control;

2. PID-control;

3. the predicted control;

4. the specific class of controllers using algorithms.

T
The specific controller is selected relying upon . ratio (Fig. 7.3) where 7 is the
tr

net delay time; and ¢, is the transient process time.

Relay correctors are applied if objects with minor delay are controlled. Two
position controller is preferable owing to its simple adjustment and operation.
However, decrease in hysteresis of the corrector intended to improve its control
efficiency results in the increased switching frequency of actuating device. The latter

53



factors into origination of output value variation as well as into a short life of

commutation components.

Net delay value-transient process time ratio

Y

A

A

\ 4

T T T :
— < 0.05 0.05 < — < 0.2 —>02 The specific class
- ter ter of controllers
using algorithms
T ] R sae
Two position > PID-controller L, Smith
> controller predictor
L »  Fuzzy logic
™ P-controller Predicative PI
> controller
Three position Neural
» [-controller >
> controller networks
Resvik
—» D-controller ] controller -
Genetic
™ algorithms
- Pl-controller
Lp| PD-controller

T
Fig. 7.3 Controller selection in terms of — ratio
tr

As for the three positional correctors, their actuator may be either in a full open
position or in a normal (central) position or totally closed. To compare with a two
positional controller, the abovementioned one has quicker response to controlling
effect; its accuracy and performance are higher.

PID-controller (i.e. proportional-integral-derivative controller) shapes a control
signal u(t) in terms of the law:

t g(t)

u(t) = Kpe(t) + Kif e(t)dt + K, TR (7.1)

0
where £(t) is a control error.

Fig. 7.4 shows structural scheme of PID-controller.
PID controller involves three components — proportional P, integral I, and
derivative D.
P-control is one of the simplest and most popular control laws. Output signal is
proportional to a control error. Adjustment simplicity, lack of inertia, and high
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response are the P-controller advantages. Availability of static error, due to which
output value cannot stabilize within the specified value, is its disadvantage.

P

e(t) u(t)

A\ 4

A 4
A 4

D

A 4

Fig. 7.4 Structural scheme of PID controller

To eliminate the static error, P-controller is added by integral component (i.e. I
controller) being proportional temporally to an integral before the output value
deviates from its specified value. If no external and external disturbance is available,
the output value stabilizes at its specified value.

Nonavailability of control error in terms of the stable state is the I-controller
advantage; slow response and potential self-oscillations if K; parameter has been
selected incorrectly.

Derivative element (i.e. D-controller) is intended to forecast future deviations and
counteract them. D-controller accelerates response of the automated control system;
however, that results in the significant readjustment, and stability conditions
experience their worsening.

Depending upon combinations of P-, I-, and D-components, following variations
of the controllers are possible — PI, PD, and PID. PID-controller and its modifications
are connected in series with the ACS open part (Fig.7.1).

There are several methods to adjust PID-controller parameters; Ziegler-Nichols
method is the most popular among them. It belongs to empiric techniques and relies
upon the experimental data obtained in terms of a real object.

The adjustment procedure begins with the experimental analysis of a system
involving a proportional controller (i.e. P-controller) and the specified control object.
Starting from zero, intensification coefficient K, of the P-controller increases until
constant amplitude oscillations are set within a system output; i.e. until the system
turns out to be at its stability margin. The controller coefficient, in terms of which a
system achieves its stability margin, is recorder and specified through K. Then, T*
period of oscillations, being stable within the system, is measured.

Parameter values of the selected controller type are calculated using formulas
listed in Table 7.2.

Parameters of generic controllers

Table 7.2
K, K; K,
P-controller 0.50K, — —
Pl-controller 0.45K; 0.54K; /T* —
PID-controller 0.60K, 1.20K,;/T" 0.075K,T"
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To control the objects with significant transport delay (7/t;- = 0.2 ...0.5), the
specific structures of PID-controllers are used since they involve blocks forecasting
the object behaviour after T time. The controller structure was proposed by Smith in
1957; it is called Smith predictor.

Purpose of Smith predictor is to forecast what signal should occur at the object
output before its actual springing. The forecasting may involve a model of a control
object consisting of a fine-rational part of the transfer function W,, transport delay
e®™. Owing to the fact that the delay may be excluded from the model, a principal
possibility emerges to forecast the object behaviour before the output signal occurs.

Fig. 7.4 demonstrates one of the potential implementations of such a system. Its
operating schedule is as follows.

i Controller E E Control object
: e -
—>©—:*> Wreg(p) 1 NEA) o e’
A N
i Control object model
| -
> Wo(p) €

Fig. 7.4 Control system with Smith predictor

If the control object model (i.e. Smith predictor) is not available, the transfer
ACS function with PID-controller and transport delay element within a forward loop
closed by means of single feedback will look like (Fig. 7.4)

Wreg @)W, (p)e*?
WCl (p) = Ll ™ )
1+ Weg(0)W,(p)e
where W,,.(p) is the transfer controller function.

(7.2)

If Smith predictor is connected to a system as an internal loop, then difference in
signals within the object output and model is equal to zero. Hence, transfer function
of the closed system will be as follows

Weeg ()W, (p)e™®

K T TN STA
To compare with the characteristic polynom (7.2), (7.3) one does not depend
upon a transport delay. It means that the transport delay element cannot effect the
system velocity and response.

(7.3)
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Topological transformations of structural schemes may help obtain numerous
mutually equivalent systems with Smith predictor.

Predictive Pl-controller (PPI-controller), and Resvik controller can be
considered as Smith predictor varieties. Fig. 7.2 represents structural scheme of the
PPI-controller.

Fuzzy controlling algorithms are not advantageous to compare with the classic
control methods. Moreover, a problem of stability in the context of a system with
nonlinear control algorithms complicates heavily.

Example 7.1. Use Ziegler-Nichols to identify adjustments of PID-controller of
the automated control system (Fig. 7.1) while controlling an object with
W(p) =
= 0.015e7?P(7.3p + 1) ! transfer function. Specify the calculated adjustments and
determine experimentally quality indices of a transient process using FCS in terms of
the SIMULINK MATLAB environment.

Represent the transfer function of an open share of the automated control system
with in-series connected control object and P-controller (ignore temporarily both
integral and differential parts of a control law) as follows

_ KPK -pT
W(p) = Tp+1 e PT, (7.4)
Expand a net delay element into 2" order Pad¢ series
2p? —61p+ 12 4p% —12p + 12

Pt x = : 7.5
¢ T2p2 + 61p + 12 4p? + 12p + 12 (7:5)
Then, the transfer function of the open AUC part will look like
K,0.015(4p% — 12p + 12
p (4p p+12) 7.6)

P " (7.3p + 1) (4p? + 12p + 12)’
where K, is the proportionality constant of P-controller.
We have 3" order ACS. Identify K,, = K, proportionality constant, in terms of
which the automated control system achieves its stability margin. Make a
characteristic polynom for the closed system:

D, (p) = (7.3p + 1)(4p* + 12p + 12) + K;0.015(4p* — 12p + 12). (7.7)
Perform identical transformations:

D, (p) = 29.2p% + 91.6p* + 99.6p + 12 + 0.06K;p? —
—0.18K;p + 0.18K, = 29.2p + (91.6 + 0.06K;; )p* +
+(99.6 — 0.18K;)p + (12 + 0.18K;). (7.8)
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The 3™ order automated control system will be within its stability margin if 1°
order determinant of Hurwitz coefficient matrix is more than zero and 2™ order
determinant is equal to zero. Make Hurwitz coefficient matrix

(91.6 + 0.06K;) (12 + 0.18K;) 0
29.2 (99.6 — 0.18K;) 0
0 (91.6 + 0.06K;) (12+0.18K;)/"

1%t order determinant will be

Ay= 91.6 + 0.06K;; > 0. (7.9)

Obviously, A;> 0 if
K; > —1527. (7.10)
2" order determinant will be equal to

A,=(91.6 + 0.06K;) x (99.6 — 0.18K;) — 29.2 x (12 + 0.18K;) = 0. (7.11)

Expand the brackets and solve an equation relative to K,;. We obtain:

9123.36 — 16.49K; + 5.98K; — 0.01K;” — 350.4 — 5.26K; = 0 (7.12)
—0.01K;* — 15.77K; — 8772.96 = 0,
K3 + 15.77K; + 8772.96 = 0. (7.13)

Identify the discriminant, and determine K,

D =15772 — 4 x 1 x (—877296) = 5996113.

VD = 24448.7.
—1577 + 2448,7

Taking into consideration (7.10), we have K; = 435.85.

Define oscillation period T* within the stability margin. For the purpose,
calculate oscillation frequency w® applying K, = 435.85 to (7.8) expression and
substitute jw for p. Hence, we derive a characteristic complex of the closed system:

D, (jw) = 29.2(jw)3 + (91.6 + 0.06 x 435.85) X (jw)? +
+(99.6 — 0.18 X 435.84) X jw + (12 + 0.18 x 435.85) = 0. (7.14)

A characteristic complex will be equal to zero if its actual and imaginary parts
are equal to zero. Identify the imaginary part

—29.20w** + (99.6 — 0.18 x 435.85) X w* = 0. (7.15)
Solve (2.13) equation relative to w™:
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—29.20w*> + (99.6 — 0.18 x 435.85) X w* = 0,
—29.20w*% + 21.5 X w* = 0,
—29.2w*% +21.5 = 0,
—29.2w** = =21.5,

w*? =0.72,
w* = 0.85,
Determine T*:
T*_Zn_2x3.14
~ w* 085

Test the validity of the calculations using simulation in terms of the SIMULINK
MAMLAB environment by means of a structural scheme in Fig. 7.5.

0.015 el
1 43585 > > D%( E
7.35¢1 |

Constant Gain Transfer Fen Transport Scope
Delay

Fig. 7.5 ACS structural scheme for simulation

Fig. 7.6 demonstrates general form of a transient process within the ACS; Fig. 7.7
shows a part of the transient process to test oscillation period T*.

Cscope TP
lemceo ABEB B L &

Time offzet: 0

Fig. 7.6 General form of a transient process within the ACS
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-)scope P = F

lemjorr ABRB @& &

Fig. 7.7 A part of the transient process

The simulation results coincide completely with the calculations.
Table 7.3 represents th values of parameters of correctors calculated with the
consideration of T* ~ 7.3 s and K; ~ 435.85.

Parameters of generic correctors
Table 7.3
K, K; K, Transfer function
P-controller 217.93 — — W, (p) = 217.93
PI-controll 196.13 | 32.24 — 32.24
controller Wpi(p) = 196.13 + T

PID-controller | 261.51 | 71.65 | 238.63 Wyia(p) = 261.51 +

71.65
+——+238.63p

To analyze ACS with PID-controllers in terms of the SIMULINK MATLAB
environment, a model of the automated control system has been developed; Fig. 7.8
shows its structural scheme. Flotation process model is represented by the in-series
connected Transfer Fon and Transport Delay blocks. PID-controller simulation is
implemented using combination of its three parts: P-controller (i.e the Slider Gain 1
blocks); PI-controller (i.e. the Slider Gain 2, and Integrator blocks connected in
series); and PD-controller (i.e. the Slider Gain 2 and Derivative blocks connected in
series. Reference-input signal is introduced to the ACS by means of the Step block
(i.e. step effect). In addition, FCS structural scheme also includes Manual Switches to
change the structural scheme operatively according to the problem being solved
during the analysis. The Ground blocks are used to set zero signals to the required
blocks. The Scope block is applied to represent time variation of the output value.
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Fig. 7.8 FCS model with PID-controller

According to the simulation results, concerning FCS operation with set points,
shown in Table 7.3, the transient processes, demonstrated in Figures 7.9-7.11 have
been obtained. Fig. 7.12 illustrates a transient process where PID-controller was not
used; Fig.7.13 illustrates a transient process with the best controller adjustment
selected experimentally using a model

17.24
Weg(p) = 136.13 + — (7.16)

Controlling time was determined with the help of the time after which difference
between the controlled value and the stable value is not more than 5%. Stability

degree has been identified using the known formula
3
n = ) (7.17)
treg

where t,..4 is the controlling time.
Quality indices of a control system with PID-controller

Table 7.4
Parameter
Controller Stability Static Controlling | Readjustment, | Oscillations
degree error time, s %
No controller 0.08 0.985 36 0 0
P-controller 0.21 0.22 14 5 |
PI-controller 0.20 0 15 40 1
PID- 0.20 0 15 52 0
controller
PID- 0.25 0 12 7 0
controller
with the best
adjustment
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Cscope T scope =T
lem|cpp ABRE BE & |le@E|(locrr AER| P E &

a b

Fig. 7.9 Transient process within FCS using P-controller:
a — overall view; b — view to evaluate quality indices

EEETEEETT o< PETTSEE oix
leaocr e ABE|IBE & |leaorr ABB B E &

Time offzet:

a b

Fig. 7.10 Transient process within FCS using PI-controller:
a — overall view; b — view to evaluate quality indices
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Fig. 7.11 Transient process within FCS using PID-controller:
a — overall view; b — a view to evaluate quality indices

lemlloppo mEE BE s |[6B(OLL ABEB DA %

0015

004

30 35

Time offzet: 0

Time offzet; 0

a b

Fig. 7.12 Transient process within FCS where no controller has been used:
a —overall view; b — view to evaluate quality indices
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Fig. 7.13 Transient process within FCS with the best controller adjustments:
a — overall view; b — a view to evaluate quality indices

Quality indices of a control system with PID-controller

Table 7.4
Parameter
Controller Stability Static Controlling | Readjustment, | Oscillations
degree error time, s %
No controller 0.08 0.985 36 0 0
P-controller 0.21 0.22 14 5 1
PI-controller 0.20 0 15 40 1
PID- 0.20 0 15 52 0
controller
PID- 0.25 0 12 7 0
controller
with the best
adjustment

Example 7.2. Apply Ziegler-Nichols method to identify PID-controller
adjustments of the automated control system in terms of the object in 7.1 example
(Fig. 7.2). Specify the calculated adjustments and determine quality indices of the
transient process experimentally using FCS model in terms of the SIMULINK
MATLAB environment.

Apply Ziegler-Nichols method to identify PID-controller parameters. Define
the critical intensification coefficient K, for the system, shown in Fig. 2.7, ignoring
the integral part of the control law. Transfer function of the open part is:
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1 Ke™P?

|4 =K . 7.18
or(P) = Ko T e /Ty ¥ ) Tp + 1 (7.18)
Identical transformations result in
. K;Ke —pt
Wop (p) = K; T (7.19)

Make a characteristic polynom of the closed ACS
D(p)=Tp+1—eP" +K,Ke P", (7.20)
The automated control system will be within its stability margin (i.e. it will
perform stable oscillations with constant amplitude and frequency) according to
Mykhailov criterion if the characteristic polynom (7.20) is equal to zero (Mykhailov
godohraph will pass through a point with [0; jO)] coordinates within the complex

plane). Thus, we obtain

Tp+1—eP'+K,Ke ™" = 0. (7.21)

Replace jw variable for p one; use Euler formula to record (7.21) expression as
follows
Tjw + 1—(costw — jsintw) + K, K (costw — jsintw) = 0. (7.22)
Derive the equation system recording (7.22) for imaginary and actual parts of
the expression

1 — costw + Kchosra) =0
{ (7.23)

Tw + sintw — KszinTw = 0.

Apply (7.23) equation system to determine frequency of stable oscillations
w and critical intensification coefficient K. Then, use formula T = 2rw™! to
calculate stable oscillation period T*. The following is obtained from the first
equation of the system

K = 1 — costw 7 94
P Kcostw (7.24)
The following is obtained from the second equation of the system
_ Tw + sintw 7 25
P KsinTw (7.25)
Equate left parts to right parts of (7.24) and (7.25) equations
1—costw Tw + sintw
— = . (7.26)

' ' Kcostw B Ksintw
Perform identical transformations of (2.24) equation

1—costw Tw + sintw

COSTW sintw

costw—1 Tw + sintw

COSTW sintw
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sintw(costw — 1)

=Tw + sintw,
COSTW

sintw(costw — 1)

—sintw = Tw,
COSTW

SINTWCOSTW — SINTW — SINTWCOSTW

=Tw,
COSTW
—sintw
=Tw,
COSTW
—tgtw = Tw. (7.27)

Equation (7.27) has not any analytical solution relative to the unknown value w.
The equation may be solved graphically; for instance, under the MATHCAD
environment.

In the context of the control object, (7.27) equation will look like

—tg2w = 7,3w. (7.28)

Since tangent is a periodic function, (7.28) equation has many solutions. Hence,
starting from zero, increase in the intensification coefficient K;, of P-controller will
have numerous values of stable oscillations with different w* frequencies for
different K. Identify the first K; value corresponding to the minimum w; value.
For the purpose, evaluate the interval within which w; will stay wj. Since right
member of (7.28) equation is more than zero, then

—tg2w > 0,
Hence
tg2w < 0,
Thus
T
_E-HTk < 2w <k, keZ.
Finally

L ik <w<Zlk kez 7.29
Tk =0 <ok kez (7.29)

Table 7.5 explains the intervals for w* values calculated in terms of (7.29)
expression.
w” intervals
Table 7.5

k 0 1 2

Intervals —0.79+0 0.79 = 1.57 2.35 +3.14

Since w frequency cannot be negative, then w; € [0,79; 1,57). Identify w; . Use
the MATHCAD environment to construct individual graphs for left member and right
member of (7.28) equation and define coordinates of their junction point. Fig. 7.14
and 7.15 demonstrate the solution results within the specified wj availability
interval.
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Fig. 7.14 shows the constructed graphs as well as their junction point; Fig. 7.15
demonstrates abscissa and ordinate of the joint point of the graphs determined using
X-Y Trac function. Thus, wj = 0.86 rad/s. Identify a period of stable oscillations
T* =2nw! ' =21 0861 ~ 7.3s. Insert w!=0.86rad/s into (7.24) and
determine K,;:

. 1 — costw;] 1= cos(2 x 0.86)

= ~ — ~ 515.15. 7.30
pi Kcostw; 0.015 cos(2 x 0.86) (7:30)
T=2 T="73
=073 020 157
y(m:] = —tan(t-m:] ﬁlm:l =T-m
10 —
78 P .
e[
7o)
go) .
. \\
12 5 ~—.
'—b..______-‘-h
hh-_h"'_"‘—'---.._______hh
_%I.’.I‘Q | 095 1.1 124 1.41 157

w

Fig. 7.14 Graphical solution of the equation

x-¥ Trace NN x|
X-Value |0.86 Copy X
Y-Value |6.278 Copy Y
Y2-Value | Copy Y2
¥ Track data points Close |

Fig. 7.15 w] value determination
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Validate correctness of the performed calculations using simulations under the
SIMULINK MATLAB environment in terms of a structural scheme in Fig. 7.16.

O SECTEIN 7y EN =

Transpart

Constant H Transport 5

#ain Crelay Transfer Fen Transfer Fen Delap'g.r wope
Ec-o |

Fig. 7.16 ACS structural scheme for simulation

Fig. 7.17 demonstrates overall view of the transient point within the ACS; Fig.
7.18 shows the transient process part to test oscillation period T*.

_ioix]

lem|ocry ABR B & %

Time aoffzet: 0

Fig. 7.17 Overall view of the transient process within the ACS

The simulation results coincide completely with the calculations.
Table 7.6 shows parameter values of Pl-controller calculated with consideration
that T* ~ 7.3 s and Kp; =~ 515.15.
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Fig. 7.18 The transient process part

Parameters of generic controllers

Table 7.6

K;

Kq

Transfer function

PI-controller

231.82

38.11

38.11
W,:(p) = 231.82 + —

Fig. 7.19 demonstrates structural scheme of the controlled object model,
developed under the SIMULINK MATLAB environment, to analyze FCS with PPI-
controller. This scheme differs from the scheme, represented in Fig. 7.8, in the fact
that it does not involve a differential part of PID-controller and its internal circuit
contains a predictor represented by the in-series connected Transfer Fon [ and

Transport Delay 1 blocks.

Transient process, shown in Fig. 7.20, result from the simulation of FCS
operation with set points of Pl-controller (Table 7.6). Fig.7.21 demonstrates the
transient process with the best controller adjustments selected experimentally with
the use of the model (Table 7.7)

Weq(p) = 140. (7.31)

Formula (7.17) has helped determine the stability degree.
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Fig. 7.19 FCS model with a predictive PI-controller

TN o< BTSN _i0ix
H§I||_}3’,®|ﬁ%|§]'r lem(cpp ABRB BE &

Time offzet;

Fig. 7.20 The transient process within FCS with PI-controller
a — overall view; b — view to evaluate quality indices
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]

Time offzet: 0
a b

Fig. 7.21 The transient process within FCS with the best controller adjustments
a — overall view; b — view to evaluate quality indices

Time offzet; O

Quality indices of a control system with PPI-controller

Table 7.7
Parameter
Controller Stability Static Time to Readjustment, | Oscillations
degree error control, %
S
PPI- 0.17 0 18 70 1
controller
PPI- 0.38 0 8 0 0
controller
with the best
adjustments

According to the analysis results in examples 1 and 2, it is possible to conclude
that in the context of the considered control object, PPI-controller is better to
compare with the classic PID-controller since its stability degree is higher,
controlling interval is shorter, and readjustment is not available.

7.6 Report contents.

Output data.

Structural schemes of the analyzed automated control systems.

Calculation of the parameters of PID-controller and predictive PI-controller
using Ziegler-Nichols method.
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Graphs of transient processes within FCS involving PID-controller and
predictive PI-controller.

Quality evaluation of transient processes within FCS involving PID-controller
and predictive PI-controller.

Comparison of the best transient processes within FCS involving PID-controller
and predictive PI-controller.

7.7 Control questions

What control methods are applied for objects with delay?

What are the advantages and disadvantages of relay control?

What are the advantages and disadvantages of PID control law?

What are the advantages and disadvantages of a predictive control?

What are the advantages and disadvantages of controllers using algorithms?
What is Ziegler-Nichols method?

Why is it necessary to expand objects with delay into Pad¢ series?

LABORATORY RESEARCH 8

Analyzing a sampling control system

8.1 Objective is to deepen students’ knowledge while studying the Chapter
“Sampling control systems”

In the process of the activities, students should be able to:

— make a transfer function of a pulse system with a zero-order extrapolator and

fixation for the period;

— 1dentify stability of a sampling control system;

— calculate a transient process within the automated control system,;

— acquire practical skills while analyzing pulse systems using a computer.

8.2 Input data to perform the activities are the following:
— structural scheme and numerical parameters of the analyzed automated system
(Fig. 8.1, Table 8.1); and
— the MATLAB application package for computer-based simulation of the
automated system.

To

Xsp 1—eTop ky k, Yout

A 4
=

Fig. 8.1 Structural scheme of the pulse ACS
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Input data

Table 8.1
Variant Xsp Ty, s ky Ty, s k>
1 1 0.5 52 1.0 1.3
2 2 0.2 6.4 1.6 1.2
3 3 0.7 7.8 1.4 1.5
4 4 0.8 6.3 1.6 1.6
5 5 0.9 5.5 1.8 1.7
6 6 1.0 5.4 1.7 1.8
7 7 0.9 4.3 1.5 1.9
8 8 0.8 4.9 1.3 2.0
9 9 0.7 34 1.1 1.9
10 10 0.6 5.6 0.9 1.8
11 9 0.5 6.1 1.2 1.7
12 8 0.6 6.4 1.4 1.6
13 7 0.7 7.9 1.6 1.5
14 6 0.8 6.2 1.8 1.4
15 5 0.9 7.8 1.7 1.3
16 4 1.0 8.7 1.5 1.2
17 3 0.9 10.0 1.3 1.0
18 2 0.8 8.4 1.1 1.1
19 1 0.7 7.6 0.9 1.2
20 2 0.6 7.8 1.0 1.3

8.3 Operating procedures
Following order is recommended:

make a transfer function of the continuous part of the pulse automated
control system;

identify the transfer function of the pulse automated control system with a
zero-order extrapolator and fixation for the period;

determine the automated control system stability;

calculate a transient process within the automated system when a single step
signal is set to its input;

use the MATLAB application package to verify the calculation results by
means of computer-based simulation of a sampling control system.

8.4 Methodological explanations
Sampling control systems combine a pulse element and a continuous part of the

system.
pulses.

The pulse element transforms the continuous input effect into the equispaced

Transfer system of the open sampling control system with a zero-order
extrapolator and fixation for the period is as follows:
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(8.1

where z = ePTo is the complex variable; Z is the operation of z transformation; and
W, (p) is the transfer function of the continuous part of the system.
Transfer function of the closed system will be

D(z) = ——2—- (8.2)

The closed system will be closed if roots of characteristic equation are inside a
circle which radius is equal to a unit. If the characteristic equation is transformed in
terms of z = (1 + w)(1 — w)~?! (being bilinear transformation), then each root of a
stable system will have negative real part. In such a case, it is possible to evaluate
stability of the pulse ACS using the criteria applied for continuous linear systems.

Quality indices of sampling control systems are identified with the help of a
transient process graph. In practice, several techniques to calculate transient process
within a system are applied. However, Laurent transformation of z image of the
output value is the most popular one.

Example 8.1. Determine transfer function, evaluate stability, and calculate a
transient process within a sampling control system represented in Fig. 8.1. The
system parameters are as follows: x5, =1 k; = 1,4; k; = 6, Ty = 0.6; and T;=1.2.
Verify the calculation results using computer-based simulation.

Determine a transfer function of the sampling control system continuous part

ik, K
(Tip+p (Typ+ Dp’

Wep(p) = (8.3)

where K = k;k, is the overall intensification coefficient of the open ACS.
The transfer function of the open part a zero-order extrapolator and fixation for
the period will be

z—1 (W, z—1 K
W(z) = z{ 2L (p)} = z{ 2} : (8.4)
z p z U(Tip+1Dp
Factorize the expression denominator in curly brackets (8.4), taking into
consideration the fact that it has multiple roots p; = p, = 0 and p; = —T; " root
W) z—1 KZ{ 1 } 8.5)
z) = — : :
z T (p*p+T7)
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Expand the nonintegral in curly brackets (8.5) into the total of the simplest
nonintegrals

1 A N B N C 8.6)
p*(p+T™) P PP op+T '
Identical transformation of a right (8.6) member results in
1 A+ Op*+ (AT, +B)p+ BT, 87)
pr(p+T") pr(p+ T ) '
Two like nonintegrals with equal denominators should have similar numerators
too
A B
1=(A+C)p2+<—+B>p+—- (8.8)
T T

Use (8.8) expression to derive the equation system by making equal coefficients
in terms of variable p with similar degree indices:

(A+C=0
| A
—+B=0
4TlB (8.9)
| 2oy
T

Solution for (8.9) is as follows: B = T;; A = —T#; and C = TZ.
Expression (8.5) will look like:

Z_l K T12 Tl T12
T p p° p+AT,

z—1 T 1 T
-Z{ 1, L 1

=K P
P P* p+AT,

- (8.10)

Perform Z transformation of the simplest nonintegrals is curly brackets (8.10)
using Table 8.2:

W()—Kz_l le+ Tyz N T,z B
= z z—1 (z—-1)2 - To )

e T
T T,(z—-1
=K<—T1+ °_ 4+ 1 T)>- (8.11)
z—1 -0
z—e 1
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Representation of certain lattice functions and time generation functions as well
as their Laplace images

Table 8.2
Generating continuous function Simple Z
Original Laplace Lattice function transformation
transformation
1(t) —1(t —Ty) 1 — ePTo —A[n] =V[n—-1] 1
p
1(t) 1 1[n] z
» z—1
t i nTo TOZ
p? (z—1)
e~ %To 1 e—anTo — gn Z d= o= To
pta z—d
Insert values of Ty, K, and T; parameters into (8.11):
T, T,(z—1 0,6 1,2(z—1
W(z) = 1<<—T1 +—+ 1 T)> =84(—1.2 + + ( 06)) . (8.11)
z—1 -0 z—1 -=
Z—e T1 Z — e 12
Identical transformations of the right (8.11) member result in
1.09z + 0.84
W(z) = (8.12)

(z—1)(z—061)

Use (8.2) formula to identify a transfer function of the closed sampling control
system

W(z) (1.09z + 0.84)((z— 1)(z — 0.61)) 1

PO =TT W@~ T+ (1092 4 080G - Dz —06D) 7

_ 1.09z+0.84 613
72 -0.52z + 1.45 (8.13)

Test the closed sampling control system stability. For that purpose, determine
roots of its characteristic polynom. The characteristic polynom is as follows

D = z% — 0.52z + 1.45. (8.14)

Roots of the characteristic polynom, derived in (8.14), are z, , =~ 0,26 + 1.18i.
Identify |z; | and |z, | moduli of such complex numbers as z, and z,
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|z,] = |2,] = 0.262 + (+1.18)2 ~ 1.21. (8.15)

Since |z;| > 1 and |z,| > 1, then the closed sampling system is unstable.

Identify a transition process within the system wusing Laurent
transformation.x, = 1 effect, which representation is x4,(z) =z(z—1)7"
according to Table 8.2, has been set to an input of the closed sampling control
system.

determine Z image of output y,,,; (z) value
z 1.09z + 0.84

—1 22-052z + 1.45

yout(z) = xsp(Z)CI)(Z) = .

B 1.092z2% + 0.84z 616
23 —-1.5222 4+ 1.97z — 1.45 (8.16)

Divide the numerator by a common denominator located in the right member of
(8.16)

1.09z% + 0.84z z3 —1.5222 + 197z — 1.45
©1.09z%2 — 1.66z+2.15 -1.58z°1'

1.092z71 + 25272 4+ 1.65z73

252z —2.15+ 1.58z""
2.52z — 3.8 +4.93z271 — 3.63272

_ 1.65—-3.35z71 4+ 3.63272
1.65 —2.15z71 + 3.2527%2 — 2.392773

-0.84z71 +0.3827% + 2.39z73

In terms of the complex variable z, the share coefficients, raised to the
correspondent power, are the values of output y(t) value during 0; Ty; 2Ty; 3Ty ...
time moments. Table 8.3 represents the output y,,;(t) value during corresponding
time moments at the start of the transient process according to the performed
calculations.

Values of the output variable

Table 8.3
0:To=0 1-Ty=0.6 2:-Tp=1.2 3:T,=1.8
Vour () 0 1.09 2.5 1.67

Test the performed calculations using simulation under the SIMULINK
MATLAB environment. Fig. 8.2 shows structural scheme to simulate a sampling
control system. The scheme implements two simulation techniques for the sampling
control system.
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Simulation in terms of technique one uses such blocks as Zero-Order Hold,
Transfer Fon, and Transfer Fon 1. The Zero-Order Hold block simulates operation of
a zero-order extrapolator and fixation for the period; the Transfer Fon and Transfer
Fon I blocks simulate continuous part of the open sampling control system.

The Discrete Transfer Fon block is applied in the context of technique two. The
block simulates operation of the closed sampling control system in terms of its
transfer function (8.13).

1.4 G
1 J_Ll_ —- — - |
= 1.25+1
Constant Fero-Order  Transfer Fen Transfer Fend
Scope
Hold
1.09=+0.84
z20.52z+1.45

Discrete
Transfer Fon

Fig. 8.2 Structural scheme of the analyzed sampling control system

Fig. 8.3 demonstrates transient process within the sampling control system. The
transient process corresponds to unstable ACS coinciding with the calculation results.
Fig. 8.4 shows values of the output variable during t{0; 0.6; 1.2; 1.8} time moments.
Values of the output variable, obtained using the two simulation techniques during
the listed time periods, also coincide with the calculation results (Table 8.3).

8.5 Report contents

Output data and structural scheme of the analyzed system.

Transfer function of the open part of a sampling control system with a zero-
order extrapolator and fixation for the period.

Transfer function of the closed sampling system with a zero-order extrapolator
and fixation for the period.

Calculations of the automated control system stability.

Calculations of a transient process.

Structural scheme to simulate a sampling control system and graphs of transient
processes within the system determined by the simulation results.

8.6 Control questions

What is a sampling control system?

What is the ideal pulse element?

What is an extrapolator function?

What is a real pulse element?

How is it possible to identify stability of a sampling control system ?

Why is bilinear transformation of a characteristic equation used?

How is it possible to calculate a transient process within a sampling control
system?
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Fig. 8.3 Transient process within the sampling control system
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Fig. 8.4 Before testing the output variable values

LABORATORY RESEARCH 9

Analyzing a linear ACS!

9.1 Objective is to deepen students’ knowledge while studying sections of
theory of linear systems of the automated control

'In 2016, tasks of the laboratory research (developed by M.M. Tryputen) have been proposed to the participants of 2"
stage of the All-Ukrainian Student Competition in the field of “System Engineering” (specialism area “Computerized
Control Systems and Automation”).
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In the process of the activities, students should be able to:

determine the automated control system order in terms of a velocity error
value, and properties of a characteristic vector of ACS;

simulate structural scheme of the open part of a linear ACS in terms of
characteristics of dynamic elements and law of changes in the input and
output values;

identify ACS stability conditions assuming that parameters of all its elements
experience time changes;

acquire practical skills to analyze linear ACSs using a computer.

9.2 Output data to perform the activities are the following:

structural scheme and numerical parameters of the analyzed automated
system (Figures 9.1-9.7, Table 9.1);

the MATLAB application package for computer-based simulation of the
automated control system.

x(t) y(®)
—»\_— W(p) >

Fig. 9.1 Structural scheme of a FCS
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1-10 °

Fig. 9.2 Logarithmic phase frequency response of a dynamic element
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Fig. 9.3 Impulse transient function of a dynamic element
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Fig. 9.4 Logarithmic amplitude frequency response of a dynamic element
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Fig. 9.5 Transient function of a dynamic element
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Fig. 9.6 Logarithmic amplitude frequency response of a dynamic element
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Fig. 9.7 Input-output characteristic of a dynamic element

Input data
Table 9.1
Variant |Rotation angle of a characteristic| Law of input value Law of output value
vector variation variation
D(w) Xin Yout
1 1.5 Xin(t) =3t +7 Your (t) =3t +5.5
2 1.57 Xi,(t) =t +5.5 Your(t) =t +5
3 1.57 Xin(t) =4t +9 Your () =4t +7
4 1.57 X (t) = 2t + 8 Yout (t) = 2t + 7
5 1.57 Xin(t) = 5t + 8.5 Yout(t) =5t + 6
6 1.57 Xin(t) = 3t + 6.5 Your () =3t +5
7 1.57 X,(t)=t+1 Your (t) =t + 0.5
8 1.57 Xin(t) = 2t + 2 Your () =2t + 1
9 1.57 Xin(t) =5t + 2.5 Youtr (t) = 5t
10 1.57 Xin(t) =4t + 75 | y,:(t) =4t +5.5
11 1.57 X, (t) =t + 3.5 Your (t) =t + 3
12 1.5 Xin(t) = 5t + 3.5 Your () =5t +1
13 1.57 X (t) =3t + 1.5 Yout (t) = 3t
14 1.57 Xin (t) = 2t Your () =2t —1
15 1.57 X, (t) = 4t Voutr (t) = 4t — 2
16 1.57 Xin(t) =t Your () =t —0.5
17 1.57 X, (t) =2t +1 Your (t) = 2t
18 1.5 Xin(t) =5t +5 Your (t) =5t + 2.5
19 1.5 X (t) =3t + 1.5 Your (t) = 3t
20 1.57 Xip(t) =4t + 1 Vour (t) = 4t — 1
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9.3 Operating procedures

Following order is recommended:

— determine the dynamic elements which may be a part of the ACS;

— determine the ACS order;

— determine the overall intensification coefficient of the open ACS part;

— determine the dynamic elements involved by the open part;

— determine stability conditions of the closed ACS;

— verify the simulation calculation results of the simulated ACS using a
computer under the SIMULINK MATLAB environment.

9.4 Methodological explanations

Analysis and synthesis of the automated control systems is rather complicated
problem which solution needs combination and use of different sections of the
automated control theory. The skill to identify the effect of the automated control
system parameters as well as its components (elements) on the ACS characteristics is
the foundation to determine correctly its advantages and disadvantages as well as
implement the control processes in accordance with the formulated requirements.

Example 9.1. Characteristic D(jw) vector of the closed automated control
system, characterized by additivity and uniformity, turned to 1.5m angle after ®
frequency changed from 0 to co. When linear x;,(t) = 2t + 5 effect is set to the
system input (Fig. 9.1), output value varies in terms of y,,;(t) = 2t + 4 law under
the transient process termination. According to the characteristics of dynamic
elements, shown in Figures 9.2-9.7, it is required to simulate structural scheme of the
open ACS part; identify the ACS stability conditions assuming that the parameters of
all their elements experience time changes; and support the calculation results by
means of simulation.

1. Determine transfer W (p) function of the open ACS part.

Characteristics of additivity and uniformity means that the ACS is not linear one.
Hence, the nonlinear element, shown in Fig. 9.7, cannot be its part. Response of an
output value to input effect, varying in terms of a linear law, means univalently that
after termination of a transient process, €,,; velocity error becomes a stable value. It is
possible if only the FCS is both stable and astatic system with 1% order astatism. That
is why the conservative element, which transient process is shown in Fig. 9.5, is not a
component of the ACS elements as well.

In terms of the stable system and Mykhailov criterion, characteristic vector
D(jw) will turn to n - w/2 angle after ® frequency varies from 0 to o being n order
of the system). Since the characteristic vector has turned to 1.5m = 3 - /2 angle that
the FCS order is three n = 3.

In the context of astatic stable system with 1% order astatism, the velocity error
&1 18
aq
&t = Xin () — Your (t) = K’ (9.1
where a, is a proportionality coefficient in terms of independent variable ¢ within a
linear law of input effect; and K is the overall intensification coefficient of a transfer
function of the open W (p) part of the FCS. Hence,
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2
2t+5—(2t+4)=E- (9.2)

Thus K = 2.

Determine transfer functions of dynamic elements shown in Fig. 9.2, 9.3, 9.4,
and 9.6.

Fig. 9.2 demonstrates the logarithmic phase frequency response @(w) (where
phase is specified in degrees) being typical for 1% order aperiodic element. ¢
dependence upon w is as follows

@(w) = —arctg(Tw). (9.3)

Graph is Fig. 2 passes through a point with [1; -45] coordinates. We obtain
—45 = —arctg(T). (9.4)
Thus T = 1. Transfer function of the element is

k4
p+1

wWi(p) =

where k;1s the intensification coefficient.
Fig. 9.3 demonstrates graph of a pulse transfer function of an aperiodic element.
Pulse transfer function of the element is as follows

, (9.5)

k, _t
gt) =—e Tz. (9.6)

T,

Thus

L _ 2
{ Il (9.7)

2y

\7, =

Hence, T, = 0.5;and k, = 2. We have the transfer function

W, (p) = (9.8)

0,5p + 1

Slope of the logarithmic amplitude frequency response in Fig. 9.4 is
—20dB/dec. Such a characteristic is typical for an integrating element; it passes
through a point with [1;20lg(k3)] coordinates. In this context, k; is the
intensification coefficient. Consequently, 201g(k3;) = 0. It is obvious that k; = 1.
Transfer function of the integrating element looks like

1
W3(p) = > (9:9)

Slopes of the logarithmic amplitude frequency response in Fig. 9.6 are
0dB/dec i —40dB/dec. Such a characteristic is typical for an oscillating element.
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Ordinate of horizontal share of the characteristic is connected with the intensification
coefficient k, as follows

201g(k,) = L(w,). (9.10)

where w, is the corner frequency between slope angles 0dB/dec and —
40 dB/dec. In this case

201g(k,) = 20. (9.11)

Thus k, = 10, and W, (p) = 10 (T?p? + 2dTp + 1)~ 1. In this context, T is the
time constant; and d is the damping coefficient.

Taking into consideration the abovementioned characteristics of the ACS, its
open part may involve the elements with such transfer functions as W, (p), W, (p),
and W5(p) or W5(p), and W,(p). However, the overall intensification coefficient of
the open ACS part with W5(p) and W, (p) elements does not correspond to the early
calculated (K = 2) one despite their connection. In-series connected elements may
become the open part of the ACS if k k,k; = 2. It becomes possible in terms of
ks =
= 1.

Hence, transfer function of the open ACS part consists of W;(p) =
(p+ 1)L, Wo(p)=2(05p+1)"t , and W3(p) =p~! elements connected in
series.

Simulate the FCS under the SIMULINK MATLAB environment.

I + 1 z 1 e |
M - i N o 2 L% < N
—i w1 0.5+
Constant miegEior Soope
Add Addi TEmskr Fas TRk Fa2 3 =

ramp Gah "

Fig. 9.8 The analyzed ACS
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Fig. 9.10 Time changes in the output effect
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Fig. 9.12 Changes in the input and output effects in terms of the stable mode

Analysis of the graphs, concerning the changes in input and output values, helps
conclude that the proposed ACS system corresponds to the problem statement.

2. Identify stability condition of the ACS.

Specify the overall intensification coefficient of the system open part as well as
time constants of the dynamic elements as K, Ty, and T, respectively. Then, a transfer
function of the ACS open part will look like:

K K
p(Tip + 1)(Top + 1) B TiTop3 + (T, + T,)p2 +p

W(p) = (912)
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Record characteristic polynom of the ACS:
D(p) = T\T,p° + (T, + T,)p* + p + K. (9.13)

Make a matrix of Hurwitz coefficients using the characteristic polynoms:

(T, +T,) K 0
T,T, 1 0 (9.14)

The ACS will be stable if all determinants of the Hurwitz coefficient matrix are
positive.
1%t order determinant is:

A1= Tl + TZ > 0. (9.15)
It is obvious that A;> 0 since the time constants T; and T, cannot be negative.
2™ order determinant is:

A2= Tl + TZ - TszK. (9.16)

The determinant will be positive if:

T, + T, > T,T,K, (9.17)

or
L1k 9.18
TZ Tl " ( * )

The last inequality is the ACS stability condition since the last determinant of
the matrix of Hurwitz confidents is:
A;= A, XK. (9.19)

Since K > 0, then if A,> 0 is fulfilled, the A; determinant will be more than 0.
Test the determined condition of the RS using simulation.
Stable system.
The system will be stable if T,”* + T,”* > K; for instance, K =1, T; = 2,
and T, = 0.1.
Fig. 9.13 demonstrates the transient process graph.
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Fig. 9.13 Graph of a transient process within the stable RS

Unstable system.
The system will not be stable if T, * + T, "' < K; for instance, K = 5, T; = 4,
and T, = 6.
Fig. 9.14 demonstrates the transient process graph.

20 @~ kB as

Fig 9.14 Graph of a transient process within the unstable ACS

System within its stability margin.

A system will be within its stability margin if T, + T; ' = K; for instance,
K=3,T,=1,and T, = 0.5.

Fig. 9.15 demonstrates the transient process graph.
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Fig. 9.15 Graph of a transient process within the ACS being within its stability
margin

The simulation results have supported correctness of the FCS stability
determination.

9.5 Report contents

Output data, and structural scheme of the analyzed system.

Calculations to identify the closed ACS order.

Calculations to determine the overall intensification coefficient of the open FCS
part.

Calculations to identify dynamic elements of the open FCS part.

Calculations concerning the automated control system stability.

Structural scheme and simulation results as for the closed FCS as well as graphs
of transient processes within the system determined relying upon the simulation
results.

9.6 Control questions

What is the order of the automated control system?

What is the angle, the characteristic vector of a stable system will turn to?

How is it possible to identify a velocity error within the astatic system?

What is a characteristic point through which a logarithmic frequency
response of integral element will pass?

What is the critical intensification coefficient?

Which of the automated control systems has characteristics of additivity and
uniformity?

What is a slope of a logarithmic frequency response of an oscillation
element?
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