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Methodological recommendations have been submitted as for the laboratory 
research in the theory of the automated control for students for specialty 151 
“Automation and Computer-Integrated Technologies”. 

  

Методичні рекомендації до виконання лабораторних робіт спрямовано на 
поглиблення знань студентів, які навчаються англійською мовою за 
спеціальністю 151  «Автоматизація та комп’ютерно-інтегровані технології» при 
вивченні розділів дисципліни «Теорія автоматичного керування». Лабораторні 
роботи являють собою закінчені дослідження із спеціальних питань, при 
виконанні яких студенти мають застосовувати засвоєні в теоретичному циклі 
знання. Результатами виконаних досліджень є підтвердження або спростування 
теоретичних тверджень щодо процесів, які відбуваються в системах 
автоматичного керування. 

Лабораторні роботи можуть бути використані в навчальному процесі 
Національній металургійній академії України студентами спеціальності 141 
«Електроенергетика, електротехніка і електромеханіка». 

 

Відповідальний за випуск завідувач кафедри кіберфізичних та 
інформаційно-вимірювальних систем, д-р. техн. наук, проф. В.В. Ткачов 
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LABORATORY RESEARCH 1 

Studying of typical dynamic elements 

 
1.1 Objective is to deepen students’ knowledge while studying  the Chapter 

“Characteristics of dynamic elements of the automated control systems”.  
In the process of the activities, students should be able to: 
– calculate transition process as well as logarithmic amplitude and phase-

frequency responses; 
– acquire practical skills to study the automated systems using a computer; 
– use a computer to identify the basic characteristics of the typical dynamic 

elements (i.e. net delay; oscillating; integrating; and inertial differential); and 
– identify effect of parameters of transfer functions of the units on their 

characteristics. 
 
1.2 Intput data to carry out the research are as follows: 
– structural patterns and numerical parameters of the studied dynamic elements  

(Fig.1.1, Table 1.1); 
 – application packages MATLAB and MathCAD to simulate the automated 

control systems (ACSs) and perform computer-based mathematical calculations. 
 

1.3 Operating procedures 
Following order is recommended: 
– apply the MathCAD application package to calculate transient processes, 

amplitude-phase, logarithmic-amplitude frequency and phase frequency responses of 
dynamic elements; 

– half gradually and then double gradually net delay time, and the elements 
intensification coefficient with delay; use the MATLAB application package to 
evaluate effect of the parameters on the transient process; 

– half gradually and then double gradually intensification coefficient as well as a 
time constant of inertial differential element; use the MATLAB application package 
to evaluate effect of the parameters on the transient process; 

– half gradually and then double gradually intensification coefficient of 
integrating element; use the MATLAB application package to evaluate effect of the 
parameters on the transient process; 

– half gradually and then double gradually intensification coefficient as well as a 
time constant of oscillating; use the MATLAB application package to evaluate the 
effect of the parameters on the transient process; and 

– identify successively damping coefficient of the oscillating element �	< 0.707; 
0.707 <		�	< 1 and	�	> 1; use the MATLAB application package to evaluate effect of 
the parameters on the transient process. 
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Table 1.1 
Input data 

 Dynamic element �� �� �� �� �, с ��, с ��, с � 
 1 oscillating of net delay 0.5 1.0 3.2 4.0 0.5 1.0 1.5 0.1 
 2 integrating differential 1.7 3.7 4.3 0.8 1.5 2.0 2.5 0.2 
 3 oscillating of net delay 5.0 2.2 0.9 3.1 2.5 3.0 3.5 0.3 
 4 differential integrating  3.4 4.4 0.8 2.8 4.5 5.0 1.5 0.4 
 5 oscillating of net delay 1.5 4.0 2.7 0.9 1.0 2.5 2.0 0.5 
 6 integrating differential 0.8 3.1 1.7 0.6 3.0 1.5 4.0 0.6 
 7 oscillating of net delay 2.7 5.0 3.6 4.4 5.0 0.5 1.0 0.7 
 8  differential integrating 4.3 2.4 4.0 3.7 2.0 3.5 3.0 0.8 
 9 oscillating of net delay 1.9 1.9 0.5 5.0 0.5 2.0 4.5 0.9 
10  integrating differential 0.6 0.9 5.0 4.5 1.5 1.5 2.5 1.0 
11 oscillating of net delay 3.5 1.3 2.5 0.9 2.5 2.5 1.0 1.1 
12 differential integrating 1.5 3.7 3.9 2.5 3.5 3.5 3.0 1.2 
13 oscillating of net delay 2.0 3.2 0.8 0.7 4.5 4.5 0.5 1.3 
14 integrating differential 3.0 0.5 1.9 5.0 1.0 2.0 4.0 1.4 
15 oscillating of net delay 1.0 4.3 2.0 3.5 2.0 3.5 4.5 1.5 
16 differential integrating 4.2 2.5 3.5 0.8 3.0 1.5 0.5 0.3 
17 oscillating of net delay 0.6 4.2 3.7 2.5 0.5 4.0 2.5 0.8 
18 integrating differential 3.5 0.5 2.5 0.7 1.0 2.0 4.0 1.0 
19 oscillating of net delay 2.1 2.6 1.4 3.8 0.3 4.2 1.7 0.6 
20 differential integrating 4.1 0.8 2.5 1.6 3.9 2.4 1.9 0.1 

 
 

Fig. 1.1 Schematic structure for the studied dynamic elements 
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1.4 Methodological explanations  
Any element of the automated control, being considered from the viewpoint of 

its dynamic characteristics, is a dynamic element. The dynamic elements, described 
by differential first- and second-order mathematical expressions, integral 
mathematical first-order expression or mathematical expression with a delay 
argument, are considered as typical ones.  

Theory of the automated control records differential ACSs equations as well as 
their elements in operator form: 

 
(���

� + �����
��� + ⋯+ ��� + 1)�� = 

 
= (���

� + �����
��� +⋯+ ��� + 1)�̅,																														(1.1) 

 
where	�� ,	��  are the representation of input value and output value according to 
Laplace; ��, �� are the coefficients; �, � is the polynomial order; and �	is the 

complex variable. 
Physical implementation of the automated control system should involve the 

fulfilment of � ≥ � condition. 
In terms of zero initial conditions, a ratio between Laplace representation of 

output value and Laplace representation of input value is a transfer characteristic 
�(�): 

 

�(�) =
��

�̅
=
���

� + �����
��� +⋯+ ��� + 1

���
� + �����

��� + ⋯+ ��� + 1
∙ 																	 (1.2) 

 

Like differential equation (1.2) expression is an equation of dynamic balance 
between output and input values if the input value varies in terms of any law. 

Also, the transfer characteristic is represented as follows: 
 

�(�) =
��

�̅
=
��(�)

�(�)
,																																								(1.3) 

 
where	� is the total intensification coefficient; �(�), �(�) are the polynoms of 
numerator and denominator of the transfer characteristic. 

Transition function	�(�) is a dynamic element response to a single step signal. A 
transition function is inverse Laplace transformation of output value in terms of zero 
initial conditions. It is 

 
�(�) = ���(��),																																														(1.4) 

 
where ���	is the operator of inverse Laplace transformation. 

A single step signal is determined with the help of the mathematical expression: 
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�(�) = �
1	if� ≥ 0
0	if� < 0.

																																					(1.5) 

 
Table 1.2 demonstrates the most commonly used Laplace functions. 

Table 1.2 
Representation of certain functions according to Laplace  

 
�� = � �����(�)��

�

�

 

 

�(�) 

1 1

�
 

 
1 

2 �

�� + ��
 

 

sin	(��) 

3 �

�� + ��
 

 

cos	(��) 

4 1

� + �
 

 

���� 

5 �

�� − ��
 

 

�ℎ(��) 

6 �

�� − ��
 

 

�ℎ(��) 

7 �

(� + �)� + ��
 

 

����sin	(��) 

8 � + �

(� + �)� + ��
 

 

����cos	(��) 

9 �!

����
 

 

�� 

10 2��

(�� + ��)�
 

 

�sin(��) 

11 �� − ��

(�� + ��)�
 

 

�cos(��)) 

12 1

(� + �)�
 

 

����� 

13 1

(�� + ��)�
 

sin(��) − ��cos(��)

2��
 

14 
(−1)�

��

���
�� 

 

���(�) 

 

If a sine wave signal with ω frequency and amplitude, being equal to a unit x(t) 
= sinωt = ejωt, is applied to the input then output sine wave with similar ω frequency 
but other A(ω amplitude and φ(ω) phase will be available  after the transient process 
terminates: 
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�(�) = �(�) sin��� + �(�)� = �(�)�������(�)�.														(1.6) 
 

 According to (1.6), both input and output sine waves are described by means of 
the complex expressions. Ratio of the expressions is a complex intensification 
coefficient �(��)	(or a frequency transfer function): 

 

�(��) =
�(��)

�(��)
=
��(��)

� + ����(��)
��� +⋯+ ��(��) + 1

��(��)
� + ����(��)

��� + ⋯+ ��(��) + 1
∙ 		 (1.7) 

 

Formulas and graphs, characterizing response of element on a sine wave input 
signal, are called characteristics. Graphic representation of the complex 
intensification coefficient within the complex plane in terms of �(�) 
and	��(�)	coordinates is the amplitude and phase frequency response (APFR). 

Graphic representation of changes in A(ω) amplitude or φ(ω) phase of output 
signal depending on ω frequency as an element response to an input sine wave with ω 
frequency and amplitude, being equal to a unit, are called amplitude and phase 
response (APR) or phase and frequency response  (PFR). In practice, APRs are 
represented usually in terms of ��(�) = 20���(�); ���	coordinates; as for the 
PFRs, �(�); ��� coordinates are the most popular ones. The responses, constructed 
in such a way, are logarithmic amplitude and frequency response (LAFR) and 
logarithmic phase and frequency response (LPFR) respectively. 

While analyzing and synthesizing, ACSs also apply dependence graphs of real 
P(ω) part and imaginary Q(ω) part of the complex intensification coefficient of ω 
frequency called real frequency response (RFR) and imaginary frequency response 
(IFR) respectively. 

Example 1.1. Calculate transient process, amplitude and phase frequency 
response, logarithmic amplitude frequency response, and logarithmic phase 
frequency response of the first-order aperiodic element. Intensification coefficient 
and time constant of the aperiodic element are	� = 5 and	� = 2	�	respectively. 

Transfer function of the first-order aperiodic element is as follows: 
  	

�(�) =
��

�̅
=

�

�� + 1
∙ 																																								 (1.8) 

  
Apply intensification coefficient value and time constant value to (1.8): 
 	

�(�) =
��

�̅
=

5

2� + 1
∙ 																																								 (1.9) 

 
Using (1.9) equation, determine Laplace representation of output value: 
 

�� =
5

2� + 1
�̅ ∙ 																																										 (1.10) 
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Representation of input single step signal is  

�̅ =
1

�̅
∙ 																																														 (1.11) 

Then  

�� =
5

(2� + 1)�
∙ 																																						 (1.12) 

 
Perform inverse Laplace transformation. For the purpose, represent (1.12) 

denominator as (�� = 0;	�� = −2��	are the denominator roots):  
 

5

(2� + 1)�
=

5

2 �� +
�

�
� �

=
2
�

�

�� +
�

�
� �

∙ 																					 (1.13) 

 
Represent a fraction in the right-hand side of mathematical expression (1.13) as 

the total of the simplest fractions with the unknown coefficients:  
 

2
�

�

�� +
�

�
� �

=
�

�
+

�

(� +
�

�
)
∙ 																																		 (1.14) 

 
Add the fractions: 
 

�

�
+

�

(� +
�

�
)
=
� �� +

�

�
� + ��

� �� +
�

�
�

∙ 																										 (1.15) 

 
Fractions of (1.14) and (1.15) mathematical expressions are equal in value. 

Since denominator of fraction of the left-hand side of (1.14) is equal to a fraction of 
the right-hand side of (1.15), numerators of the fractions should also be equal. Derive 
the equation: 

 

2
1

2
= � �� +

1

2
� + ��.																																									(1.16) 

 
Transform the right-hand side of (1.16): 
 

2
1

2
= �� +

1

2
� + ��,																																								(1.17) 

 

2
1

2
= (� + �)� +

1

2
�.																																								(1.18) 
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Equate coefficients in terms of �� and ��	(free term), and obtain equation system 
to identify � and	�: 

 

� 2
1

2
=
1

2
�

� + � = 0.
																																																				(1.19) 

 
Using (1.19) system, determine	� = 5 and	� = −5. The expression (1.14) is 

represented as follows: 
 

2
�

�

�� +
�

�
� �

=
5

�
+

−5

(� +
�

�
)
∙ 																																											 (1.20) 

 
Hence,  
 

�� =
5

�
+

−5

(� +
�

�
)
∙ 																																														 (1.21) 

 
Define transition function, using 1 and 4 formulas from Table 1.2: 
 

�(�) = 5 − 5��
�

� = 5 �1 − ��
�

��.																												(1.22) 

 
Fig. 1.2 demonstrates a graph of the transient process calculated with the help of 

MathCAD APs using (1.22) formula. 
  

 
Fig. 1.2 The transient process graph 

 
Fig.1.3 shows a structural pattern to simulate aperiodic elements under the 

SIMULINK MATLAB application package;  Fig.1.4 demonstrates graph of transient 
process obtained as a modelling result. 

0 2.4 4.8 7.2 9.6 12
0

1

2

3

4

5

6

y t( )

t
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Fig. 1.3 Structural pattern of aperiodic element modeling 
 
Amplitude and phase frequency response of the aperiodic element is assumed by 

means of the mathematical expression: 
 

�(��) =
�

���� + 1
− �

��

���� + 1
∙ 																								 (1.23) 

 

 
Fig. 1.4 Transient process graph 

 
Substitute values for �	and	�: 
 

�(��) =
5

4�� + 1
− �

5�

4�� + 1
∙ 																																 (1.24) 

 

Fig. 1.5 explains graph of amplitude and phase frequency response. 
Logarithmic amplitude and phase frequency response of aperiodic element is 

specified with the help of the mathematical expression: 
 

20���(�) = 20��� − 20������� + 1.																									(1.25) 
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Substitute values for K and T: 
 

20���(�) = 20��5 − 20���4�� + 1.																									(1.26) 
 
  

 
Fig. 1.5 Graph of logarithmic amplitude and phase frequency 

response 
 
Fig. 1.6 demonstrates graph of logarithmic amplitude and frequency response. 
  

 
Fig. 1.6 Graph of logarithmic amplitude and frequency response 

. 
 
Logarithmic phase and frequency response of aperiodic element is assumed 

using the mathematical expression: 
 

�(�) = −arctg��.																																															(1.27) 
 

Substitute values for K and T: 
�(�) = −arctg2�.																																												(1.28) 
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log ( )
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Fig. 1.7 demonstrates logarithmic phase and frequency response. 
  

 
Fig. 1.7 Graph of logarithmic phase and frequency response 

 
 
1.5 Report contents. 
Structural patterns of the analyzed dynamic elements. 
Graphs of transient processes, amplitude and phase frequency characteristics, 

logarithmic amplitude and phase frequency characteristics of the analyzed elements 
have been calculated. 

Graphs of transient processes of the analyzed elements, determined in the 
process of computer-based modelling, have been constructed. 

Graphs of transient processes of the analysed elements, determined in the 
process of computer-based modelling, have been constructed in terms of changes in 
their parameters. 

 
1.6 Control questions 
What is transfer function? 
What is dynamic element? 
What typical dynamic elements do you know? 
What typical input signal are applied to study ACSs? 
What is transient function? 
What are frequency responses? 
What are the coordinates to construct a logarithmic amplitude frequency 

response? 
What are the coordinates to construct a logarithmic phase frequency response? 
What is the nature of net delay of APFR variation if a time constant varies? 
What is the nature of a transient process at the output of aperiodic element if 

intensification coefficient (time component) is increased (decreased)? 
What is the nature of LPFR of integrating element variation if its intensification 

coefficient is decreased (increased)? 
What is the nature of LPFR of inertial differential element variation if 

intensification coefficient (time constant) is decreased (increased)? 

2 0 2
2

1.5

1

0.5

0

 ( )

log ( )
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What is the difference between graphs of transient processes of oscillating 
element if � < 1, and � ≥ 1? 

 

LABORATORY RESEARCH 2 

 

Analyzing stability of the automated control systems 
 
 

2.1 Objective is to deepen students’ knowledge while studying the Chapter 
“Stability of the automated control systems”. 

During the activities, students should be able to: 
 identify characteristic polynom of the closed system of the automated control; 
 make a matrix of Hurwitz coefficients; 
 determine effect of the specified parameters of a linear automated system on 

its stability using Hurwitz stability criterion; 
 construct stability boundary, and define areas of stable and unstable areas of 

the automated control system operation in terms of the specified coordinates;  
 gain practical skills to analyze the automated systems using a computer. 

 
2.2  Input data to perform the activities are the following: 

– structural schemes and numerical parameters of the analyzed automated 
systems (Fig.2.1, Table 2.1.); and  

– the MATLAB and MathCAD application package for computer-based 
simulation of regulating systems (RS) and mathematical calculations. 

 
 

а)    
 
 
 

b)    

 

 
 

Fig. 2.1   Structural schemes of the analyzed automated systems: 
   а – astatic system of the automated control;  
   b – static system of the automated control. 

 
 
 

��� 

��� 

��
�

 - 

- 

��

��
��� + 2�����1

 

��
��� + 1

 
��

��
��� + 2�����1

 

 

���� 

���� 
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Input data 
Table 2.1 

Variant Scheme Parameters of the elements Coordinate 
system 

�� �� �� �� � �, � 

1 а 2.0 1.0 – 2.0 0.6 ��, �� 
2 а 2.0 2.0 – 3.0 0.7 ��, �� 
3 а 1.0 1.0 – 4.0 0.8 ��, � 
4 а 1.0 2.0 – 1.0 0.9 ��, � 
5 а 1.0 3.0 – 2.0 1.0 ��, � 
6 а 4.0 0.5 – 1.0 1.1 ��, �� 
7 а 0.5 0.5 – 4.0 1.2 ��, �� 
8 а 0.5 2.0 – 3.0 1.3 ��, �� 
9 а 4.0 3.0 – 2.0 1.4 �, �� 

10 а 3.5 2.0 – 2.0 0.5 �, �� 
11 b 1.0 1.0 0.5 1.0 1.3 ��, �� 
12 b 5.0 1.0 0.6 3.0 1.2 ��, �� 
13 b 2.0 0.2 0.7 2.0 1.1 ��, � 
14 b 3.0 2.0 0.8 1.0 1.0 ��, � 
15 b 4.0 1.0 0.9 4.0 0.9 ��, � 
16 b 1.0 1.0 1.0 3.0 0.8 ��, �� 
17 b 1.0 2.0 0.9 2.0 0.7 ��, �� 
18 b 1.0 3.0 0.8 1.0 0.6 ��, �� 
19 b 3.0 4.0 0.7 1.5 0.5 ��, � 
20 b 2.0 0.5 0.3 1.0 1.0 ��, �� 

 
 

2.3 Operating procedures 
Following order is recommended: 
 record a transfer function of open system for the structural scheme specified 

by a teacher; 
 record characteristic polynom for the closed system; 
 make a matrix of Hurwitz coefficients; 
 determine stability boundary of a linear system of the automated control 

system as a function by the parameters of elements of the automated control 
system; 

 construct stable and unstable areas of the automated control system; 
 apply the MATLAB application package to identify transient process within 

the system in terms of a single step signal for stable and unstable operation of 
the automated system, and for the system operation in terms of the stable 
boundary;  

 draw conclusions using the obtained results. 

14



 15 

 
 

2.4 Methodological explanations. 
 
Stability is among the most important characteristics of any automated system. 

Unstable system cannot perform its functions. Moreover, it may cause emergency of 
the controlled object. That is why, the problem to provide system stability is one of 
the central ones in the theory of the automated control. 

The automated system stability is its characteristic to get back to a balance after 
the influence, caused the unbalance, is over. No unstable system can get back to a 
balance state distancing from it continuously. 

Algebraic Hurwitz criterion is one of the most popular in the context of 
engineering practices determining stability. The criterion can be formulated as 
follows: to make the automated system stable, it is necessary and quite sufficient for 
each determinant of a matrix of Hurwitz coefficients to be positive. Even if  one zero 
determinant is available in the absence of negative determinants, the system of the 
automated control will be within its stability boundary (i.e. output value will vary in 
terms of a harmonic law with stable amplitude and frequency). 

The matrix of Hurwitz coefficients consists of coefficients of characteristics 
polynom of the closed automated control system being: 

 
 ���(�) = ���

� + ���
��� + …+ ����� + �� = 0,       (2.1) 

 
where	�	is the order of the automated control system. 

The order of the matrix of Hurwitz coefficients is � × �. Correspondingly, 
coefficients of a characteristic polynom	�� are diagonal elements of such a matrix	��� 
(� = 1, ������). Rows to the right of the diagonal elements are added by coefficients with 
successively increasing even indices if the diagonal element is in the even row; if the 
diagonal element is in the odd row, then coefficients with  successively increased odd 
indices add it. Rows to the left of the diagonal element are added by coefficients with 
successively decreasing even indices, and coefficients with successively decreasing 
odd indices if the diagonal element is in the odd row. The matrix elements are equal 
to zero if coefficients of characteristic polynom, which indices are more than � or 
less than zero, should be instead of them.  

To obtain characteristic polynom of the closed automated control system, it is 
required to record a transition function of an open automated system, and then sum 
up numerator and denominator polynoms. 

 
Example 2.1. Identify stability of  the automated system which structural 

scheme is in Fig. 2.2. Also, determine an equation of a stability boundary as �� =
�(��) function and construct the areas of stable and unstable operation of the 
automated control system in terms of (��, ��) coordinates. The system parameters 
are	�� = 1; �� = 1; �� = 2; �� = 1; and �� = 0.5. 
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k3  

 
 

Fig. 2.2 Structural scheme for the example 
 

Define transition function of the open automated control system: 
 

���(�) = ��(�)��(�)��(�) =
��

�� + 1
×

��
�� + 1

×
��
�
= 

 

=
������

�����
� + ���

� + ���
� + �

=
������

�����
� + (�� + ��)�

� + �
∙ 

 
 

 
Identify characteristic polynom of the closed automated control system: 
 

 ���(�) = �����
� + (�� + ��)�

� + � + ������.       (2.2) 
 
We get 3rd order characteristic polynom where �� = ����, �� = �� + ��, �� =

1, and	�� = ������. Make a matrix of Hurwitz coefficients: 
 

�

(�� + ��) ������ 0
���� 1 0

0 (�� + ��) ������

�

		
	
.
		 

Substitute the parameter values and calculate the matrix elements. Hence: 
 

�
1.5 2 0
0,5 1 0
0 1.5 2

�

	
	
.
 

 
Define determinants of the matrix of Hurwitz coefficients: 

∆�= ��� = 2 > 0; 
∆�= ��� × ��� − ��� × ��� = 0.5 > 0. 

The latter (i.e. the third) determinant of the matrix is calculated using the 
formula: 

∆�= ∆� × ��� = 1 > 0. 
All the determinants are positive. Thus, the system is stable. 
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Identify the areas of stable and unstable operation of the automated control 
system in terms of (��, ��) coordinates. If the system is within its stability boundary, 
then 2nd order diagonal minor should be equal to zero: 

 
 (�� + ��) − ���������� = 0.																																		(2.3) 

 
Using the abovementioned, identify an equation of stability boundary of the RS 

in terms of the specified coordinates: 
 

�� =
�� + ��
��������

=
1 + ��
2��

∙ 																																				 (2.4) 

 
Varying �� parameter, construct stability boundary of the automated system 

operation in terms of (��, 	��) coordinates (Table 2.2). 
 

Data to calculate the stability boundary 
 

Table 2.2 

�� 0.1 0.5 1 1.5 2 2.5 3 3.5 1 

�� 5.5 1.5 1 0.83 0.75 0.7 0.67 0.64 0.63 

 
It is obvious that stability of the automated control system will be in 

correspondence with the graph area in terms of which following inequation is 
fulfilled: 
 

∆�= (�� + ��) − ���������� > 0. 
 

Thus: 
 

�� <
�� + ��
��������

=
1 + ��
2��

∙ 

 
The area of unstable operation of the RS will be determined using the 

inequation: 
 

∆�= (�� + ��) − ���������� < 0. 
 

Thus : 

�� >
�� + ��
��������

=
1 + ��
2��

∙ 

 
Fig. 2.3 demonstrates the areas of stable and unstable operation of the 

automated control system. 
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Fig. 2.3 Areas of stable and unstable 
operation of the automated system 

 
Using the constructed graph, simulate operation of the automated system in 

terms of a stable mode (0.5; 1), unstable mode  (2; 3), and stability boundary (1; 1). 
Fig. 2.4 demonstrates graphs of transient processes. 

 

 
 

Fig. 2.4 Transient processes of a stable ACS; unstable ACS;  
and ACS within its stability boundary 

2.5 Report contents. 
Structural scheme of the analyzed system. 
Characteristic equation of the closed system. 
Stability calculation of the specified automated system. 
Equations of the system stability boundary. 

Unstable ACS 

Stable ACS 

ACS within 
its stability 
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Irregularities of stable and unstable operation of the automated system. 
Graphs of areas of stable and unstable operation of the automated system. 
Graphs of transient processes of stable and unstable system as well as a system 

within its stability boundary represented in one coordinate system. 
 

2.6 Control questions 
What is understood as the automated system stability? 
What is the system being considered as a stable one? 
What is the system being considered as an unstable one? 
What is the system being considered in terms of its stability boundary? 
How can be determined a 3rd order critical intensification coefficient? 
 

LABORATORY RESEARCH 3 

Analyzing accuracy of static and astatic ACSs 

 
3.1 Objective is to deepen students’ knowledge while studying the Chapter 

“Accuracy of regulating  systems”. 
In the process of the activities, students should be able to: 
– identify accuracy of both static and astatic regulating systems; 
 determine operation areas of the regulating systems which provide the 

specified accuracy of the regulating systems; 
 develop the areas providing the specified accuracy of the regulating system in 

terms of parameters of its elements as well as parameters of input effect;  
– gain practical skills to analyze the automated systems using a computer. 
 
3.2 Input data to perform the activities are the following: 
– structural scheme and numerical parameters of dynamic elements of the 

analyzed systems (Fig.3.1, Table 3.1.);  
–  the MATLAB and MathCAD application package to simulate the automated 

control systems and perform computer-based calculations. 
 

3.3 Operating procedures 
Following order is recommended: 
– calculate static errors for both static and astatic systems of the automated 

control when a step signal is set to their inputs; 
– construct a dependence graph of a static error of the static system upon the 

intensification coefficient of an open part; 
– determine dependence of the intensification coefficient upon the input effect to 

provide the specified value of the static error; 
– construct graphs of transient processes in terms of static and astatic systems 

when the effect, varying according to a linear law, is provided to their effect inputs; 
– test a hypothesis on the independence of a velocity error in terms of a stable 

mode from a free coefficient of a law of input value variation;  
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– calculate parameters of astatic system of the automated control providing the 
velocity value as that not exceeding the specified one.  
 
 

a   
 

 

b    
 

c   
 

 
 
 
d   

 
 

Fig. 3.1 Structural scheme to analyze accuracy of regulating systems: 
 

а – a static system with step input effect; 
b – an astatic system with step input effect; 
c – a static system with linear input effect;  
d – an astatic system with linear input effect. 

 
3.4 Methodological explanations. 
 
Provision of the required accuracy in terms of the stable mode is one of the 

requirements as for the regulating systems. Error value in various standard modes is 
applied to evaluate accuracy of a control system. Stable error is a difference between 
the specified value of the controlled variable and actual one. 

The stable error value within a static regulating system in terms of a step input 
value is determined using the formula: 

 

��� =
���

1 + ���
,																																																						(3.1) 

where ���	is the static error; and ���is the overall intensification coefficient of an 

open part of the system.  
When the transient process is over, the controlled variable value will be as 

follows 

���� = ��� − ��� =
������
1 + ���

∙ 																																										 (3.2) 

 

�̅�� 

�̅�� 
 

�̅�� 
 

����� 

����� 

����� 

����� �̅�� 
 

- 

- 

- 

-  

 

 

��
�
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If such linear signal as ���(�) = � + ��� is set to the static system input, then a 

static error ���	will vary with constant velocity. If the effect is quite long-term then 
the systems stops to be efficient. 

 
 

Table 3.1 
Input data 

Variant Parameters of elements 

��� �� �� �� �, c 

1 1.0 0.5 1.5 0.5 0.70 
2 1.5 0.8 1.0 1.0 0.50 
3 2.0 1.1 0.5 0.7 0.60 
4 2.5 1.4 2.0 1.2 0.40 
5 3.0 1.7 2.5 0.9 0.35 
6 3.5 2.0 3.0 1.3 0.30 
7 4.0 2.3 3.5 0.7 0.25 
8 4.5 2.6 4.0 0.4 0.20 
9 4.0 2.9 4.5 0.4 0.20 

10 3.5 2.6 4.0 0.7 0.25 
11 3.0 2.3 3.5 1.3 0.30 
12 2.5 2.0 3.0 0.9 0.35 
13 2.0 1.7 2.5 1.2 0.40 
14 1.5 1.4 2.0 0.7 0.60 
15 1.0 1.1 0.5 1.0 0.50 
16 0.5 0.8 1.0 0.5 0.70 
17 1.0 0.5 1.5 1.0 0.50 
18 1.5 0.8 1.0 0.7 0.60 
19 3.5 2.6 1.0 0.7 0.35 
20 2.0 1.7 3.5 1.3 0.60 

 
 

As for the astatic regulating system, the static error value in terms of a step input 
value ��� = const	is ��� = 0; hence, ���� = ���. If a linear signal is set to the system 
input, then the stable error will not increase temporally; when the transient process is 
over, value of the error will have a value determined as a velocity value: 

 

��� =
��
���

,																																																								(3.3) 

 
In terms of the stable mode, the controlled variable will experience its changes 

according to the law: 
 

21



 22 

����(�) = � + ��� − ��� = �� −
��
���

� + ���.																									(3.4) 

  
Example 3.1. Calculate the accuracy of both static and astatic systems of the 

automated control (Fig. 3.1, а and 3.1, b) if step effect is set to their inputs. Construct 
a dependence graph of statistic error of the systems upon the intensification 
coefficient of their open parts �(��). Identify the dependence between reference-
input signal and intensification coefficient of the open part	��(���) to provide the 
specified error value ���=0.1 input value is �вх = 5; and values of dynamic 

coefficients of the elements are	�� = 3; �� = 2; and �� = 5. 
The automated control systems, represented in Figures 3.1, а and 3.1, b are 1st 

order and 2nd order systems respectively having one-sign positive coefficients. Such 
systems are of stable nature. Determine accuracy of the systems  when step effect is 
set to their inputs.   

The automated control system, represented in Fig. 3.1, а is the static system. 
Determine static error within the system using the formula (3.1): 

 

��� =
���

1 + ��
=

5

1 + 3
= 1.25.																																													(3.5) 

 
Verify the obtained results while simulating under the SIMULINK MATLAB 

environment in terms of a scheme represented in Fig. 3.2. 
 

 
Fig.  3.2 Structural scheme to analyze the system accuracy 

 
The simulation results have verified the calculations. 
Calculate static error ���	while varying intensification coefficient ��	of an open 

ACS  part.  Construct   dependence  graph 	�(��)   using  the   MathCAD  
environment  
(Fig. 3.3). 

It is understood from the graph in Fig. 3.3 that the increase in intensification 
coefficient of an open ACS part results in the decrease of static error. 

To define dependence between the reference-input signal and intensification 
coefficient of an open ��(���) part in terms of the specified ���= 0.1, reduce 3.5 

expression to the following: 
 

�� =
��� − ���

���
=
��� − 0,1

0,1
∙ 																																												 (3.6) 
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Fig. 3.4 demonstrates the dependence graph ��(���)	constructed in terms of the 
MathCAD environment. 

Verify the calculation results. Select any point within the graph, and determine 
its coordinates within the help of a function Trace in the MathCAD application 
package (Fig. 3.5). 

 
Fig.  3.3 Dependence graph	�(��) 

 

 
Fig. 3.4 Dependence graph	��(���) 
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Fig. 3.5 Determination of the graph point coordinates 

 
Hence, we have point coordinates ��� = 3 and �� = 29. Verify the obtained 

results using simulating in the SIMULINK MATLAB application package in terms of 
the abovementioned scheme (Fig. 3.2). Fig. 3.6 demonstrates the findings. 

 
 

 
 

Fig.  3.6. Structural scheme to verify the calculation results ��� = 0.1 has been 
obtained 

 
Thus, the automated control system, represented in Fig. 3.1, b is of astatic type. 

In the context of the system, static error is equal to zero; moreover, it cannot depend 
upon intensification coefficient of an open part ��� = ���� as well as upon a 

reference-input signal 	���. Verify the statement using simulation in the SIMULINK 
MATLAB application package with values of the reference-input signal and 
intensification coefficients, specified by the example conditions (Fig. 3.7), and the 
varied values (Fig. 3.8). As it is seen, the static error approaches zero in terms of both 
cases. 

Example 3.2. Linear effect	���(�) = � + �� has been set to the inputs of the 
automated control systems (Figures 3.1, c, and 3.1, d). Use simulation in the 
SIMULINK MATLAB application package to identify a velocity error ��� within the 
systems. Verify independence of a velocity error	��� from a coefficient for the astatic 
ACS (Fig. 3.1, d), and separate an area within ���(��) plane where ��� ≤ ���. Values 

of coefficients of input effect, parameters of the automated control system, and the 
specified error values are as follows:	� = 3, �� = 2, �� = 3, �� = 5, �� = 2,	��� =

0.1.  
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Fig.  3.7  Structural scheme of ACS and a transient process graph for input values 
of the parameters 

 
 

 
 

Fig.  3.8 Structural scheme of ACS and a transient process graph for the varied 
parameter values 

 
Fig. 3.9 demonstrates structural scheme to analyze static and astatic ACSs 

(Figures 3.1, c, and 3.1, d) in the SIMULINK MATLAB application package. Such 
manual switches as Manual Switch 2 and Manual Switch 3 help throw inputs of 
Scope and Display to the inputs of elements of static and astatic systems. 

Both static and astatic systems of the automated control have been simulated 
according to the structural scheme. Fig. 3.10 represents graphs of the transient 
process as well as graphs of changes in the input effect and time errors of the static 
ACS. As it follows from the graphs, in terms of linear changes in the input effect, ��� 
error value increases infinitely. 

Fig. 3.11 demonstrates graphs of the transient process as well as graphs of 
changes in the input effect and time errors of the astatic ACS.  As it follows from the 
graphs, in terms of linear changes in the input effect, ���	error value approaches zero. 
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Fig. 3.9 Structural scheme to analyze ACSs 
 

 
  
 
 

 
 
 

Fig. 3.10 Simulation results of the static ACS 
 

Static ACS 

Astatic ACS 

Input effect 

Output value 

Velocity error 
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Fig. 3.11 Simulation results of the astatic ACS 
 

Prove independence of the velocity error ��� from � parameter of the input effect 
in terms of astatic systems of the automated control. For the purpose, apply 
Spearman’s criterion. While varying values of � parameter, use the SIMULINK 
MATLAB application package to identify corresponding values of the velocity error 
���;	calculate Spearman’s rank correlation coefficient. Table 3.2 represents the 
simulation results. 

 
Table 3.2 

Output data 
 

� parameter 5 15 25 35 45 55 65 75 85 95 
Velocity error 

��� 
0.13 0.16 0.08 0.06 0.03 -0.15 0.04 0.8 0 -0.16 

 
Use the data from Table 3.2 to form ranks of a parameter (Table3.3) as well as 

velocity error ��� (Table 3.4). 
 

Table 3.3 
Value ranks of �	parameter 

 
� parameter 95 85 75 65 55 45 35 25 15 5 
��	rank  1 2 3 4 5 6 7 8 9 10 

 
 
 
 

Velocity value 
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Table 3.4 
Value ranks of ���	parameter 

 
Velocity error 

��� 
0.8 0.16 0.13 0.08 0.06 0.04 0.03 0 -0.15 -0.16 

���
�  rank 1 2 3 4 5 6 7 8 9 10 

 
Make sequences of � and	��� ranks with the help of the data represented by 

Tables 3.3 and 3.4. Table 3.5 demonstrates the rank sequences in addition to the 
differences in the ranks as well as the squared differences of the ranks. 

 
Table 3.5 

Sequences of ranks	� and	��� 
�� rank 1 2 3 4 5 6 7 8 9 10 

���
�  rank 10 8 1 6 9 7 5 4 2 3 

Differences in the 
ranks 

�� = �� − ���
�  

– 9 – 6 2 – 2 – 4 – 1 2 4 7 7 

The squared 
��
�	difference 

81 36 4 4 16 1 4 16 49 49 

 
Determine Spearman’s rank correlation coefficient: 

 

�� = 1 −
6∑ ��

��
�

�� − �
= 1 −

6 × 260

10� − 10
= −0.73,																					(3.7) 

 
where	� = 10	is the sample size. 

Test a zero hypothesis ��	as for zero equality of the general coefficient of 
Spearman’s rank correlation	�г. Use a Table of Student’s t-distribution to find a value 
of a critical point of two-sided critical region ���(�, �). In this context, �	is a 
significance level;	� = � − 2	being degrees of freedom. Determine ���(�, �) = 3.36 
if � = 0.01 and	� = 8. Calculate the critical point: 

��� = ���(�, �)�
1 − ��

�

� − 2
= 3.36�

1 − (−0.73)�

10 − 2
= 0.81.												(3.8) 

 
Since |��| < ���, there is no need to reject zero hypothesis concerning zero 

equality of the general coefficient of Spearman’s rank correlation. Hence, there is no 
rank correlation between �, and	��� parameters.	�	parameter has no effect on 
the	���	velociity	error. 

Using coordinate plane ���(��)	to determine the area within which ��� ≤ 0.1. 

According to (3.3), we have: 
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��� =
��
���

≤ 0.1.																																												(3.9) 

Using (3.9), we obtain: 
 

��� ≥
��
0.1

∙ 																																														 (3.10) 

 
In accordance with (3.10), ��� = ��0.1

��, the MathCAD software has been 

applied to obtain  ��� = ��0.1
�� dependence (Fig.3.12). Also,  Fig. 3.12 shows the 

area  where	��� ≤ 0.1 as well as the area where	��� > 0.1. Test accuracy of the  
calculations while simulating using the SIMULINK MATLAB application package 
according to 3.9 structural scheme. For the purpose, it is required to separate three 
points within the coordinate plane where	��� < 0.1, ��� = 0.1, and	��� > 0.1. Table 
3.6 demonstrates coordinates of the points, and relevant values of velocity errors. The 
simulation results coincide with the calculations. 

  
3.5 Report contents 
Structural scheme to analyze accuracy of both static and astatic systems of the 

automated control. 
Calculations of static error for static and astatic automated control systems when 

a step signal is set to their inputs. 
Graph of dependence of a static error of the static automated control system 

upon intensification coefficient of an open part. 
Calculation of the intensification coefficient dependence upon the input effect to 

provide the specified error value.  
Graphs of transient processes within the static and astatic systems if the effect, 

varying according to a linear law, is set to their inputs. 
Calculations to test the hypothesis concerning the velocity error independence in 

terms of the stable mode from a free coefficient of input value variation. 
Calculations and graphs as for the separation of areas within	���(��) plane 

where velocity error is not more than the specified value.   
 
3.6 Control questions 
What is a system accuracy? 
What is static error? 
What is velocity error? 
How is it possible to decrease the specified error within a static control system? 
Is it possible to decrease the specified error within an astatic control system? 

Why? 
What is the nature of the specified error variation within a static control system 

if time constant decreases (increases) in its dynamic elements? 
How is it possible to decrease a velocity error within an astatic system? 
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Fig. 3.12 ���(��) dependence graph 

 
 

 
Table 3.6 

 
Test results concerning velocity error of astatic ACS 

 
Point  1 (2;40) 2 (4;40) 3 (4;20) 

Velocity error 
��� 

0.03 0.08 0.20 

 
 

LABORATORY RESEARCH 4 

Analyzing series correctors 
 

4.1 Objective is to deepen students’ knowledge while studying the Chapter 
“Correctors and their synthesis method”. 

In the process of the activities, students should be able to: 
– master effect of series correctors on the operation of the regulating system; 
– identify parameters of series correctors to provide the required quality of the 

regulating system;  
– determine a transient process within the corrected system using a computer. 

��� ≤ 0.1	area 

��� > 0.1	area 

1 (2;40) 

2 (4;40) 

3 (4;20) 
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4.2 Input data th perform the activities are the following: 
– structural schemes and numerical parameters of the analyzed systems (Fig. 4.1 
and 4.2; Table 4.1); 
– the MATLAB and MathCAD application package to simulate the regulating 
systems, and perform computer-based mathematical calculations. 

 
4.3 Operating procedures 
Following order is recommended: 
– calculate overall intensification coefficient of an open part of the regulating 
system to provide the specified static control error and velocity control error; 
– connect additional intensification element in series with the elements of an 
open part of regulating system to achieve the required overall intensification 
coefficient; 
– evaluate stability of the corrected regulating system; 
– if the regulating system losses its stability, introduce a series corrector, and 
calculate its parameters to make the system stable; 
– use the SIMULINK MATLAB application package to determine a transient 
process within the corrected regulating system;  
– draw conclusions. 

 
 

4.4  Methodological explanations 
The structural changes in a regulating system, resulting from introduction of 

additional elements, is one of the methods to achieve the required control quality. 
There are the four types of such correctors: series; parallel; a corrector in terms of 
external effect; and multiply feedback. 

Series correctors are introduced to a regulating system in series with dynamic 
elements of the open part. Several types of series correctors are available. 

Introduction of derivative of an error is the simplest way to improve efficiency 
of a transient process. In practice, it can be implemented with the help of inertial 
differential element which transfer function is as follows �(�) = ���(��� + 1)��. 
Time constant ��	 should be quite less than the transient time of the regulating system. 

Introduction of integral of an error is another way to improve ACS efficiency. 
Implementation of the series corrector involves integral element which transfer 
function is as follows �(�) = ���

��. Introduction of integral of an error makes it 
possible to increase the ACS astatism as well as accuracy control. However, negative 
−� 2⁄  phase is introduced in the regulating system worsening its stability.  

Such a series corrector as an isodromic element, which transfer function is 
�(�) = ��� + ����

�� can help improve the system efficiency without any 
depreciation in its stability reserve.  
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а 
 
 
 
 
 

b     

 

 
 

 
 
 

Fig. 4.1 Structural schemes of the analyzed systems:  
 

а – output scheme of the automated control;  
b – corrected scheme of the automated control. 
 

Example 4.1. Identify the overall intensification coefficient K of the open ACS 
part  (Fig. 4.1, а) to provide statistic error ���=0.05. Achieve the system stability 
while introducing a series corrector of derivative of error type to its structure (Fig. 
4.1, b). The system parameters are as follows: �� = 0.5; �� = 2; �� = 1; �� = 2	�; 
�� = 3	�; and � = 0.4. 

The automated control system in Fig. 4.1 is of static type. If step effect �� = 0.5 
is set to the system input, then error in terms of the stable mode will be: 

 

��� =
��

1 + �
∙ 																																																								 (4.1) 

 
To provide ���	= 0.05, calculate the overall � coefficient of the regulating system 

open part using the formula: 
 

� =
�� − ���
���

=
0.5 − 0.05

0.05
= 9.																															(4.2) 

The intensification coefficient may be achieved when additional intensifying 
element is introduced in the open part of the ACS. The intensification element is: 

 

�� =
�

����
=

9

1 × 2
= 4.5.																																						(4.3) 

 . 
Test the stability of the system with the additional intensifying element by means 

of Hurwitz criterion. Transfer function of the open system will be as follows: 

��

��
��� + 2���� + 1

 
��

��� + 1
 

�̅вих �� 

��

��
��� + 2���� + 1

 

��
��� + 1

 

 

�̅вих 
�� 

�� 
 

��� 
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�(�) =
��

��� + 1
×

��

��
��� + 2���� + 1

× �� = 

 

=
�

�1�2
2�3 + �2�1�2�+ �2

2
��2 + (�1 + 2�2�)�+ 1

∙																(4.4) 

 
Table 4.1 

Input data 

Variant  The system parameters  
�� �� �� �, � � ��� 

1 2 1.5 2 0.2 0.4 0.2 
2 3 0.5 2 0.2 0.5 0 
3 4 4 5 0.4 1.3 0.1 
4 6 1 2 0.5 0.8 0 
5 9 2.5 3.2 0.7 0.85 0.5 
6 5 1 1 0.4 0.7 0 
7 4 0.5 6 0.8 0.35 0.5 
8 7 4 0.5 0.8 1 0 
9 8 5 3 1.2 1.4 0.2 

10 2 2 0.5 0.2 0.5 0 
11 1 3 1 0.1 0.4 0.1 
12 3 0.5 4 0.5 0.8 0 
13 8 0.3 50 0.3 1.4 0.2 
14 5 4 0.25 0.4 0.7 0 
15 2 4 0.75 0.9 0.4 0.2 
16 7 0.4 5 0.8 1 0 
17 9 80 0.1 0.9 0.85 0.5 
18 8 1 1 0.4 0.7 0 
19 5 1 1 0.4 0.7 0 
20 9 2.5 3.2 0.7 0.85 0.5 

 
  
Identify the characteristic polynoms: 

 
�(�) = ����

��� + (2����� + ��
�)�� + (�� + 2���)� + (1 + �) = 

 
= 18�� + 13.8�� + 4.4	� + 10.																																		(4.5) 

 
Make a matrix of Hurwitz coefficients: 
 

�
13.8 10 0
18 4.4 0
0 13.8 10

�

	
	
.
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Define determinants for the matrix of Hurwitz coefficients: 
 

∆�= 13.8 > 0, 
 

∆�= 13.8 × 4.4 − 18 × 10 = 60.72 − 180 < 0, 
 

2nd order determinant is negative. Hence, the system is unstable. 
Test the calculation results with the help of simulation. Fig. 4.3 demonstrates 

structural scheme to simulate the analyzed system using the SIMULINK MATLAB 
application package. Fig. 4.4 demonstrates the simulation results explaining that 
output value experiences its continuous time increase oscillating. Such changes 
correspond to unstable system. 

 
 

 
Fig. 4.3 Structural scheme of the analyzed system 

 
 
 

 
 

Fig. 4.4 Graph of the transient process 
 

To provide stability of the regulating system, introduce corrector of error in series 
with elements of the open part (see Fig. 4.1, b). Then, transfer function of the open 
part of the system will look like: 
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�(�) =
� × (1 + ���)

����
��� + (2����� + ��

�)�� + (�� + 2���)� + 1
∙ 											 (4.6) 

 
Identify the characteristic polynoms: 

 
�(�) = ����

��� + (2����� + ��
�)�� + (�� + 2��� + ���)� + (1 + �) = 

 
= 18�� + 13.8�� + (4.4 + 9���) + 10.																														(4.7) 

 
Make a matrix of Hurwitz coefficients: 
 

�
13.8 10 0
18 (4.4 + 9��) 0
0 13.8 10

�

	
	
.
 

 
1st order determinant is ∆�= 13.8 > 0. To make the regulating system stable, 

∆�> 0,	∆�> 0 conditions should also be fulfilled. Record a mathematical expression 
for 2nd order determinant:   

∆�= 13.8 × (4.4 + 9��) − 10 × 18 > 0.																																	(4.8) 
 
Define ��	using inequality (4.8)  
 

�� >
10 × 18 − 13.8 × 4.4

13.8 × 9
≈ 0.96.																																						(4.9) 

 
Thus, if coefficient is �� > 0.96, then ∆�> 0. The last ∆�	determinator of the 

matrix of coefficients is calculated according to the formula: 
 

∆�= ∆� × (1 + �).																																															(4.10) 
 
If �� = 3,	then	∆�= 2533.2 > 0. 
Test the calculation results using simulation. Fig. 4.5 shows structural scheme to 

simulate the analyzed area in the environment of the SIMULINK MATLAB 
application package. Taking into consideration the fact that a correcting element (i.e. 
differential element) with �(�) = 3� is such which cannot be implemented 
physically, it has been replaced by an actual differential element where time constant 
is more than two orders of magnitude less than time of a transient process within 
�(�) = 3�(0.01� + 1)�� system. Such a replacement has no effect on time 
characteristics of the automated control system.  

Figures 4.6 and 4.7 represent the simulation results. It follows from the analysis 
of a graph concerning error variation (Fig. 4.6) that it experiences its time decrease 
oscillating and approaching the stable value. Fig. 4.7 shows the stable error value 
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within a segment of the graph of error variation. In terms of the stable mode, the error 
corresponds to the specified value	���= 0.05. 

 
Fig. 4.5 Structural scheme of the analyzed system 

 

 
 

 
Fig. 4.6 Graph of the error time variation 

 

 
 

Fig. 4.7 Fragment of the graph of the error time variation 
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4.5 Report contents. 
Structural schemes of the analyzed regulating systems. 
Calculation of the parameters of additional elements of the system to provide the 

specified static error ���. 
Graphs of transient processes of both uncorrected and corrected automated 

systems. 
 
4.6 Control questions 
How is it possible to improve RS quality? 
What are the additional elements introduced to RS to provide the specified 

quality indices? 
What is series corrector? 
What types of series correctors do you know? 
What is the effect of a derivative of an error on the operation of the closed 

automated control system? 
What is the result of integrating element introduction to the system? 
Why isodromic element is introduced to the regulating system? 

 

LABORATORY RESEARCH 5 

Analyzing flexible feedback 

 

5.1 Objective is to deepen students’ knowledge while studying the Chapter 
“Parallel Correctors”. 
5.2  In the process of the activities, students should be able to: 
– master the effect of such parallel corrector as flexible feedback on the 
characteristics of an oscillating element; 
– calculate parameters of the parallel corrector as flexible feedback to meet the 
requirements  for the quality indices of a transient process within the specified 
ACS area;  
– identify the transient process within the corrected automated control system 
using a computer. 

 
5.3  Input data th perform the activities are the following: 
– structural schemes and numerical parameters of the analyzed systems (Fig. 
5.1, Table 5.1);  
– application packages MathCAD for mathematical calculations and MATLAB 

for computer-based simulation of the automated systems. 
 

5.4  Operating procedures 
Following order is recommended: 
– identify a transfer function from ACS area with flexible feedback; 
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– identify intensification coefficient set of ��� feedback to provide values of a  

damping coefficient �∗ of a transient process within ACS area in terms of the 
specified range; 

– construct a graph of dependence of intensification coefficient of flexible 
feedback ��� upon the damping coefficient	�∗of the transient process;  

– test the calculation results using computer-based simulation of the specified 
ACS area. 

 
 

   
 
 
 
 
 
 

Fig. 5.1 ACS part with the flexible feedback 
 

Input data 
 Table 5.1 

# � � � �� �� 

1 2.2 2.2 0.1 0.2 1.3 
2 4.6 2.4 0.2 0.3 1.2 
3 1.8 2.6 0.3 0.4 1.4 
4 3.4 2.8 0.4 0.5 1.1 
5 2.8 3.2 0.1 0.2 1.3 
6 4.2 3.4 0.3 0.4 1.1 
7 5.6 3.6 0.1 0.2 1.2 
8 3.6 3.8 0.2 0.3 1.4 
9 1.4 4.2 0.3 0.4 1.1 

10 3.2 4.4 0.4 0.5 1.2 
11 2.6 4.6 0.5 0.6 1.1 
12 5.4 4.8 0.2 0.3 1.2 
13 1.4 5.2 0.1 0.3 1.4 
14 4.4 5.4 0.2 0.5 1.1 
15 3.8 5.6 0.3 0.4 1.2 
16 5.2 5.8 0.4 0.6 1.3 
17 4.8 6.2 0.5 0.6 1.2 
18 1.2 6.4 0.3 0.5 1.4 
19 2.4 6.6 0.1 0.5 1.1 
20 2.2 6.8 0.2 0.4 1.3 

 
 

�

���� + 2��� + 1
 

�ос� 

… … 
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5.4. Methodological explanations. Parallel correctors are implemented in the 

form of additional local feedbacks. The following belongs to the parallel correctors: 
 

– proportional feedback 
 

���(�) = ���;																																																						(5.1) 

 
– inertial proportional feedback 

 

���(�) =
���

���� + 1
;																																																(5.2) 

 
– flexible feedback 

 
���(�) = ����;																																																			(5.3) 

 
– inertial flexible feedback 

 

���(�) =
����

���� + 1
∙ 																																													 (5.4) 

where	���(�)	is the transfer function of the parallel corrector; and ���, ���	are the 

intensification coefficient and time constant of the corrector respectively. 
Generally, feedback is applied to increase oscillating element damping within 

the corresponding ACS area. In this context, the transfer function of ACS area with 
oscillating element and flexible feedback will look like: 

 

�(�) =
� (���� + 2��� + 1)⁄

1 + (����� (���� + 2��� + 1)⁄ )
=

�

���� + �2�� + ������ + 1
,				(5.5) 

 
where	�, �, and � are the intensification coefficient, time constant, and damping 
coefficient of a transient process. 

It follows from (5.5) that flexible feedback can vary neither structure of ACS 
area, nor intensification coefficient �, nor time constant �of the oscillating element. 
However, damping coefficient varies and depends upon the intensification coefficient 
of feedback	���. Moreover  

 
2�� + ���� = 2��∗,																																														(5.6) 

where �∗ is the new damping coefficient. 
Use (5.6) to identify ��� for the provision of the specified �∗ value: 

 

��� =
2��∗ − 2��

�
= 	

2�(�∗ − �)

�
∙ 																															 (5.7) 
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Example 5.1. Such a parallel corrector as flexible feedback is connected to an 

area of the automated control system with �(�) = 5(4�� + 0.8� + 1)�� transfer 
function. Determine a set of intensification coefficient of flexible feedback ��� to 

provide a value of the new damping coefficient �∗of a transient process within the 
specified ACS area in terms of [0.3; 1.1]. Construct ��� = �(�∗) dependence graph. 

Verify the calculation results by means of computer-based simulation. 
�(�) = 5(4�� + 0.8� + 1)�� transfer function is a transfer function of 

oscillating elements with � = 5, � = 2, and � = 0.2 parameters.  
Use (5.6) to identify a set of intensification coefficient of flexible feedback 

���	to provide a value of the new damping coefficient �∗of a transient process within 

the specified ACS area in terms of [0.3; 1.1]. Thus,   
 

�∗ =
2�� + ����

2�
= � +

����

2�
,																																			(5.8) 

then 
 

0.3 ≤ � +
����

2�
≤ 1.1,																																										(5.8) 

 
or 

 

0.3 ≤ 0.2 +
���5

2 × 2
≤ 1.1.																																										(5.9) 

 

Identical transformations will result in 
 

0.08 ≤ ��� ≤ 0.72.																																										(5.10) 

 
Hence, if ��� = 0.08	we obtain	�∗ = 0.3; if ��� = 0.72	then �∗ = 1.1. 

Construct a dependence graph	��� = �(�∗). For the purpose, solve (5.6) relative 

to	��� 

 

��� =
2�(�∗ − �)

�
∙ 																																														 (5.11) 

Substitute values of �, �, and	� parameters in (5.11)  
 

��� =
2 × 2(�∗ − 0.2)

5
=
2 × 2(�∗ − 0.2)

5
= 0.8	�∗ − 0.16.			(5.12) 

 
Fig. 5.2 represents a  dependence graph ��� = 0.8	�∗ − 0.16	,  constructed in 

the MathCAD environment. 
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Fig. 5.2 Dependence graph	��� = �(�∗) 

 
Three line sections are singled out within the graph: 
– �∗ < 07	being the oscillating transient process; 
– 0.7 ≤ �∗ < 1	being the readjusted aperiodic transient process;  
– �∗ < 0.7	being the aperiodic transient without readjustment. 
Test the calculations using simulation by the SIMULINK MATLAB application 

package. Fig. 5.3 represents a structural scheme of the analyzed ACS area; Table 5.2 
shows parameters of the ACS area. 

Fig. 5.4–5.6 demonstrate the simulation results. Graphs of the transient 
processes correspond to the system parameters obtained as the calculation results. 

 
 

Data to simulate ACS area 
Table 5.2 

# ��� �∗ Type of a transient process 

1 0.08 0.3 Oscillating transient process 
2 0.40 0.7 Readjusted transient process 
3 0.64 1.0 Transient process without readjustment 

 
Fig. 5.4–5.6 demonstrate the simulation results. Graphs of the transient 

processes correspond to the system parameters obtained as the calculation results. 
 

�∗ ≥ 1 

0.7 ≤ �∗ < 1 
 

�∗ < 0.7 
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Fig. 5.3 Structural scheme of the analyzed ACS area 
 
 

 
 

Fig. 5.4 Oscillating transient process 
 

 
 

Fig. 5.5 The readjusted transient process 
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Fig. 5.6 Transient process without readjustment 
 

5.5 Report contents. 
Structural scheme and output data of the ACS area. 
Calculation parameters of flexible feedback. 
Dependence graph	��� = �(�∗). 

Structural schemes and simulation results of the ACS area with corrector. 
 

5.6 Control questions. 
What types of correctors do you know? 
What should be done for a parallel corrector introduction to the ACS? 
What types of parallel correctors do you know? 
What changes are experienced by the ACS area when flexible feedback 
surrounds it? 
What are the parameters of oscillating element effected by the flexible 
feedback? 
What are the parameters of aperiodic element effected by the flexible feedback? 

 

LABORATORY RESEARCH 6 

Analyzing stability of a linear regulating system with delay  
 

6.1 Objective is to deepen students’ knowledge while studying the Chapter 
“Regulating systems with delay”. 
In the process of the activities, students should be able to: 
– calculate critical delay time; 
– calculate stability margin of the regulating system; 
– acquire practical skills to study the regulating systems using a computer. 
6.2 Input data the perform the activities are the following: 
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– structural scheme, and numerical parameters of dynamic elements of the 
analyzed system (Fig. 6.1; Table 6.1); and 

– the MATLAB application package for computer-based simulation of the 
regulating systems. 

 
 
 

 

– 
1Tp

K1


 

p

K2  е-τ 

 
 

Fig.  6.1 Structural scheme of the analyzed system 
 

6.3 Operatingp rocedures. 
Following order is recommended: 
– calculate critical delay time; 
– calculate stability margin of the regulating system; 
– construct a graph for stability margin and unstable operation of the regulating 

system; 
– use the MATLAB application package to evaluate transient processes within 

the regulating system when the delay time is less and more than critical one;  
– use the MATLAB application package to evaluate transient processes within 

the regulating system for the areas of its stable and unstable operations. 
 

6.4 Methodological explanations 
Mathematical models of the majority of production facilities in the mining and 

processing industry involve a net delay element. Regulating systems of such objects 
have transcendent characteristic equation; that is why algebraic criteria to determine 
their stability are unacceptable. At the same time, Mykhailov and Nyquist stability 
criteria maintain their values. 

Mykhailov criterion is convenient to be applied for determination of stability 
margins and areas of delay systems. Within a stability margin, Mykhailov curve  
passes through a reference point in such a way that the whole following curve run 
corresponds to the stability. Hence, in terms of  some �	value, it will be	�(��) = 0: 

 

�
�(�, cos��, sin��) = 0
�(�, cos��, sin��) = 0.

																																						(6.1) 

 
Equations of (6.1) system determine the stability margin. 

 

 

 

K0 
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Input data 
Table 6.1 

Variant K0 K1 K2 T, 
с 

τ, 
с 

1 1 0.5 2.0 0.5 0.4 
2 1 0.7 2.2 0.6 0.3 
3 1 1.0 1.8 0.7 0.2 
4 1 1.2 2.4 0.4 0.3 
5 1 1.4 1.6 0.7 0.4 
6 1 1.5 2.5 0.6 0.2 
7 1 1.3 1.7 0.5 0.3 
8 1 1.6 2.1 0.8 0.4 
9 1 1.0 1.3 0.9 0.2 

10 1 0.9 1.9 0.6 0.3 
11 1 0.8 2.2 1.0 0.4 
12 1 0.6 2.3 1.2 0.4 
13 1 0.9 2.0 1.3 0.3 
14 1 1.2 1.3 1.1 0.2 
15 1 1.4 1.6 1.0 0.3 
16 1 1.5 1.5 0.9 0.2 
17 1 1.3 1.4 0.8 0.4 
18 1 1.2 1.0 1.2 0.4 

 

Example 6.1. Identify stability margin of the closed regulating system with 
delay in terms  of [�; �] coordinates  where  transfer  function  of the open  part is  
�(�) = 
= �����(�(�� + 1))��. Assume that	� = 3. 

First, solve the problem in general terms. Make characteristic polynoms of the 
closed regulating system 

�(�) = ��� + � + �����.																																						(6.2) 
Record a characteristic vector 

�(��) = −��� + �� + ������,																																						(6.3) 
or 

�(��) = −��� + �� + �(cos�� − �sin��).																							(6.4) 
 

Single out actual part and imaginary part in (6.4) and record an equation of the 
regulating system stability 

�
�(�) = −��� + �cos�� = 0
�(�) = 			�	 − 	�sinτ�		 = 		0.

																																		(6.5) 

We have from level two of the system (6.5) 

� =
�

sin��
∙ 																																																				 (6.6) 

 
Identify T using equation one of the system 
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��� = �cos��,																																																(6.7) 

 

� =
�cos��

��
∙ 																																																			 (6.8) 

 
After substituting (6.6) into (6.8), we will obtain 

 

� =
cos��

��
∙

�

sin��
∙ 																																															 (6.9) 

 

� =
cos��

�sin��
=

1

�tg��
∙ 																																									 (6.10) 

 
To construct a graph, determine ω variation range using � > 0, and	� > 0 

conditions. We have 
 

�
�(sin����) > 0

(�tg��)�� > 0.
																																																		(6.11) 

 
 

Since � > 0, then 
 

�
sin�� > 0

tg�� > 0.
																																																		(6.12) 

 
Simultaneously, expressions within left sides of the inequalities (6.12) are more 

than zero if 0 < �� < � 2⁄ . Thus, 0 < � < � (2⁄ �).  
Use (6.6) and (6.10) equations to construct stability margin for the specified � =

= 3	value within the coordinate plane [�;�] varying � from	0	to � 6⁄  (Fig. 6.2). 
Apply the graph data to identify coordinates of unstable operation of the system 

[2; 0.5], stable operation of the system [2; 0.35], and the system operation within its 
stability margin [2; 0.41]. Transient processes, represented in Fig. 6.3–6.5 correspond 
to the coordinates. 

Nyquist criterion is applicable to identify critical delay time ���	of a control 
system. Delay time, in terms of which the control system is within its stability 
margin, is critical one. 

According to a Nyquist stability criterion, the closed automated control system 
will be within its stability margin if amplitude and phase frequency response of its 
open part passes through a point within the complex plane with [−1; �0]	coordinates 
in terms of some �� frequency. Then, if ω = ω0, a modular unit of the complex 
intensification coefficient of the  open ACS part will be equal to: 

 
�(��) = 1.																																														(6.13) 

46



 47 

 

 
Fig. 6.2 Graph of stability margin 

 
 

 
 
 

Fig. 6.3 Graph of a transient process of an unstable system 

Unstable operation area 

Stable operation area 

Stability 
marginості 
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Fig. 6.4 Graph of a transient process of a stable system 
 

 
 
 

Fig. 6.5 Graph of a transient process of a system within its stability margin  
 
 

 
In terms of the similar frequency, the phase will be: 

 
�(��) = −�.																																										(6.14) 
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Net delay element cannot effect on a modular unit of the complex 
intensification coefficient of the open ACS part. However, it varies its phase 
according to  

 
�(�) = ��(�) − ��.																																																				(6.15) 

 
Then if � = ��, we have 
 

�
��(��) = 1

��(��) − ����� = −�,
																										(6.16) 

 
where	��(��)	and		��(��)	are modular unit and a phase of the complex 
intensification coefficient of the open part of the automated control system 
respectively in terms of � = ��	frequency exclusive of the net delay element.  

 Equation two of (6.16) system helps obtain 
 

��� =
� + ��(��)

��
∙ 																																					 (6.17) 

Example 6.2. Determine critical delay time	���	of the closed ACS which open 
part has �(�) = � ((�� + 1)⁄ ����) transfer function. Values of the parameters 
are	� = 2 and � = 3.  

First, solve the problem in general terms. Open ACS system consists of 
aperiodic element and net delay element connected in series. Dependence of modular 
unit of the complex intensification coefficient of aperiodic element upon frequency is 
as follows 

 

��(�) =
�

√���� + 1
∙ 																														 (6.18) 

 
Determine �� for which	��(��) = 1. Thus, we have 

�

�����
� + 1

= 1.																																					(6.19) 

 
After identical transformation, we will obtain 

 

�� =
√�� − 1

�
∙ 																																											 (6.20) 

 
Dependence of the complex intensification coefficient phase of aperiodic 

element upon frequency is  
 

��(�) = −arctg(��).																																	(6.21) 
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Use formula (8.17) to identify critical delay time 
 

��� =
� + ��(��)

��
=
�(� − arctg�√�� − 1�)

√�� − 1
∙ 																		 (6.22) 

 
Hence,  

��� =
3(� − arctg�√2� − 1�)

√2� − 1
= 4.08.																					(6.23) 

 
Fig. 6.6 represents simulation scheme of the unknown ACS; Fig. 6.7 represents 

the transient process.  

 
Fig. 6.6 Block diagram of the closed ACS with delay 

 

 
 

Fig. 6.7 Transient process within the ACS 
6.5 Report contents 
Structural scheme of the analyzed automated control system and output data. 
Calculations of the critical delay time and boundary areas of stable and unstable 

operations of the regulating system. 
Graph of the areas of stable nd unstable operations of the regulating system. 
Graph of transient processes for delay time being less than critical and more 

than it. 
Graphs of transient processes for the parameters of the regulating system 

concerning stable area and unstable one. 
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6.6 Control questions 
What are the regulating systems with delay? 
What is net delay element? 
List the ways to connect net delay element to the regulating system. 
Record differential equation of a positional delay element. 
What are the methods applied to evaluate stability of the regulating system with 

delay? 
What is the critical delay time? 
How is it possible to identify stable and unstable operation areas of the 

regulating system? 
 
 

LABORATORY RESEARCH 7 

Analyzing FCS correctors with a linear delay object 

7.1 Objective is to deepen students’ knowledge while studying the Chapter 
“Systems of the automated control with delay”. 

In the process of the activities, students should be able to: 
– calculate critical intensification coefficient, and oscillation period of output 

value of FCS with PID-controller; 
– calculate parameters of PID-controller using Ziegler–Nichols method; 
– calculate critical intensification coefficient nd oscillation period of output 

value of FCS with predicative PID-controller; 
– calculate parameters of predicative PID-controller using Ziegler–Nichols 

method; 
– compare the controlling FCS quality with PID-controller and predicative 

PID-controller; 
– acquire practical skills to analyze the automated control systems using a 

computer. 
 

7.2 Input data th perform the activities are the following: 
– structural schemes and numerical parameters of dynamic elements of the 

analyzed automated control systems (Figures 7.1-7.2; Table 7.1); and 
– the MathCAD and MATLAB application package for computer-based 

calculation and simulation of the automated systems. 
 

7.3 Operating procedures 
Following order is recommended: 
– expand a net delay element into 2nd order Pade series; 
– ealculate a critical intensification coefficient of the open FCS part with PID-

controller in terms of Hurwitz criterion; 
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– calculate the oscillation period of the FCS output value of the  output value 
of FCS with PID-controller; 

– calculate PID-controller parameters using Ziegler–Nichols method; 
– specify PID-controller settings of FCS analogue within the SIMULINK 

MATLAB environment; 
– use Nyquist criterion to formulate an equation to identify frequencies of 

stable oscillations of output value in FCS with predicative PID-controller; 
– use the MathLAB application package to solve a transcendent equation as for 

the oscillation frequency; 
– calculate the critical intensification coefficient of a predicative PID-

controller; 
– calculate predicative PID-controller parameters using Ziegler–Nichols 

method; 
– specify settings of predicative PID-controller using FCS analogue within the 

SIMULINK MATLAB environment; 
– use the SIMULINK MATLAB environment to develop transient processes 

within FCS with PID-controller and predicative PID-controller;  
– compare controlling quality of FCS with PID-controller and predicative PID-

controller. 
 
 
 
 
 

 
  

 

 

 

 

Fig. 7.1 Structural scheme of the analyzed FCS with PID-controller 
 
 
 
 
 
 

 
  

 

 

 

 

�̅�� 
 

����� 

�� 

��
�

 

��	� 
 

�����

�� + 1
 + 

����� 
�����

�� + 1
 

1

�� + 1
 

 

�� 

��
�

 

�̅�� 
 + + 

52



 53 

Fig. 7.2 Structural scheme of the analyzed FCS with predicative PID-controller 
 

 

Input data 
Table 7.1 

Variant � � � 
1 . 2.4 1,44 
2 1.12 3.6 2.16 
3 0.45 4.8 2.88 
4 3.15 6.6 3.96 
5 2.84 7.2 4.32 
6 1.52 1.4 0.84 
7 0.16 2.6 1.56 
8 3.88 3.6 2.16 
9 2.14 4.2 2.52 

10 2.76 1.8 1.08 
11 3.42 7.4 4.44 
12 0.92 6.2 3.72 
13 2.56 5.8 3.48 
14 1.64 4.4 2.64 
15 0.78 3.2 1.92 
16 2.32 2.6 1.56 
17 3.72 1.8 1.08 
18 3.28 2.4 1.44 
19 0.58 3.2 1.92 
20 1.36 7.6 4.56 

 

7.4 Methodological explanations 
Numerous scientific papers concern the problem of delay object control. The 

increased interest in the control of such objects is quite justifiable since the 
availability of net delay within a control loop complicates heavily generation of the 
efficient ACSs. Among the current methods of delay object control, the following can 
be singled out: 

1. relay control; 
2. PID-control; 
3. the predicted control;  
4. the specific class of controllers using algorithms. 

The specific controller is selected relying upon 
�

���
	ratio (Fig. 7.3) where	�	is the 

net delay time; and ��� is the transient process time. 
Relay correctors are applied if objects with minor delay are controlled. Two 

position controller is preferable owing to its simple adjustment and operation. 
However, decrease in hysteresis of the corrector intended to improve its control 
efficiency results in the increased switching frequency of actuating device. The latter 
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factors into origination of output value variation as well as into a short life of 
commutation components.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Fig. 7.3 Controller selection in terms of 
�

���
 ratio 

As for the three positional correctors, their actuator may be either in a full open 
position or in a normal (central) position or totally closed. To compare with a two 
positional controller, the abovementioned one has quicker response  to controlling 
effect; its accuracy and performance are higher.  

PID-controller (i.e. proportional-integral-derivative controller) shapes  a control 
signal �(�) in terms of the law: 

 

�(�) = ���(�) + �� � �(�)�� + ��
�(�)

��

�

�

,																												(7.1) 

where �(�) is a control error. 
Fig. 7.4 shows structural scheme of PID-controller. 

PID controller involves three components – proportional P, integral I, and 
derivative D.  

P-control is one of the simplest and most popular control laws. Output signal is 
proportional to a control error. Adjustment simplicity, lack of inertia, and high 
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response are the P-controller advantages. Availability of static error, due to which 
output value cannot stabilize within the specified value, is its disadvantage. 

 
 
 
 
 
 
 
 

Fig. 7.4 Structural scheme of PID controller 
 
To eliminate the static error, P-controller is added by integral component (i.e. I 

controller) being proportional temporally to an integral before the output value 
deviates from its specified value. If no external and external disturbance is available, 
the output value stabilizes at its specified value. 

Nonavailability of control error in terms of the stable state is the I-controller 
advantage; slow response and potential self-oscillations if �� parameter has been 
selected incorrectly.  

Derivative element (i.e. D-controller) is intended to forecast future deviations and 
counteract them. D-controller accelerates response of the automated control system; 
however, that results in the significant readjustment, and stability conditions 
experience their worsening. 

Depending upon combinations of P-, I-, and D-components, following variations 
of the controllers are possible – PI, PD, and PID. PID-controller and its modifications 
are connected in series with the ACS open part (Fig.7.1).  

There are several methods to adjust PID-controller parameters; Ziegler-Nichols 
method is the most popular among them. It belongs to empiric techniques and relies 
upon the experimental data obtained in terms of a real object.  

The adjustment procedure begins with the experimental analysis of a system 
involving a proportional controller (i.e. P-controller) and the specified control object. 
Starting from zero, intensification coefficient �� of the P-controller increases until 
constant amplitude oscillations are set within a system output; i.e. until the system 
turns out to be at its stability margin. The controller coefficient, in terms of which a 
system achieves its stability margin, is recorder and specified through ��

∗. Then, �∗ 
period of oscillations, being stable within the system, is measured. 

Parameter values of the selected controller type are calculated using formulas 
listed in Table 7.2. 

Parameters of generic controllers 
Table 7.2 

 �� �� �� 

P-controller 0.50��
∗ – – 

PI-controller 0.45��
∗ 0.54��

∗ �∗⁄  – 

PID-controller 0.60��
∗ 1.20��

∗ �∗⁄  0.075��
∗�∗ 

P 

I 

D 

�(�) �(�) 

+ 
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To control the objects with significant transport delay (� ���⁄ ≥ 0.2…0.5), the 
specific structures of PID-controllers are used since they involve blocks forecasting  
the object behaviour after � time. The controller structure was proposed by Smith in 
1957; it is called Smith predictor.  

Purpose of Smith predictor is to forecast what signal should occur at the object 
output before its actual springing. The forecasting may involve a model of a control 
object consisting of a fine-rational part of the transfer function �о,	 transport delay  
���. Owing to the fact that the delay may be excluded from the model, a principal 
possibility emerges to forecast the object behaviour before the output signal occurs.  

Fig. 7.4 demonstrates one of the potential implementations of such a system. Its 
operating schedule is as follows. 

 

 

 

 

 

 

 

 

 

 

Fig. 7.4 Control system with Smith predictor 

If the control object model (i.e. Smith predictor) is not available, the transfer 
ACS function with PID-controller and transport delay element within a forward loop 
closed by means of single feedback will look like (Fig. 7.4)  

���(�) =
����(�)�о(�)�

��

1 +����(�)�о(�)�
��
,																																	(7.2) 

where �рег(�) is the transfer controller function. 

 
If Smith predictor is connected to a system as an internal loop, then difference in 

signals within the object output and model is equal to zero. Hence, transfer function 
of the closed system will be as follows 

���(�) =
����(�)�о(�)�

��

1 +����(�)�о(�)
∙ 																																	 (7.3) 

To compare with the characteristic polynom (7.2), (7.3) one does not depend 
upon a transport delay. It means that the transport delay element cannot effect the 
system velocity and response.  

�� 
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Topological transformations of structural schemes may help obtain numerous 
mutually equivalent systems with Smith predictor.  

Predictive PI-controller (PPI-controller), and Resvik controller can be 
considered as Smith predictor varieties. Fig. 7.2 represents structural scheme of the 
PPI-controller. 

Fuzzy controlling algorithms are not advantageous to compare with the classic 
control methods. Moreover, a problem of stability in the context of a system with 
nonlinear control algorithms complicates heavily. 

 
Example 7.1. Use Ziegler-Nichols to identify adjustments of PID-controller of 

the automated  control  system  (Fig. 7.1) while  controlling  an  object  with  
�(�) = 
= 0.015����(7.3� + 1)�� transfer function. Specify the calculated adjustments and 
determine experimentally quality indices of a transient process using FCS in terms of 
the SIMULINK MATLAB environment. 

Represent the transfer function of an open share of the automated control system 
with in-series connected control object and P-controller (ignore temporarily both 
integral and differential parts of a control law) as follows 

�(�) =
���

�� + 1
����.																																													(7.4) 

Expand a net delay element into 2nd order Padѐ series 

���� ≈
���� − 6�� + 12

���� + 6�� + 12
=
4�� − 12� + 12

4�� + 12� + 12
.																							(7.5) 

 
Then, the transfer function of the open AUC part will look like 

 

��� =
��0.015(4�

� − 12� + 12)

(7.3� + 1)(4�� + 12� + 12)
,																							(7.6) 

where  �� is the proportionality constant of P-controller. 

We have 3rd order ACS. Identify �� = ��
∗ proportionality constant, in terms of 

which the automated control system achieves its stability margin. Make a 
characteristic polynom for the closed system: 

 
���(�) = (7.3� + 1)(4�� + 12� + 12) + ��

∗0.015(4�� − 12� + 12).			(7.7) 
 

Perform identical transformations: 
 

���(�) = 29.2�� + 91.6�� + 99.6� + 12 + 0.06��
∗�� − 

−0.18��
∗� + 0.18��

∗ = 29.2�� + �91.6 + 0.06��
∗��� + 

+�99.6 − 0.18��
∗�� + �12 + 0.18��

∗�.																														(7.8) 
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The 3rd order automated control system will be within its stability margin if 1st 
order determinant of Hurwitz coefficient matrix is more than zero and 2nd order 
determinant is equal to zero. Make Hurwitz coefficient matrix 

 

�

�91.6 + 0.06��
∗� �12 + 0.18��

∗� 0

29.2 �99.6 − 0.18��
∗� 0

0 �91.6 + 0.06��
∗� �12 + 0.18��

∗�

�

	
	
.
 

 
1st order determinant will be 

 
∆�= 91.6 + 0.06��

∗ > 0.																																							(7.9) 

Obviously, ∆�> 0 if 
��
∗ > −1527.                                                  (7.10) 

2nd order determinant will be equal to 
 

∆�= �91.6 + 0.06��
∗� × �99.6 − 0.18��

∗� − 29.2 × �12 + 0.18��
∗� = 0.		(7.11) 

 
Expand the brackets and solve an equation relative to ��

∗. We obtain:  

 

9123.36 − 16.49��
∗ + 5.98��

∗ − 0.01��
∗� − 350.4 − 5.26��

∗ = 0		(7.12) 

−0.01��
∗� − 15.77��

∗ − 8772.96 = 0,																																										 

�п
∗� + 15.77�п

∗ + 8772.96 = 0.																																		(7.13) 
 
Identify the discriminant, and determine	��

∗: 
 

� = 1577� − 4 × 1 × (−877296) = 5996113. 

√� = 24448.7. 

(�п
∗)�.� =

−1577 ± 2448,7

2
= [−2027.5; 435.85]. 

Taking into consideration (7.10), we have ��
∗ = 435.85. 

Define oscillation period �∗ within the stability margin. For the purpose, 
calculate oscillation frequency �∗	applying ��

∗ = 435.85 to (7.8) expression and 

substitute ��  for  �. Hence, we derive a characteristic complex of the closed system: 
 

���(��) = 29.2(��)� + (91.6 + 0.06 × 435.85) × (��)� + 
+(99.6 − 0.18 × 435.84) × �� + (12 + 0.18 × 435.85) = 0.											(7.14) 

 
A characteristic complex will be equal to zero if its actual and imaginary parts 

are equal to zero. Identify the imaginary part 
 

−29.2�∗� + (99.6 − 0.18 × 435.85) × �∗ = 0.																	(7.15)		 
Solve (2.13) equation relative to �∗: 
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−29.2�∗� + (99.6 − 0.18 × 435.85) × �∗ = 0, 

−29.2�∗� + 21.5 × �∗ = 0, 

−29.2�∗� + 21.5 = 0, 

−29.2�∗� = −21.5, 

�∗� = 0.72, 
�∗ = 0.85, 

Determine  �∗: 

�∗ =
2�

�∗
=
2 × 3.14

0.85
∙ 

 
Test the validity of the calculations using simulation in terms of the SIMULINK 

MAMLAB environment by means of a structural scheme in Fig. 7.5.  

 
Fig. 7.5 ACS structural scheme for simulation 

 
Fig. 7.6 demonstrates general form of a transient process within the ACS; Fig. 7.7 

shows a part of the transient process to test oscillation period �∗. 
 
 

 
 
 

Fig. 7.6 General form of a transient process within the ACS 
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Fig. 7.7 A part of the transient process 
 
The simulation results coincide completely with the calculations. 
Table 7.3 represents th values of parameters of correctors calculated with the 

consideration of �∗ ≈ 7.3	� and ���
∗ ≈ 435.85. 

 
Parameters of generic correctors 

                                                                                                            Table 7.3 
 �� �� �� Transfer function 

P-controller 217.93 – – ��(�) = 217.93 

PI-controller 196.13 32.24 – 
���(�) = 196.13 +

32.24

�
 

PID-controller 261.51 71.65 238.63 ����(�) = 261.51 + 

+
71.65

�
+ 238.63� 

 

To analyze ACS with PID-controllers in terms of the SIMULINK MATLAB 
environment, a model of the automated control system has been developed; Fig.  7.8 
shows its structural scheme. Flotation process model is represented by the in-series  
connected Transfer Fon and Transport Delay blocks. PID-controller simulation is 
implemented using combination of its three parts: P-controller (i.e the Slider Gain 1 
blocks); PI-controller (i.e. the Slider Gain 2, and Integrator blocks  connected in 
series); and  PD-controller (i.e. the Slider Gain 2 and Derivative blocks  connected in 
series. Reference-input signal is introduced to the ACS by means of the Step block 
(i.e. step effect). In addition, FCS structural scheme also includes Manual Switches to 
change the structural scheme operatively according to the problem being solved 
during the analysis. The Ground blocks are used to set zero signals to the required 
blocks. The Scope block is applied to represent time variation of the output value. 
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Fig. 7.8 FCS model with PID-controller  
 

According to the simulation results, concerning FCS operation with set points, 
shown in Table 7.3, the transient processes, demonstrated in Figures 7.9-7.11 have 
been obtained. Fig. 7.12 illustrates a transient process where PID-controller was not 
used; Fig.7.13 illustrates a transient process with the best controller adjustment 
selected experimentally using a model 

����(�) = 136.13 +
17.24

�
∙ 																																															 (7.16) 

Controlling time was determined with the help of the time after which difference 
between the controlled value and the stable value is not more than 5%. Stability 
degree has been identified using the known formula 

� ≈
3

����
	,																																																												(7.17) 

 
where ���� is the controlling time. 

Quality indices of a control system with PID-controller 
Table 7.4 

 
Controller 

Parameter 
Stability 
degree 

Static 
error 

Controlling 
time, s 

Readjustment,  
% 

Oscillations  

No controller 0.08 0.985 36 0 0 
P-controller 0.21 0.22 14 5 1 
PI-controller 0.20 0 15 40 1 

PID-
controller 

0.20 0 15 52 0 

PID-
controller 

with the best 
adjustment 

0.25 0 12 7 0 
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                                     а                                                                    b 

Fig. 7.9 Transient process within FCS using P-controller: 

a – overall view; b – view to evaluate quality indices 
 
 

    
 
                                    а                                                               b 

Fig. 7.10 Transient process within FCS using PI-controller: 

a – overall view; b – view to evaluate quality indices 
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                                    а                                                                    b 

Fig. 7.11 Transient process within FCS using PID-controller: 

a – overall view; b – a view to evaluate quality indices 
 
 

   
 
                               а                                                                     b 

Fig. 7.12 Transient process within FCS where no controller has been used: 

a – overall view; b – view to evaluate quality indices 
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                               а                                                                     b 

Fig. 7.13 Transient process within FCS with the best controller adjustments:  

a – overall view; b – a view to evaluate quality indices 
 

Quality indices of a control system with PID-controller 
Table 7.4 

 
Controller 

Parameter 
Stability 
degree 

Static 
error 

Controlling 
time, s 

Readjustment,  
% 

Oscillations  

No controller 0.08 0.985 36 0 0 
P-controller 0.21 0.22 14 5 1 
PI-controller 0.20 0 15 40 1 

PID-
controller 

0.20 0 15 52 0 

PID-
controller 

with the best 
adjustment 

0.25 0 12 7 0 

 
 

Example 7.2. Apply Ziegler-Nichols method to identify PID-controller 
adjustments of the automated control system in terms of the object in 7.1 example 
(Fig. 7.2). Specify the calculated adjustments and determine quality indices of the 
transient process experimentally using FCS model in terms of the SIMULINK 
MATLAB environment. 

Apply Ziegler-Nichols method to identify PID-controller parameters. Define 
the critical intensification coefficient ��

∗ for the system, shown in Fig. 2.7, ignoring 
the integral part of the control law. Transfer function of the open part is: 
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���(�) = ��
∗

1

1 − (���� �� + 1⁄ )

�����

�� + 1
∙ 																																								 (7.18) 

Identical transformations result in 
 

���(�) = ��
∗

��
∗�����

�� + 1 − ����
∙ 																																							 (7.19) 

 
Make a characteristic polynom of the closed ACS 

�(�) = �� + 1 − ���� + ����
���.																												(7.20) 

The automated control system will be within its stability margin (i.e. it will 
perform stable oscillations with constant amplitude and frequency) according to 
Mykhailov criterion if the characteristic polynom (7.20) is equal to zero (Mykhailov 
godohraph will pass through a point with [0; j0)] coordinates within the complex 
plane). Thus, we obtain 

�� + 1 − ���� + ����
��� = 0.																																	(7.21) 

Replace ��	variable for p one; use Euler formula to record (7.21) expression as 
follows 

��� + 1−(cos�� − �sin��) + ���(cos�� − �sin��) = 0.											(7.22) 
Derive the equation system recording (7.22) for imaginary and actual parts of 

the expression 

�
1 − cos�� + ���cos�� = 0

�� + sin�� − ���sin�� = 0.
																																			(7.23) 

 
Apply (7.23) equation system to determine frequency of stable oscillations 

�	and critical intensification coefficient �п
∗. Then, use formula � = 2����	 to 

calculate stable oscillation period �∗. The following is obtained from the first 
equation of the system 

�� = −
1 − cos��

�cos��
∙ 																																																				 (7.24) 

The following is obtained from the second  equation of the system 

	�� =
�� + sin��

�sin��
∙ 																																																		 (7.25) 

Equate left parts to right parts of (7.24) and (7.25) equations 

−
1 − cos��

�cos��
=
�� + sin��

�sin��
∙ 																																			 (7.26) 

Perform identical transformations of (2.24) equation 

−
1 − cos��

cos��
=
�� + sin��

sin��
, 

 
cos�� − 1

cos��
=
�� + sin��

sin��
,	 
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sinτ�(cos�� − 1)

cos��
= �� + sin��,	 

 
sinτ�(cos�� − 1)

cos��
− sin�� = ��,	 

 
�����cos�� − sin�� − sin��cos��

cos��
= ��,	 

 
−sin��

cos��
= ��,	 

 
−tg�� = ��.																																																									(7.27) 

Equation  (7.27)  has not any analytical solution relative to the unknown value �. 
The equation may be solved graphically; for instance, under the MATHCAD 
environment. 

In the context of the control object, (7.27) equation will look like 
−tg2� = 7,3�.																																													(7.28)	 

Since tangent is a periodic function, (7.28) equation has many solutions. Hence, 
starting from zero, increase in the intensification coefficient �� of P-controller will 

have numerous values of stable oscillations with different �∗ frequencies for 
different ��

∗. Identify the first ���
∗ 	value	 corresponding to the minimum ��

∗ value. 

For the purpose, evaluate the interval within which ��
∗ will stay ��

∗. Since right 
member of  (7.28) equation is more than zero, then 

−tg2� > 0, 
Hence  

tg2� < 0, 
Thus 

−
�

2
+ �� ≤ 2� < ��,			���. 

Finally 

−
�

4
+
�

2
� ≤ � <

�

2
�,			���.																												(7.29)	 

Table 7.5 explains the intervals for �∗	values calculated  in terms of (7.29) 
expression. 

�∗ intervals 
Table 7.5 

� 0 1 2 
Intervals −0.79 ÷ 0 0.79 ÷ 1.57 2.35 ÷ 3.14 
 

Since � frequency cannot be negative, then ��
∗ ∈ [0,79; 1,57). Identify ��

∗ . Use 
the MATHCAD environment to construct individual graphs for left member and right 
member of (7.28) equation and define coordinates of their junction point. Fig. 7.14 
and 7.15 demonstrate the  solution  results  within  the  specified  ��

∗  availability  
interval. 
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Fig. 7.14 shows the constructed graphs as well as their junction point; Fig. 7.15 
demonstrates abscissa and ordinate of the joint point of the  graphs  determined  using 
 X-Y Trac function.  Thus, ��

∗ = 0.86	 rad s⁄ . Identify a period of stable oscillations 

�∗ = 2���
∗�� = 2�	0.86�� ≈ 7.3	s. Insert ��

∗ = 0.86	 rad s⁄  into (7.24) and 
determine �п�

∗ :  

���
∗ = −

1 − cos���
∗

�cos���
∗ ≈ −

1 − cos(2 × 0.86)

0.015 cos(2 × 0.86)
≈ 515.15.																(7.30) 

 

 

Fig. 7.14 Graphical solution of the equation 

 

 

Fig. 7.15 ��
∗ value determination 
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Validate correctness of the performed calculations using simulations under the 
SIMULINK MATLAB environment in terms of a structural scheme in Fig. 7.16.  

 
 
 

 

Fig. 7.16 ACS structural scheme for simulation 

Fig. 7.17 demonstrates overall view of the transient point within the ACS; Fig. 
7.18 shows the transient process part to test oscillation period �∗. 

 
 

 

 

Fig. 7.17 Overall view of the transient process within the ACS 

The simulation results coincide completely with the calculations. 
Table 7.6 shows parameter values of PI-controller calculated with consideration 

that �∗ ≈ 7.3	�  and ���
∗ ≈ 515.15. 
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Fig. 7.18 The transient process part 

 
Parameters of generic controllers 

Table 7.6 
 �� �� �� Transfer function 

PI-controller 231.82 38.11 – 
��і(�) = 231.82 +

38.11

�
 

 

Fig. 7.19 demonstrates structural scheme of the controlled object model, 
developed under the SIMULINK MATLAB environment, to analyze FCS with PPI-
controller. This scheme differs from the scheme, represented in Fig. 7.8, in the fact 
that it does not involve a differential part of PID-controller and its internal circuit 
contains a predictor represented by the in-series connected Transfer Fon 1 and  
Transport Delay 1 blocks. 

Transient process, shown in Fig. 7.20, result from the simulation of FCS 
operation with set points of PI-controller (Table 7.6). Fig.7.21 demonstrates the 
transient process with the best controller adjustments selected experimentally with 
the use of the model (Table 7.7) 

 
����(�) = 140.																																																(7.31) 

 
Formula (7.17)  has helped determine the stability degree.  
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Fig. 7.19 FCS model with a predictive PI-controller  
 

 

   

                                 а                                                                           b 

 

Fig. 7.20 The transient process within FCS with PI-controller 
a – overall view; b – view to evaluate quality indices 
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                                  а                                                                       b 

Fig. 7.21 The transient process within FCS with the best controller adjustments 

a – overall view; b – view to evaluate quality indices 
 

 
Quality indices of a control system with PPI-controller 

 
Table 7.7 

 
Controller  

Parameter 
Stability 
degree 

Static 
error 

Time to 
control, 

s 

Readjustment,  
% 

Oscillations 

PPI-
controller 

0.17 0 18 70 1 

PPI-
controller 

with the best 
adjustments 

0.38 0 8 0 0 

 
According to the analysis results in examples 1 and 2, it is possible to conclude 

that in the context of the considered control object, PPI-controller is better to 
compare with the classic PID-controller since its stability degree is higher, 
controlling interval is shorter, and readjustment is not available. 
 

7.6 Report contents. 
Output data. 
Structural schemes of the analyzed automated control systems. 
Calculation of the parameters of PID-controller and predictive PI-controller 
using Ziegler-Nichols method. 
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Graphs of transient processes within FCS involving PID-controller and 
predictive PI-controller. 
Quality evaluation of transient processes within FCS involving PID-controller 
and predictive PI-controller. 
Comparison of the best transient processes within FCS involving PID-controller 
and predictive PI-controller. 
 
7.7  Control questions 
What control methods are applied for objects with delay? 
What are the advantages and disadvantages of relay control? 
What are the advantages and disadvantages of PID control law? 
What are the advantages and disadvantages of a predictive control? 
What are the advantages and disadvantages of controllers using algorithms? 
What is Ziegler-Nichols method? 
Why is it necessary to expand objects with delay into Padé series? 

 

LABORATORY RESEARCH 8 

Analyzing a sampling control system 

 
 

8.1 Objective is to deepen students’ knowledge while studying the Chapter 
“Sampling control systems”  

In the process of the activities, students should be able to: 
– make a transfer function of a pulse system with a zero-order extrapolator  and 

fixation for the period; 
– identify stability of a sampling control system; 
– calculate a transient process within the automated control system;  
– acquire practical skills while analyzing pulse systems using a computer. 

 
8.2 Input data to perform the activities are the following: 
– structural scheme and numerical parameters of the analyzed automated system 

(Fig. 8.1, Table 8.1); and 
– the MATLAB application package for computer-based simulation of the 

automated system. 
 
 
 
 
 
 
 

Fig. 8.1 Structural scheme of the pulse ACS 
 

��
�

 1 − �����

�
 

��
��� + 1

 

�� 

��� ���� 
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Input data 
Table 8.1 

Variant  ��� 
 

��, s �� ��, s �� 

1 1 0.5 5.2 1.0 1.3 
2 2 0.2 6.4 1.6 1.2 
3 3 0.7 7.8 1.4 1.5 
4 4 0.8 6.3 1.6 1.6 
5 5 0.9 5.5 1.8 1.7 
6 6 1.0 5.4 1.7 1.8 
7 7 0.9 4.3 1.5 1.9 
8 8 0.8 4.9 1.3 2.0 
9 9 0.7 3.4 1.1 1.9 

10 10 0.6 5.6 0.9 1.8 
11 9 0.5 6.1 1.2 1.7 
12 8 0.6 6.4 1.4 1.6 
13 7 0.7 7.9 1.6 1.5 
14 6 0.8 6.2 1.8 1.4 
15 5 0.9 7.8 1.7 1.3 
16 4 1.0 8.7 1.5 1.2 
17 3 0.9 10.0 1.3 1.0 
18 2 0.8 8.4 1.1 1.1 
19 1 0.7 7.6 0.9 1.2 
20 2 0.6 7.8 1.0 1.3 

 
8.3 Operating procedures  
Following order is recommended: 
– make a transfer function of the continuous part of the pulse automated 

control system; 
– identify the transfer function of the pulse automated control system with a 

zero-order extrapolator and fixation for the period; 
– determine the automated control system stability; 
– calculate a transient process within the automated system when a single step 

signal is set to its input;  
– use the MATLAB application package to verify the calculation results by 

means of computer-based simulation of a sampling control system. 
 

8.4 Methodological explanations 
Sampling control systems combine a pulse element and a continuous part of the 

system. The pulse element transforms the continuous input effect into the equispaced 
pulses. 

Transfer system of the open sampling control system with a zero-order 
extrapolator and fixation for the period is as follows: 
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�(�) =
� − 1

�
� �

���(�)

�
� ∙ 																																							 (8.1) 

 ,  
where � = ���� is the complex variable; � is the operation of � transformation; and 
���(�) is the transfer function of the continuous part of the system. 

Transfer function of the closed system will be 
 

Φ(�) =
�(�)

1 +�(�)
∙ 																																												 (8.2) 

 
The closed system will be closed if roots of characteristic equation are inside a 

circle which radius is equal to a unit. If the characteristic equation is transformed in 
terms of � = (1 + �)(1 − �)�� (being bilinear transformation), then each root of a 
stable system will have negative real part. In such a case, it is possible to evaluate 
stability of the pulse ACS using the criteria applied for continuous linear systems. 

Quality indices of sampling control systems are identified with the help of a 
transient process graph. In practice, several techniques to calculate transient process 
within a system are applied. However, Laurent transformation of z image of the 
output value is the most popular one.  

Example 8.1.  Determine transfer function, evaluate stability, and calculate a 
transient process within a sampling control system represented in Fig. 8.1. The 
system parameters are as follows: ��� = 1 ; �� = 1,4; �� = 6; �� = 0.6; and ��=1.2. 
Verify the calculation results using computer-based simulation. 

Determine a transfer function of the sampling control system continuous part 
 

���(�) =
����

(��� + 1)�
=

�

(��� + 1)�
,																										(8.3) 

 
where � = ���� is the overall intensification coefficient of the open ACS. 

The transfer function of the open part a zero-order extrapolator and fixation for 
the period will be  

 

�(�) =
� − 1

�
� �

���(�)

�
� =

� − 1

�
� �

�

(��� + 1)��
� ∙ 													 (8.4) 

 
Factorize the expression denominator in curly brackets (8.4), taking into 

consideration the fact that it has multiple roots �� = �� = 0 and �� = −��
�� root 

 

�(�) =
� − 1

�
∙
�

��
� �

1

��(� + ��
��)

� ∙ 																																	 (8.5) 
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Expand the nonintegral in curly brackets (8.5) into the total of the simplest 
nonintegrals 

 
1

��(� + ��
��)

=
�

�
+
�

��
+

�

� + ��
�� ∙ 																															 (8.6) 

 
Identical transformation of a right (8.6) member results in 

 

1

��(� + ��
��)

=
(� + �)�� + ����

�� + ��� + ���
��

��(� + ��
��)

∙ 																					 (8.7) 

 
Two like nonintegrals with equal denominators should have similar numerators 

too  
 

1 = (� + �)�� + �
�

��
+ ��� +

�

��
∙ 																												 (8.8) 

 
Use (8.8) expression to derive the equation system by making equal coefficients 

in terms of variable p with similar degree indices:   
 

⎩
⎪
⎨

⎪
⎧
� + � = 0
�

��
+ � = 0

�

��
= 1.

																																																				(8.9) 

 
Solution for (8.9) is as follows: � = ��; � = −��

�; and � = ��
�. 

  Expression (8.5) will look like: 
 

�(�) =
� − 1

�
∙
�

��
� �−

��
�

�
+
��
��

+
��
�

� + ���
��� = 

= �
� − 1

�
∙ � �−

��
�
+

1

��
+

��

� + ���
��� ∙ 																							 (8.10) 

 
Perform � transformation of the simplest nonintegrals is curly brackets (8.10) 

using Table 8.2: 

�(�) = �
� − 1

�
�−

���

� − 1
+

���

(� − 1)�
+

���

� − �
�
��
��

� =	

	

= � �−�� +
��

� − 1
+
��(� − 1)

� − �
�
��
��

� ∙ 																												 (8.11)	
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Representation of certain lattice functions and time generation functions as well 
as their Laplace images 

Table 8.2 
Generating continuous function   

Lattice function  
Simple  � 

transformation Original  Laplace 
transformation 

1(�) − 1(� − ��) 1 − ����

�
 

−∆[�] = ∇[� − 1] 1 

1(�) 1

�
 

1[n] �

� − 1
 

t 1

��
 

��� ���

(� − 1)�
 

����� 1

� + �
 

������ = �� �

� − �
, � = �����  

 
 
Insert values of ��, �, and ��	parameters into (8.11): 

 

�(�) = � �−�� +
��

� − 1
+
��(� − 1)

� − �
�
��
��

� = 8.4(−1.2 +
0,6

� − 1
+
1,2(� − 1)

� − ��
�.�

�.�

) ∙ 		 (8.11) 

 
Identical transformations of the right (8.11) member result in 

 

�(�) =
1.09� + 0.84

(� − 1)(� − 0.61)
∙ 																																		 (8.12) 

 
Use (8.2) formula to identify a transfer function of the closed sampling control 

system 
 

Φ(�) =
�(�)

1 +�(�)
= 	

(1.09� + 0.84)((� − 1)(� − 0.61))��

1 + (1.09� + 0.84)((� − 1)(� − 0.61))��
= 

 

=
1.09� + 0.84

�� − 0.52� + 1.45
∙ 																																 (8.13) 

 
Test the closed sampling control system stability. For that purpose, determine 

roots of its characteristic polynom. The characteristic polynom is as follows  
 

� = �� − 0.52� + 1.45.																																						(8.14) 
 
Roots of the characteristic polynom, derived in (8.14), are	��,� ≈ 0,26 ± 1.18�. 

Identify |��|	and |��| moduli of such complex numbers as �� and �� 
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|��| = |��| ≈ �0.26� + (±1.18)� ≈ 1.21.																								(8.15) 
 
Since |��| > 1 and |��| > 1, then the closed sampling system is unstable.  
Identify a transition process within the system using Laurent 

transformation.��� = 1	effect, which representation is ���(�) = �(� − 1)�� 
according to Table 8.2, has been set to an input of the closed sampling control 
system. 
determine Z image of output	����(�) value 

����(�) = ���(�)Φ(�) =
�

� − 1
∙

1.09� + 0.84

�� − 0.52� + 1.45
=																			 

 

=
1.09�� + 0.84�

�� − 1.52�� + 1.97� − 1.45
∙ 																											 (8.16) 

 
Divide the numerator by a common denominator located in the right member of  

(8.16) 
 
 
 
 
 
 
 
 
 
 
 
 
In terms of the complex variable �, the share coefficients, raised to the 

correspondent power, are the values of output �(�) value during 0;	��; 2��; 3�� … 
time moments. Table 8.3 represents the output ����(�) value during corresponding 
time moments at the start of the transient process according to the performed 
calculations. 

 
Values of the output variable 

Table 8.3 
 0 ∙ �� = 0 1 ∙ �� = 0.6 2 ∙ �� = 1.2 3 ∙ �� = 1.8 

����(�) 0 1.09 2.5 1.67 
 
Test the performed calculations using simulation under the SIMULINK 

MATLAB environment. Fig. 8.2 shows structural scheme to simulate a sampling 
control system. The scheme implements two simulation techniques for the sampling 
control system. 

1.09�� + 0.84� 

2.52� − 2.15 + 1.58��� 

2.52� − 	3.8		 + 4.93��� − 3.63��� 

1.65 − 3.35��� + 3.63��� 

1.65 − 2.15��� + 3.25��� − 2.39��� 

−0.84��� + 0.38��� + 2.39��� 

1.09�� − 			1.66� + 2.15  - 1.58��� 

�� − 1.52�� + 1.97� − 1.45 

1.09��� + 2.5��� + 1.65���

+ ⋯

 

 

 

. 
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Simulation in terms of technique one uses such blocks as Zero-Order Hold, 
Transfer Fon, and Transfer Fon 1. The Zero-Order Hold block simulates operation of 
a zero-order extrapolator and fixation for the period; the Transfer Fon and  Transfer 
Fon 1 blocks simulate continuous part of the open sampling control system. 

The Discrete Transfer Fon block is applied in the context of technique two. The 
block simulates operation of the closed sampling control system in terms of its 
transfer function (8.13). 

 

 
Fig. 8.2 Structural scheme of the analyzed sampling control system 

 
Fig. 8.3 demonstrates transient process within the sampling control system. The 

transient process corresponds to unstable ACS coinciding with the calculation results. 
Fig. 8.4 shows values of the output variable during �{0; 0.6; 1.2; 1.8} time moments. 
Values of the output variable, obtained using the two simulation techniques during 
the listed time periods, also coincide with the calculation results (Table 8.3). 

 
8.5 Report contents 
Output data and structural scheme of the analyzed system. 
Transfer function of the open part of a sampling control system with a zero-

order extrapolator and fixation for the period. 
Transfer function of the closed sampling system with a zero-order extrapolator 

and fixation for the period.  
Calculations of the automated control system stability. 
Calculations of a transient process. 
Structural scheme to simulate a sampling control system and graphs of transient 

processes within the system determined by the simulation results. 
 
8.6 Control questions 
What is a sampling control system? 
What is the ideal pulse element? 
What is an extrapolator function? 
What is a real pulse element? 
How is it possible to identify stability of a sampling control system ? 
Why is bilinear transformation of a characteristic equation used? 
How is it possible to calculate a transient process within a sampling control 

system? 
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Fig. 8.3 Transient process within the sampling control system 
 

 
 

Fig. 8.4 Before testing the output variable values  
 

 

LABORATORY RESEARCH 9 

Analyzing a linear ACS1 

 
9.1 Objective is to deepen students’ knowledge while studying sections of 

theory of linear systems of the automated control 

                                                 
1In 2016, tasks of the laboratory research (developed by M.M. Tryputen) have been proposed to the participants of 2nd 
stage of the All-Ukrainian Student Competition in the field of “System Engineering” (specialism area “Computerized 
Control Systems and Automation”). 
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In the process of the activities, students should be able to: 
– determine the automated control system order in terms of a velocity error 

value, and properties of a characteristic vector of ACS; 
– simulate structural scheme of the open part of a linear ACS in terms of 

characteristics of dynamic elements and law of changes in the input and 
output values; 

– identify ACS stability conditions assuming that parameters of all its elements 
experience time changes;  

– acquire practical skills to analyze linear ACSs using a computer. 
 

9.2 Output data to perform the activities are the following: 
– structural scheme and numerical parameters of the analyzed automated 

system (Figures 9.1-9.7, Table 9.1); 
– the MATLAB application package for computer-based simulation of the 

automated control system. 
 

 
 
 
 
 
 

Fig. 9.1 Structural scheme of a FCS 
 

 

 
Fig. 9.2 Logarithmic phase frequency response of a dynamic element  

  
 
 

�(�) �(�) 
W(p) 
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�(�) = 4���� 

 

Fig. 9.3 Impulse transient function of a dynamic element 
 

 
 

Fig. 9.4 Logarithmic amplitude frequency response of a dynamic element 
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Fig. 9.5 Transient function of a dynamic element  

 
 
 

 
 

Fig. 9.6 Logarithmic amplitude frequency response of a dynamic element 
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Fig. 9.7 Input-output characteristic of a dynamic element  

 
Input data 

Table 9.1 
Variant  Rotation angle of a characteristic 

vector 
�(��) 

Law of input value 
variation 

��� 

Law of output value 
variation 

���� 
1 1.5� ���(�) = 3� + 7 ����(�) = 3� + 5.5 

2 1.5� ���(�) = � + 5.5 ����(�) = � + 5 

3 1.5� ���(�) = 4� + 9 ����(�) = 4� + 7 

4 1.5� ���(�) = 2� + 8 ����(�) = 2� + 7 

5 1.5� ���(�) = 5� + 8.5 ����(�) = 5� + 6 

6 1.5� ���(�) = 3� + 6.5 ����(�) = 3� + 5 

7 1.5� ���(�) = � + 1 ����(�) = � + 0.5 

8 1.5� ���(�) = 2� + 2 ����(�) = 2� + 1 

9 1.5� ���(�) = 5� + 2.5 ����(�) = 5� 

10 1.5� ���(�) = 4� + 7.5 ����(�) = 4� + 5.5 

11 1.5� ���(�) = � + 3.5 ����(�) = � + 3 

12 1.5� ���(�) = 5� + 3.5 ����(�) = 5� + 1 

13 1.5� ���(�) = 3� + 1.5 ����(�) = 3� 

14 1.5� ���(�) = 2� ����(�) = 2� − 1 

15 1.5� ���(�) = 4� ����(�) = 4� − 2 

16 1.5� ���(�) = � ����(�) = � − 0.5 

17 1.5� ���(�) = 2� + 1 ����(�) = 2� 

18 1.5� ���(�) = 5� + 5 ����(�) = 5� + 2.5 

19 1.5� ���(�) = 3� + 1.5 ����(�) = 3� 

20 1.5� ���(�) = 4� + 1 ����(�) = 4� − 1 
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9.3 Operating procedures 
Following order is recommended: 
– determine the dynamic elements which may be a part of the ACS; 
– determine the ACS order; 
– determine the overall intensification coefficient of the open ACS part; 
– determine the dynamic elements involved by the open part; 
– determine stability conditions of the closed ACS;  
– verify the simulation calculation results of the simulated ACS using a 

computer under the SIMULINK MATLAB environment. 
 

9.4 Methodological explanations 
Analysis and synthesis of the automated control systems is rather complicated 

problem which solution needs combination and use of different sections of the 
automated control theory. The skill to identify the effect of the automated control 
system parameters as well as its components (elements) on the ACS characteristics is 
the foundation to determine correctly its advantages and disadvantages as well as 
implement the control processes in accordance with the formulated requirements.  

Example 9.1. Characteristic	�(��) vector of the closed automated control 
system, characterized by additivity and uniformity, turned to 1.5� angle after ω 
frequency changed from 0 to ∞. When linear ���(�) = 2� + 5 effect is set to the 
system input (Fig. 9.1), output value varies in terms of ����(�) = 2� + 4	law under 
the transient process termination. According to the characteristics of dynamic 
elements, shown in Figures 9.2–9.7, it is required to simulate structural scheme of the 
open ACS part; identify the ACS stability conditions assuming that the parameters of 
all their elements experience time changes; and support the calculation results by 
means of simulation. 

1. Determine transfer �(�) function of the open ACS part. 
Characteristics of additivity and uniformity means that the ACS is not linear one. 
Hence, the nonlinear element, shown in Fig. 9.7, cannot be its part. Response of an 
output value to input effect, varying in terms of a linear law, means univalently that 
after termination of a transient process,	��� velocity error becomes a stable value. It is 
possible if only the FCS is both stable and astatic system with 1st order astatism. That 
is why the conservative element, which transient process is shown in Fig. 9.5, is not a 
component of the ACS elements as well. 

In terms of the stable system and Mykhailov criterion, characteristic vector 
�(��) will turn to � ∙ � 2⁄  angle after ω frequency varies from 0 to ∞ being � order 
of the system). Since the characteristic vector has turned to	1.5� = 3 ∙ � 2⁄  angle that 
the FCS order is three � = 3. 

In the context of astatic stable system with 1st order astatism, the velocity error 
��� is 

��� = ���(�) −	����(�) =
��
�
,																																								(9.1) 

where  ��	is a proportionality coefficient in terms of independent variable t within a 
linear law of input effect; and �	is the overall intensification coefficient of a transfer 
function of the open �(�) part of the FCS. Hence,  
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2� + 5 − (2� + 4) =
2

�
∙ 																																									 (9.2) 

Thus � = 2. 
Determine transfer functions of dynamic elements shown in Fig. 9.2, 9.3, 9.4, 

and 9.6. 
Fig. 9.2 demonstrates the logarithmic phase frequency response �(�) (where 

phase is specified in degrees) being typical for 1st order aperiodic element. � 
dependence upon � is as follows 

�(�) = −arctg(��).																																										(9.3) 
 

Graph is Fig. 2 passes through a point with [1; -45] coordinates. We obtain 
 

−45 = −arctg(�).																																														(9.4) 
 

Thus  � = 1. Transfer function of the element is  
 

��(�) =
��

� + 1
,																																																(9.5) 

where ��is the intensification coefficient. 
Fig. 9.3 demonstrates graph of a pulse transfer function of an aperiodic element. 

Pulse transfer function of the element is as follows 
 

�(�) =
��
��
�
�

�

��	.																																													(9.6) 

Thus 

⎩
⎨

⎧
1

��
= 2

��
��

= 4

																																																							(9.7) 

 
Hence,  �� = 0.5; and	�� = 2. We have the transfer function 

��(�) =
2

0,5� + 1
∙ 																																								 (9.8) 

 
Slope of the logarithmic amplitude frequency response in Fig. 9.4 is  

−20�� ���⁄ . Such a characteristic is typical for an integrating element; it passes 
through a point with [1; 20lg	(��)] coordinates. In this context, �� is the 
intensification coefficient. Consequently, 20 lg(��) = 0. It is obvious that �� = 1. 
Transfer function of the integrating element looks like 

��(�) =
1

�
∙ 																																																			 (9.9) 

 
Slopes of the logarithmic amplitude frequency response in Fig. 9.6 are 

0�� ���⁄ 	і	 − 40�� ���⁄ . Such a characteristic is typical for an oscillating element. 
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Ordinate of horizontal share of the characteristic is connected with the intensification 
coefficient �� as follows 

 
20 lg(��) = �(��).																																							(9.10) 

 
where �� is the corner frequency between slope angles 0�� ���⁄ 	and −
40�� ���⁄ . In this case 

20 lg(��) = 20.																																														(9.11) 
 

Thus �� = 10, and ��(�) = 10	(���� + 2��� + 1)��. In this context, � is the 
time constant; and � is the damping coefficient. 

Taking into consideration the abovementioned characteristics of the ACS, its 
open part may involve the elements with such transfer functions as ��(�), ��(�), 
and ��(�) or ��(�), and ��(�). However, the overall intensification coefficient of 
the open ACS part with ��(�) and ��(�)	elements does not correspond to the early 
calculated (� = 2) one despite their connection. In-series connected elements may 
become the open part of the ACS if ������ = 2. It becomes possible in terms of 
�� = 
= 1. 

Hence, transfer function of the open ACS part consists of  ��(�) =
(� + 1)��, ��(�) = 2(0,5� + 1)�� , and ��(�) = ��� elements connected in 
series. 

Simulate the FCS under the SIMULINK MATLAB environment. 
 

 
 

Fig. 9.8 The analyzed ACS  
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Fig. 9.9 Time changes in the input effect 
 

 
 

Fig. 9.10 Time changes in the output effect 
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Fig. 9.11 Time changes in the input and output effects  
 

 
 

Fig. 9.12 Changes in the input and output effects in terms of the stable mode 
 

Analysis of the graphs, concerning the changes in input and output values, helps 
conclude that the proposed ACS system corresponds to the problem statement. 

2. Identify stability condition of the ACS.  
Specify the overall intensification coefficient of the system open part as well as 

time constants of the dynamic elements as �, ��, and	�� respectively. Then, a transfer 
function of the ACS open part will look like: 
 

�(�) =
�

�(��� + 1)(��� + 1)
=

�

�����
� + (�� + ��)�

� + �
∙ 					(9.12) 
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Record characteristic polynom of the ACS: 
 

�(�) = �����
� + (�� + ��)�

� + � + �.																								(9.13) 
 

Make a matrix of Hurwitz coefficients using the characteristic polynoms:  
 

�

(�� + ��) � 0
���� 1 0

0 (�� + ��) �
�

	
	
.
																																					(9.14) 

 
The ACS will be stable if all determinants of the Hurwitz coefficient matrix are 

positive. 
1st order determinant is: 
 

 
∆�= �� + �� > 0.																																												(9.15) 

 
It is obvious that ∆�> 0 since the time constants �� and �� cannot be negative. 
2nd order determinant is: 

∆�= �� + �� − �����.																																								(9.16) 
 

The determinant will be positive if: 
 

�� + �� > �����,																																														(9.17) 
or 

1

��
+

1

��
> �.																																																			(9.18) 

 
The last inequality is the ACS stability condition since the last determinant of 

the matrix of Hurwitz confidents is: 
∆�= ∆� × �.																																																			(9.19) 

 
Since � > 0, then if ∆�> 0 is fulfilled, the ∆� determinant will be more than 0. 

Test the determined condition of the RS using simulation.  
Stable system. 
The system  will be stable if ��

�� + ��
�� > �; for instance, � = 1, �� = 2, 

and	�� = 0.1. 
Fig. 9.13 demonstrates the transient process graph. 
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Fig. 9.13 Graph of a transient process within the stable RS 
 

Unstable system. 
The system will not be stable if ��

�� + ��
�� < �; for instance, � = 5, �� = 4, 

and	�� = 6. 
Fig. 9.14 demonstrates the transient process graph. 

 

 
 

Fig 9.14 Graph of a transient process within the unstable ACS 
 

System within its stability margin. 
A system will be within its stability margin if  ��

�� + ��
�� = �; for instance, 

� = 3, �� = 1, and	�� = 0.5. 
Fig. 9.15 demonstrates the transient process graph. 

 
 

90



 91 

 
 

Fig. 9.15 Graph of a transient process within the ACS being within its stability 
margin 

 

The simulation results have supported correctness of the FCS stability 
determination. 

 

9.5 Report contents 
Output data, and structural scheme of the analyzed system. 
Calculations to identify the closed ACS order. 
Calculations to determine the overall intensification coefficient of the open FCS 

part. 
Calculations to identify dynamic elements of the open FCS part. 
Calculations concerning the automated control system stability. 
Structural scheme and simulation results as for the closed FCS as well as graphs 

of transient processes within the system determined relying upon the simulation 
results. 

 

9.6 Control questions 
What is the order of the automated control system? 
What is the angle, the characteristic vector of a stable system will turn to?  
How is it possible to identify a velocity error within the astatic system? 
What is a characteristic point through which a logarithmic frequency 

response of integral element will pass? 
What is the critical intensification coefficient? 
Which of the automated control systems has characteristics of additivity and 

uniformity? 
What is a slope of a logarithmic frequency response of an oscillation 

element? 
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