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Introduction 
The main ways of presenting information are discrete: these are words and 

constructions of languages and grammars - natural and formalized; tabular arrays of 

real data; information of social, demographic, economic statistics, etc. 

 

Methods for processing and analyzing such discrete information are studied by 

discrete mathematics 

 

The textbook (academic guide) is designed primarily for students studying 

mathematical methods in computer science and technology 

It contains the main topics that relate to discrete mathematics (sets, relational 

theory, Boolean algebra, graph theory) 

For better assimilation of the material, a large number of solved examples are 

given in the text, some of the similar tasks are offered for independent study 

Examples of applied problems are given, for the solution of which methods and 

algorithms of discrete mathematics are used, which demonstrates the relevance and 

necessity of studying this subject. 

The material of the textbook sections is presented in the form of lectures. It is 

adapted for both independent and classroom work and contains information, without 

which it is impossible to study the course "Discrete Mathematics". The content of each 

lecture is logically structured and subject to a specific topic, but not time frames. 
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Section 1.  Sets. Actions on them 

 

The set is general and at the same time primary concept. Therefore, we give its 

definition intuitively. A set is a collection of elements that have a common property. 

The sets are indicated in capital letters and their elements in corresponding lower case: 

                                                                                      

 

 

 

1 2

1 2

, ,..., ;

, ,..., ;

1,2,3,... .

n

n

A a a a

B b b b

N

=

=

=

                                                       (1)       

Elements of the set can be other sets.  

      

  

1 2 1 2 3

1 1 2

,  or  , , , , ;  

, , .

A C D A c c d d d

B b a a

= =

=
                                 (2) 

A set is called finite if it contains a finite number of elements and infinite if the 

number of elements is unlimited. 

As a rule, the order of elements in a set does not play a role, but there are sets where 

such an order is taken into account. For example, the coordinates of a point 

If an element is repeated in a task, in a set it is written once. 

 

Ways to Define Sets. 

1. The first way is listing the elements (1)  

This method is unsuitable for infinite sets and even for finite with a large number 

of elements (set of fish in the Pacific Ocean). 

2. The second way is to set a specific property of the elements. For example:               

a) natural numbers less than ten  

 10 : ,  10   N x x N x=                                              (3) 

b) a circle is a geometrical place of points equidistant from the center. 

3. The third method is recursive, when the way to get subsequent elements from 

previous ones is indicated. For example, Fibonacci numbers (each number is the sum 

of the previous two). 
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Basic concepts of set theory. 

Two sets are called equal if they contain the same set of elements  A B= . 

The number of elements in a finite set is called its power or cardinal number and 

is denoted А . 

The set A, all of whose elements belong to the set B, is called a subset of the set B. 

Subordination of non-strict order means that A is a subset of B and can coincide 

with B, A B . 

A strict order relationship is denoted as А В . A is the own subset of B. 

A set that contains all the possible elements for a given task is called universal U. 

A set that contains no elements is called empty  . 

The set of all subsets of the set A is called the Boolean of the set A and denoted 

2А
.                                                                 (4) 

The power of a Boolean is calculated by the formula 2 2
АА = . 

Geometrical interpretation of sets 

To visualize the relationships between subsets of a universal set, Vienn diagrams 

and Euler circles are used. 

The construction of Vienne diagrams consists of dividing the plane into 2n
  areas 

using n shapes. 

Moreover, each next figure should have only one common area with each of the 

previously constructed figures. 

The plane on which the figures are depicted is a universal set 

 

 

 

                     

 

 

 

 

  

 

A 

 B 

 

C 

 

7



8 

Vienn diagrams do not reflect real relationships between sets. Individual 

relationships between sets are represented using Euler circles.  

 

 

    

 

 

 

Operations on Sets 

1. A union (sum) is a set that consists of elements that belong to the set A or the 

set B 

 :  or   A B x x A x B =                                                               

 

 

 

 

Example 1.       , , ;  B= , , ;A a b c b m n=  

 , , , , ;  A B a b c m n =  

 

2. An intersection (product) is a set that consists of elements that belong to A and 

B at the same time 

                                                                  

 

 

 

 

 

 

 

 :  and   A B x x A x B =  

 

 

A 

 
B 

 

   All B are A 

 

  A 

 

B 

 

     No A are B 

  

A 

 
B 

 

Some A are not B 

 

B 

 A 

 

  
A 

 
B 
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Example 2.    , , ;  B= , , ;A a b c m b n=  

 ;  A B b =  

 

3. The difference of the sets consists of all elements that belong to the first set but 

do not belong to the second 

 \ :  and   A B x x A x B=                                           

 

 

 

 

4. Negation (complement) A consists of elements not belonging to A 

  or  \   A U A            

                                          

 

 

 

 

 

 

 

The difference of the sets can be expressed through the negation and intersection 

operations 

\   A B A B=                                                      

 

Algebra of sets 

The set of all subsets of a universal set with given operations make up the algebra 

of sets.  

Set algebra is widely used in programming, in particular, when working with 

databases, and  also the basis for many mathematical structures. 

In addition, our whole life passes among the sets that are interconnected. 

 

 

A 

 

U 

 

B 

 A 
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When applying operations on sets, their priority should be taken into account. 

1.             (negation);

2.     (intersection);

3.     (union);

4.  \      (difference).

A

A B

A B

A B




                                                              

Example 3.    ( )\ \ ;E A B A D B=    

14 3 2 5

\ \ ;E A B A D B
   

=     
   

 

The following laws apply in set algebra 

Commutative law:  

                           ;             ;A B B A A B B A =   =   

Associative law:  

( ) ( ) ( ) ( )  ;               ;A B C A B C A B C A B C  =     =                  

Distributive law: 

( ) ( ) ( ) ( ) ( ) ( )  ;        .A B C A B A C A B C A B A C  =      =     

Some properties of the universal and empty sets: 

 

 ;              ;

;              ;            

;              ;             ;    

;              .

A A A U A

A U U A

A A U A A A A

A A A A A A

 =  =

 =  =

 =  = =

 =  =

 

Law of Absorption:  

( ) ( );                       .A A B A A A B A  =   =                                                                

 

 

 

 

  

 

 

  
A 

 
B 

 

 

 

B 

 

 

A 

 

 

 

B 

 

 

A 
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The second equality follows similarly.                                                            

 

De Morgan Law: 

;                       ;A B A B A B A B =   =                                                                      

 

 

 

 

 

 

 

Example 4. Simplify expression 

( ) ( )( )A B C A B C B      =                                  (apply de Morgan's law) 

( ) ( )( )A B C A B C B=       =                     (associativity and commutativity) 

( )A B C A B B C=       =                           (apply the law of idempotence) 

( )A B C B C=     =                                          (apply the law of distributivity) 

A B C B A B C C=        =                                (property of an empty set) 

.A B C A B C=   =    

The set must be define correctly. For example, the only hairdresser in the city 

defines a lot of men whom he shaves, as those who do not shave themselves. For whom 

is this definition incorrect? 

 

  
A 

 
B 

 

 
 

  

B 

 

A 
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For the hairdresser himself. He shaves himself and a hairdresser shaves him. 

This contradiction is called the logical paradox. 

 

Control questions 

1. What is a set? 

2. In what ways can you specify a set? 

3. What are the operations on sets? 

4. What are the properties of operations on sets? 

 

Section 2. Relations 

 

Relationships realize in mathematical terms on abstract sets real relationships 

between real objects. Relations are used when building computer databases. Using 

relationships, they describe the relationships between different groups of data, and also 

process this data. Relationships are used in programming. The constituent data 

structures describe some sets along with the relationships between the elements of these 

sets. 

For the formal description of various combinations with elements of sets that are 

part of a relation, the concept of the Cartesian product of sets is used. 

The Cartesian product of the sets A and B is the set of all kinds of pairs, such that 

the first element of the pair from the set A, and the second from the set B. 

 

 ( ) , : ,  ;  A B a b a A b B =                                                                   (1) 

 

Example 1.       2,5,6 ;  B= 3,1,2 ;A =  

( )( )( )( )( )( )( )( )( ) 2,3 2,1 2,2 5,3 5,1 5,2 6,3 6,1 6,2 ;  A B =  
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Continues interval 

   0,1 ;  B= 0,3 ;A =  

The shaded area is the Cartesian product.  

 

The Cartesian product of n sets is the set of all possible ordered sets of n elements, 

which are called tuples of length n. The first element of the tuple belongs to the first 

set, the second to the second set, and so on. 

( ) 1 2 4 1 2 4 1 1 2 2 4 4... , ,..., : ,  ,..., ;  A A A x x x x A x A x A   =                             (2) 

If the same set is multiplied in a Cartesian product, n times it is called the degree 

of the set  

... ;  n

n

A A A A   =                                                  (3) 

Example 2.  , , ;  A a b c=  

 ( )( )( )( )( )( )( )( )( ) 2= , , , , , , , , , ;  A a a a b a c b a b b b c c a c b c c  

The number of elements or the power (cardinal number) of the degree of the set is 

determined by the formula 

= ;  
nnA A                                                          (4) 

Example 3.    2 23;  3 9.A A= = =  

Cartesian product is non-commutative. The following properties are also valid  

1) ;A B B A    

2) ( ) ( ) ( );A B C A B A C                                                                                               (5) 

3) ( ) ( ) ( )\ \ ;A B C A B A C     

The power (cardinal number) of the Cartesian product is determined by the formula 

= = .  A B B A A B                                                                   (6) 

Let’s get back to Ex. (1). 

1 

3 
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The n-ary relation R on sets
1 2, ,...X X  is a subset of the Cartesian product of 

these n sets 

1 ... .nR X X                                                       (7) 

If n=1 we have an unary relation, if n=2 binary relation 

( ),  or .x y R xRy                                                                             (8) 

Binary relationships are basic. Since the Cartesian product is associative, it can be 

represented as a chain of binary relations. 

Ways to set binary relations 

1) The relation can be specified as a list of pairs of which the relation consists 

   1,2,3,4,7 ,   24,25,26A B= =   

relation: “divider”, “to be a number divider”, “x divisor y”.                                (9) 

( )( )( )( )( )( )( ) = 1,24 1,25 1,26 2,24 2,26 3,24 4,24 ;  R  

2) The second way - using the matrix 

 

 

 

(10) 

 

 

 

 

 

3) A relationship can be graphically represented using a shape called a graph. 

Elements of the sets X and Y are represented on the plane by points. If the pair (x, y) 

belongs to the relation, the points are connected by a line directed from the first element 

to the second (arc). The points themselves are called the vertices of the graph. 

B 

A 
24 25 26 

1 1 1 1 

2 1 0 1 

3 1 0 0 

4 1 0 0 

7 0 0 0 

    B    

A 
columns 

rows  
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                                (11) 

Historically, the first graph can be considered a genealogical tree. One can consider 

the relation of being a father, etc. 

Some special cases 

Let a binary relation be given on the set A: 2R A . 

1) If 
2R A= , then the relation is called complete. What is its matrix and graph? 

  

 

                                                             (12) 

 

 

 

The matrix consists of units, the graph is also called complete and is shown in the 

figure. 

2) If R =   then the set is called empty.  

 

 

             (13) 

 

 

 

 

   A 

A 
a1 a2 a3 

a1 1 1 1 

a2 1 1 1 

a3 1 1 1 

   A 

A 
a1 a2 a3 

a1 0 0 0 

a2 0 0 0 

a3 0 0 0 

x1 

 

x2 

 

x3 

 

xRy 

 

y1 
 

y2 
 

 

A B 

1 

 

2 
 

3 

 

4 
 

7 

24 

 

25 
 

26 

 

a1 

 

 

 

 

a3 

 

a2 
 

a1 

 

 

 

 

    a3 

 

 

a2 
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a1 

 

a2 
 

b1 
 

b2 
 

 

 

a1 

 

a2 
 

b1 
 

b2 
 

 

 

a1 

 

a2 
 

b1 
 

b2 
 

 

 

3) If the relation contains only pairs of the form (a, a) then it is called identical. In 

the matrix on the main diagonal are units, and the remaining elements are zeros. 

The graph contains only loops. 

 

 

                               

 

 

 

If the pairs (x, y) make up the relation, then the ordered pairs (y, x) make up the 

inverse relationship. In the graph, the arcs are directed in the opposite direction. 

 

The relationship between the sets X and Y is called functional if all its elements 

(ordered pairs) are different in the first element. The relation in the third figure is not 

functional 

 

(14) 

 

 

Properties of binary relations 

1. A relation on a set X is called reflexive if it holds for any element with respect 

to itself. In the matrix of such a relation, there are units on the main diagonal. In the 

graph, each vertex has a loop. 

2. A relationship is called anti-reflexive if it follows from the fulfillment of the 

condition 
1 2x Rx   that 

1 2x x . In the matrix, all diagonal elements are zero, and in the 

graph, there are no loops. 

The relation  on the set of real numbers is reflexive, the relation < on the set of 

real numbers is antireflexive. The relation “to have a common divisor” on a set of 

integers is reflexive, the relation “to be a son” on a set of people is anti-reflective. 

   A  

A  
a1 a2 a3 

a1 1 0 0 

a2 0 1 0 

a3 0 0 1 

a1 

 

 

 

 

a3 

 

a2 
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3. A relation is called symmetric if, when it is executed from the first element to 

the second, it is also satisfied from the second to the first. 

The matrix is symmetrical with respect to the main diagonal. In the graph, all arcs 

have parallel ones. 

4. The relation is called asymmetric if from the execution from the first element 

to the second it follows that the relation is not satisfied from the second to the first. 

5. A relation is called antisymmetric if from the execution of it from the first 

element to the second and from the second to the first it follows that these elements are 

equal. 

6. A relation is called transitive if it follows from fulfilling it from the first element 

to the second and from the second to the third that it is fulfilled from the first to the 

third. 

7. The relation is called antitransitive if from the execution from the first element 

to the second and from the second to the third it follows that from the first to the third 

the relation is not fulfilled. 

The relation “to be equal”, “to be a divisor” on a set of integers, as well as the 

relation “to live in one city” on a set of people are transitively, and the relation “to be 

a son” is anti-transitively. 

 

Most commonly used are the following binary relationship classes: 

1. The equivalence relation has the properties of reflexivity, symmetry, and 

transitivity. 

2. A non-strict order relation has the properties of reflexivity, antisymmetry, and 

transitivity. 

3. A strict order relation has the properties of antireflexivity, asymmetry, and 

transitivity. 

4. The relation of tolerance has the properties of reflexivity, symmetry and 

antitransitivity. 
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Control questions 

1. Construct a matrix and graph for the following relation defined on the set 

 1,2,3A = . 

a) ( ) ( ) ( ) 1,1 , 1,2 , 1,3 ; 

b) ( ) ( ) ( ) ( ) 1,1 , 2,1 , 2,3 , 2,3 ; 

c) ( ) ( ) ( ) ( ) ( ) ( ) 1,1 , 1,2 , 1,3 , 2,2 , 2,3 , 3,3 ; 

d) ( ) ( ) 1,3 , 3,1 . 

 

 

2. Construct a graph and list of items (elements) for relations  

 , ,A a b c=
. 

 

 

 

 

 

 

 

 

 

 

 

3. Construct a matrix and list of items for relations 

 

 

 

 

 

 

 

 

4. Write a list of elements for 3-ary relation given on the set of natural numbers 

( ), , :   0 <  <  <  < 5a b c R a b c . 

 

5. Write a list of elements for 4-ary relation given on the set of natural numbers 

( ) 6, , , ,   a c abb d R cd = . 

   A 

A 
a b c 

a 0 1 0 

b 0 1 0 

c 0 1 0 

   A 

A 
a b c 

a 1 0 1 

b 0 1 0 

c 1 0 1 

   A 

A 
a b c 

a 1 1 1 

b 1 0 1 

c 1 1 1 

   A 

A 
a b c 

a 1 0 1 

b 0 1 0 

c 1 0 1 

 
d 

 

a 

 

 

   b 

 

 

c 
 

b 

 

d 

 

 

a 

 

c 
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Section 3. Boolean functions 

 

George Bull developed a binary logic apparatus in the middle of the 19th century. 

Used when working with databases, designing intelligent systems, to analyze the 

operation of computers and other electronic devices. 

Consider the two-element set B whose elements are denoted by {1,0}. 

Variables that can only take values from the set B are called logical or Boolean 

variables. 0 and 1 are boolean constants. 

A function of the form 
1 2( , ,... ) nf x x xy =  whose arguments and values belong to 

the set B are called a Boolean function. 

A set of n specific values of Boolean variables 
1 2( , ,... )nx x x  is called a binary word 

or interpretation of a Boolean function. 

The number of all possible Boolean functions of n variables is 22
n

. 

The number of values that a function takes in n variables is two to the power of n. 

A variable x of an n-dimensional Boolean function is called dummy if 

 

                 
1 1 1 1 1 1( ,..., ,0, ,..., ) ( ,..., ,1, ,..., )i i n i i nf x x x x f x x x x− + − +=                                              (1)  

   

for any values of the remaining variables. A dummy variable can be deleted or 

entered. The remaining variables are called significant. 

Example 1. The function of three variables takes values (10011110). Determine 

which of the variables are dummy and which are significant. 

1) (000) (100)f f= ,  (001) (101)f f   

x ˗significant; 

2) (000) (010)f f ,  y ˗significant; 

3) (000) (001)f f ,  z ˗significant. 

       

 

xyz f(x,y,z) 

000 1 

001 0 

010 0 

011 1 

100 1 

101 1 

110 1 

111 0 
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Ways to Define Boolean Functions 

1. Using the truth table. 

2. Using serial number. 

3. Using formula. 

Tables in which each set of variables corresponds to a function value is called a 

truth table. The set of variable values is written in ascending order as numbers in the 

binary system. Consider the Boolean functions of one variable (Table 1) and two 

variables (Table 2). 

 

Table 1 

0 0 = ˗ constant 0; 

1 x = ˗ argument repeat function; 

2 x = ˗ argument negation function; 

                                                                    
3 1 =  ˗ constant 1. 

 

Table 2 

x φ0 φ1 φ2 φ3 

0 0 0 0 1 

1 0 1 0 1 

Function Designation and name 

0( , )f x y  0, constant 0 

1( , )f x y  x y xy = , conjunction ("  and  "x y ) 

2( , )f x y  \x y , (" "x y )("  and not  "x y ) 

3( , )f x y  x ; repetition of the first argument 

4( , )f x y  \y x , (" "y x )("  and not  "y x ) 

5( , )f x y  y ; repetition of the second argument 

6( , )f x y  x y , " "XOR , "modulo 2 sum" 

7 ( , )f x y  x y , disjunction ("  or  "x y ) 

8( , )f x y  x y , Pierce arrow ("not  and not "x y ) 

9( , )f x y  x y , equivalence 

10( , )f x y  y , "not  "y  

11( , )f x y  y x→ , reverse implication 

12( , )f x y  x , "not  "x  
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Оperation priority: negation, conjunction, disjunction, implication, equivalence. 

In Boolean algebra for the basic operations there are the same laws as in set theory. 

 

 

Example 2. Build a truth table for a function with a given formula 

  ( , , )f x y z x y z x= →    

 

 

 

 

 

 

 

 

 

The function  
* 1( ,..., )nf x x  is called dual to the function 

1( ,..., )nf x x  if 

* 1 1( ,..., ) ( ,..., )n nf x x f x x= . 

A function is called self-dual if 
*f f= . 

In order to build a truth table of a function dual to a given one, it is necessary to 

change each value of the Boolean function in the truth table of this function and write 

the resulting column in the reverse order. 

Control questions 

1. What is the truth table of a function? 

2. In what order are Boolean algebra operations performed? 

3. What is a dummy variable? 

4. On what set are Boolean variables considered? 

13( , )f x y  x y→ , implication 

14( , )f x y  |x y , Schaeffer stroke reverse implication, ("  or  "x y ) 

15( , )f x y  1,  constant 1 

 4  2  3 1  

x →  y   z   ˗˗ x 

0 1 0 0 0 1 1 0 

0 1 0 0 1 1 1 0 

0 1 1 0 0 1 1 0 

0 1 1 1 1 1 1 0 

1 0 0 0 0 0 0 1 

1 0 0 0 1 0 0 1 

1 0 1 0 0 0 0 1 

1 1 1 1 1 1 0 1 
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Section 4. Disjunctive decompositions of Boolean functions 

 

 Among the set of equivalent formulas that represent the selected Boolean 

function, one formula stands out, which is called the perfect normal form of the 

function.  

 This form has a regulated logical structure and is uniquely determined by the 

type of function. The construction of this form is based on the recurrent application of 

theorems on special decomposition of Boolean functions in variables. We consider 

some of these theorems. 

To simplify the mathematical calculations, we introduce the binary parameter   

and the notation x  as follows:   ,  0;1x B  = , 

                                                        
,  if 0,

,  if 1.

x
x

x

 



 =
= 

=
 

 

We can conclude that   

                                        
1,  if  ,

0,  if .

x
x

x






=
= 


 

 

It is directly verified that the binary function ( ),f x x =  is represented by the 

formula x x x  =  . 

 

Theorem 1. On the disjunctive expansion of a Boolean function in k variables. 

Any Boolean function  ( )1,..., nf x x  can be represented in the following form: 

( )
( )

( )1 2

1 2

1 1 1 2 1 2 1
, ,...,

,..., , ,..., ... , ,..., , ,...,k

k

k k n k k k nf x x x x x x x f x x
 

  

  + +=    . 

 The notation  
( )1 2, ,..., k  
  means multiple disjunction, which is taken over all 

possible sets of values ( )1 2, ,..., k    for any ( )  1k k n  . 
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Example 1. Write the disjunctive expansion of functions in variables ,x y . 

( ) ( ), , ,f x y z t x y z t=    . 

By the decomposition theorem we have 

( )
( )

( ) ( )1 2

1 2

1 2 1 2
,

, , , , , , 0, ,0,f x y z t x x f y t x z f y t 

 

 =   =     

( ) ( ) ( )0, ,1, 1, ,0, 1, ,1,x z f y t x z f y t x z f y t        . 

In example the icon “” of conjunction can not be written, as for multiplication: 

x z y t xz yt   = .   

Calculate the values of the function on each set of variables (true table). 

( ) ( )0, ,0, 0 0 0;f y t y t=    =  

( ) ( )0, ,1, 0 1 ;f y t y t t=    =  

( ) ( )1, ,0, 1 0 0;f y t y t=    =  

( ) ( )1, ,1, 1 1 ;f y t y t y t=    =   

We substitute the obtained values in the decompositions 

 ( ), , , 0 0f x y z t x z x z t x z x z y t=          =    

x z t x z y t=      . 

 

Corollary 1 

The disjunctive expansion of a function in one variable has the form 

( ) ( ) ( )1 1 2 1 1 2 1,..., ,..., , ,...,0, ,..., , ,...,1, ,...,i n i i n i i nf x x x x f x x x x x f x x x x+ +=   . 

For the previous example, we have 

( ) ( ) ( ), , , 0, , , 1, , ,f x y z t x f y z t x f y z t xzt x yzt=   =  . 

(Check by yourself). 
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Corollary 2 

The disjunctive expansion of the function in all n  variables has the form 

( )( )1 2, ,..., 0nf x x x  . 

( )
( )
( )

1 2

1 2

1 2

1 2 1 2
, ,...,

, ,..., 1

, ,..., ... n

n

n

n n

f

f x x x x x x
 

  

   =

=    . 

 

Record 
( )
( )
1 2

1 2

, ,...,

, ,..., 1
k

nf

  

   =

 ,  means that the disjunction is taken over all sets of values on 

which ( )1 2, ,..., 1nf    = . 

 

Example 2. Find the disjunctive expansion of the function in all variables. 

( ), , .f x y z xy z=   

 

Define function values for each interpretation 

( )0,0,0 0 0 0 0 1 1;f =   =  =  

( )0,0,1 0 0 1 0 0 0;f =   =  =  

( )0,1,0 0 1 0 0 1 1;f =   =  =  

( )0,1,1 0 1 1 0 0 0;f =   =  =  

( )1,0,0 1 0 0 0 1 1;f =   =  =  

( )1,0,1 1 0 1 0 0 0;f =   =  =  

( )1,1,0 1 1 0 1 1 1;f =   =  =  

( )1,1,1 1 1 1 1 0 1.f =   =  =  

Then the decomposition has the form  

( ) 0 0 0 0 1 0 1 0 0 1 1 0 1 1 1, ,f x y z x y z x y z x y z x y z x y z=     =  

.x yz xyz x yz xyz xyz=      
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An elementary conjunction is a conjunction of any number of Boolean variables 

that are taken with or without negation, in which each variable occurs no more than 

once. 

 A disjunctive normal form (DNF) is a formula that is depicted as a disjunction 

of elementary conjunctions. 

 

An elementary conjunction is called a constituent of the unit (minterm) of a 

function ( )1 2, ,..., nf x x x , if  ( )1 2, ,..., 1nf    = , that is, an interpretation that turns a 

given elementary conjunction into a unit, turns it into a unit and a function f . 

The constituent unit has the properties: 

1. The constituent unit is equal to one only on the corresponding interpretation. 

2. The value of the constituent of a unit is uniquely determined by the number of 

the corresponding interpretation. 

3. The conjunction of any number of different constituent units is zero. 

A perfect disjunctive normal form (PDNF) of a Boolean function is a formula 

that is depicted as a disjunction constituent of the unit of a given function. 

 

Example 3. Find the disjunctive decomposition of functions in variables ,x z :

( ) ( )( )yx xz x yz z xy   . 

( ) ( ) ( ) ( ) ( )0 0 0 1 1 0 1 1, , 0, ,0 0, ,1 1, ,0 1, ,1f x y z x z f y x z f y x z f y x z f y=    =  

1 .xz xzy=    

( ) ( ) ( )( ) ( )0, ,0 0 0 1 0 0 0 1 0 0 0 0;f y y y y=      =   =  

( ) ( ) ( )( )0, ,1 0 0 1 0 1 1 1 0;f y y y y=      =  

( ) ( ) ( )( ) ( )1, ,0 1 1 1 1 0 0 0 1 1 1;f y y y y y=       =   =  

( ) ( ) ( )( )1, ,1 1 1 0 1 1 1 0 1 ;f y y y y y y=       =  =  
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Example 4. Find PDNF ( )( )x x y y→ → . 

( ) ( ) ( ) ( ) ( )0 0 0 1 1 0 1 1, 0,0 0,1 1,0 1,1f x y x y f x y f x y f x y f=    =  

.x y xy xy=    

( )0,0 0 0 1;f = → =  

( )0,1 0 1 1;f = → =  

( ) ( )( )1,0 1 0 0 0 1 0 0;f =  → → = → =  

( ) ( )( )1,1 1 0 1 1 1 1 1.f =  → → = → =  

Example 5. Find PDNF of the function ( ) ( ), , 1,1,0,1,0,0,0,0f x y z =  (Values from 

true table.) 

( ), , .f x y z xyz xyz xyz=                                         

 

 

 

 

 

 

 

Example 6. Find the true table of the function, it’s PDNF:  .x yz xyz x yz   

 

 

 

 

 

 

 

 

 

xyz f(x,y,z) 

000 1 

001 1 

010 0 

011 1 

100 0 

101 0 

110 0 

111 0 

xyz f(x,y,z) 

000 0 

001 0 

010 1 

011 0 

100 1 

101 1 

110 0 

111 0 
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Control questions 

 

1. What is a disjunctive decomposition of a Boolean function? 

2. What is an elementary conjunction? 

3. What is DNF? 

4. What is PDNF? 

 

Section 5. Conjunctive decompositions of Boolean functions   

 

The perfect disjunctive normal form of the function is the result of the disjunctive 

expansion of the function in all variables and contains only operations , ,   . 

Applying the principle of duality to PDNF, we obtain an image of a function called 

conjunctive decomposition. 

 

Theorem 2. On the conjunctive expansion of a Boolean function ( )1 2, ,..., nf x x x  

in k  variables. 

Any Boolean function ( )1 2, ,..., nf x x x  can be represented in the following form: 

( )
( )

( )1 2

1 2

1 2 1 1 2 1 2 1
, ,...,

, ,..., , ,..., ... , ,..., , ,..., .k

k

k k n k k k nf x x x x x x x x f x x
 

  

  + +=      

 The notation 
( )1 2, ,..., k  
  means multiple conjunction, which is taken over all 

possible sets of values ( )1 2, ,..., k    for any k . 

  

Example 1. Write the conjunctive expansion of functions in variables ,x t : 

( ) ( ), , , .f x y z t xy z t=   

From the theorem 2: 

( ) ( )( ) ( )( )0 0 0 1, , , 0, , ,0 0, , ,1f x y z t x t f y z x t f y z=       

( )( ) ( )( )1 0 1 11, , ,0 1, , ,1 .x t f y z x t f y z      
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( ) ( )0, , ,0 0 0 0;f y z y z=    =  

( ) ( )0, , ,1 0 1 ;f y z y z z=    =  

( ) ( )1, , ,0 1 0 0;f y z y z=    =  

( ) ( )1, , ,1 1 1 ;f y z y z y z=    =   

( ) ( )( )( )( ), , .f x y z x t x t z x t x t y z=         

 

Corollary 1 

The conjunctive expansion of a function in one variable has the form 

( ) ( )1 2 1 2 1 1, ,..., , ,..., , , ,..., .i

i

n i i i i nf x x x x f x x x x x




− +=   

 

Corollary 2 

The conjunctive expansion of the function in all n  variables has the form  

( )
( )
( )

1 2

1 2

1 2

1 2 1 2
, ,...,

, ,..., 0

, ,..., ... n

n

n

n n

f

f x x x x x x
 

  
   =

=    . 

Record 
( )1 2, ,..., 0nf    =
   means that the conjunction is taken over all sets of values on 

which ( )1 2, ,..., 0nf x x x = . 

 

Example 2. Find the conjunctive expansion of the function in all variables. 

( ), , .f x y z xy z=   

 

Define function values for each interpretation 

( )0,0,0 0 0 0 0 1 1;f =   =  =  

( )0,0,1 0 0 1 0 0 0;f =   =  =  

( )0,1,0 0 1 0 0 1 1;f =   =  =  

( )0,1,1 0 1 1 0 0 0;f =   =  =  
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( )1,0,0 1 0 0 0 1 1;f =   =  =  

( )1,0,1 1 0 1 0 0 0;f =   =  =  

( )1,1,0 1 1 0 1 1 1;f =   =  =  

( )1,1,1 1 1 1 1 0 1;f =   =  =  

( ) ( )( )( )0 0 1 0 1 1 1 0 1, ,f x y z x y z x y z x y z=       =  

( )( )( ).x y z x y z x y z=        

 

An elementary disjunction is a disjunction of any number of Boolean variables 

that are taken with or without negation, in which each variable occurs no more than 

once. 

 

 A conjunctive normal form (CNF) is a formula that is depicted as a conjunction 

of elementary disjunctions. 

 An elementary disjunction 1 2

1 2 ... n

nx x x
     is called a constituent of the zero 

(maxterm) of a function ( )1 2, ,..., nf x x x , if ( )1 2, ,..., 0nf    = , that is, an 

interpretation that turns a given elementary disjunction into a zero, turns it into a zero 

and a function f . 

The constituent zero has the properties: 

1. The constituent zero is equal to zero only on the corresponding interpretation. 

2. The value of the constituent of a zero is uniquely determined by the number of 

the corresponding interpretation. 

3. The disjunction of any number of different constituents of zero is unit. 

 

A perfect conjunctive normal form (PCNF) of a Boolean function is a formula 

that is depicted as a conjunction constituent of a zero of a given function. 

 

The following conclusions can be drawn from the analysis of PDNF and PCNF 

functions: 
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1. For each non-zero Boolean function, there is an image in the form of a perfect 

disjunctive normal form. 

2. For each non-unit Boolean function, there is an image in the form of a perfect 

conjunctive normal form. 

3. Two different Boolean functions cannot have the same PDNF or PCNF. 

4. For each Boolean function, there is an image in the form of a formula of Boolean 

algebra, which contains only the operations of disjunction, conjunction and negation. 

 

Control questions 

 

1. What is the conjunctive expansion of a Boolean function? 

2. What is elementary disjunction? 

3. What is СNF? 

4. What is PСNF? 

 

Section 6. The transition algorithms from PDNF and PCNF 

 

In the previous lecture, we talked about the fact that perfect disjunctive and perfect 

conjunctive normal forms are obtained with the corresponding decompositions of 

Boolean functions in all variables.  

Recall the formulas for the expansion in all variables.  

Disjunctive decomposition: 

( )
( )

1 2

1 2
1 2 1 2

, ,...,
, ,..., ... ;n

n
n nf x x x x x x

 

  
=      

( )1 2, ,..., 1.nf    =  

 

Conjunctive decomposition: 

( )
( )

1 2

1 2
1 2 1 2

, ,...,
, ,..., ... ;n

n
n nf x x x x x x

 

  
=      

( )1 2, ,..., 0.nf    =  
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The perfect disjunctive normal form contains only mintherms. These terms 

correspond to interpretations on which the Boolean function is equal to one. If the 

function argument takes the value 0, then the corresponding variable in the PDNF is 

written with a negation. If the original argument is equal to one, then in PDNF is a 

variable without negation. 

The perfect conjunctive normal form is the product of the mаxterms, which 

correspond only to those interpretations on which the function is equal to zero. 

In PСDF, variables are written without negation if   in the interpretation the original 

argument is zero, and with negation if the original argument is one. 

To make the transition from the truth table of a Boolean function to its perfect forms 

and vice versa is quite simple. The solutions to some important equations are given 

further. It`s suggested to the students to fill the coloumns in the truth tables by 

theirselves. 

Example 1. Find the PDNF and PCNF for the function ( )( )f x y x y=  → . 

1) We build a truth table  

                 ( ) ( )( )0,0 0 0 0 0 1 1 1;f =  → =  =    

                 ( ) ( )( )0,1 0 1 0 1 1 1 0 1 0;f =  → =  =  =  

                 ( ) ( )( )1,0 1 0 1 0 1 0 0 0 0;f =  → =  =  =  

                 ( ) ( )( )1,1 1 1 1 1 1 1 0 1 0;f =  → =  =  =  

Haw many terms does it contain PDNF, PCNF?  

PDNF: ;f x y=  

PCNF: ( )( )( ).f x y x y x y=     

 

Control questions 

 

TASK. Solve  problems yourself!  
 

 

Example 2. Build truth tables for functions given by perfect normal formulas.  

 

xy f 

00 1 

01 0 

10 0 

11 0 
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1. PDNF: 

a)  ( )1 , , ;f x y z xyz xyz xyz=    

b) ( )2 , , ;f x y z xyz xyz xyz=    

c) ( )3 , , .f x y z xyz xyz xyz=    

 

 

 

 

2. PCNF: 

a) ( ) ( )( )( )1 , , ;f x y z x y z x y z x y z=        

b) ( ) ( )( )( )2 , , ;f x y z x y z x y z x y z=        

c) ( ) ( )( )( )3 , , ;f x y z x y z x y z x y z=        

 

 

 

 

 

Example 3. Find PDNF for functions  

a) ( ) ( )1 , , 0,1,1,1,0,0,1,0 ;f x y z =  

b) ( ) ( )2 , , ;f x y z x y z=  →  

 

  Truth tables: 

 

( )1 , , ;f x y z xyz xyz xyz xyz=     

( )2 , , ;f x y z xyz xyz xyz xyz xyz xyz xyz=        

 
 

 

 

 

 

 

 

xyz f1 f2 f3 

000 0   

001 1   

010 0   

011 0   

100 1   

101 0   

110 0   

111 1   

xyz f1 f2 f3 

000 1   

001 0   

010 0   

011 1   

100 1   

101 0   

110 1   

111 1   

xyz f1 f2 

000 0  

001 1  

010 1  

011 1  

100 0  

101 0  

110 1  

111 0  
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Example 4. Find PCNF for functions  

 

a) ( ) ( )1 , , 1,0,0,1,0,0,0,1 ;f x y z =  

b) ( )2 , , ;f x y z x yz z=    

 

Truth tables: 

      ( )2 0,0,0 0 1 0 1 1;f =    =  

     ( )2 0,0,1 0 1 1 0 1;f =    =  

     ( )2 0,1,0 0 0 0 1 1;f =    =  

     ( )2 0,1,1 0 0 1 0 0;f =    =  

     ( )2 1,0,0 1 1 0 1 1;f =    =  

     ( )2 1,0,1 1 1 1 0 1;f =    =  

     ( )2 1,1,0 1 0 0 1 1;f =    =  

      ( )2 1,1,1 1 0 1 0 1;f =    =  

( ) ( )( )( ) ( )( )1 , , ;f x y z x y z x y z x y z x y z x y z=            ; 

( ) ( )2 , , ;f x y z x y z=    

 

Example 5. Find the perfect disjunctive normal form for a function given by a 

serial number ( )201 , ,f x y z . 

 

1) Convert 201 to binary (start with the highest possible power of 2). 

7 6 5 4201 128 64 8 1 1 2 1 2 0 2 0 2= + + + =  +  +  +  +  
3 2 1 0         +1 2 0 2 0 2 1 2 ; +  +  +   

 
 

( ), ,f x y z xyz xyz xyz xyz=      (PDNF). 

 

 

 

 

 

 

 

 

 

Section 7. Zhegalkin's algebra 

xyz f1 f2 

000 1  

001 0  

010 0  

011 1  

100 0  

101 0  

110 0  

111 1  

xyz f 

000 1 

001 1 

010 0 

011 0 

100 1 

101 0 

110 0 

111 1 
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An algebra   ( ), , ,0,1 0B   =  obtained on a set  0;1B =  together with operations 

,   (the sum modulo 2) and constants 0,1 is called the Zhegalkin's algebra.  

The sum modulo 2 is the remainder of dividing the sum of numbers by 2. The same 

operation is called XOR. The results of this operation are in the standard truth table. It 

is easy to remember if the same elements add up, the result of addition 0, if different 

elements are summed up, the result of addition 1.  

 In this algebra, each element is inverse to itself. For example, to solve an 

equation, it’s enough to add the same elements to both sides of the equation. 

0

      .x a b x a a b a x b a
=

 =    =   =   

Basic identities of Zhegalkin's algebra 

1. Commutative law 

       ,     .x y y x x y y x =   =   

2. Associative law 

      ( ) ( ) ( ) ( ),     .x y z x y z x y z x y z  =     =    

 

3. Distributive law 

      ( ) .x y z xy xz  =   

 

4. Law of Self-absorption 

      ,     0.x x x x x =  =  

 

5. Operations with 0 and 1 

      0 0,    1 ,     0 .x x x x x =  =  =  

 

 From the previous lecture, we know that any Boolean function can be 

represented using conjunction, disjunction, and negation operations. 

 For the Zhegalkin's algebra, it is necessary to express negation and disjunction 

in terms of conjunction and a sum modulo two. 
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1;x x=   

.x y xy x y =    

 

Among all equivalent images, functions in the Zhegalkin's algebra distinguish a 

special form of formulas - the Zhegalkin's polynomial. 

Тhe Zhegalkin's polynomial is a representation of a Boolean function in the form 

of a finite sum modulo two pairwise distinct elementary conjunctions on a set of 

variables  1 2, ,..., nx x x  and possibly one. 

 The number of variables in any elementary conjunction is its rank. The number 

of different elementary conjunctions is the length of the polynomial. 

 

Example 1. Depict the logical implication function as a Zhegalkin's polynomial 

( , ) .f x y x y= →  

1) Find PDNF 

0 0 0 1 1 0 1 1(0,0) (0,1) (1,0) (1,1)x y x y f x y f x y f x y f→ =    =  

,x y xy xy=    

( )( )1,0 0 .f =  

 

Simplify the formula using elementary transformations, we add the second term 

and form the brackets.  

( ) ( ) ( ) ( )xy xy xy xy xy xy xy xy x y y y x x   =    =    =  

;x y=   

( ) ( ) ( )1 1 1x y x y x y x y =   =     =  

1 1.xy y x y xy x=     =    

A Boolean function is called linear if its Zhegalkin's polynomial does not contain 

a conjunction of variables. 

Example 2. Investigate function linearity 

( ) ( ), , .f x y z x y z=  →  
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We use the known or found representations of functions through a polynomial 

( )1;  ;   1 ;x y x y xy x x y xy x y x x→ =  =    =   =   

( )
( )

( )
( )

( )
( )

( ) ( )
2 21

1 1 1x y z x y z x y xy x y z xy x y → =      =         =  

1 1.xyz xz yz xy x y xy x y xyz xz yz=          =     

 

Function is nonlinear. 

There are two convenient ways to construct Zhegalkin's polynomials. 

The first way: using the formula  

 

( ) ( )( ) ( )
( )1 2

1 2 1 1 2 2

, ,...,

, ,..., ... ;
n

n n nf x x x x x x
  

  =    

( )1 2, ,..., 1;nf    =  

( ) ( )( )( )
( )1 2 3

1 1 2 2 3 3

, ,

, , .f x y z x x x
  

  
 

= 






 


  

 

Expand the brackets and simplify the expression. 

 

The second way: the method of uncertain coefficients.  

We will search for the polynomial of the function ( ), ,f x y z  in the form 

 ( ) 0 1 2 3 4 5 6 7, , .f x y z a a x a y a z a xy a xz a yz a xyz= + + + + + + +  

Using the truth table, we substitute sets of variable values and function values into 

the last equality and subsequently find the indefinite coefficients. 

 

Example 3. It is required to find the Zhegalkin's polynomial in two ways. 

( ) ( ), , 00010101f x y z =  

 

xyz f 

000 0 

001 0 

010 0 
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1) ( ) ( ) ( )( )( ), , 1 0 1 0f x y z x yz x y z=        

     ( )( )( ) ( ) ( )0 0 0 1 1x y z x yz xz y xyz    =     =  

      ;xyz yz xyz xz xyz xz yz xyz=     =    

2) ( ) 0 1 2 3 4 5 6 7, , ;f x y z a a x a y a z a xy a xz a yz a xyz= + + + + + + +  

    ( )2 0 00,0,0 0    0;f a a= =  =  

     ( )2 0 3 3 30,0,1 0    0+ 0    0;f a a a a= + =  =  =  

     ( )2 0 2 2 20,1,0 0    0+ 0    0;f a a a a= + =  =  =  

      ( )2 0 2 3 6 6 60,1,1 1    0+0+0+ 1    1;f a a a a a a= + + + =  =  =  

     ( )2 0 1 1 11,0,0 0    0+ 0    0;f a a a a= + =  =  =  

     ( )2 0 1 3 5 5 51,0,1 1    0+0+0+ 1    1;f a a a a a a= + + + =  =  =  

                        ( )2 0 1 2 4 4 41,1,0 0    0+0+0+ 0    0;f a a a a a a= + + + =  =  =  

( )2 0 1 2 3 4 5 6 7 7 71,1,1 1  1+1+ 1  1;f a a a a a a a a a a= + + + + + + + =  =  =  

( ), , .f x y z xz yz xyz=    

 

Control questions 

 

TASK. Solve  problems yourself!  

 

It is required to find the Zhegalkin's polynomial in two ways: 

a) f(x,y,z)=(11101100)     b) f(x,y,z)=(10101101)     c) f(x,y,z)=(00101101).     

 

Section 8. Minimization of Boolean functions 

 

We give some more definitions that characterize the important properties of 

Boolean functions. 

A Boolean function is called zero preserving if ( )0,0,...,0 0f = . 

A Boolean function is called unit preserving if ( )1,1,...,1 1f = . 

 

Example 1. ( ), , .f x y z x yz=   

( )1,1,...,1 1f = , ( )1,1,...,1 1f =  ˗ unit preserving function. 

011 1 

100 0 

101 1 

110 0 

111 1 
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A Boolean function is called monotonic if, for any sets of variable values, such that 

the inequality holds for the values of the function. 

 

Example 2. ( ), .f x y x y=    

( ) ( ) ( ) ( )0,0 0,1 ;              0,0 0;              0,1 0;             0 0;f f = =   

( ) ( ) ( ) ( )0,0 1,0 ;              0, 0;              1,0 0;             0 0;1f f = =   

( ) ( ) ( ) ( )0,0 1,1 ;              0,0 0;               1,1 1;              0 1;f f = =   

( ) ( ) ( ) ( )0,1 1,1 ;               0,1 0;                1,1 1;              0 1;f f = =   

( ) ( ) ( ) ( )1,0 1,1 ;                1,0 0;                1,1 1;              0 1;f f = =   

This is monotonic function. 

 

Theorem 1 

A Boolean function other than zero and unity is monotonous only if it can be 

represented as a formula without negations. 

 

Example 3. ( ) ( ) ( ) ( )x y z t x y z t z txy →   ==   . 

Five sets of Boolean functions are called Post classes. 

0T  - class of functions that preserve zero; 

1T  - class of functions that preserve the unit; 

S  - class of self-dual functions; 

M - class of monotone functions; 

L  - class of linear functions. 

 

Criteria for the completeness of Post:  a system of Boolean functions is complete 

if it contains at least one function that does not preserve zero, at least one function that 

does not preserve unity, at least one non-self-dual function, at least one nonmonotonic 

and at least one nonlinear function. 
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The minimization task is to find the simplest formula in accordance with the 

selected minimization criterion (e.g. number of variables, number of operation 

characters). 

The problem of minimizing the number of symbols and operations on the sets of 

DNF and СNF is called the canonical problem of minimization. As a result, we obtain 

the minimum DNF and СNF. 

 

Definition 

An implicant of some function φ is a function µ such that on all interpretations, 

where φ = 1 and function µ = 1. 

Minterms of function, elementary conjunctions included in DNF are implicants of 

a function. 

 

Definition 

A set C is called a complete system of implicant functions if each unit value of a 

function corresponds to at least one unit from the set of implicants C. 

 

Definition 

A simple implicant function is called an elementary conjunction such that no 

eigenpart of it is an implicant of a given function. 

 

Definition 

The disjunction of all simple implicant functions is called the abbreviated 

disjunctive normal form. 

 

Definition 

A finite DNF is called a DNF Boolean function, which consists only of simple 

implicants (not necessarily all). 

The function has one abbreviated DNF and several finite.  
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Definition 

The minimum DNF is called one of the finite forms, which corresponds to the 

lowest value of the minimization criterion. 

The following operations are used to obtain many simple implicants. 

1. The operation of incomplete disjunctive bonding 

    xAAx x xA AA=   . 

2. Disjunctive absorption operation 

    A AAx = . 

3. Complete disjunctive bonding 

    Ax AAx = . 

 

Example 4. Let the function be given in the form of a perfect disjunctive normal 

formula ( ), ,f x y z xyz xyz xyz xyz=    . 

We complete the transformation, as a result of which we get two different finite 

(dead end) forms. One of them is minimal, as it contains the least number of variables 

and operations. 

1) ( ) ( ) ( ) ( ), ,f x y z xyz xyz xyz xyz xyz xyz=      =  

        
( ) ( ) ( )yz x x xz y y xy z z yz xz xy=      =  

 

 

2) ( ) ( ) ( ), ,f x y z xyz xyz xyz xyz yz xy=    =  . 

 

For the analysis of images of Boolean functions defined through СNF according to 

the duality principle, the concepts of implicent, abbreviated СNF, and minimal СNF 

are used. 

The last example shows that the use of elementary transformations is not always 

convenient, especially if the function is represented by a more complex formula. 

Next, we consider the graphical method of minimizing functions.  

This is the method of Carnot cards and Veitch diagrams. 
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In Carnot cards, the values of the variables are located in the row and column 

headings. Еach minterm corresponds to one cell of the table. Zero or one means the 

value of the function in this interpretation. The values of the variables are arranged so 

that adjacent rows or columns of the table differ in the value of only one variable. 

Interpretation order for Carnot cards ( ) ( ) ( ) ( )0,0 ,  0,1 ,  1,1 ,  1,0 . 

 

     

 

 

 

 

In the future, the tables will be filled with ones and zeros. If the minterm and 

function are equal to unity, then one is written into the cell, in other cases zero. 

 

Example 5. Build a Carnot card for function  

( ), , .f x y z xyz xyz xyz xyz=     

 

 

 

 

 

After building the Carnot card, the bonding (combining) operation is performed. 

The bonding operation can only be carried out with neighboring cells. In the 

function table of two variables there are two neighboring cells, for the function of three 

variables - three cells and so on. 

 

 

 

 

 

   x 

y 
0 1 

0 x y  x y  

1 xy  xy  

     xy 

z 
00 01 11 10 

0 x yz  xyz  xyz  x yz  

1 x yz  xyz  xyz  x yz  

     xy 

z 
00 01 11 10 

0 1 0 0 0 

1 1 1 1 0 

    

 A   

    

   B 

C    

    

Fig.1. Carnot card structure for functions of two and three variables   

Fig.2. Carnot card for ( ), ,f x y z  

Fig.3. Neighboring cells for cells A and B 
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The fig.3 shows the options for neighboring cells for the function of three variables. 

 

The rule of bonding (combining) cells and recording minimal DNF.  

 

1. Build a Carnot card.  

 

2. Combine cells into groups (only adjacent cells with units). The group may include 

2n
 cells (2,4,8 ...). The group has a rectangular or square shape. 

 

3. The bonding task is to find a set of maximum groups. The number of groups in 

the set should be minimal. (The more units included in the group, the better. There 

should be as few groups as possible). 

 

4. Each Carnot card unit must be in at least one group. Units can be included in 

several groups to increase the size of these groups. 

 

5. Each group corresponds to that implicant, the real variables of which have the 

same values for all cells of the group. 

 

6. The disjunction obtained after bonding simple implicants is the minimum DNF 

(MDNF). 

 

A simple implicant or minterm of a function consists of all the variables on which 

the function depends. If there is a function of three variables, then each minterm is from 

a variable, etc. If the unit is a separate group, then the minterm does not change and the 

minimization problem is not solved. 

If the units can be combined into groups, then the number of variables in the 

minterm is reduced. A group of two units excludes one variable from minterm. A group 
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of four allows you to exclude two variables and so on. Therefore, the aim is to combine 

units into large groups, if this is possible. 

 

 

Example 6. Find MDNF for function ( ), , .f x y z xyz xyz xyz xyz=     

:  ,    : ;  A x y B yz  

( ): , , .MDNF f x y z xy yz=   

 

 

 

Example 7. Find MDNF for function ( ), , .f x y z xyz xyz xyz xyz=     

( ), , .f x y z A B C xyz yz xy=   =    

 

 

 

 
 

Example 8. Find MDNF for function  

( ), , .f x y z xyz xyz xyz xyz xyz xyz xyz=        

                  ( ), , .f x y z y z x=    

 

 

 

 

 
 

For a function of four variables, each cell has four neighboring cells. Neighboring 

are not only the leftmost and rightmost columns, but also the top and bottom rows. 

For a function of five variables, this is a two-layer Carnot card. Each layer is from 

the first four variables. The first layer contains all interpretations, where the fifth 

variable is equal to zero, and the second layer contains the fifth variable equal to one. 

For each cell, five neighboring ones - four on its layer, fifth on the second layer, 

provided that the cells coincide when layers are applied. 

 

     xy 

z 
00 01 11 10 

 0 1 0 0 0 

1 1 1 1 0 

     xy 

z 
00 01 11 10 

 0 0 1 1 0 

1 0 0 1 0 

     xy 

z 
00 01 11 10 

  0 1 1 1 1 

1 1 0 1 1 

A B 
 

A B C 

 

A 

B C 
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w=1 

Example 9. Build MDNF for function  

( ), , , .f x y z t xyzt xyzt xyzt xyzt xyzt xyzt xyzt xyzt=         

( ), , , .f x y z t yz yt xzt xyzt=     

 

 

 

 

 

 

 

 

Example 10. Build MDNF for function  

( ), , , ,f x y z t w xyztw xyztw xyztw xyztw xyztw xyztw xyztw=         

.x yztw x yztw x yz txy tw xyz w x yztw xz w yztt w        

 

 

 

 

 

 

 

 

 

 

To minimize on the set of conjunctive normal forms, Weich diagrams are used. 

Cells with interpretations equal to zero are marked on the cards. After gluing the cells 

form a minimal conjunctive normal form. The result of minimization is a conjunction 

of elementary disjunctions. 

 

Example 11. Build MDNF for function 

( ) ( ) ( ) ( ), , , ,f x y z t w x y z t w x y z t w x y z t w=                 

( ) ( ) ( )x y z t w x y z t w x y z t w                

     xy 

zt 
00 01 11 10 

00 1   1 

01 1   1 

11 1 1  1 

10   1  

     xy 

zt 
00 

01 
11 10 

00 1 1 1 1 

01     

11   1 1 

10   1 1 

     xy 

zt 
00 

01 
11 10 

00   1 1  

01     

11   1 1 

10   1 1 

A 

B 

C 

A 

D 

 

w=0 
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( ) ( ) ( )x y z t w x y z t w x y z t w                 

( ).x y z t w      

 

 

 

 

 

 

 

 

 

( ) ( ) ( ) ( ), , , ,f x y z t w A B C D y z t x z w y z t w=    =           

( ).x y t w      

 

If the function is partially defined, it is redefined so as to obtain the most 

economical minimal form. 

Example 12. Function ( ), , , 1f x y z t =  on sets ( ) ( )0,0,1,0 ,  0,1,1,0 ,     

( ) ( )1,0,1,0 ,  1,0,0,0  and not defined if 1xy = . Find MDNF. 

( ), , ,f x y z t zt xt=   

 

Example 13. Function ( ), , , 1f x y z t =  on sets ( ) ( )0,0,1,0 ,  0,1,1,0 ,     

( ) ( )1,0,1,0 ,  1,0,0,0  and not defined if 1xy = . Find MDNF. 

 

( ), , ,f x y z t zt xt=   

 

 

 

 

 

 

 

 

 

     xy 

zt 
00 01 11 10 

00 0   0 

01     

11 0 0   

10 0    0 0  

     xy 

zt 
00 01 11 10 

00 0   0 

01     

11     

10    0  

     xy 

zt 
00 01 11 10 

00   ˗ 1 

01   ˗  

11   ˗  

10 1 1 ˗ 1  
A 

B 

Carnot card for a partially defined 

function 

w=0 

A A 

B C 

 

w=1 

D 

A A D 
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Control questions 

1. What is the minimization criterion? 

2. What are the main goals of minimization? 

3. What is the meaning of minimization by the method of Carnot maps? 

4. What is the minimization algorithm according to the Carnot method? 

5. What is the difference between the Veitch diagram method and the Carnot 

method? 

 

Section 9. Logic circuits 

Logic circuits in computers and other electronic devices operate with sets of input 

and output data, which consist of zeros and ones. Boolean algebra and Boolean 

functions are the mathematical apparatus for working with such data and are used for 

the analysis and synthesis of logic circuits. The basis for constructing logic circuits is 

a set of logical elements. Each logic element implements some Boolean function. Its 

inputs correspond to Boolean variables, and the output corresponds to the value of the 

function. The most commonly used logical element symbols are shown in the table. 

 

Table 1. Basic logical elements 

Boolean function Logical element symbol 

1 2f x x=   
 

1 2f x x=   
 

f x=  
 

1 2f x x=   

(Schaeffer’s stroke) 

 

1 2f x x=   

(Pierce’s arrow) 

 

x1 

x2 
f 

x1 

x2 
f 

x f 

x1 

x2 
f 

x1 

x2 
f 
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1 2f x x=   

(XOR) 

 

 

A set of logical elements is complete if it can be used to implement any Boolean 

function. 

 

Example 1. Build a logical circuit that implements a function  

                                    

( ) ( ), , .f x y z x y z=   

 

 

Logical elements that depict operations with the properties of associativity and 

commutativity on the diagrams can be depicted with the number of inputs more than 

two. This means repeated use of this operation. For example, the disjunction of the 

three elements. 

 

                                                    
1 2 3y x x x=    

During the study of logical circuits, two main tasks arise: analysis and synthesis. 

The analysis of the logical circuit consists in constructing a Boolean function that this 

device implements. To do this, the output signal is determined on all data sets and a 

table of the truth of the function is compiled. Then the perfect disjunctive or 

conjunctive forms are built. On the other hand, by the appearance of the logical chain, 

you can first build the formula of the Boolean function, and then the truth table. 

The synthesis task consists in constructing a logical chain for a function that is 

given by a truth table or formula. The value of a logical chain is its simplicity. 

Therefore, before constructing a logical circuit, one should obtain a minimal form of a 

Boolean function. 

 

Example 2. Write a Boolean function in the form of a logical circuit. Build a 

minimal logic circuit. 

x 

z 

y 

y 

x 

z 
f(x,y,z) 

x1 

x2 
f 
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Build a true table of the function 

and it`s formula  

( )1 2 1 2 1,f x x x x x=   

 

 

 

 

 

We minimize the formula   ( )1 2 1 2,f x x x x=  . 

 

 

 

 

 

One element abbreviated. 

 

Control questions 

 

1. In what tasks is it convenient to use logical schemes? 

2. How is the transition from the Boolean algebra formula to the logical scheme 

performed? 

Section 10. Graph Theory. Key Definitions 

 

It is customary to connect the emergence of graph theory as a mathematical 

discipline with the work of L. Euler, in which he solves the problem of Keniksburg 

bridges.  

x1 x2 f 

0 0 1 

0 1 1 

1 0 0 

1 1 1 

     x1 

x2 

0 
1 

0 1 0 

1 1 1 

0001 

x2   0101 

x1   0011 1100 

f(x1,x2) 

f(x1,x2) 
x1  

x2 
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Is it possible to take a walk, going through each one time and return to the starting 

point? With this arrangement, there are no positive solutions. 

In the 19th century, Kirchhoff studied electrical circuits and separately studied the 

topological structure, which is now called the circuit graph. The traveling salesman 

task, in which it is required to visit all points, does not always have a solution. The task 

of the four colors is to colorize the geographical map so that any two neighboring 

countries are painted in different colors. (Proven using computer only). 

 

A graph (oriented graph) is a pair of sets. Elements of the first set are points 

called vertices. The elements of the second set are disordered (ordered) pairs of vertices 

called edges (arcs). 

The set X together with the binary relation U on this set is called the graph  

( , )G X U= . 

If the points  ,i jx x  are connected by an arc, then they are called adjacent. 

If  i j=  then the arc ( ,i jx x ) is called a loop. An edge ( ,i jx x ) is called incidental 

vertices 
ix   and jx  . The number of edges incidental to some vertex is called the degree 

of the vertex. (The loop is counted twice). A vertex of degree 0 is called isolated, of 

degree 1 - hanging. A graph that does not have parallel (multiple) edges and loops is 

called simple, otherwise a multigraph. The oriented graph indicates the direction.   
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A graph consisting only of isolated vertices is called a null graph or an empty graph. 

For a directed graph, indicate the number of arcs at this vertex and the number of arcs 

at a vertex (half degree of entry and exit).  

A sequence of vertices of a graph is called a route (chain) if any two neighboring 

vertices in this sequence are adjacent. The length of the route is equal to the number of 

edges that make up it. 

A simple chain is a route that contains all the different edges. If all the vertices in 

the route are different, it is called an elementary chain. A route whose first and last 

vertices coincide is called a cycle. Like chains, there are simple and elementary cycles. 

Consider the following routes.  

 

Non-simple non-elementary chain  

1 1 4 5 6 4 3 2U U U U U U U = . 

Simple elementary chain  

1 1 2 3 5U U U U = . 

Simple cycle  
1 2 3 4U U U = . 

 

Length of these routes  ( ) ( ) ( )1 2 37,   4,   3l l l  = = = . 

For directed graph 

 

 

Non-simple non-elementary path 1 1 3 4 5 6 4 5 7 2 8U U U U U U U U U U = . 

Simple way 1 1 3 4 5 7 2 8U U U U U U U = . 

x6 

x1 x2 x3 x7 U1 U2 U8 
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Simple elementary cycle 
1 3 4 5 7U U U U = . 

Length of these routes  ( ) ( ) ( )1 2 310,   7,   4l l l  = = = . 

A subgraph 
1 1 1( , )G X U=  of a graph  ( , )G X U=  is a graph whose sets of vertices 

and arcs are subsets of the sets of vertices and arcs of the original graph 

1X X ;                          
1U U . 

A partial graph  
2 2 2( , )G X U=   of a graph  ( , )G X U=  is a graph whose vertices 

coincide with the vertices of the graph, but some arcs are excluded. 

 

 

 

 

 

 

 

 

 

 

 

 

A graph is called connected if there is a path connecting any two of its vertices. 

The maximum subgraph of this graph in terms of incoming components is called its 

connected component. A connected graph consists of a single connected component. 

A disconnected graph with n vertices can contain from two to n connected components. 

 

 

 

 

 

 

G 

G1
(1) 

G1 

G2 

2 components 5 components 
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Two graphs are called isomorphic if they have the same number of vertices and 

arcs. As soon as the vertices of the first graph are connected, the corresponding pair of 

vertices of the second graph is connected immediately and vice versa. 

 

 

 

 

 

G H  

 

Assigning graphs methods:   

1) the graph can be specified by a list of edges; 

2) using an adjacency matrix or an incident matrix. 

 

For a graph with n vertices, the adjacency matrix is a square matrix A of order n. 

An element of a is equal to k if there exist k edges (arcs) that connect the vertex 
ix  

with the vertex jx . The element of the matrix is zero if there is no such connecting arc. 

       

  

0 1 1 0 1

1 0 2 0 0

1 2 0 1 1

0 0 1 0 1

1 0 1 1 0

A

 
 
 
 =
 
 
 
 

 

 

Matrix Properties 

1. For an undirected graph, the matrix is symmetric with respect to the main 

diagonal. 

 

G 
x1 

x2 x3 

x4 H 

x1 

x2 

x3 

x4 

x1 

x2 

x3 

x4 

x5 
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2. The sum of the elements of the row (or column) is equal to the degree of the 

vertex 
ix . 

 

3. If the adjacency matrix of the oriented graph is transposed (swapping rows and 

columns), we obtain the adjacency matrix of the graph with the opposite 

orientation of the arcs. 

 

Theorem 

If an adjacency matrix A is constructed for a directed graph, then the matrix P A=  

element ijp  is equal to the number of different paths of length   from 
ix  to jx . 

Let a digraph have n vertices and m arcs. 

The incidence matrix of arcs of a directed graph is the matrix B of dimension nxm, 

whose elements are:  

+1  if there is an arc emerging from the vertex;  

-1  if the arc enters the vertex;  

0   if the arc is not incident to the vertex. 

For an undirected graph, the values in matrix 1 if the edge is incidental to the vertex 

or 0 if the edge is not incidental. 

 

 

    

1 1 0 0 0 1 0 0

1 0 1 1 0 0 0 0

0 1 0 1 1 0 1 0

0 0 0 0 0 0 1 1

0 0 1 0 1 1 0 1

B

 
 
−
 
 = − − −
 

− − 
 − − 

 

 

The matrix of cycles is the matrix C in which each simple cycle corresponds to a 

row, and to each edge - a column. The element of the matrix is 1, if the edge jU  enters 

the cycle i , 0 if the edge jU  does not enter the cycle j  

x1 x2 

x3 

x4 

x5 

U1 

U2 

U3 

U4

 

U5 

U6 

U7 U8 
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( )1 1 2 3, ,U U U = ;          ( )2 2 4 5 6, , ,U U U U = ; 

( )3 6 7 8, ,U U U = ;         ( )4 1 3 4 5 6, , , ,U U U U U = ; 

( )5 2 4 5 8 7, , , ,U U U U U = ;  

( )6 1 3 4 5 8 7, , , , ,U U U U U U = . 

 

 

 

1 1 1 0 0 0 0 0

0 1 0 1 1 1 0 0

0 0 0 0 0 1 1 1

1 0 1 1 1 1 0 0

0 1 0 1 1 0 1 1

1 0 1 1 1 0 1 1

C

 
 
 
 

=  
 
 
 
 

. 

 

 

Example 1. Find the degree of the vertices of an undirected graph. Build adjacency 

matrix and incidence matrix. 

 

1) 
1 2 3deg 4,   deg 2,   deg 3,x x x= = =  

              
4 5 6deg 3,   deg 3,   deg 2,x x x= = =  

              
7deg 5;x =  

2) 

0 1 0 0 0 1 2

1 0 1 0 0 0 0

0 1 0 1 0 0 1

0 0 1 0 1 0 1

0 0 0 1 0 1 1

1 0 0 0 1 0 0

2 0 1 1 1 0 0

A

 
 
 
 
 

=  
 
 
 
 
 

; 

U1 

U2 

U4

 

U5 

U6 

U7 

U8 
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x4 

x6 

x7 

U7 

U2 
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U6 

U1 

U8 

U9 U10 
U11 x5 
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3) 

        
1 2 3 4 5 6 7 8 9 10 11

1

2

3

4

5

6

7

1 1 0 0 0 0 1 1 0 0 0

1 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 0 0 1 0 0

0 0 0 1 1 0 0 0 0 0 1

0 0 1 1 0 0 0 0 0 1 0

0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 1 1 1

U U U U U U U U U U U

x

x

x
B

x

x

x

x

 
 
 
 

=  
 
 
 
 
 
 

 

Each edge connects two vertices of the graph. 

 

Example 2. Build adjacency matrix and incidence matrix for the directed graph. 

 

 

1 0 1 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1

0 0 0 1 1 0 0

0 0 0 0 0 0 0

A

 
 
 
 
 

=  
 
 
 
 
 

; 

 

 

 

1   1   0   0   0   0   0   0   0

  0   0   1   0   0   0   0   0   0

  0 1 1   1   1   0   0   0   0

  0   0   0 1   0 1   1   0   0

  0   0   0   0   0   0 1 1   1

  0   0   0   0 1   1   0   1   0

  0   0   0   0   0   0   0   0 1

B

 
 
 
 − −
 

= − − 
 − −


−
 − 





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The arc leaves the top and enters the top. 

Example 3. The inverse problem. By the type of matrix, restore the graph. 

1) If the matrix A is symmetric, then the desired graph is undirected. 

2) If the matrix B contains plus and minus one, then the graph is oriented. 

 

0 1 0 0 1 0 1

1 0 1 0 0 0 0

0 1 0 1 0 0 1

0 0 0 0 0 1 1

0 0 0 0 0 1 1

0 0 0 1 1 0 0

1 0 1 1 1 0 0

A

 
 
 
 
 

=  
 
 
 
 
 

                                                                                                              

 

 

 

 

 

 

 
 
 

  0 1   1   1   0   0

  0   0   0 1 1   1

  1   0   0   0   0 1

1   1 1   0   0   0

B

− 
 

− 
 =
 −
 
− − 

 

 

 

 

Control questions 

1. What is a graph? What are the types of graphs? 

2. What types of routes exist in graphs? 

3. What are the ways to assign graphs? 

4. What is an adjacency matrix? 

5. What is an incidence matrix? 
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Section 11. The problem of finding the shortest path in a graph 

 

 Let each arc of the graph correspond to a certain number 0l   called the length 

of the arc. These are the so-called loaded or weighted graphs. Numbers can carry 

various information. This can be the length of the path, the throughput of the pipeline, 

various time indicators, etc.  

In such an oriented graph, the length of the path that connects the vertices 
0x  and     

z  is calculated by summing the lengths of all the arcs that make up the path. In this 

problem, you need to find the shortest path from point 
0x  to point 

9x . 

                  

To solve the problem, we will use one of the options of Dijkster’s algorithms. 

The method consists in assigning and changing vertex labels and choosing optimal 

results. 

1. At the first step, the starting point is the current one, it is assigned a label of 0, 

all other vertices are labeled  . 

 

2. In the next steps, labels are reassigned, the smaller the vertex label the better. 

 

 

Tags change according to the formula 

( ) ( ) ( ) ( ) min  , ,i i current current ix x x l x x  = + . 

10 
9 
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6 

3 
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The next current point is the one with the smallest label. It can be shaded. 

In our diagram, we can move from the current point to points. The labels of these 

points vary. Other tags  . 

( ) ( ) ( ) ( )   1 1 0 0 1min , , min ,0 5 5x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   2 2 0 0 1min , , min ,0 2 2x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   3 3 0 0 3min , , min ,0 8 8x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   4 4 0 0 4min , , min ,0x x x l x x  = + =  + = ; 

……………………………………………………………… 

 

Next current point 
2x . Change labels again where possible. 

( ) ( ) ( ) ( )   1 1 2 2 1min , , min 5,2 3 5x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   3 3 2 2 3min , , min 8,2 7 8x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   4 4 2 2 4min , , min ,2x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   5 5 2 2 5min , , min ,2 14 16x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   6 6 2 2 6min , , min ,2 1 3x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   7 7 2 2 7min , , min ,2 7 9x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   8 8 2 2 8min , , min ,x x x l x x  = + =   = ; 

( ) ( ) ( ) ( )   9 9 2 2 9min , , min ,x x x l x x  = + =   = ; 

 min 5,8,16,3,9, 3 = . We will paint 
6x .                                               ( )6 3x =  

 

Next current point 
6x .  

( ) ( ) ( ) ( )   1 1 6 6 1min , , min 5,3 5x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   3 3 6 6 3min , , min 8,3 8x x x l x x  = + = + = ; 
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( ) ( ) ( ) ( )   4 4 6 6 4min , , min ,3x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   5 5 6 6 5min , , min 16,3 3 6x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   7 7 6 6 7min , , min 9,3 12 9x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   8 8 6 6 8min , , min ,3x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   9 9 6 6 9min , , min ,x x x l x x  = + =   = ; 

 min 5,8,6,9, 5 = . We will paint 
1x .                                                       ( )1 5x =  

 

Next current point 
1x .  

( ) ( ) ( ) ( )   3 3 1 1 3min , , min 8,5 8x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   4 4 1 1 4min , , min ,5x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   5 5 1 1 5min , , min 6,5 6x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   7 7 1 1 7min , , min 9,5 6 9x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   8 8 1 1 8min , , min ,5x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   9 9 1 1 9min , , min ,5x x x l x x  = + =  + = ; 

 min , ,6,9, , 6    = . We will paint 
5x .                                                           ( )5 6x =  

 

Next current point 
5x .  

( ) ( ) ( ) ( )   3 3 5 5 3min , , min 8,6 1 7x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   4 4 5 5 4min , , min ,6 6 12x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   7 7 5 5 7min , , min 9,6 9 9x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   8 8 5 5 8min , , min ,6 8 14x x x l x x  = + =  + = ; 

( ) ( ) ( ) ( )   9 9 5 5 9min , , min ,6x x x l x x  = + =  + = ; 

59



60 

 min 7,12,9,14, 7 = . We will paint 
3x .                                                       ( )3 7x =  

 

Next current point 
3x .  

( ) ( ) ( ) ( )   4 4 3 3 4min , , min 12,7 2 9x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   7 7 3 3 7min , , min 9, 9x x x l x x  = + =  = ; 

( ) ( ) ( ) ( )   8 8 3 3 8min , , min 14,7 14x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   9 9 3 3 9min , , min ,7x x x l x x  = + =  + = ; 

 min 9,9,14, 9 = . We will paint 
4x .                                                       ( )4 7x =  

 

Next current point 
4x .  

( ) ( ) ( ) ( )   7 7 4 4 7min , , min 9, 9x x x l x x  = + =  = ; 

( ) ( ) ( ) ( )   8 8 4 4 8min , , min 14,9 2 11x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   9 9 4 4 9min , , min ,9 12 21x x x l x x  = + =  + = ; 

 min 9,11,21 9= . We will paint 
7x .                                                       ( )7 9x =  

 

Next current point 
7x .  

( ) ( ) ( ) ( )   8 8 7 7 8min , , min 11,9 10 11x x x l x x  = + = + = ; 

( ) ( ) ( ) ( )   9 9 7 7 9 20min , , min 21,9 11x x x l x x  = + = + = ; 

 min 11,20 11= . We will paint 
8x .                                                       ( )8 11x =  

 

Next current point 
8x .  

( ) ( ) ( ) ( )   9 9 8 8 9min , , min ,11 3 1420x x x l x x  = + = + = ; 
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( ) ( )9 7 14 9 5 11x x − = − =  ; 

( ) ( )9 8 14 11 3x x l − = − = = ; 

( ) ( )8 7 11 9 2 10x x − = − =  ; 

( ) ( )8 4 11 9 2x x − = − = ; 

………………………………… 

( ) ( )3 5 1x x − = ; 

( ) ( )5 6 3x x − = . 

The label of the last vertex is equal to the length of the shortest path. To specify 

this path exactly (especially of you worked with a large graph), you must return from 

the endpoint to the starting one. 

The return occurs along the current points (they are filled). In this case, the 

following condition must be fulfilled: 

( ) ( )1 1( , )N N N Nx x l x x  − −− = . 

The difference between the labels of these points must coincide with the length of 

arc between them. 

 

Control questions 

 

1. What is the main idea of Dijkster's algorithm? 

2. What formula exists for choosing the shortest path? 

3. What is the shortest path? 

 

Section 12. The trees. Definitions and properties 

 

In graph theory, a tree is an undirected graph in which any two vertices are 

connected by exactly one path, or equivalently a connected acyclic undirected 

graph. A forest is an undirected graph in which any two vertices are connected by at 
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most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint 

union of trees.  

The various kinds of data structures referred to as trees in computer 

science have underlying graphs that are trees in graph theory, although such data 

structures are generally rooted trees.  

               

                                               

  

 

Trees 

The tree is an undirected graph G  that satisfies any of the following equivalent 

conditions: 

• G  is connected and acyclic (contains no cycles). 

• G  is acyclic, and a simple cycle is formed if any edge is added to G . 

• G  is connected, but would become disconnected if any single edge is         

removed from G . 

• G  is connected and the 3-vertex complete graph 3K  is not a minor of G . 

• Any two vertices in G  can be connected by a unique simple path. 

If G  has finitely many vertices, say n  of them, then the above statements are also 

equivalent to any of the following conditions: 

• G  is connected and has n  − 1 edges. 

• G  is connected, and every subgraph of G  includes at least one vertex with 

zero or one incident edges. (That is, G  is connected and 1-degenerate.) 

• G  has no simple cycles and has n  − 1 edges. 
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As elsewhere in graph theory, the order-zero graph (graph with no vertices) is 

generally not considered to be a tree: while it is vacuously connected as a graph (any 

two vertices can be connected by a path), it is not 0-connected (or even (−1)-connected) 

in algebraic topology, unlike non-empty trees, and violates the "one more vertex than 

edges" relation. It may, however, be considered as a forest consisting of zero trees. 

An internal vertex (or inner vertex or branch vertex) is a vertex of degree at 

least 2. Similarly, an external vertex (or outer vertex, terminal vertex or leaf) is a 

vertex of degree 1. 

An irreducible tree (or series-reduced tree) is a tree in which there is no vertex of 

degree 2.  

 

The Forest 

A forest is an undirected graph in which any two vertices are connected by at most 

one path. Equivalently, a forest is an undirected acyclic graph. Equivalently, a forest is 

an undirected graph, all of whose connected components are trees; in other words, the 

graph consists of a disjoint union of trees. As special cases, the order-zero graph (a 

forest consisting of zero trees), a single tree, and edgeless graph, are examples of 

forests.  

 

The Polytree 

A polytree (or directed tree or oriented tree or singly connected network) is 

a directed acyclic graph (DAG) whose underlying undirected graph is a tree. In other 

words, if we replace its directed edges with undirected edges, we obtain an undirected 

graph that is both connected and acyclic. 

Some authors restrict the phrase "directed tree" to the case where the edges are all 

directed towards a particular vertex, or all directed away from a particular vertex 

(see arborescence). 
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The Rooted tree 

A rooted tree is a tree in which one vertex has been designated the root. The edges 

of a rooted tree can be assigned a natural orientation, either away from or towards the 

root, in which case the structure becomes a directed rooted tree. When a directed 

rooted tree has an orientation away from the root, it is called an arborescence or out-

tree; when it has an orientation towards the root, it is called an  anti-

arborescence or in-tree.  

In a context where trees are supposed to have a root, a tree without any designated 

root is called a free tree. 

A labeled tree is a tree in which each vertex is given a unique label. The vertices 

of a labeled tree on n vertices are typically given the labels 1, 2, ..., n. A recursive 

tree is a labeled rooted tree where the vertex labels respect the tree order (i.e., 

if u < v for two vertices u and v, then the label of u is smaller than the label of v). 

In a rooted tree, the parent of a vertex v is the vertex connected to v on the path to 

the root; every vertex has a unique parent except the root which has no 

parent.  A child of a vertex v is a vertex of which v is the parent.  

The number of different trees that can be built on n numbered vertices is calculated 

by the Cayley's formula  
2nN n −= . 

A tree can be encoded in sets of zeros and ones. Consider a tree on a plane. Starting 

at some vertex, we move along the edges of the tree. We turn at each vertex to the edge 

nearest to the right and turn back at the end vertices of the tree. 

We write 0 when moving along the edge for the first time and 1 when moving along 

the edge for the second time (in the opposite direction). If m is the number of edges of 

the tree, then after 2m steps we return to the starting point, passing twice along each 

edge. The resulting sequence of 0 and 1 (tree code) of length 2m allows you to restore 

not only the tree itself, but also its location on the plane. An arbitrary tree corresponds 

to several such codes. The frame (skeleton) of a connected graph G  is any subgraph 

of it that contains all the vertices of G  and is a tree. 
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We denote by M the matrix with elements m obtained from the adjacency matrix 

A of the graph by replacing the signs of all elements with opposite signs. Elements of 

the main diagonal are replaced by the degrees of the corresponding vertices. 

( ),  if ,   element adjacyncy matrix A

deg ,  if .

ij ij

ij

ii

a i j a
m

x i j

−  −
= 

=
 

 

The Matrix Tree Theorem 

Let G   be a connected graph without loops and multiple edges. Then all algebraic 

additions to the elements of the matrix M  will be equal to each other and their common 

value gives the number of frames (skeletons) of the graph G .  

Example 1. Find the number of skeletons (frames) in the graph 

 

  Adjacency matrix:  

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

A

 
 
 =
 
 
 

,  

3 1 1 1

1 2 1 0

1 1 3 1

1 0 1 2

M

− − − 
 
− −
 =
 − − −
 
− − 

. 
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Fig 2. Sceletons 

65



66 

Find the algebraic complement (or addition) to the element 23m . This is a minor 

given the sign.  

( ) ( )
2 3

23

3 1 1

1 1 1 1 6 6 1 1 2 8

1 0 2

M
+

− −

= − − − − = − − − + − =

−

. 

 

 

 

The shortest tree problem 

Let several cities are connected by airlines. It is required to choose a route so that 

from any city you can get to another (with transfers) by the shortest path. 

The shortest graph tree search algorithm 

1. Select the shortest edge in the graph. 

 

2. At each next stage, construct a part of the tree by adding the shortest edge from 

those that remained in the graph. Moreover, cycles should not form. Еdges with 

the same minimum lengths are all included in the tree, except for those that form 

cycles. 

 

3. After the n-1 step, the process ends. (n is the number of vertices in the graph). 

As a result, we get a tree that does not contain cycles and has n -1 edges. 

Еxample 1: 
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1) ( )5 6,x x ˗ Choose the shortest 

edge. 

2) ( )7 8,x x  ˗ Next shortest edge. 

3) ( )6 7,x x ˗ Next shortest edge. 

4) ( )3 7,x x  

5) ( )5 9,x x  

6) ( )6 9,x x ˗ We don’t select, as it 

forms cycle. 

7) ( )3 6,x x   ˗ We don’t select, as it 

forms cycle. 

8) ( )2 5,x x  

9) ( )7 10,x x  

10) ( )4 8,x x  

11) ( )8 10,x x  

 

The shortest tree 

 

It’s length is 1+2+3+4+5+8+9+10+13=55. 

 

The Euler path is a march in an undirected graph that passes once along all edges 

of the graph. If such a closed route it is called the Eulerian cycle. A graph in which 

there is an Eulerian cycle is called an Eulerian graph. 

Theorem. In order for a finite connected graph to have an Euler cycle, it is 

necessary and sufficient that the degrees of all its vertices are even. 
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The Hamiltonian path in a graph is a route that crosses each vertex of the graph 

only once. If the path is closed, then this is a Hamiltonian cycle. A graph in which there 

is such a cycle is called a Hamiltonian graph. There is no general criterion for 

determining a Hamiltonian graph. 

 

The task of building a single wireframe (skeleton) tree is one of the most important 

in practice. At the same time, this is the simplest task for algorithmization and computer 

implementation. The most famous algorithm is depth-first search (it has linear 

complexity cn). The algorithm goes through all the edges of the graph and all its 

vertices one by one. The next algorithm is Breadth First Search. At each current vertex, 

all incident edges and their end vertices are considered. (environment of the current 

vertex) For a weighted or loaded graph, the problem of finding the skeleton of the least 

weight is relevant. Such a task is encountered in the design of computer and cable 

networks, pipelines, roads, etc. If a connected graph is close to a complete graph 

(contains all possible edges and loops), then the number of skeleton trees is equal to nn-

2 and direct enumeration of all possible trees and their weights has a very large amount 

of computations (for n  = 22, the number of skeletons is more than 2510 ) 

There are several efficient classical algorithms. For example, J. Kruskal's 

algorithm. The idea behind the method is that at each step, the shortest edge (with the 

least weight) is selected, which does not form a cycle with the previous edges. 

 

First of all, the traveling salesman problem is associated with the concept of the 

Hamiltonian graph. The general task of a traveling salesman is as follows: using a 

given system of roads to visit all points or cities in such a sequence that the route 

traveled is the shortest. In the language of graph theory, such a problem is posed as 

follows: in a loaded connected graph, find the shortest route that passes through all the 

vertices of the graph. An additional condition for a closed route is possible. This 

general traveling salesman problem always has a solution. 

 There is one more formulation of the previous problem, in which it is 

additionally required that the salesman visits each point only once. 
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 This is the Hamiltonian traveling salesman problem. She doesn't always have 

a solution. The same problems can be formulated for directed graphs. The 

computational complexity of such tasks is very high, it is on the order of (n-1)! 

The exact algorithms that guarantee getting the salesman's route in any case are 

complex and apply to small graphs. Approximation algorithms are applied to large 

graphs. However, they can lead to a sub-optimal route. 

 

Control questions 

 

1. Which graph is called a tree? 

2. What does the matrix tree theorem calculate? 

3. Which graphs are called Eulerian or Hamiltonian? 

4. Specify one of the methods of finding the shortest tree in a graph? 

 

Section 13. Some applications of  the graph theory 

13.1. The traveling salesman problem (TSP) is an algorithmic 

problem tasked with finding the shortest route between a set of points and locations 

that must be visited. In the problem statement, the points are the cities a salesperson 

might visit. The salesman‘s goal is to keep both the travel costs and the distance 

traveled as low as possible. 

Focused on optimization, TSP is often used in computer science to find the most 

efficient route for data to travel between various nodes. Applications include 

identifying network or hardware optimization methods.  It was first described by Irish 

mathematician W.R. Hamilton and British mathematician Thomas Kirkman in the 

1800s through the creation of a game that was solvable by finding a Hamilton cycle, 

which is a non-overlapping path between all nodes. 
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TSP has been studied for decades and several solutions have been theorized. The 

simplest solution is to try all possibilities, but this is also the most time consuming and 

expensive method. Many solutions use heuristics, which provides probability 

outcomes. However, the results are approximate and not always optimal. Other 

solutions include branch and bound, Monte Carlo and Las Vegas algorithms. 

Rather than focus on finding the most effective route, TSP is often concerned with 

finding the cheapest solution. In TSPs, the large amount of variables creates a challenge 

when finding the shortest route, which makes approximate, fast and cheap solutions all 

the more attractive.  

 

Routing a package-carrying van to your doorstep is a classic example of the 

traveling salesman problem. Few companies know more about this than Amazon. Tens 

of thousands of their drivers hit the road every day, each taking a Prime van in a TSP 

tour through 150 or more customer stops, starting and ending at a depot station. And 

behind the scenes an Amazon research division is constantly looking for ways to 

improve the efficiency and safety of their routes. The last mile in package delivery. 

 

13.2. The transport network. The transport network, or the transportation 

network is a network or graph in geographic space, describing an infrastructure that 

permits and constrains movement or flow. Examples include but are not limited to road 

networks, railways, air routes, pipelines, aqueducts, and power lines. 
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The basic definitions  

A network is  

• a connected directed graph without loops.  

Denote network by ( ),G X U , where  

X  – the set of vertices,  

U  – the set of arcs. 

• there is only one vertex with zero number of arcs entering it. This vertex is called 

the source. 

• there is only one vertex z with zero number of arcs leaving it. This vertex is 

called the sink. 

 

 

Each arc u U  is supplied with the nonnegative real number ( )C u , called the 

capacity of the arc.  

The vertex 0ix x ; ix z  is called the internal vertices.  

The flow in the arc is a function ( )u . 

 

Properties of the flow ( )u :  

1. ( ) ( )0 u C u  ; 

2. ( ) ( )
x xu U u U

u u 
− + 

=  , 0x x ; x z ; 
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where xU −
  the set of arcs, entering the vertex x ; xU +

 the set of arcs, leaving the 

vertex x . 

A flow in the arc u  can be considered as the velocity in which material is 

transported through the arc u , so material is not accumulated in vertices of the 

network.  

Therefore the amount of the material, that is transported from the source is 

equal to the sum amount of the material, that is transported into the sink.  

3. ( ) ( )
x x

z

u U u U

u u  
+ − 

= =  , 

where ( )u  corresponds to the value of a flow in the network.  

 

Let’s consider the task:  

A  – an arbitrary set of vertices 0x A  and z A ;  

A– complement of set A , z A , but 0x A  

AU −
 – the set of arcs, entering to the set A ; 

 AU +
 – the set of arcs, leaving to the set A .  

The set AU −
 is called a cut of a network. A cut contains arcs that terminate in 

the set A  or ordinate in the set A . 

 

Example: 

 2,A x z= ,  0 1 3, ,A x x x=  a cut ( ) ( ) ( ) 1 3 0 2, , , , ,AU x z x z x x− = . 
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4.  ( ) ( )
x x

z

u U u U

u u  
+ − 

= −  . The capacity of the cut is the sum of arcs capacities, 

belonging to this cut.  

5.  ( )z C A  , where ( )C A  – capacity of the cut A . The value of a flow in the 

network is not grater than the capacity of any cut.  

 

 

The Ford-and-Falkerson theorem  

Let’s value of network flow z  and capacity of cut V  such equality ( )z C V =  is 

true: then z  is the maximal flow that can be passed through the network and V  has 

the minimal capacity from all the cuts in this network.  

Then V  is called the minimal cut.  

An arc u u is called saturated if ( ) ( )u C u = . 

An arc u  is called empty if ( ) 0u = . 

An arc u  is called busy if  ( ) 0u  . 

 

The algorithm consists of two stages:  

Ι ˗  Find some complete flow;  

ΙΙ ˗ Evaluation maximal flow by given labels to the network vertices.  

Let z  be some flow distributed of an arcs of a network. Find the complete flow 

when every path from 0x  to z  contains at least one saturated arc.  
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Stage Ι (Ford-and-Falkerson algorithm) 

 Step 1. Let   is difference between the capacity 

of each arc and the flow in this arc.  

1= . Arcs ( )1 4,x x  and ( )4 ,x z  are    saturated.  

1 0 1 4:  , , ,x x x z ;      12z =  

 

Step 2. 1= . Arc ( )1 2,x x  is saturated.  

2 0 1 2 3:  , , , ,x x x x z ;     13z =  

 

 

 

 

Step 3. 1= . Arc ( )2 3,x x  is saturated.  

3 0 2 3:  , , ,x x x z ;     14z =  
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Step 4. 1= . Arc ( )0 3,x x  is saturated.    

4 0 3:  , ,x x z ;     15z =   corresponds to the 

complete flow, because each path from 0x  to z  

contains at least one saturated arc.  

 

 

Stage ΙΙ  (The process of labeling)  

The process of increasing the flow u  consists in labeling the vertices of the 

network by indexes, that indicate the path where can be changed. If such label can 

reach the sink z  that the flow u  can be increased. After this vertices are labeled again.  

 

Algorithm of labeling vertices  

1.  0 0x   label;  

2. Labeling vertex.  

If  ix  has already a label then the label  i+  assign to all unlabeling ajacence to 

0x  vertices when the flow zf  pass through the unbusy arc and the direction of the flow 

zf  coincide with the direction of the considered arc. The label  i−  assign to all 

unlabeling vertices that are connected with ix  by busy arc with head in ix .  

3. If the process of labeling vertices reaches the vertex z  then go to the step 4 

else the flow, received on to the previous step was the maximal value.  

4. Exists 0x z−  path   with distinct vertices labeled (accurate to the sign) with 

the number of previous vertices. Path   is built, starting form the vertex z .  

The flow of the arc u  corresponds to:  

,  

1,       ( )       

1,        ( )       

u

u u

u

if u

if the direction of the flow f u and the direction of arc u coincide

if the direction of the flow f u and the direction of arc u opposite

 

 






 = +
 −

 

1u u  = +  a new flow is received.  
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Go to the step 1.  

 

The sink z was labeled.  

There is a path : 0 2 3 4, , , ,x x x x z  where 

 the flow can be increased.  

 

 

Increase the flow in such arcs:  

( ) ( ) ( )0 2 4 3 3, , , , ,x x x x x z  by one.  

Decrease the flow in the arc ( )4 2,x x  by one.  

There is a path 4 0 2 4 3:  , , , ,x x x x z  

where the flow can be increased.  

Permits the flow u φu is increased in arcs  

( ) ( ) ( ) ( )0 1 1 2 4 3 3, , , , , , ,x x x x x x x z  and is decreased in ( )4 2,x x . 

The vertex z  is not labeled then the flow received at the previous step was 

the maximal.  16z =  – maximal flow. 
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