5. ПРИМЕРЫ РАСЧЕТА КОНСТРУКЦИЙ НА ВЕСОМОМ ГРУНТОВОМ ОСНОВАНИИ

В настоящем разделе представлены некоторые представляющие практический интерес примеры расчета конструкций на весомом грунтовом основании. Рассмотрены случаи водо – и неводонасыщенного грунтового основания.

Основной целью, которая преследовалась при написании настоящего раздела, являлась демонстрация возможностей изложенного в настоящей работе подхода к определению напряженно — деформированного состояния системы «весомое основание — фундамент (фундаменты) — надфундаментное строение».

Материалы исследований изложены в такой последовательности.

- 1. В разделе 5.1 изложены основные положения методики расчета конструкций на весомом (водо и неводонасыщенном) основании.
- 2. После этого были выполнены исследования напряженно деформированного состояния конструкции (рамы), расположенной на отдельно стоящих фундаментах.
- 3. Далее были выполнены исследования напряженно деформированного состояния плитных фундаментов.

5.1. МЕТОДИКА РАСЧЕТА КОНСТРУКЦИЙ НА ВЕСОМОМ (ВОДО – И НЕВОДОНАСЫЩЕННОМ) ОСНОВАНИИ.

В настоящем разделе изложена методика совместного расчета конструкций на весомом водо – и неводонасыщенном грунтовом основании.

- 1. Общие сведения и положения. Исходные данные.
- 1.1. Материал, из которого изготовлена конструкция, характеризуется плотностью ρ и упругими характеристиками E и ν , где E модуль упругости, а ν коэффициент Пуассона. В общем случае деформационные

свойства различных элементов надфундаментного строения могут отличаться друг от друга (например, если часть элементов конструкции выполнена из железобетона, а часть - из металла).

- 1.2. Основание характеризуется плотностью ρ упругими константами (модулем упругости Е и коэффициентом Пуассона ν) и реологическими свойствами коэффициентом консолидации Ск.
- 1.3. Если основание имеет слоистую текстуру (т.е. его свойства неоднородны по глубине), вместо фактических значений характеристик следует принимать их средневзвешенные значения, рассчитанные по формулам

$$v = \frac{\sum_{i=1}^{n} v_{i} \cdot h_{i}}{\sum_{i=1}^{n} h_{i}}; \quad E = \frac{\sum_{i=1}^{n} A_{i}}{\sum_{i=1}^{n} A_{i} / E_{i}}; \quad \rho = \frac{\sum_{i=1}^{n} A_{i}}{\sum_{i=1}^{n} A_{i} / \rho_{i}}; \quad K_{\Phi} = \frac{\sum_{i=1}^{n} h_{i}}{\sum_{i=1}^{n} h_{i} / K_{\Phi i}}, \quad (5.1.1)$$

где n - число грунтовых слоев в пределах сжимаемой толщи; A_i - среднее значение площади эпюры дополнительного давления в пределах i-того элементарного слоя толщиной h_i , рассчитанное в соответствии с рекомендациями СНиП 2.02.01-83, E_i , v_i , ρ_i и $K_{\phi i}$ - соответственно модуль общей деформации, коэффициент Пуассона , плотность и коэффициент фильтрации i – того элементарного слоя.

Если основание неоднородно в плане и по глубине, то средневзвешенные значения упругих констант следует определять на каждой расчетной вертикали.

2. Систему «основание – фундамент – сооружение» следует разбить на два суперэлемента, первым из которых являются фундаменты с надфундаментным строением, а вторым – основание (рис. 5.1.1).

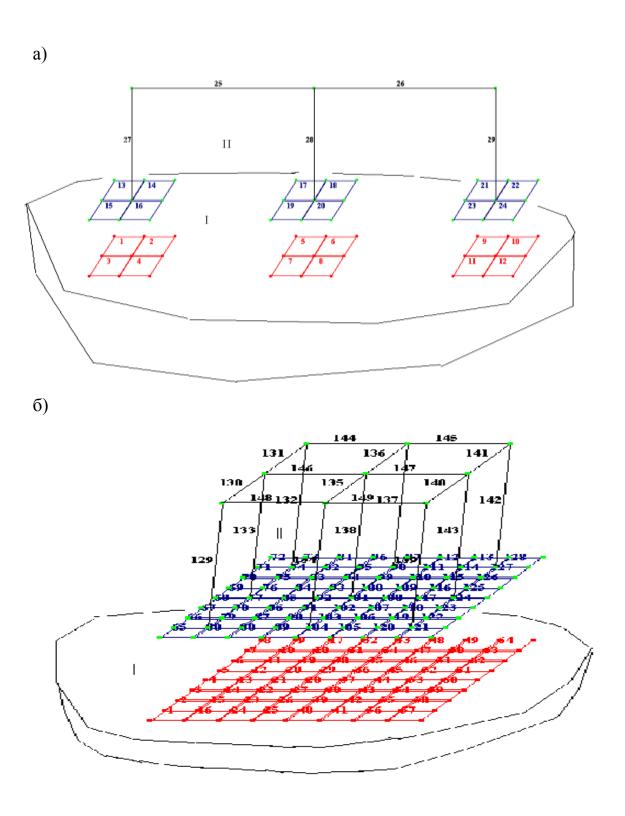


Рис. 5.1.1. Конечно – и гранично элементная дискретизация фундаментов и основания.

а – здания на отдельно стоящих фундаментах; б – то же, на плитном фундаменте.

Красным цветом обозначены граничные элементы. I – основание; II – надфундаментное строение с фундаментами. 3. Рассматривается гармоническая внешняя нагрузка. При этом предполагается, что ее изменение во времени подчиняется закону

$$Q \cdot \cos(\varpi \cdot t)$$
 или $Q \cdot \sin(\varpi \cdot t)$, (5.1.2)

где Q - амплитудное значение нагрузки, а ϖ - частота ее изменения.

- 3.1. Если внешняя нагрузка одновременно изменяется по законам синуса и косинуса, то следует выполнить расчет для каждой из ее компонент, а полученные таким образом результаты сложить (использовать принцип суперпозиции).
- 3.2. Если к сооружению приложена произвольная периодическая нагрузка, то допускается представить ее в виде отрезка ряда Фурье [23, 26]. Для устранения негативного влияния явления Гиббса допускается суммировать отрезок ряда Фурье средними арифметическими [23, 26].
- 4. Расчет системы «основание фундамент сооружение» следует выполнять методом итерации в такой последовательности.
- 4.1. Вначале жесткость основания принимается равной бесконечности (в этом случае осадки фундаментов здания равны нулю) и выполняется расчет первого суперэлемента [10, 22, 27, 28, 30, 38, 41...43, 44]. На этом этапе определяются амплитудные значения контактных напряжений P_i в первом приближении.
- 4.2. Затем реакции прикладываются основанию, уже обладающему фактической жесткостью, плотностью и реологическими свойствами. На этом этапе по изложенной в разделе 4 методике определяются амплитуды граничных осадок элементов второго суперэлемента (т.е. основания) S_i .
 - 4.3. После этого для неводонасыщенного основания по формуле

$$C_i = \frac{P_i}{S_i} \tag{5.1.3}$$

и для водонасыщенного основания по формуле

$$C_i = \frac{P_i \cdot S \operatorname{Re}_i}{S \operatorname{Re}_i^2 + S \operatorname{Im}_i^2}$$
 (5.1.4)

для каждого из граничных элементов следует определить коэффициент постели (жесткости) C_i . Здесь і — номер граничного элемента; P_i - амплитудное значение контактного напряжения, действующего в пределах і — того граничного элемента; S_i - амплитуда осадки центра і — того граничного элемента весомого не водонасыщенного основания; $S \operatorname{Re}_i$ и $S \operatorname{Im}_i$ - соответственно действительная и мнимая амплитуды осадок центра і — того граничного элемента весомого водонасыщенного основания;

- 4.4. Далее следует выполнить перерасчет конструкции с установленными в соответствии с указаниями п. 4.3 коэффициентами постели (жесткости) C_i . Цель расчета определение реакций со стороны основания R_i в новом приближении.
- 4.5. После этого вновь определяются осадки основания S(x) (см. п. 4.2 настоящего раздела) и коэффициент постели (см. п. 4.3 настоящего раздела) и т.д.

Процесс расчета считают законченным, если расхождение между установленными в ходе соседних приближений осадками и перемещениями конструкции и основания не превышает некоторой наперед заданной малой величины.

Опыт расчетов свидетельствует о том, что чем меньше жесткость сооружения, и больше жесткость основания, тем лучше сходимость процесса итерации.

5.2. МЕТОДИКА ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО – ДЕФОРМИРОВАННОГО СОСТОЯНИЯ КОНСТРУКЦИЙ НА ОТДЕЛЬНО – СТОЯЩИХ ФУНДАМЕНТАХ.

В настоящем разделе представлены материалы исследований, направленных на выявление напряженно – деформированного состояния расположенной на отдельно стоящих фундаментах рамной конструкции.

В ходе численного эксперимента рассматривалась плоская двухэтажная двух пролетная рама (рис. 5.2.1...5.2.3).

Условия проведения эксперимента представлены в таблице 5.2.1.

Всего было выполнено четыре варианта расчета.

Вначале был выполнен расчет в рамках модели невесомого основания Винклера - Фусса, жесткость которого характеризуется коэффициентом постели Cz (таблица 5.2.2).

Далее был выполнен расчет в рамках модели весомого упругого не водонасыщенного основания и расчетной схемы полупространства (рис. 5.2.4 и таблица 5.2.3)

После этого был выполнен расчет в рамках модели весомого упругого водонасыщенного основания и расчетной схемы полупространства.

В первом случае (вариант 3) коэффициент фильтрации был принят равным Kf = 0.01 м/с (рис. 5.2.5 и таблица 5.2.4).

Во втором случае (вариант 4) коэффициент фильтрации был принят равным Kf = 0,00001 м/с (рис. 5.2.6 и таблица 5.2.5).

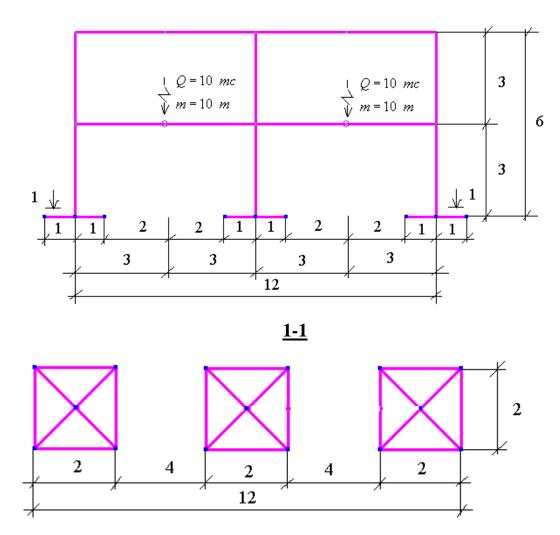


Рис. 5.2.1. К расчету НДС рамы. Расчетная схема. (Примечание. На рисунке размеры даны в метрах.)

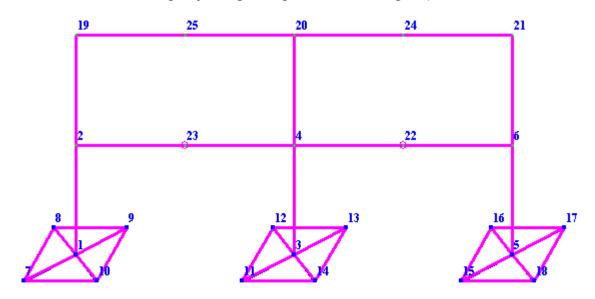


Рис. 5.2.2. К расчету НДС рамы. Расчетная схема. Нумерация узлов.

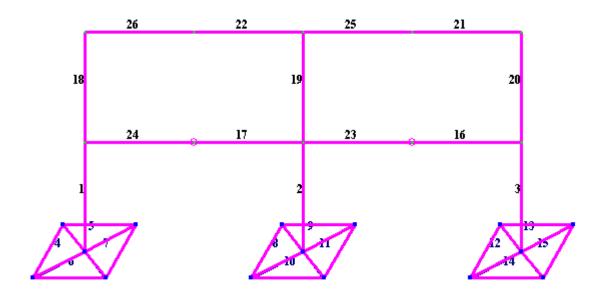


Рис. 5.2.3. К расчету НДС рамы. Расчетная схема. Нумерация элементов.

Таблица 5.2.1. Условия проведения численного эксперимента.

	№ варианта расчета				
Наименование характеристики	1	2	3	4	
Закон изменения нагрузки		$P = Q \cdot c$	$os(\varpi \cdot t)$		
Частота изменения нагрузки f, Гц	50	50	50	50	
Амплитуда изменения нагрузки \mathcal{Q} , т	10	10	10	10	
Масса машины, генерирующей колебания m, т	10	10	10	10	
Сечение колонн и ригелей, м	$0,4 \times 0,4$	$0,4 \times 0,4$	$0,4 \times 0,4$	0,4 x 0,4	
Длина, ширина и высота	2,0 x 2,0	2,0 x 2,0	2,0 x 2,0	2,0 x 2,0	
фундаментов, м	x 0,4	x 0,4	x 0,4	x 0,4	
Модуль упругости материала колонн и ригелей E, тс/м ²	$2,0\cdot10^6$	$2,0\cdot10^6$	$2,0\cdot10^6$	2,0·10 ⁶	
Модуль упругости материала фундаментов E, тс/м ²	8	8	8	∞	
Коэффициент Пуассона материала колонн и фундаментов ν , д. ед.	0,2	0,2	0,2	0,2	

Продолжение таблицы 5.2.1.

Hayrest and a second se	№ варианта расчета					
Наименование характеристики	1	2	3	4		
Плотность материала колонн и фундаментов ρ , т/м ³	2,5	2,5	2,5	2,5		
Модуль упругости основания E , Tc/m^2	1	1000,0	1000,0	1000,0		
Коэффициент Пуассона основания ν , д.ед.	1	0,3	0,3	0,3		
Плотность основания $ ho$, т/м ³	-	1,8	1,8	1,8		
Коэффициент постели основания Сz, тс/м ³	626,4	-	-	-		
Коэффициент фильтрации основания Кf, м/с	-	-	0,01	0,00001		

Таблица 5.2.2. Результаты расчета в рамках модели основания Винклера- Фусса (вариант №1).

(Buphuiii Nai).											
	Таблица усилий (стержни)										
№ элем	№ сечен	N, T	Му, т*м	Qz, t	Мz, т*м	Q y, т					
1	1	-6.522	0	0	-0.264	1.077					
1	2	-6.522	0	0	-3.497	1.077					
2	1	-7.525	0	0	0	0					
2	2	-7.525	0	0	0	0					
3	1	-6.522	0	0	0.264	-1.077					
3	2	-6.522	0	0	3.497	-1.077					
16	1	1.432	8.244	-5.524	0	0					
16	2	1.432	-8.327	-5.524	0	0					
17	1	1.433	8.244	-4.67	0	0					
17	2	1.433	-5.767	-4.67	0	0					
18	1	-0.926	0	0	4.831	2.507					
18	2	-0.926	0	0	-2.691	2.507					
19	1	1.965	0	0	0	0					
19	2	1.965	0	0	0	0					
20	1	-0.926	0	0	-4.831	-2.507					
20	2	-0.926	0	0	2.691	-2.507					
21	1	-2.513	-0.049	-0.881	0	0					
21	2	-2.513	-2.691	-0.881	0	0					
22	1	-2.516	-0.049	1.03	0	0					

Продолжение таблицы 5.2.2.

	Таблица усилий (стержни)										
№ элем	№ сечен	N, т	Му, т*м	Qz, t	Мz, т*м	Qy, т					
22	2	-2.516	3.041	1.03	0	0					
23	1	1.433	-5.767	4.67	0	0					
23	2	1.433	8.244	4.67	0	0					
24	1	1.432	-8.327	5.524	0	0					
24	2	1.432	8.244	5.524	0	0					
25	1	-2.516	3.041	-1.03	0	0					
25	2	-2.516	-0.049	-1.03	0	0					
26	1	-2.513	-2.691	0.881	0	0					
26	2	-2.513	-0.049	0.881	0	0					

В рамках модели не весомого основания Винклера — Фусса коэффициент постели определялся по методике [60]:

$$C_z = \frac{\chi_z}{1 - v^2} \cdot \frac{E}{\sqrt{A}} = \frac{1,14 \cdot 1000}{(1 - 0,3^2) \cdot \sqrt{4}} = 626,4 \frac{m}{M^3},$$
 (5.2.1).

где A = 4.0 M^2 - площадь фундамента.

В рамках модели весомого не водонасыщенного основания коэффициент постели определялся по формуле:

$$C_{Z} = \frac{\overline{\omega}}{2 \cdot \pi} \cdot \int_{-\frac{\pi}{\overline{\omega}}}^{\frac{\pi}{\overline{\omega}}} \frac{p(t)}{S(t)} \cdot dt = \frac{\overline{\omega}}{2 \cdot \pi} \cdot \int_{-\frac{\pi}{\overline{\omega}}}^{\frac{\pi}{\overline{\omega}}} \frac{p_{a} \cdot \cos(\overline{\omega} \cdot t)}{S_{a} \cdot \cos(\overline{\omega} \cdot t)} \cdot dt = \frac{p_{a}}{S_{a}}$$
 (5.2.2)

В рамках модели весомого водонасыщенного основания коэффициент постели определялся по формуле:

$$C_{Z} = \frac{\varpi}{2 \cdot \pi} \cdot \int_{-\frac{\pi}{\varpi}}^{\frac{\pi}{\varpi}} \frac{p(t)}{S(t)} \cdot dt = \frac{\varpi}{2 \cdot \pi} \cdot \int_{\frac{-\pi}{\varpi}}^{\frac{\pi}{\varpi}} \frac{p_{a} \cdot \cos(\varpi \cdot t)}{S_{a, \text{Re}} \cdot \cos(\varpi \cdot t) + S_{a, \text{Im}} \cdot \sin(\varpi \cdot t)} \cdot dt =$$

$$= \frac{p_a \cdot S_{a,Re}}{\left(S_{a,Re}\right)^2 + \left(S_{a,Im}\right)^2},$$
(5.2.3)

где p_a u S_a - соответственно амплитуды среднего давления под подошвой фундамента (или граничного элемента) и его средняя осадка, рассчитанные в рамках модели не водонасыщенного весомого упругого основания; p_a , $S_{a,\mathrm{Re}}$ u $S_{a,\mathrm{Im}}$ - соответственно амплитуды среднего давления под подошвой фундамента, его действительная и мнимая доли средней осадки, рассчитанные в рамках модели водонасыщенного весомого упругого основания.

На рисунках 5.2.4,...,5.2.6 представлены зависимости погрешности определения осадок фундаментов от числа итераций, которые рассчитывались для кривых 1 и 2 по формулам

$$eps = 1 - \frac{S_{i-1}}{S_i}, (5.2.4)$$

а для кривой 3 – по формуле

$$\sigma_a = \sqrt{\frac{1}{k}} \sum_{j=1}^{k} eps_j^2, \qquad (5.2.5)$$

где i – номер итерации, j – номер фундамента, а κ – число фундаментов.

На рисунке 5.2.7 представлены амплитуды осадок, установленные в ходе всех четырех вариантов расчета.

Таблица 5.2.3. Результаты расчета в рамках модели упругого весомого основания (вариант N2).

	Таблица усилий (стержни)									
№ элем	№ сечен	N	My	Qz	Mz	Qy				
1	1	-5.762	0	0	0.385	1.097				
1	2	-5.762	0	0	-2.907	1.097				
2	1	-10.894	0	0	0	0				
2	2	-10.894	0	0	0	0				
3	1	-5.762	0	0	-0.385	-1.097				
3	2	-5.762	0	0	2.907	-1.097				
16	1	0.309	7.697	-4.557	0	0				
16	2	0.309	-5.975	-4.557	0	0				
17	1	0.309	7.671	-5.087	0	0				
17	2	0.309	-7.589	-5.087	0	0				
18	1	-0.718	0	0	3.179	1.406				
18	2	-0.718	0	0	-1.038	1.406				
19	1	-0.153	0	0	0	0				
19	2	-0.153	0	0	0	0				
20	1	-0.718	0	0	-3.179	-1.406				
20	2	-0.718	0	0	1.038	-1.406				
21	1	-1.411	0.108	-0.391	0	0				
21	2	-1.411	-1.066	-0.391	0	0				
22	1	-1.413	0.108	0.135	0	0				
22	2	-1.413	0.512	0.135	0	0				
23	1	0.309	-7.589	5.087	0	0				
23	2	0.309	7.671	5.087	0	0				
24	1	0.309	-5.975	4.557	0	0				
24	2	0.309	7.697	4.557	0	0				
25	1	-1.413	0.512	-0.135	0	0				
25	2	-1.413	0.108	-0.135	0	0				
26	1	-1.411	-1.066	0.391	0	0				
26	2	-1.411	0.108	0.391	0	0				

Таблица 5.2.4 Результаты расчета в рамках модели весомого упругого водонасыщенного основания (вариант №3).

	Таблица усилий (стержни)									
№ элем	№ сечен	N	My	Qz	Mz	Qy				
1	1	-5.778	0	0	0.399	1.122				
1	2	-5.778	0	0	-2.968	1.122				
2	1	-10.757	0	0	0	0				
2	2	-10.757	0	0	0	0				
3	1	-5.778	0	0	-0.399	-1.122				
3	2	-5.778	0	0	2.968	-1.122				
16	1	0.263	7.87	-4.638	0	0				
16	2	0.263	-6.043	-4.638	0	0				
17	1	0.262	7.832	-5.217	0	0				
17	2	0.262	-7.819	-5.217	0	0				
18	1	-0.662	0	0	3.197	1.386				
18	2	-0.662	0	0	-0.961	1.386				
19	1	0.069	0	0	0	0				
19	2	0.069	0	0	0	0				
20	1	-0.662	0	0	-3.197	-1.386				
20	2	-0.662	0	0	0.961	-1.386				
21	1	-1.39	0.029	-0.343	0	0				
21	2	-1.39	-1	-0.343	0	0				
22	1	-1.393	0.021	0.178	0	0				
22	2	-1.393	0.554	0.178	0	0				
23	1	0.262	-7.819	5.217	0	0				
23	2	0.262	7.832	5.217	0	0				
24	1	0.263	-6.043	4.638	0	0				
24	2	0.263	7.87	4.638	0	0				
25	1	-1.393	0.554	-0.178	0	0				
25	2	-1.393	0.021	-0.178	0	0				
26	1	-1.39	-1	0.343	0	0				
26	2	-1.39	0.029	0.343	0	0				

Таблица 5.2.5 Результаты расчета в рамках модели весомого упругого водонасыщенного основания (вариант №4).

	Таблица усилий (стержни)							
№ элем № сечен N My Qz Mz Qy								
1	1 1 -5.546 0 0 0.454 1.138							
1	2	-5.546	0	0	-2.96	1.138		

Продолжение таблицы 5.2.5

	Таблица усилий (стержни)										
№ элем	№ сечен	N	My	Qz	Mz	Qy					
2	1	-11.438	0	0	0	0					
2	2	-11.438	0	0	0	0					
3	1	-5.546	0	0	-0.454	-1.138					
3	2	-5.546	0	0	2.96	-1.138					
16	1	0.317	7.743	-4.608	0	0					
16	2	0.317	-6.082	-4.608	0	0					
17	1	0.317	7.749	-5.114	0	0					
17	2	0.317	-7.593	-5.114	0	0					
18	1	-0.631	0	0	3.237	1.452					
18	2	-0.631	0	0	-1.12	1.452					
19	1	-0.387	0	0	0	0					
19	2	-0.387	0	0	0	0					
20	1	-0.631	0	0	-3.237	-1.452					
20	2	-0.631	0	0	1.12	-1.452					
21	1	-1.459	0.142	-0.425	0	0					
21	2	-1.459	-1.133	-0.425	0	0					
22	1	-1.462	0.172	0.115	0	0					
22	2	-1.462	0.518	0.115	0	0					
23	1	0.317	-7.593	5.114	0	0					
23	2	0.317	7.749	5.114	0	0					
24	1	0.317	-6.082	4.608	0	0					
24	2	0.317	7.743	4.608	0	0					
25	1	-1.462	0.518	-0.115	0	0					
25	2	-1.462	0.172	-0.115	0	0					
26	1	-1.459	-1.133	0.425	0	0					
26	2	-1.459	0.142	0.425	0	0					

Для того, чтобы оценить насколько отличаются усилия и деформации, установленные в ходе различных вариантов расчета рамной конструкции, нами были использованы такие критерии:

- максимальная относительная погрешность, которая определялась по формуле

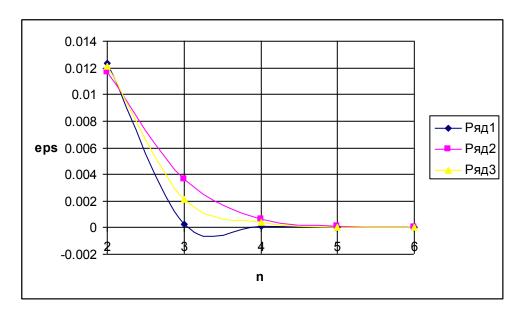


Рис. 5.2.4. Вариант №2. Зависимость погрешности расчета от числа итераций. 1 - для осадки узлов 1 и 5 (крайние колонны); 2 -то же, для узла 3 (средняя колонна), 3 -среднее квадратичное уклонение.

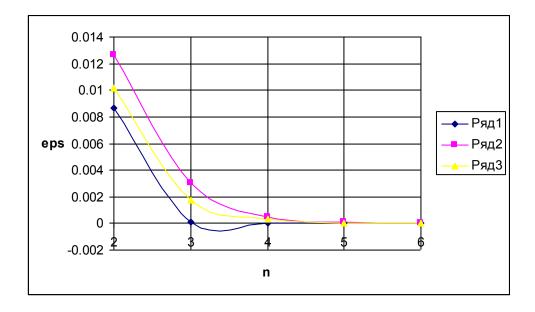


Рис. 5.2.5. Вариант №3. Зависимость погрешности расчета от числа итераций. 1 - для осадки узлов 1 и 5 (крайние колонны); 2 -то же, для узла 3 (средняя колонна), 3 - среднее квадратичное уклонение.

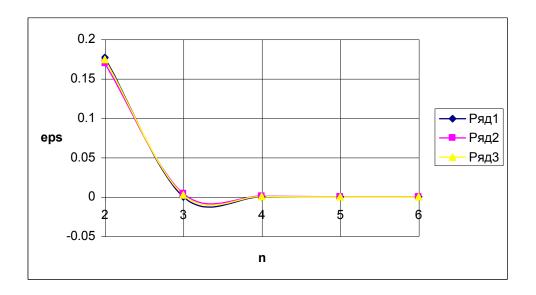


Рис. 5.2.6. Вариант №4. Зависимость погрешности расчета от числа итераций. 1 - для осадки узлов 1 и 5 (крайние колонны); 2 - то же, для узла 3 (средняя колонна), 3 - среднее квадратичное уклонение.

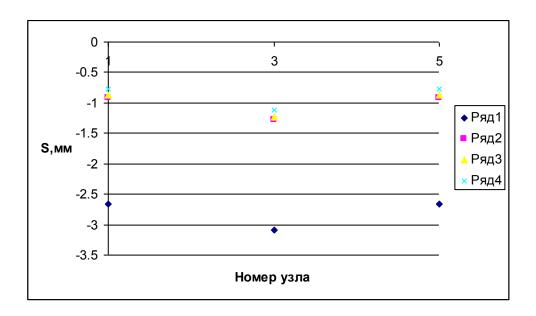


Рис. 5.2.7. Амплитуды осадок фундаментов. 1 — вариант расчета №1; 2 — то же, №2, 3 — то же, №3; 4 — то же, №4.

$$\varepsilon_{\text{max}} = \left| 1 - \frac{Y_i}{Y_j} \right| \cdot 100\% ; \qquad (5.2.6)$$

- среднее квадратичное уклонение, которое определялось по формуле

$$\sigma_a = \sqrt{\frac{\left(Y_i - Y_j\right)^2}{n}}.$$
(5.2.7)

Здесь Y_i и Y_j - рассчитанные в ходе і — того и ј — того варианта значения усилий и деформаций. Установленные таким образом значения максимальных относительных погрешностей и средних квадратичных уклонений сведены в таблицу 5.2.6.

Представленные в таблицах и на рисунках данные позволили нам сделать такие выводы:

- 1. Вертикальные перемещения, рассчитанные в рамках модели невесомого не водонасыщенного основания при прочих равных условиях больше, чем перемещения, установленные в рамках не водонасыщенного весомого основания.
- 2. Вертикальные перемещения, рассчитанные в рамках модели весомого не водонасыщенного основания при прочих равных условиях больше, чем перемещения, установленные в рамках водонасыщенного весомого основания.
- 3. Вертикальные перемещения, рассчитанные в рамках модели весомого водонасыщенного основания при прочих равных условиях тем больше, чем меньше коэффициент фильтрации основания.

Таблица 5.2.6 Расхождение между результатами расчета.

Наименование	Критерий	Варианты рас	счета, которые с	сравнивались
характеристики	оценки	1 и 2	2 и 3	2 и 4
	погрешности			
N	$\varepsilon_{ ext{max}}$,%	63	15	12
	σ_a , t	0,54	0,1	0,2
My	$\varepsilon_{ m max}$,%	65	81	59
	σ_a , т * м	0,47	0,1	0,05
Qz	$\varepsilon_{ m max}$,%	76	32	9
	σ_a , t	0,27	0,1	0,03
Mz	$\varepsilon_{ m max}$,%	90	8	18
	σ_a , T * M	0,22	0,03	0,04
Qy	$\varepsilon_{ m max}$,%	18	2	3
	σ_a , t	0,12	0,01	0,03
Uz	$\varepsilon_{ m max}$,%	60	28	7
	σ_a , mm	1,7	0,2	0,1

4. Наибольшие расхождения имеют усилия и перемещения, рассчитанные в рамках моделей основания Винклера — Фусса и весомого полупространства.

В целом был сделан вывод о том, что полученные нами результаты имеют хорошее соответствие с современными представлениями о поведении грунтовых оснований и сооружений, находящихся под воздействием динамической нагрузки [15].

5.3. МЕТОДИКА ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО – ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПЛИТНЫХ ФУНДАМЕНТОВ.

В настоящем разделе представлены материалы исследований, направленных на выявление напряженно – деформированного состояния плитных фундаментов (рис. 5.3.1...5.3.2). В ходе их выполнения

преследовалась цель продемонстрировать возможности изложенной в разделе 5.3.1 методики и выяснить, каким образом жесткостные характеристики плитных фундаментов и реологические свойства оснований влияют на напряженно – деформированное состояние плит.

Всего было выполнено четыре варианта расчета.

Вначале был выполнен расчет в рамках модели весомого упругого не водонасыщенного основания в предположении о бесконечной жесткости плиты (вариант расчета №1, таблица 5.3.1 и рисунки 5.3.3...5.3.9).

После этого был выполнен расчет в рамках модели весомого упругого не водонасыщенного основания в предположении о конечной жесткости плиты (вариант расчета №2, таблица 5.3.1 и рисунки 5.3.10...5.3.16).

Далее был выполнен расчет в рамках модели весомого упругого водонасыщенного основания в предположении о конечной жесткости плиты и коэффициенте фильтрации Кф, равном 0,01 м/с (вариант расчета №3, таблица 5.3.1 и рисунки 5.3.17...5.3.23).

В заключение был выполнен расчет в рамках модели весомого упругого водонасыщенного основания в предположении о конечной жесткости плиты и коэффициенте фильтрации Кф, равном 0,00001 м/с (вариант расчета №3, таблица 5.3.1 и рисунки 5.3.18...5.3.30).

Условия проведения численного эксперимента представлены в таблице 5.3.1.

Во всех случаях рассматривалась первая форма вынужденных

Таблица 5.2.1. Условия проведения численного эксперимента.

Наименование	№ варианта расчета						
характеристики	1	1 2 3 4					
Закон изменения нагрузки		$P = Q \cdot \cos(\varpi \cdot t)$					
Частота изменения нагрузки f, Гц	50 50 50						

Продолжение таблицы 5.2.1.

Продолжение таолицы 5.2.1						
Наименование		№ варианта расчета				
характеристики	1	2	3	4		
Амплитуда изменения	10	10	10	10		
нагрузки Q , тс						
Масса машины,	10	10	10	10		
генерирующей						
колебания т, т						
Длина, ширина и						
высота фундаментов,	6,0x6,0x0,4	6,0x6,0x0,4	6,0x6,0x0,4	6,0x6,0x0,4		
M						
Модуль упругости						
материала	∞	$2,0\cdot10^{6}$	$2,0\cdot10^{6}$	$2,0\cdot10^{6}$		
фундаментов E, тс/м ²		2, 0 10	2, 0 10	2, 0 10		
Коэффициент	0,2	0,2	0,2	0,2		
Пуассона						
ϕ ундаментов ν , д. ед.						
Плотность материала	2,5	2,5	2,5	2,5		
фундаментов ρ , т/м ³	·		·			
Модуль упругости	1000,0	1000,0	1000,0	1000,0		
основания E, тс/м ²						
Коэффициент	0,3	0,3	0,3	0,3		
Пуассона основания						
ν, д.ед.						
Плотность основания	1,8	1,8	1,8	1,8		
$ ho$, T/ $ ext{M}^3$						
Коэффициент	-		0,01	0,00001		
фильтрации						
основания Kf, м/с						

колебаний. Масса колеблющегося тела равнялась 10 т, а амплитуда гармонической нагрузки равнялась 10 тс.

Во всех случаях предполагалось, что гармоническая нагрузка изменяется по закону косинуса с частотой, равной 50 Гц.

В рамках модели весомого не водонасыщенного основания коэффициент постели определялся по формуле (5.2.2), а рамках модели весомого водонасыщенного основания коэффициент постели определялся по формуле (5.2.3).

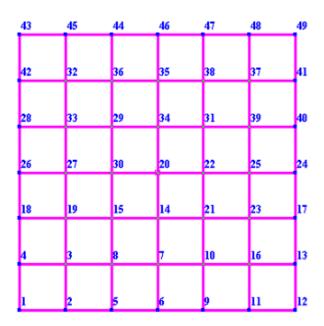


Рис. 5.3.1. Нумерация узлов.

31	32	33	34	35	36
25	26	27	28	29	30
19	20	21	22	23	24
13	14	15	16	17	18
7	8	9	10	11	12
1	2	3	4	5	6

Рис. 5.3.2. Нумерация конечных элементов.

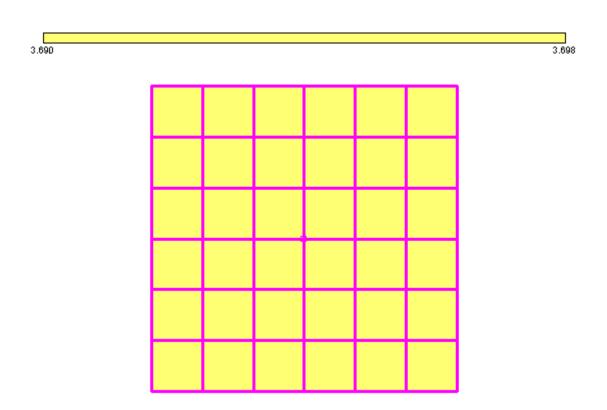


Рис. 5.3.3. Вариант расчета №1. Изополя вертикальных перемещений плиты (мм).

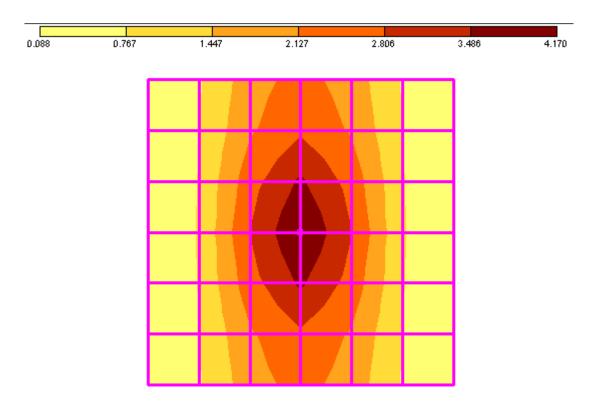


Рис. 5.3.4. Вариант расчета №1. Изополя изгибающих моментов Мх (т*м).

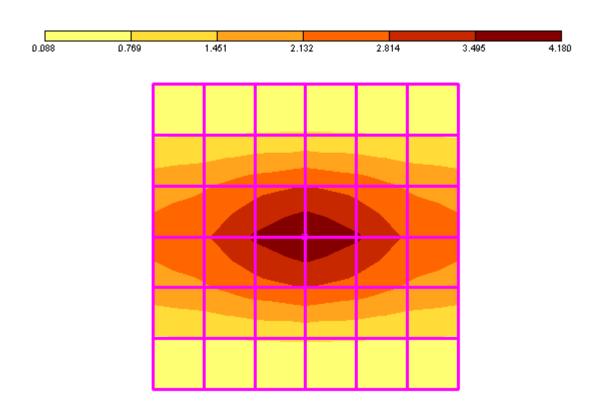


Рис. 5.3.5. Вариант расчета №1. Изополя изгибающих моментов Му (т*м).

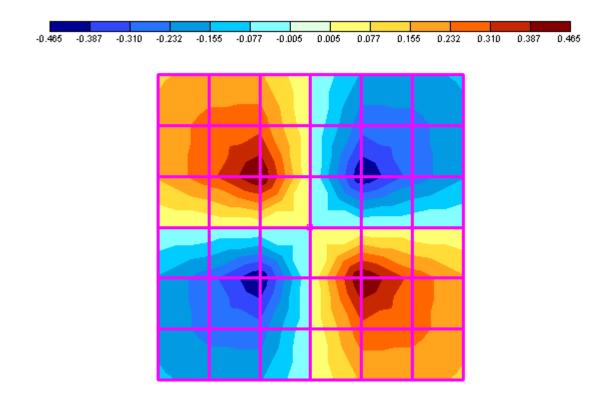


Рис. 5.3.6. Вариант расчета №1. Изополя изгибающих моментов Мху (т*м).

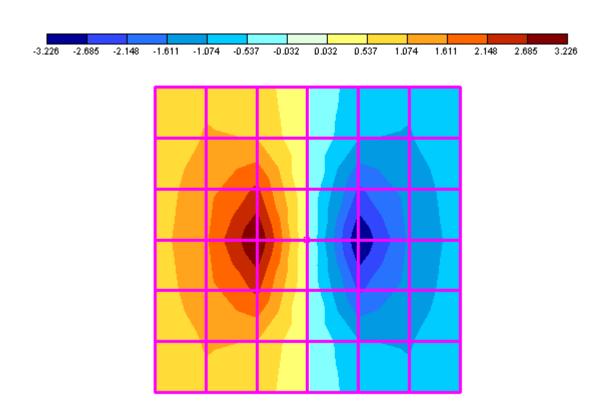


Рис. 5.3.7. Вариант расчета №1. Изополя перерезывающих сил Qx (т).

Рис. 5.3.8. Вариант расчета №1. Изополя перерезывающих сил Qy (т).

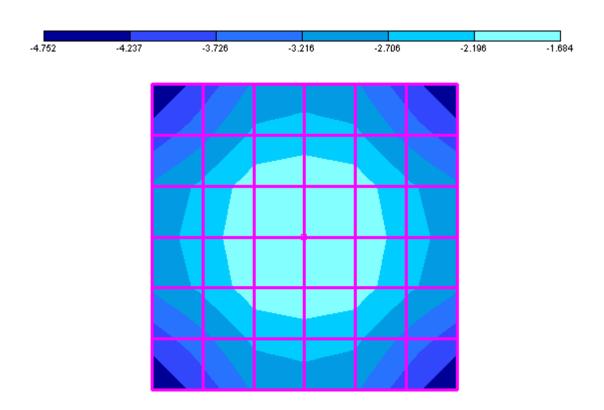


Рис. 5.3.9. Вариант расчета №1. Изополя контактных напряжений Рz (т/м²).

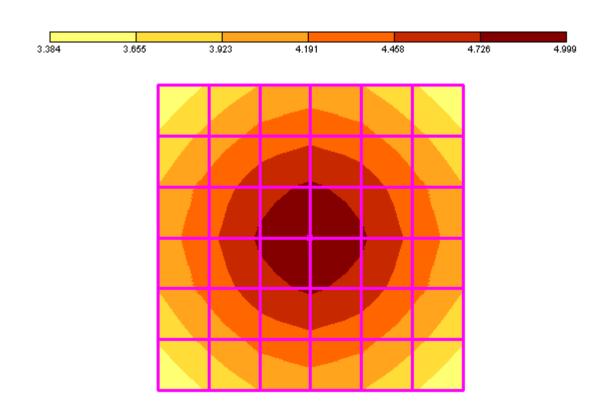


Рис. 5.3.10. Вариант расчета №2. Изополя вертикальных перемещений плиты (мм).

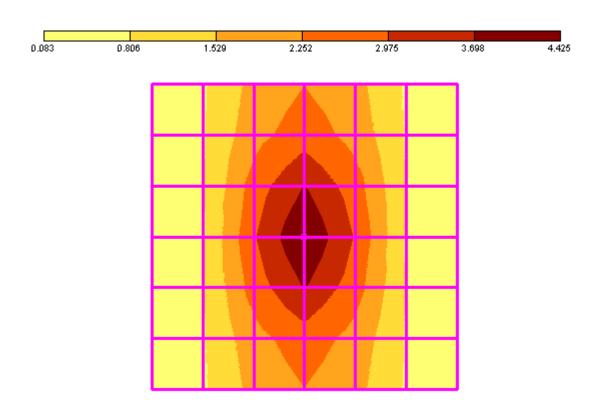


Рис. 5.3.11. Вариант расчета №2. Изополя изгибающих моментов Мх (т*м).

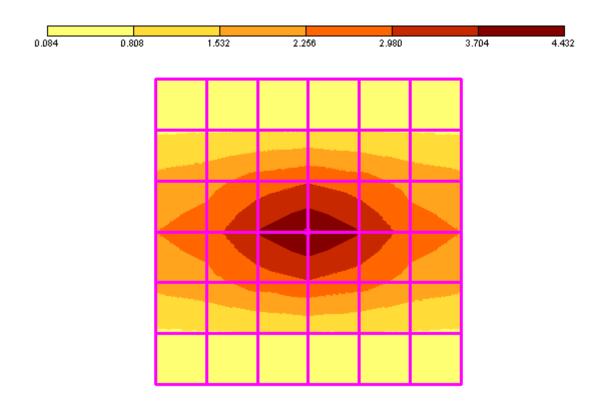


Рис. 5.3.12. Вариант расчета №2. Изополя изгибающих моментов Му (т*м).

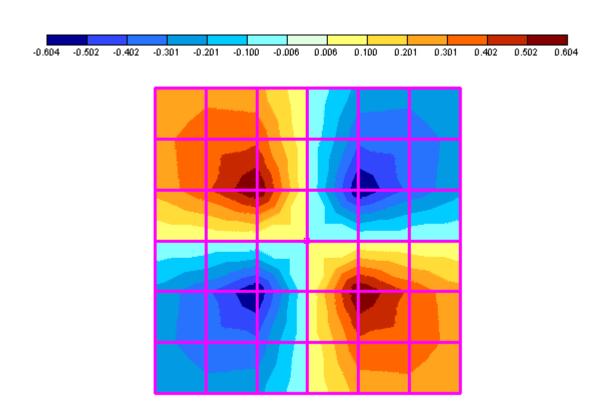


Рис. 5.3.13. Вариант расчета №2. Изополя изгибающих моментов Мху (т*м).

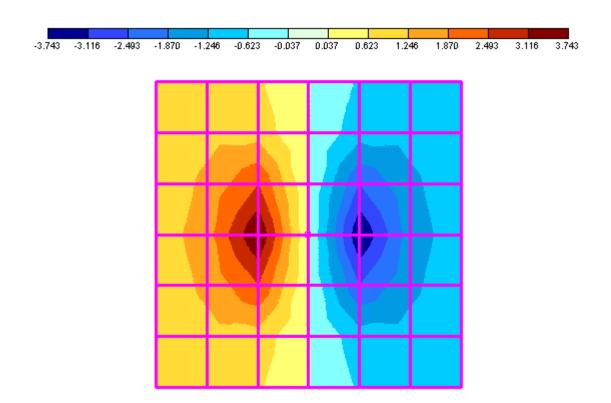


Рис. 5.3.14. Вариант расчета №2. Изополя перерезывающих сил Qx (т).

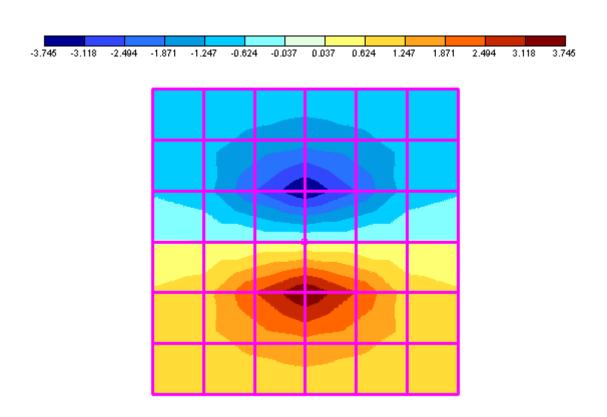


Рис. 5.3.15. Вариант расчета №2. Изополя перерезывающих сил Qy (т).

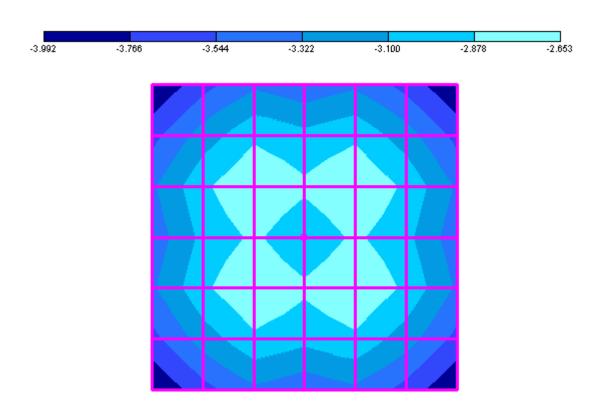


Рис. 5.3.16. Вариант расчета №2. Изополя контактных напряжений Рz (т/м²).

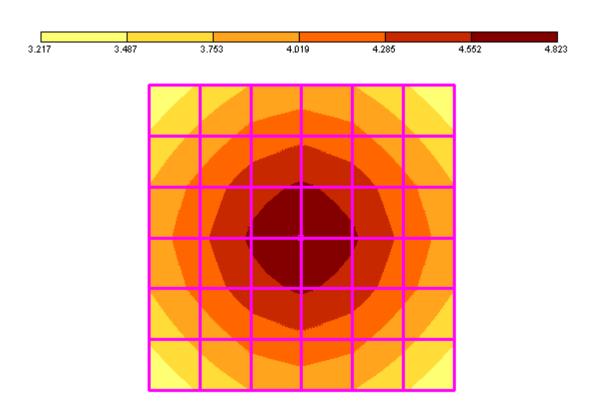


Рис. 5.3.17. Вариант расчета №3. Изополя вертикальных перемещений плиты (мм).

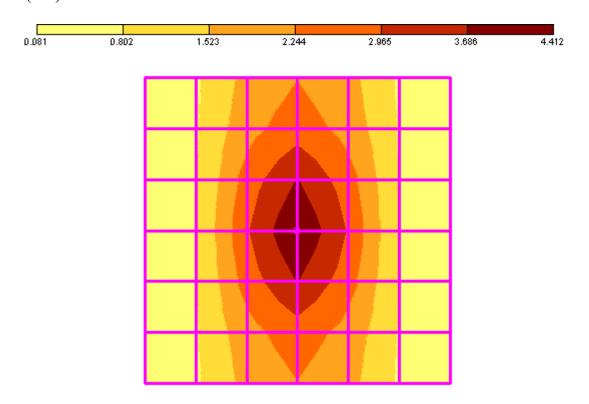


Рис. 5.3.18. Вариант расчета №3. Изополя изгибающих моментов Мх (т*м).

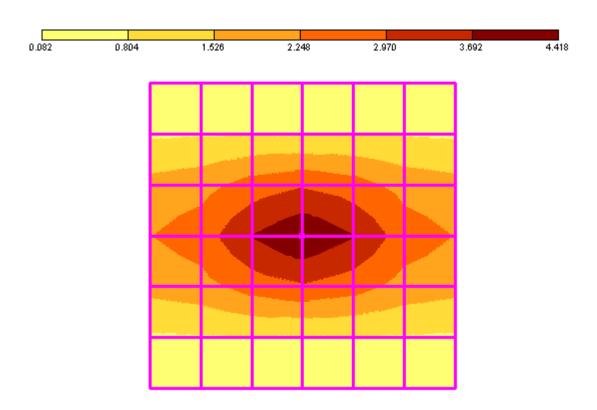


Рис. 5.3.19. Вариант расчета №3. Изополя изгибающих моментов Му (т*м).

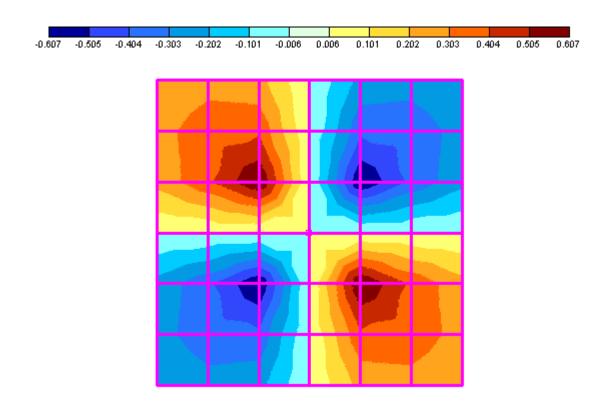


Рис. 5.3.20. Вариант расчета №3. Изополя изгибающих моментов Мху (т*м).

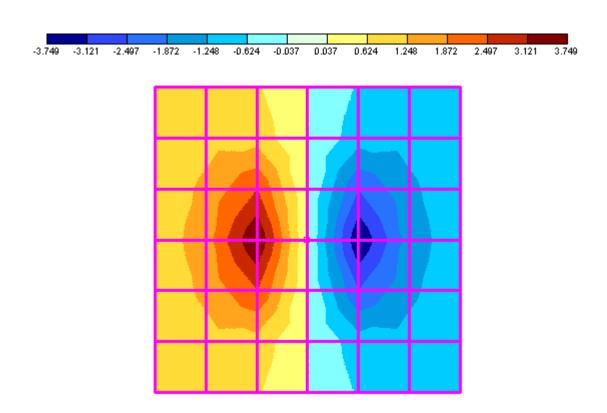


Рис. 5.3.21. Вариант расчета №3. Изополя перерезывающих сил Qx (т).

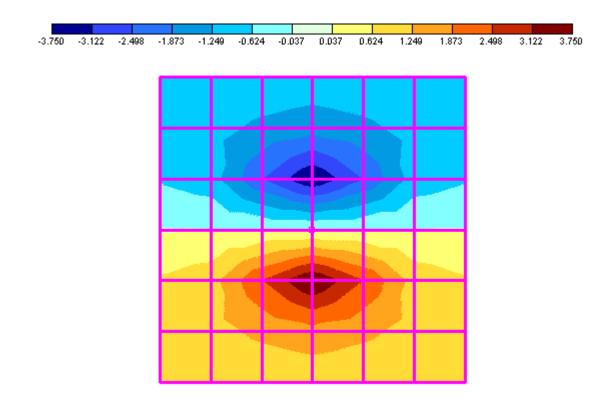


Рис. 5.3.22. Вариант расчета №3. Изополя перерезывающих сил Qy (т).

Рис. 5.3.23. Вариант расчета №3. Изополя контактных напряжений Pz (T/M^2).

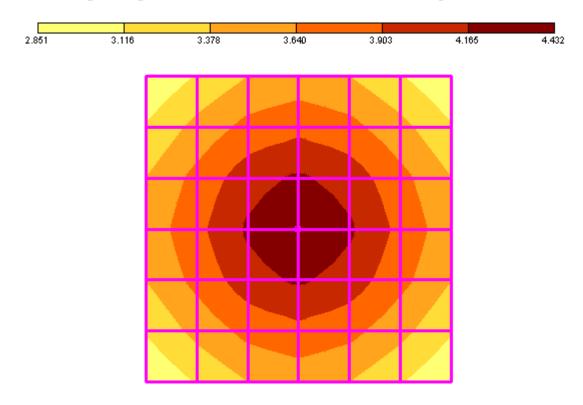


Рис. 5.3.24. Вариант расчета №4. Изополя вертикальных перемещений плиты (мм).

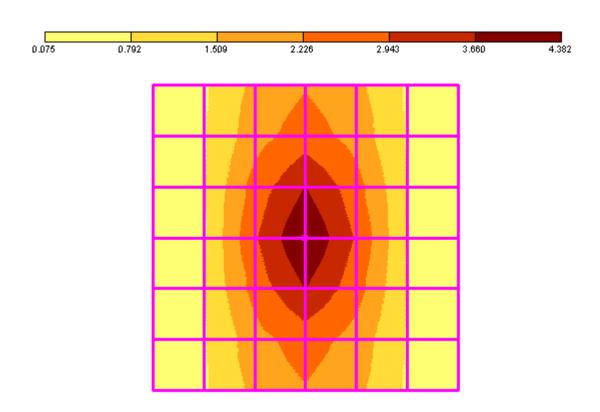


Рис. 5.3.25. Вариант расчета №4. Изополя изгибающих моментов Мх (т*м).

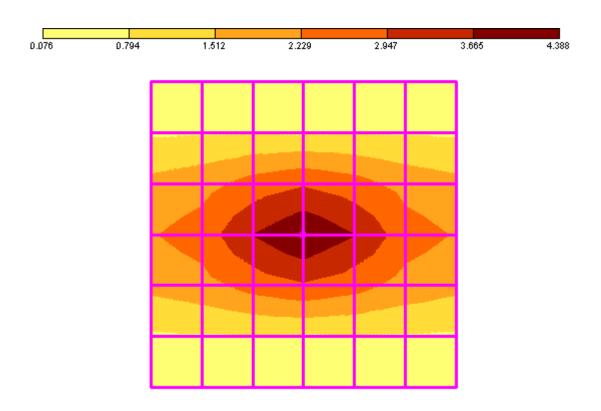


Рис. 5.3.26. Вариант расчета №4. Изополя изгибающих моментов Му (т*м).

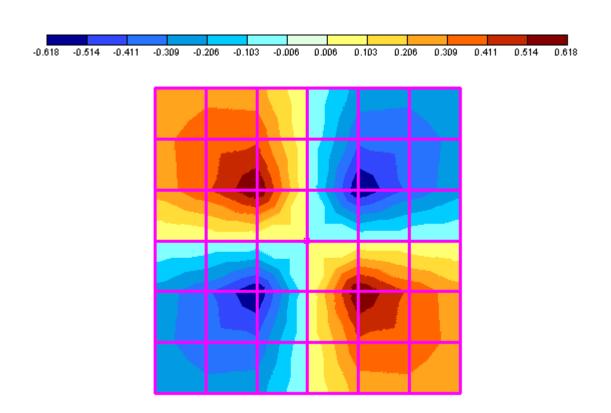


Рис. 5.3.27. Вариант расчета №4. Изополя изгибающих моментов Мху (т*м).

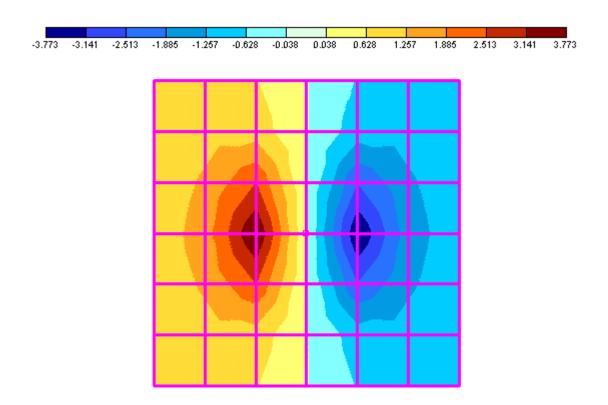


Рис. 5.3.28. Вариант расчета №4. Изополя перерезывающих сил Qx (т).

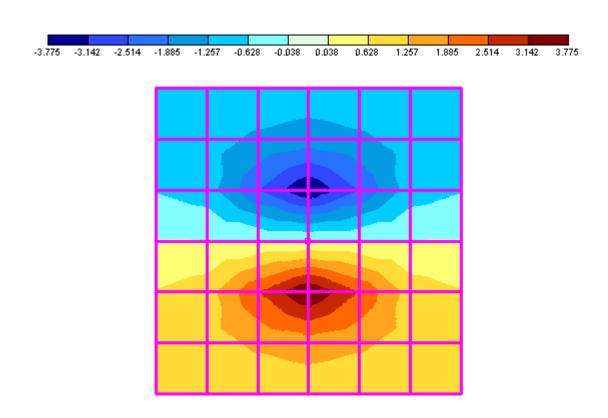


Рис. 5.3.29. Вариант расчета №4. Изополя перерезывающих сил Qy (т).

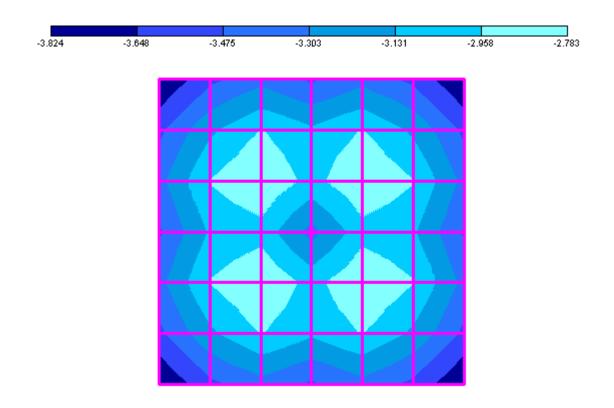


Рис. 5.3.30. Вариант расчета №4. Изополя контактных напряжений Рz (τ/m^2).

Для того чтобы оценить насколько отличаются усилия и деформации, установленные в ходе различных вариантов расчета рамной конструкции, нами были использованы такие критерии:

$$\varepsilon_{1} = \left| 1 - \frac{Y_{i, \max}}{Y_{j, \max}} \right| \cdot 100\%;$$

$$\varepsilon_{2} = \left| 1 - \frac{Y_{i, \min}}{Y_{j, \min}} \right| \cdot 100\%.$$
(5.3.1)

где і и j — номер варианта расчета; Y — расчетная величина (т.е. или перемещение или изгибающий момент или перерезывающая сила или контактные напряжения).

Установленные таким образом значения максимальных относительных погрешностей сведены в таблицу 5.3.2.

Представленные в таблицах и на рисунках данные позволили нам сделать такие выводы:

- 1. Вертикальные перемещения, рассчитанные в рамках модели весомого не водонасыщенного основания для плит конечной и бесконечной жесткости при прочих равных условиях отличаются на 26%. При этом вертикальные перемещения, рассчитанные в рамках моделей весомых не водонасыщенного и водонасыщенного оснований для плит конечной жесткости при прочих равных условиях отличаются на 5...19%. Это различие тем больше, чем меньше коэффициент фильтрации.
- 2. Изгибающие моменты, рассчитанные в рамках модели весомого не водонасыщенного основания для плит конечной и бесконечной жесткости при прочих равных условиях отличаются на 6...61%. При этом изгибающие моменты, рассчитанные в рамках моделей весомых не водонасыщенного и водонасыщенного оснований для плит конечной жесткости при прочих

равных условиях отличаются на 0,1...12%. Это различие тем больше, чем меньше коэффициент фильтрации.

 Таблица 5.3.2

 Расхождение между результатами расчета.

Наименование	Критерий	Варианты расчета, которые сравнивались		
характеристики	оценки	1 и 2	2 и 3	2 и 4
	погрешности			
Uz	$\varepsilon_1,$ %	4	5	19
	$\varepsilon_2,\%$	26	4	13
Mx	ε_1 ,%	6	2	12
	$\varepsilon_2,\%$	61	0,1	4
My	ε_1 ,%	6	0,1	1
	ε_2 ,%	6	2	11
Mxy	ε_1 ,%	23	0,1	2
	ε_2 ,%	23	0,1	2
Qx	ε_1 ,%	14	0,1	1
	ε_2 ,%	14	0,1	1
Qy	ε_1 ,%	14	0,1	1
	ε_2 ,%	14	0,1	1
Pz	$\varepsilon_1,\%$ $\varepsilon_2,\%$	19	4	12
	ε_2 ,%	37	1	5

3. Перерезывающие силы, рассчитанные в рамках модели весомого не водонасыщенного основания для плит конечной и бесконечной жесткости при прочих равных условиях отличаются на 14%. При этом перерезывающие силы, рассчитанные в рамках моделей весомых не водонасыщенного и водонасыщенного оснований для плит конечной жесткости при прочих равных условиях отличаются на 0,1...1%. Это различие тем больше, чем меньше коэффициент фильтрации.

4. Контактные напряжения, рассчитанные в рамках модели весомого не водонасыщенного основания для плит конечной и бесконечной жесткости при прочих равных условиях отличаются на 19...37%. При этом контактные напряжения, рассчитанные в рамках моделей весомых не водонасыщенного и водонасыщенного оснований для плит конечной жесткости при прочих равных условиях отличаются на 1...12%. Это различие тем больше, чем меньше коэффициент фильтрации.

В целом был сделан вывод о том, что полученные нами результаты имеют хорошее соответствие с современными представлениями о поведении грунтовых оснований и расположенных на них плитных фундаментов, находящихся под воздействием динамической нагрузки [15].

5.4. Обсуждение результатов исследований. выводы по разделу.

В целом, изложенные в настоящем разделе материалы исследований позволили нам сделать такие выводы.

- 1. Предложена методика совместного расчета находящихся под воздействием динамической нагрузки систем «основание фундамент (или фундаменты) надфундаментная конструкция». Методика позволяет учитывать распределительные и реологические свойства оснований, особенности строения грунтовой толщи и конструктивные особенности фундаментов и надфундаментного строения.
- 2. В ходе расчета рамной конструкции было установлено, что учет инерционных свойств основания при прочих равных условиях приводит к снижению амплитуд колебаний фундаментов (эффект «присоединенной массы») и перераспределению усилий в элементах рамной конструкции.

При этом аналогичный эффект имеет место при уменьшении коэффициента фильтрации основания.

3. В ходе расчета плитных фундаментов было установлено, что при прочих равных условиях жесткостные свойства плитных фундаментов оказывают существенное влияние на их напряженно – деформированное состояние.

При этом напряженно – деформированное состояние плитных фундаментов также зависит от реологических свойств основания.