## МЕТОДИКА РАСЧЕТА ОСНОВНЫХ ПОКАЗАТЕЛЕЙ РЕКУЛЬТИВАЦИОННЫХ РАБОТ В ДИНАМИКЕ РАЗРАБОТКИ ПОЛОГИХ МЕСТОРОЖДЕНИЙ

Г.Я. Корсунский, Е.А. Коноплёва, Государственное высшее учебное заведение «Национальный горный университет», Украина

В данной статье рассмотрена методика расчета основных показателей рекультивационных работ в динамике разработки пологих месторождений.

Рекультивация земель, нарушенных горными работами, призвана возрождать их продуктивность и плодородие, сводя к минимуму негативное воздействие открытых горных работ на природную среду.

Основными технологическими процессами при выполнении рекультивационных работ являются.

В карьере:

- 1) подготовка площади горного отвода карьера к съему чернозема;
- 2) устройство подъездных дорог;
- 3) выемка и погрузка в средства транспорта чернозема;
- 4) транспортирование чернозема к временным складам (буртам) или непосредственно на рекультивируемую поверхность отвала;
  - 5) хранение чернозема во временных складах (буртах);
  - 6) выемка и погрузка потенциально-плодородных пород (суглинков);
  - 7) транспортирование суглинков на рекультивируемую поверхность отвала;

На отвале:

- 1) планировка поверхности отвала после производства горных работ;
- 2) устройство подъездных дорог;
- 3) покрытие спланированной поверхности отвала слоем суглинков (не менее 2-3 метров);
- 4) покрытие суглинков слоем чернозема и планировка (разравнивание) его на поверхности;
- 5) террасирование (выполаживание) бортов и откосов отвала;
- 6) устройство дренажной сети;
- 7) мелиоративная и агрохимическая подготовка рекультивируемых земель;
- 8) биологическая рекультивация земель.

Рекультивация земель, нарушенных горными работами, производится на всех стадиях разработки месторождения (вскрытие и разработка месторождения, завершение горных работ).

Известные методики расчета показателей рекультивационных работ не учитывают динамику развития горных работ на всех стадиях разработки месторождения.

Ниже приведена методика расчета основных показателей рекультивационных работ в динамике разработки пологих месторождений.

К основным показателям рекультивационных работ относятся — годовые объемы уложенных суглинков, годовые объемы уложенного чернозема, площадь рекультивируемого внутреннего отвала, объем капитальной и разрезной траншей  $V_{mp}$ , объем чернозема, вынимаемый в период строительства карьера  $V_{u}$ , площадь под внешний отвал  $S_{6.H}$ , площадь под внутренний отвал  $S_{6}$ , площадь под капитальную траншею  $S_{\kappa}$ , площадь под выездную траншею  $S_{6.m}$ , площадь под остаточную траншею  $S_{0.m}$ , коэффициент рекультивации  $K_{p}$ .

Характерной особенностью при разработке пологих месторождений является то, что рекультвационные работы выполняются на внешних и внутренних отвалах

Основой методики расчета основных показателей рекультивационных работ в динамике развития горных работ являются три электронные таблицы (табл.1, 2 3), которые связаны общим программным обеспечением.

В табл. 1 заносятся по блокам исходные данные геологических скважин: мощность вскрыши H, мощность полезного ископаемого h, мощность суглинков  $h_c$ , мощность чернозема  $h_q$ . На основании введенных в электронную табл. 1 этих данных в автоматическом режиме определяются средние значения их показателей в каждом блоке ( $hc_c$ ,  $hq_c$ ).

При составлении электронной таблицы 1 используется встроенная функция ПО MS Exel «СРЗНАЧ», возвращающая среднее значение из диапазона данных.

В табл. 2 автоматически переносятся данные из табл. 1 (мощность вскрыши H, мощность полезного ископаемого h, расчётные показатели табл. 1 ( $h_c$ ,  $h_c$ ), задаются ширина ( $L_{III}$ ) и длина ( $L_{II}$ ) каждого блока. В электронной табл. 2 выполняются расчеты объемов всрыши в блоке (Vв), объем полезного ископаемого ( $V_{IIII}$ ), суглинков ( $V_c$ ) и чернозема ( $V_u$ ), а также время разработки блока ( $t_\delta$ ), сопоставление с календарем относительно начала ( $T\delta.H$ ) и конца ( $T\delta.K$ ) разработки месторождения.

На основании программного обеспечения в электронной табл. 2 определяются следующие показатели:

Объем вскрыши в блоке карьерного поля

$$V_{\hat{A}} = L_{\emptyset} \cdot L_{\ddot{A}} \cdot \dot{I}$$
 ,  $i^3$ 

Объем полезного ископаемого в блоке карьерного поля

$$V_{\Pi II} = L_{III} \cdot L_{II} \cdot h, \quad M^3$$

Объем суглинков в блоке карьерного поля

$$V_c = L_{III} \cdot L_{II} \cdot h_c$$
,  $\mathcal{M}^3$ 

Объем чернозёма в блоке карьерного поля

$$V_{u} = L_{III} \cdot L_{II} \cdot h_{u}, \quad M^{3}$$

Время разработки блока карьерного поля

$$t_{\tilde{O}} = \frac{V_{\Pi M} \cdot \rho}{Q}, \quad \text{nem}$$

В табл. 3 выполняются расчетные показатели для календарного планирования объёмов выемки суглинков и чернозема при разработке пологих месторождений. Для планируемых лет разработки месторождения на основании расчетных данных табл. 1 (hc, hv) и табл. 2 ( $t_{o}$ ), а также введенных данных средней длины фронта вскрышных работ ( $L_{\phi}$ ) и годового перемещения фронта горных работ ( $\Pi$ ) определяются годовые объемы выемки суглинков ( $V_{c}$ ) и чернозема ( $V_{v}$ ).

Электронной табл. 3 определяются следующие показатели:

Ширина внешнего отвала

$$L_{III.O} = \frac{V_K + V_P - H_{O.B}^2 ctg\beta L_{J.O} + 0.5 H_{O.B}^3 ctg^2\beta}{H_{O.B} L_{J.O} + H_{O.B}^2 ctg\beta}, \text{ M},$$

где  $V_K$  – объем капитальной траншеи, м³;  $V_P$  – объем разрезной траншеи, м³;  $H_{O.B}$  – высота внешнего отвала, м;  $\beta$  – угол естественного откоса отвала, град;  $L_{\mathcal{I}.O}$  – длина внешнего отвала, м.

Объем чернозема под внешним отвалом

$$V_{\times \hat{A}\hat{I} \hat{I}} = L_{\varnothing \hat{I}} L_{\ddot{A}\hat{I}} h_{\times, M}^3$$

где  $h_{y}$  – мощность чернозема, м

Площадь внутреннего отвала

$$S_{\hat{A}\hat{I}\ \hat{J}} = (L + H_{\hat{O}}ctg\gamma_{\delta} - b - H_{0}ctg\beta)(L_{\hat{a}} + H_{\hat{O}}ctg\gamma_{\delta} - B - H_{0}ctg\beta), \, M^{2},$$

где L — ширина карьерного поля по полезному ископаемому, м;  $H_T$  — глубина залегания полезного ископаемого, м;  $\gamma_p$  — результирующий угол откоса вскрышного уступа, град; b — ширина выездной траншеи, м;  $\beta$  — угол откоса отвального уступа, град; B — ширина по низу остаточной (разрезной) траншеи, м;  $L_{\mathcal{A}}$  — длина карьерного поля, м;  $H_O$  — высота внутреннего отвала, м.

Результирующий угол вскрышного уступа определяется:

$$\gamma_{\delta} = arctg \frac{\acute{I}}{\varnothing_{-r} + \acute{I} \cdot ctg\gamma}$$
, град,

где H – мощность вскрыши, м;  $III_{II}$  – ширина площадки первого уступа, м;

γ –угол откоса вскрышного уступа, град.

Объем чернозема в пределах карьерного поля

$$V_{\times,\hat{A}\hat{I},\hat{I}} = S_{\hat{A}\hat{I},\hat{I}} h_{\times}, M^3$$

Площадь земли под разрезную траншею

$$S_{D.O.} = (L + 2H_T ctg\gamma_\delta)(B + H_T ctg\gamma_\delta + H_T ctg\beta)$$
, M<sup>2</sup>

Объем чернозема в пределах границ разрезной траншеи

$$V_{\times,D\dot{O}} = S_{D\dot{O}} h_{\times}$$
,  $M^3$ 

Площадь земли под капитальную траншею

$$S_{KT} = \frac{(b + H_T ctg \gamma_H) H_T}{i}$$
,  $M^2$ ,

где  $\gamma_H$  – угол откоса нерабочего борта уступа, град; i – уклон капитальной траншеи.

Объем чернозема в пределах границ капитальной траншеи

$$V_{Y,K,T} = S_{K,T} h_Y, M^3$$

Годовое перемещение фронта горных работ

$$\ddot{I}_{\tilde{A}} = \frac{Q_K}{Lh\rho}$$
, м/год,

где  $Q_K$  – производительность карьера, т/год; h – мощность полезного ископаемого, м;  $\rho$  – плотность полезного ископаемого, кг/м<sup>3</sup>

Продолжительность разработки месторождения

$$T_{\Pi} = \frac{L_{\mathcal{I}} L h \rho}{Q_{\kappa}}$$
, лет.

Годовая площадь рекультивируемого внутреннего отвала

$$S_{P,\hat{A}\hat{I},\hat{I}} = \ddot{I}_{\hat{A}}(L + \dot{I}_{\hat{O}}ctg\gamma_{\hat{O}} - b - \dot{I}K_{P}ctg\beta), M^{2},$$

где  $K_P$  – коэффициент разрыхления вскрышных пород

Площадь земли под выездную траншею

$$S_{BT} = (L_{\mathcal{A}} - B - HK_{\mathcal{P}}ctg\beta_{\mathcal{P}})(H_{\mathcal{T}}ctg\gamma_{\mathcal{H}} + b + HK_{\mathcal{P}}ctg\beta), \mathbf{M}^{2},$$

где  $\beta_P$  – результирующий угол откоса внутреннего отвала, град

Площадь под остаточную траншею

$$S_{OT} = (L_{\Pi \Phi} + 2H_T ctg \gamma_H)(H_T ctg \gamma_H + HK_P ctg \beta_P), M^2,$$

где  $L_{\mathcal{I}\Phi}$  –длина остаточной траншеи, м.

Эффективность данной расчетной методики покажем на примере работы карьера в горнотехнических условиях Никопольского марганцевого бассейна. Принята бестранспортная система разработки пологого месторождения.

Исходные данные, которые использованы для выполнения расчета основных показателей рекультивационных работ в динамике разработки пологих месторождений: уклон капитальной траншеи, i=0,06 тыс.о/оо; ширина капитальной траншеи по низу, b=30 м; ширина разрезной траншеи по низу, B=40 м; результирующий угол откоса внутреннего отвала,  $\beta_p$ =30°; результирующий угол рабочего борта карьера,  $\gamma_p$ =45°; результирующий угол нерабочего борта карьера,  $\gamma_\mu$ =45°; высота внешнего отвала,  $\beta$ =35°; коэффициент разрыхления вскрышных пород  $K_p$ =1,2; отставание рекультивационных работ от начала разработки месторождения,  $n_p$ =2 года; плотность полезного ископаемого,  $\rho$ =2 т/м³; производственная мощность карьера, Q=1000000 м²

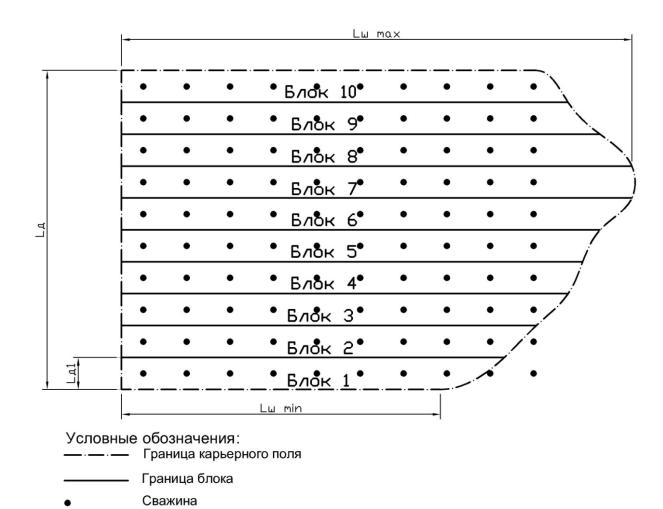



Рис. 1. Карьерное поле пологого месторождения

Таблица 1. Исходные данные геологических скважин

| №     |      | Ски  | s.№1               |                           |        | Скв  | .№2                       |                    |        | Ске          | s.№3               |                    |        | Скв.№4       |                           |                    |  |
|-------|------|------|--------------------|---------------------------|--------|------|---------------------------|--------------------|--------|--------------|--------------------|--------------------|--------|--------------|---------------------------|--------------------|--|
| блока | Н, м | h, M | h <sub>c</sub> , м | <b>h</b> <sub>ч</sub> , м | Н, м   | h, m | h <sub>c</sub> , м        | h <sub>ч</sub> , м | Н, м   | <b>h</b> , м | h <sub>c</sub> , м | h <sub>ч</sub> , м | Н, м   | h, M         | <b>h</b> <sub>c</sub> , м | h <sub>ч</sub> , м |  |
| 1     | 50   | 1,5  | 3                  | 0,2                       | 57     | 2,4  | 3                         | 0,6                | 59     | 2,9          | 5                  | 0,4                | 62     | 1,9          | 3                         | 0,4                |  |
| 2     | 52   | 2    | 4                  | 0,3                       | 60     | 2,5  | 2                         | 0,5                | 60     | 2,3          | 4                  | 0,5                | 59     | 1,8          | 2                         | 0,3                |  |
| 3     | 55   | 1,9  | 5                  | 0,4                       | 58     | 2,7  | 2                         | 0,4                | 57     | 2,4          | 3                  | 0,6                | 57     | 2,1          | 2                         | 0,4                |  |
| 4     | 53   | 1,8  | 4                  | 0,5                       | 59     | 2,9  | 3                         | 0,3                | 57     | 2,5          | 2                  | 0,5                | 54     | 2,3          | 3                         | 0,5                |  |
| 5     | 54   | 2,1  | 3                  | 0,6                       | 60     | 2,3  | 4                         | 0,4                | 58     | 3            | 2                  | 0,4                | 57     | 2,6          | 4                         | 0,2                |  |
| 6     | 57   | 2,3  | 2                  | 0,5                       | 57     | 2,4  | 5                         | 0,5                | 59     | 2,1          | 3                  | 0,3                | 60     | 2,8          | 5                         | 0,3                |  |
| 7     | 60   | 2,4  | 2                  | 0,4                       | 57     | 2,5  | 3                         | 0,2                | 60     | 2,3          | 3                  | 0,4                | 58     | 2,7          | 3                         | 0,4                |  |
| 8     | 58   | 2,5  | 3                  | 0,3                       | 58     | 3    | 4                         | 0,3                | 57     | 2,5          | 4                  | 0,5                | 59     | 2,7          | 4                         | 0,5                |  |
| 9     | 59   | 2,7  | 4                  | 0,4                       | 59     | 2,7  | 5                         | 0,4                | 58     | 2,6          | 4                  | 0,2                | 60     | 2,9          | 5                         | 0,6                |  |
| 10    | 60   | 2,9  | 5                  | 0,5                       | 61     | 2,9  | 4                         | 0,5                | 59     | 2,7          | 5                  | 0,3                | 63     | 3            | 4                         | 0,5                |  |
| №     |      | Скі  | s.№5               |                           | Скв.№6 |      |                           |                    | Скв.№7 |              |                    |                    | Скв.№8 |              |                           |                    |  |
| блока | Н, м | h, м | h <sub>c</sub> , м | <b>h</b> ч, м             | Н, м   | h, M | <b>h</b> <sub>c</sub> , м | h <sub>ч</sub> , м | Н, м   | <b>h</b> , м | h <sub>c</sub> , м | h <sub>ч</sub> , м | Н, м   | <b>h</b> , м | <b>h</b> <sub>c</sub> , м | h <sub>ч</sub> , м |  |
| 1     | 50   | 2,2  | 5                  | 0,4                       | 54     | 2,9  | 5                         | 0,3                | 59     | 2,4          | 5                  | 0,4                | 57     | 1,9          | 2,5                       | 0,4                |  |
| 2     | 52   | 2,1  | 4                  | 0,5                       | 57     | 2,3  | 3                         | 0,4                | 57     | 1,5          | 4                  | 0,5                | 54     | 1,8          | 2,3                       | 0,5                |  |
| 3     | 55   | 2,3  | 3                  | 0,6                       | 60     | 2,4  | 4                         | 0,5                | 58     | 2            | 3                  | 0,5                | 57     | 2,1          | 2,6                       | 0,2                |  |
| 4     | 53   | 2,6  | 2                  | 0,5                       | 58     | 2,5  | 5                         | 0,2                | 59     | 1,9          | 3                  | 0,4                | 60     | 2,3          | 2,7                       | 0,3                |  |
| 5     | 54   | 2,8  | 2                  | 0,4                       | 59     | 3    | 4                         | 0,3                | 54     | 1,8          | 2                  | 0,3                | 58     | 2,6          | 2,4                       | 0,4                |  |
| 6     | 57   | 2,7  | 3                  | 0,3                       | 60     | 2,4  | 3                         | 0,4                | 57     | 2,1          | 2                  | 0,4                | 59     | 2,8          | 2,5                       | 0,5                |  |
| 7     | 57   | 2,7  | 4                  | 0,4                       | 58     | 2,5  | 2                         | 0,6                | 60     | 2,3          | 3                  | 0,5                | 60     | 2,7          | 2,8                       | 0,6                |  |

| 8     | 59                    | 2,9  | 5                         | 0,5                       | 59    | 3      | 2     | 0,5                       | 58                 | 2,4 | 3 | 0,2 | 63 | 2,7 | 2,7 | 0,5 |
|-------|-----------------------|------|---------------------------|---------------------------|-------|--------|-------|---------------------------|--------------------|-----|---|-----|----|-----|-----|-----|
| 9     | 62                    | 3    | 4                         | 0,2                       | 63    | 2,7    | 3     | 0,4                       | 59                 | 2,8 | 4 | 0,3 | 62 | 2,9 | 2,9 | 0,6 |
| 10    | 64                    | 3,1  | 5                         | 0,3                       | 64    | 2,9    | 4     | 0,5                       | 60                 | 3,1 | 5 | 0,4 | 59 | 3   | 3   | 0,5 |
| No    | е Средние значения, м |      |                           | №                         | Сред  | цние з | начен | ия, м                     |                    |     |   |     |    |     |     |     |
| блока | Н, м                  | h, м | <b>h</b> <sub>c</sub> , м | <b>h</b> <sub>ч</sub> , м | блока | Н, м   | h, м  | <b>h</b> <sub>c</sub> , м | h <sub>ч</sub> , м |     |   |     |    |     |     |     |
| 1     | 56,0                  | 2,3  | 3,9                       | 0,4                       | 6     | 58,3   | 2,5   | 3,2                       | 0,4                |     |   |     |    |     |     |     |
| 2     | 56,4                  | 2,0  | 3,2                       | 0,4                       | 7     | 58,8   | 2,5   | 2,9                       | 0,4                |     |   |     |    |     |     |     |
| 3     | 57,1                  | 2,2  | 3,1                       | 0,5                       | 8     | 58,9   | 2,7   | 3,5                       | 0,4                |     |   |     |    |     |     |     |
| 4     | 56,6                  | 2,4  | 3,1                       | 0,4                       | 9     | 60,3   | 2,8   | 4,0                       | 0,4                |     |   |     |    |     |     |     |
| 5     | 56,8                  | 2,5  | 2,9                       | 0,4                       | 10    | 61,3   | 3,0   | 4,4                       | 0,4                |     |   |     |    |     |     |     |

На основании результатов расчетов, приведенных в табл. 3 ( $V_{mp} = 2059,02$  тыс. м<sup>3</sup>;  $V_{u} = 109,053$ тыс. м<sup>3</sup>;  $S_{e.u} = 117973$ м<sup>2</sup>;  $S_{e} = 790399$ м<sup>2</sup>;  $S_{\kappa} = 90637$ м<sup>2</sup>;  $S_{e.m} = 227212$ м<sup>2</sup>;  $S_{o.m} = 333983$ м<sup>2</sup>,  $K_{p} = 1,1346$ ) построены графические зависимости основных показателей рекультивационных работ по годам разработки месторождения (рис. 2,3,4).

Таблица 2. Горногеометрический анализ пологого месторождения

|            | ока, м          | ка, м        | вскрыши, м   | ного иско-                       | инков в це-                     | озема в це-<br>л              | и в блоке,<br>3          | о ископае-<br>тыс. м3                        | ов в блоке,<br>3        | 4а в блоке,<br>3             | гки блока,              | Нача<br>разр<br>боті<br>блог | )а-<br>ки | Кон<br>разр<br>бот<br>бло | оа-<br>ки |
|------------|-----------------|--------------|--------------|----------------------------------|---------------------------------|-------------------------------|--------------------------|----------------------------------------------|-------------------------|------------------------------|-------------------------|------------------------------|-----------|---------------------------|-----------|
| №<br>блока | Ширина блока, м | Длина блока, | Мощность вск | Мощность полезного<br>паемого, м | Мощность суглинков в<br>лике, м | Мощность чернозема<br>лике, м | Объем вскрыши<br>тыс. м3 | Объем полезного ископаемого в блоке, тыс. м3 | Объем суглинков тыс. м3 | Объем чернозёма в<br>тыс. м3 | Время разработки<br>лет | ГОД                          | месяц     | ГОД                       | месяц     |
|            | Lш              | Lд           | Н, м         | <b>h</b> , м                     | <b>h</b> <sub>c</sub> , м       | <b>h</b> <sub>ч</sub> , м     | VB                       | Vпи                                          | Vc                      | Vч                           | tб                      | Тб.                          | Н         | Тб.                       | К         |
| 1          | 100             | 1000         | 56,0         | 2,3                              | 3,9                             | 0,4                           | 5600                     | 226                                          | 394                     | 39                           | 0,5                     | 2012                         | 1         | 2012                      | 6         |
| 2          | 100             | 1200         | 56,4         | 2,0                              | 3,2                             | 0,4                           | 6765                     | 244                                          | 379                     | 52                           | 0,5                     | 2012                         | 7         | 2012                      | 12        |
| 3          | 100             | 1300         | 57,1         | 2,2                              | 3,1                             | 0,5                           | 7426                     | 291                                          | 400                     | 58                           | 0,6                     | 2013                         | 1         | 2013                      | 7         |
| 4          | 100             | 1400         | 56,6         | 2,4                              | 3,1                             | 0,4                           | 7927                     | 329                                          | 432                     | 56                           | 0,7                     | 2013                         | 8         | 2014                      | 3         |
| 5          | 100             | 1400         | 56,8         | 2,5                              | 2,9                             | 0,4                           | 7945                     | 353                                          | 409                     | 52                           | 0,7                     | 2014                         | 4         | 2014                      | 12        |
| 6          | 100             | 1500         | 58,3         | 2,5                              | 3,2                             | 0,4                           | 8737                     | 367                                          | 478                     | 60                           | 0,7                     | 2015                         | 1         | 2015                      | 9         |
| 7          | 100             | 1600         | 58,8         | 2,5                              | 2,9                             | 0,4                           | 9400                     | 402                                          | 456                     | 70                           | 0,8                     | 2015                         | 10        | 2016                      |           |
| 8          | 100             | 1500         | 58,9         | 2,7                              | 3,5                             | 0,4                           | 8831                     | 407                                          | 519                     | 62                           | 0,8                     | 2016                         | 8         | 2017                      | 5         |
| 9          | 100             | 1400         | 60,3         | 2,8                              | 4,0                             | 0,4                           | 8435                     | 390                                          | 558                     | 54                           | 0,8                     | 2017                         | 6         | 2018                      | 3         |
| 10         | 100             | 1300         | 61,3         | 3,0                              | 4,4                             | 0,4                           | 7962                     | 383                                          | 568                     | 57                           | 0,8                     | 2018                         | 4         | 2019                      | 1         |
| Итого      | 100             | 1360         | 58,0         | 2,5                              | 3,4                             | 0,4                           | 79030                    | 3394                                         | 4595                    | 561                          | 0,7                     |                              |           |                           |           |

Примечание: начало разработки пологого месторождения принято январь 2012г

Приведенные электронные табл. 1,2,3, связанные между собой общим программным обеспечением, позволяют оперативно планировать объёмы выемки суглинка и чернозёма в динамике разработки пологих месторождений.

Это решает вопросы выбора горного оборудования для рекультивационных работ и планирования технологии горных работ, сводя к минимуму негативное воздействие открытых горных работ на природную среду.

 Таблица 3. Результаты расчета количественных показателей рекультивационных работ в динамике разработки месторождения

| Годы разработки, лет | Длина добычного фронта ра-<br>бот, м | Мощность вскрыши, м | Мощность полезного иско-<br>паемого, м | Мощность суглинков в цели-<br>ке, м | Мощность чернозема в цели-<br>ке, м | Годовое подвигание фронта<br>горных работ, м/год | Годовые объемы добытых суглинков, тыс м3 | Годовые объемы уложенных суглинков, тыс м3 | Годовые объемы добытого чернозема, тыс м3 | Годовые объемы уложенного<br>чернозема, тыс м3 | Площадь рекультивируемого<br>внутреннего отвала, м2 | Средняя мощность суглинка<br>на внутреннем отвале, м | Средняя мощность чернозема на внутреннем отвале, м |
|----------------------|--------------------------------------|---------------------|----------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|----------------------------------------------------|
| T                    | Lдф                                  | Н                   | h                                      | hc                                  | hч                                  | П                                                | Vc                                       | Vc1                                        | Vч                                        | Vч1                                            | Ѕвн                                                 | hc                                                   | hч                                                 |
| 2012                 | 1100                                 | 56                  | 2,2                                    | 3,6                                 | 0,4                                 | 200                                              | 781                                      | 0                                          | 91                                        | 0                                              | 0                                                   | 0,0                                                  | 0,00                                               |
| 2013                 | 1342                                 | 57                  | 2,3                                    | 3,1                                 | 0,4                                 | 163                                              | 672                                      | 0                                          | 94                                        | 0                                              | 0                                                   | 0,0                                                  | 0,00                                               |
| 2014                 | 1400                                 | 57                  | 2,5                                    | 3,0                                 | 0,4                                 | 138                                              | 571                                      | 685                                        | 73                                        | 128                                            | 151342                                              | 4,5                                                  | 0,84                                               |
| 2015                 | 1525                                 | 58                  | 2,5                                    | 3,1                                 | 0,4                                 | 130                                              | 615                                      | 738                                        | 81                                        | 131                                            | 139476                                              | 5,3                                                  | 0,94                                               |
| 2016                 |                                      |                     | -                                      |                                     |                                     |                                                  | 0.10                                     | 750                                        | 01                                        | 171                                            | 10) ., 0                                            |                                                      |                                                    |
| 2016                 | 1558                                 | 59                  | 2,6                                    | 3,1                                 | 0,4                                 | 120                                              | 581                                      | 697                                        | 80                                        | 107                                            | 113278                                              | 6,2                                                  | 0,94                                               |
| 2017                 | 1442                                 | 59<br>60            | 2,6<br>2,8                             | 3,1<br>3,8                          | 0,4<br>0,4                          | 120<br>120                                       | 581<br>652                               | 697<br>782                                 | 80<br>69                                  | 107<br>116                                     | 113278<br>111995                                    | 6,2<br>7,0                                           | 0,94<br>1,04                                       |
| 2017<br>2016         | 1442<br>1325                         |                     | 2,6<br>2,8<br>2,9                      | 3,1<br>3,8<br>4,3                   | 0,4<br>0,4<br>0,4                   | 120                                              | 581<br>652<br>680                        | 697<br>782<br>816                          | 80                                        | 107                                            | 113278                                              | 6,2<br>7,0<br>8,2                                    | 0,94<br>1,04<br>1,15                               |
| 2017<br>2016<br>2018 | 1442<br>1325<br>1300                 | 60<br>61<br>61      | 2,6<br>2,8<br>2,9<br>2,9               | 3,1<br>3,8<br>4,3<br>4,4            | 0,4<br>0,4<br>0,4<br>0,4            | 120<br>120<br>120<br>10                          | 581<br>652<br>680<br>57                  | 697<br>782<br>816<br>68                    | 80<br>69<br>68<br>6                       | 107<br>116<br>115<br>101                       | 113278<br>111995<br>99697<br>91509                  | 6,2<br>7,0<br>8,2<br>0,7                             | 0,94<br>1,04<br>1,15<br>1,11                       |
| 2017<br>2016         | 1442<br>1325<br>1300<br>0            | 60<br>61            | 2,6<br>2,8<br>2,9                      | 3,1<br>3,8<br>4,3                   | 0,4<br>0,4<br>0,4                   | 120<br>120<br>120                                | 581<br>652<br>680                        | 697<br>782<br>816<br>68<br>0               | 80<br>69<br>68                            | 107<br>116<br>115                              | 113278<br>111995<br>99697                           | 6,2<br>7,0<br>8,2<br>0,7<br>0,0                      | 0,94<br>1,04<br>1,15<br>1,11<br>1,20               |
| 2017<br>2016<br>2018 | 1442<br>1325<br>1300<br>0            | 60<br>61<br>61      | 2,6<br>2,8<br>2,9<br>2,9               | 3,1<br>3,8<br>4,3<br>4,4            | 0,4<br>0,4<br>0,4<br>0,4            | 120<br>120<br>120<br>10                          | 581<br>652<br>680<br>57                  | 697<br>782<br>816<br>68                    | 80<br>69<br>68<br>6                       | 107<br>116<br>115<br>101                       | 113278<br>111995<br>99697<br>91509                  | 6,2<br>7,0<br>8,2<br>0,7                             | 0,94<br>1,04<br>1,15<br>1,11                       |

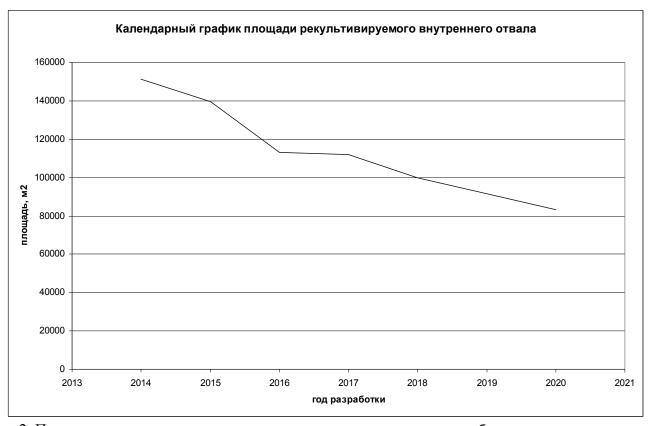



Рис. 2. Площадь рекультивируемого внутреннего отвала по годам разработки месторождения

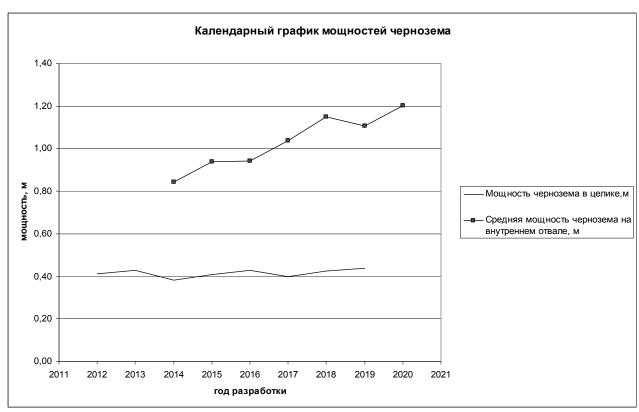



Рис. 3. Мощность чернозема по годам разработки месторождения



Рис. 4. Мощность суглинков по годам разработки месторождения

## Список литературы

- 1. Коваленко В.С., Штейнцайг Р.М., Голик Т.В. Рекультивация нарушенных земель на карьерах: Учеб. Пособие. М.: Изд-во МГГУ, 2003. Ч.1. 65с.
- 2. Мильцер Е.С. Маркшейдерские работы при планировании открытых горных работ. М.: Изд-во «Недра», 1968г., 144 с.