6. Sobolev V.V. Shock Wave use for Diamond Synthesis / V.V.Sobolev, Y.N.Taran, S.I.Gubenko // J. de Physigne (France). – 1997. – V.7. – P. 73–75.

7. Alder B.J., Christian R.H. Behavior of Strongly Shocked Carbon // Phys. Rev. Lett. – 1961. – Vol 7, N10. – P. 367–369.

8. Слободской В.Я. К вопросу о метастабильной кристаллизации алмаза / В.Я.Слободской, В.В.Соболев // Химическая физика. – 1989. – № 8. – С. 137–141.

9. Природные и синтетические алмазы / Г.Б. Бокий, Г.Н. Безруков, Ю.А. Клюев и др. – М.: Наука, 1988. – 221 с.

10. Соболев В.В. Кристаллизация сверхтвердых фаз из углерода твердого раствора / В.В.Соболев В.Я.Слободской // Кристаллография. – 1985. – Т.30, № 6. – С. 1213–1214.

11. Экспериментальное и теоретическое исследование окисления микропорошков алмаза методом микро-ДТА / О.Н. Бреусов, В.М. Волков, В.Н. Дробышев, В.Ф. Таций // Взаимодействие алмазов с жидкими и газовыми средами. – Киев: ИСМ АН УССР. – 1983. – С. 19–51.

12. Бреусов О.Н. Оценка стойкости алмазных микропорошков к окислению по температуре максимума на ДТА-кривых / О.Н.Бреусов, В.Ф.Таций, И.Г.Шунина // Синтетич. алмазы. – 1989. – №1. – С. 25–28.

13. Баскевич А.С. Вариации изотопного состава алмазов – квантовый эффект? / А.С.Баскевич, В.В.Соболев// Высокоэнергетическая обработка материалов: Сб. научн. тр. – Днепропетровск: Арт-Пресс, 1997. – С. 133–137.

14. Гаранин В.К. К проблеме дискретности природного алмазообразования // Минералогический журнал. – 1990. – 12, № 5. – С. 28–36.

15. Соболев В.В. Синтез алмаза в метастабильной области и некоторые вопросы его природного образования / В.В.Соболев, В.Я.Слободской, П.Я. Баранов и др. // Записки Всероссийского минералогического общества. – 1992. – № 3. – С. 118–123.

> Рекомендовано до публікації д.т.н. Ширіним Л.Н. Надійшла до редакції 26.03.10

УДК 622.281.74

© А.О.Новиков

ВАРИАЦИОННЫЙ МЕТОД ОЦЕНКИ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАССИВА ГОРНЫХ ПОРОД, АРМИРОВАННОГО АНКЕРАМИ, ВОКРУГ ВЫРАБОТКИ

Приведен метод расчета напряженно-деформированного состояния армированного анкерами породного массива вокруг горной выработки с учетом ползучести, позволяющий определить параметры анкерной и усиливающей крепи.

Наведений метод розрахунку напружно-деформованого стану породного масиву, армованого анкерами, навколо гірничої виробки з урахуванням повзучості, який дозволяє визначати параметри анкерного та посилюючого кріплення.

The method of calculation of the is intense-deformed condition of the rocky massif, reinforced by roof bolting round of mining taking into account creep is resulted, which allows calculation of parametres roof bolting and strengthening lining.

Введение. Изменение характера и интенсивности деформационных процессов в окружающих выработку породах, на больших глубинах, стало причиной того, что многие известные способы поддержания, технологические и технические решения исчерпали свои возможности в части обеспечения устойчивости выработок. Одним из перспективных направлений обеспечения устойчивости выработок на больших глубинах является применение анкерных

породо-армирующих систем (АПАС), что позволяет снизить затраты на поддержание за счет максимального использования несущей способности породного массива. Несмотря на это, объем крепления выработок анкерной крепью на шахтах Украины в настоящее время составляет менее 0,5%. Для широкого и эффективного использования анкерных крепей необходимо знать механизм взаимодействия с вмещающим массивом как отдельно взятого анкера, так и системы анкеров в целом. Сложность данной проблемы заключается в наличии их взаимного влияния: с одной стороны анкера влияют на протекание геомеханических процессов в окрестности выработки, а с другой – эти процессы определяют характер их работы. Следует отметить также, что в известных классификациях анкерной крепи отражены в основном вопросы ее конструктивного исполнения, способы и средства закрепления анкера, определения усилия его выдергивания и т.д. Роль же анкеров в процессе поддержания выработки вообще не рассматривается или ей уделяется недостаточное внимание. По мнению автора, основным фактором, сдерживающим широкое использования анкерных крепей на шахтах, является отсутствие в горной практике ведущих угледобывающих стран мира научно проектирования, обоснованных норм учитывающих механизм ИХ взаимодействия с вмещающим массивом.

Существующее положение. В настоящее время расчет параметров анкерной крепи производится в соответствии с требованиями нормативных документов, в основу которых положены представления об анкерной крепи как о несущей конструкции, работающей по схемам «Подшивка» и «Сшивка». Прочность скрепленных анкерами пород при этом, ориентировочно оценивают вводя в расчет коэффициент упрочнения, зависящий от несущей способности анкеров и плотности их установки. Такое представление о взаимодействии анкерной крепи с массивом существенно ограничивает возможности ee использования, не позволяет реально и всесторонне оценить свойства создаваемой армо-породной конструкции на разных стадиях ee деформирования, научно обосновать область рационального использования анкерной крепи как самостоятельного вида крепи, а так же в составе комбинированного крепления, рассчитавая дифференцировано его параметры.

Целью настоящей статьи является изложение метода расчета параметров акерной и усиливающе крепи, основанного на учете ползучести при определении напряженно-деформированного состояния зааанкерованного породного массива.

Изложение основного матриала. С целью установления механизма деформирования породного массива, армированного АПАС, были проведены шахтные исследования. Было установлено, что деформирование пород в глубине массива носит следующий характер. Заанкерованная область пород практически не разрушается, при этом, наибольшие смещения породного обнажения в кровле выработки наблюдаются посередине пролета (происходит плавный прогиб пород кровли, скрепленных анкерами), а вблизи стенок – образуются пластические шарниры, что характерно для условий жесткого защемления пород кровли. Нагружение армо-породной конструкции

происходит за счет разрушения (дилатансии) пород за ее пределами, в глубине массива. Установленный механизм деформирования и разрушения пород кровли, скрепленных анкерами, позволил сформулировать теоретическую задачу о расчете параметров анкерной крепи, с учетом ее роли в механизме поддержания выработки и обосновать расчетную схему к ней [1].

Армо-породный масив рассматривается в виде прямоугольной в плане толстой слоистой плиты под действием равномерно распределенной нагрузки от деформирования вышележащей части пород, два противоположных края которой жестко закреплены, два лругих – свободные, а также две основных схемы установки анкеров: одиночное и двойное расположение под углом α_0 .

Кроме угла α_0 переменными величинами являются: нагрузка (q), количество слоев (i), модули упругости (E^i) , сдвига (G^i) , коэффициенты Пуассона (v^i) пород (п) и анкеров (а), диаметры (d_a) анкеров и расстояние между ними в двух направлениях $(t_0 \ u \ t_1)$, толщина слоев (h_i) , длина (L), ширина (B) и высота (H) массива. Получены выражения для определения приведенных модулей упругости (E_{xnp}, E_{ynp}) , сдвига (G_{xznp}, G_{yznp}) и коэффициентов Пуассона (v_{xnp}, v_{ynp}) , напряжений и вертикальных перемещений.

В тоже время в работе [2] приведен метод расчета напряжений и перемещений армо-породного массива горной выработки с учетом явления ползучести.

Обобщим эти два метода и приведем алгоритм решения задачи о напряженно-деформированном состоянии массива горных пород, армированного анкерами, учитывающий два его основных этапа.

Решение вариационного уравнения (1) ищется в виде полного прогиба *w* как суммы прогибов от изгиба *w*₀ и сдвига *w*₁

$$w(x, y) = w_0(x, y) + w_1(x, y)$$

$$w_0(x, y) = a_0 f(x)g(y), w_1(x, y) = c_0 l(x)u(y)$$
(1)

где f, g, l, u – заданные координатные функции; a_0, c_0 – параметры, определяемые при решении системы алгебраических уравнений

$$a_{0} \iint \sum_{r=1}^{s} F_{r}G_{r}ds + c_{0} \iint \sum_{r=1}^{s} F_{r}S_{r}ds = r_{0} \iint f_{i}g_{i}ds,$$

$$a_{0} \iint \sum_{r=1}^{s} K_{r}G_{r}ds + c_{0} \iint \sum_{r=1}^{s} K_{r}S_{r}ds = 0,$$
(2)

Здесь введены следующие обозначения

$$F_{1} = f_{i}^{"} f_{j}^{"}, F_{2} = f_{i}^{"} f_{j}, F_{3} = f_{i} f_{j}^{"}, F_{4} = f_{i} f_{j}, F_{5} = f_{i}^{'} f_{j}^{'},$$

$$G_{1} = g_{i} g_{j}, G_{2} = d_{12} k g_{i} g_{j}^{'}, G_{3} = d_{22} k^{2} g_{i}^{"} g_{j}, G_{4} = d_{12} k^{4} g_{i}^{"} g_{j}^{"},$$

$$G_{5} = 4 k^{2} d_{12}^{*} g_{i}^{'} g_{j}^{'}, K_{6} = \ell_{i}^{'} \ell_{j}^{'}, K_{7} = \ell_{i} \ell_{j}, S_{6} = g_{11} u_{i} u_{j}, S_{7} = g_{22} k^{2} u_{i}^{'} u_{j}^{'},$$

$$(3)$$

где штрихами обозначены производные.

Выражения для функций K_r и S_r при r=5 получены из F_r и G_r заменой в них f_i на ℓ_j и g_j на u_j .

Безразмерные величины и константы определяются по формулам

$$x = L\overline{x}, \ y = B\overline{y}, \ w_0 = L\overline{w}_0, \ w_1 = L\overline{w}_1, \ k = \frac{L}{B},$$

$$d_{12} = \frac{D_{12}}{D_{11}}, \ d_{22} = \frac{D_{22}}{D_{11}}, \ d_{12}^* = D_{12}^*, \ r_0 = \frac{2qL^3}{D_{11}},$$

$$g_{11} = \frac{G_{xzn}^i HL^2}{D_u}, \ g_{22} \frac{G_{yzn}^i HL^2}{D_u}.$$
(4)

где G_{xznp} , G_{yznp} – приведенные модули сдвига пород массива в нормальном направлении, Па; D_{ij} – жесткости на изгиб и сдвиг в плоскости массива, Па·м³.

$$D_{ij} = \frac{1}{3} \sum_{i=1}^{n} B_{ij} \left(\delta_i^3 - \delta_{i-1} \right)^3,$$

$$B_{11} = \frac{E_{xnp}}{\Delta}, \quad B_{12} = \frac{v_{ynp} \cdot E_{xnp}}{\Delta},$$

$$B_{22} = \frac{E_{ynp}}{\Delta}, \quad \Delta = 1 - v_{xnp} v_{ynp}, \quad B_{12}^* = \left(\sum_{i=1}^{n} \frac{i}{\Pi} \right) / n.$$
(5)

где δ_{i-1} – расстояние по нормали от внутренней до наружной поверхности i-го слоя пород массива; n – количество слоев.

Нормальные σ_x, σ_y , касательные в плоскости σ_{xy} , поперечные касательные τ_{xz}, τ_{yz} , (Па) напряжения для i-го слоя пород массива имеют вид

$$\sigma_{x} = -\frac{z}{L} \Big[a_{0} \Big(B_{11} f_{j}^{"} g_{j} + k^{2} B_{12} f_{j} g_{j}^{"} \Big) + c_{0} \Big(B_{11} l_{j}^{"} u_{j} + k^{2} B_{12} l_{j} u_{j}^{"} \Big) \Big],$$

$$\sigma_{y} = -\frac{z}{L} \Big[a_{0} \Big(B_{12} f_{j}^{"} g_{j} + k^{2} B_{22} f_{j} g_{j}^{"} \Big) + c_{0} \Big(B_{12} l_{j}^{"} u_{j} + k^{2} B_{22} l_{j} u_{j} \Big) \Big],$$

$$\sigma_{xy} = -\frac{2kz}{L} B_{12}^{*} \Big(a_{0} f_{j}^{'} g_{j}^{'} + c_{0} l_{j}^{'} u_{j}^{'} \Big),$$

$$\tau_{xz} = G_{xzn} c_{0} l_{j}^{'} u_{j}^{'}, \quad \tau_{yz} = k G_{yzn} c_{0} l_{j} u_{j}^{'}.$$
(6)

где z – координата, нормальная к плоскости пластины, м.

В качестве координатных функций используем степенные полиномы, удовлетворяющие всем граничным условиям по методу Бубнова–Галеркина [3]:

$$f = (x^{4} - 2x^{3} + x^{2})/24; \quad l = (6x^{2} - 6x + 1)/12;$$

$$g(y) = 20y^{7} - 70y^{6} + 84y^{5} - 35y^{4} + y + 1;$$

$$q(y) = \frac{1}{2}(y^{4} - 2y^{3} + y^{2} + 2).$$
(7)

Выше приведен метод расчета статического напряженнодеформированного состояния породного массива, армированного анкерами, вокруг горной выработки, однако, с течением времени его деформации увеличиваются при постоянной нагрузке, вследствие изменения реологических характеристик горных пород.

Для описания изменения максимальных перемещений *w* армо-породного массива, полученного экспериментальным путем в реальных условиях шахты, используем закон, для которого скорость ползучести является экспоненциальной функцией дробного порядка [3]:

$$\mathcal{G}_{\alpha}(-\beta,z) = z^{-\alpha} \sum_{n=0}^{\infty} \frac{(-1)^n \beta^n z^{n(1-\alpha)}}{\Gamma[(n+1) \cdot (1-\alpha)]}, \quad (-1\langle \alpha \langle 0, \beta \ge 0, t \ge 0), \tag{8}$$

где $z = t - \tau$; $\Gamma(x)$ – гамма-функция; α, β – новые механические константы материала анкеров и горных пород.

Свойства трансверсально-изотропного тела, каким является армопородный массив, характеризуются тремя приведенными упругими параметрами (модулями упругости E_{np} , и сдвига G_{np} , МПа, коэффициентом Пуассона н_{пр}) в двух направлениях, которые заменим линейными операторами

$$\bar{E}_{np} = E_{np} \left(1 - \Gamma^* \right), \ \bar{G}_{np} = \frac{\tilde{E}_{np}}{2 \left(1 + \bar{\nu}_{np} \right)}, \ \bar{\nu}_{np} = \nu_{np} \left(1 + N^* \right), \tag{9}$$

где Γ^* и N^* принадлежат к одному классу разрешающих или резольвентных операторов Вольтерры и представляют собой дробно—экспоненциальные функции с одинаковым индексом:

$$\Gamma^* = \chi \mathcal{P}^*_{\alpha} \left(-\beta - \chi\right), \ N^* = \frac{1 - 2\nu_{np}}{2\nu_{np}} \Gamma^*, \tag{10}$$

где χ – новая механическая константа.

Так как армо-породный массив должен обеспечивать устойчивость горной выработки при достаточно большом сроке ее эксплуатации, используем асимптотическое разложение \Im_{α}^{*} – функции [4]:

$$\mathcal{A}_{\alpha}^{*}(-\beta) \cdot 1 \approx \frac{1}{\beta} - t^{1+\alpha} \sum_{n=2}^{\infty} \frac{(-1)^{n} (\beta t^{1+\alpha})^{-n}}{\Gamma[1 + (1+\alpha)(1-n)]}$$
(11)

Экспериментально определяемое максимальное перемещение w(t) вместо деформации $\varepsilon(t)$ может быть представлено следующим образом:

$$w(t) = w \left[1 + \chi \mathcal{A}_{\alpha}^{*} (-\beta) \cdot 1 \right], \tag{12}$$

где w – перемещение, определенное по зависимости (1).

Чтобы придать параметрам χ и β определенный физический смысл, положим [5]

$$\beta = \frac{1}{\tau^{1-\alpha}}, \ \chi = \frac{\left(E_{0np} - E_{\infty np}\right)}{E_{0np}\tau^{1-\alpha}}, \tag{13}$$

где *E*_{0*np*}, *E*_{∞*np*} – мгновенный и установившийся приведенные модули нормальной упругости, МПа.

По экспериментальной кривой необходимо определить параметры α, β и χ . При этом учитываем тот фактор, что, в основном, ползучестью обладают горные породы, а не металлические анкеры, их модули упругости E_0 и E_{∞} известны.

Блок-схемы алгоритма решения задачи о напряженно-деформированном состоянии армированного анкерами породного массива вокруг горной выработки без учета и с учетом явления ползучести приведены соответственно на рис. 1 и рис. 2.

Рис. 1. Блок-схема алгоритма решения задачи о напряженнодеформированном состоянии армо-породного массива горной выработки без учета явления ползучести

Рис. 2. Блок-схема алгоритма решения задачи о напряженнодеформированном состоянии армированного анкерами породного массива вокруг горной выработки с учетом явления ползучести

В качестве примера приведем результаты расчета максимальных перемещений $w_{max}(\tau)$ армированной анкерами кровли подготовительной выработки шахты «Добропольская» в зависимости от времени эксплуатации (до 600 суток), при фиксированных значениях безразмерных величин $q/E_n = 3.4 \cdot 10^{-2}$, L/H = 2.4; $t_0/d_a = 0.25 \cdot 10^2$ и угле расположения анкеров $\alpha_0 = 90^\circ$ (рис. 3). При этом параметры ползучести: $\alpha = 0.72$, $\beta = 0.45$, $\chi = 2.54 \cdot 10^{-2}$.

Графики максимальных перемещений армированной анкерами кровли выработки во времени в зависимости от схемы расположения анкеров приведены на рис. 4.

Рис. 3. Зависимость максимальных перемещений армированной анкерами кровли выработки от времени ее эксплуатации при $q/E=3,4\cdot10^{-2}$, L/H=2,4, $t/d_a=0,25\cdot10^2$, $\alpha_0=90^\circ$: • – данные эксперимента; — – теоретическая кривая.

Рис. 4. Зависимость максимальных перемещений армированной анкерами кровли выработки во времени в зависимости от схемы расположения анкеров: 1, 2, 3 – одиночное расположение анкеров под углом: $\alpha_0 = 30, 60, 90; 4$ – двойное расположение анкеров под углом $\alpha_0 = 60$

Список литературы:

1. Новиков А.О. Теоретические основы расчета параметров анкерной крепи с учетом ее роли в механизме поддержания выработки / Н.Н. Касьян, Ю.А. Петренко // Migdzynarodowa Konferencja "IX Szkola Geomechaniki 2009" Czesc II: zagraniczna; Materialy Naukowe, Gliwice-Ustron, 2009. - С. 93-116.

2. Новиков А.О. . Наследственное напряженно-деформированное состояние армированного анкерами породного массива вокруг горной выработки.// Сб. науч. тр. «Физико-технические проблемы горного производства», вып. 2. – ИФГП НАН Украины, 2010. – С.34-40.

3. Михлин. С.Г. Вариационные методы в математической физике /С.Г. Михлин / – М.: Гостехиздат, 1957. – 402 с.

4. Аннин Б.Д. Асимптотческое разложение экспоненциальной функции дробного порядка / Аннин Б.Д. – М.: ПММ. – Т. ХХХ, вып. 1961. – С. 796 – 798.

5. Глушко В.Т. Устойчивость горных выработок / В.Т. Глушко, Н.Н. Долинина, М.И. Розовский. – Киев: Наукова думка, 1973. – 206 с.

Рекомендовано до публікації д.т.н. Шашенком О.М. Надійшла до редакції 26.03.10