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ABSTRACT

Explanatory note: 69 pages, 35 fig., 2 tables, 3 additions, 64 sources.

Object of research: optimization processes for time series forecasting models.

Subject of research: methods and models for forecasting electricity prices.

Purpose of research: reduction of electricity costs of enterprises due to
optimization of consumption and / or production schedules.

Research methods. To analyze the data, following methods are used:
correlational analysis, models of auto-regression and moving average, Box-Jenkins
method, spectral analysis. To create forecasting models, mathematical and statistical
methods, feed-forward neural networks are used.

Originality of the results of the qualification work is the improvement of
methods for forecasting electricity prices.

Practical value of the results is that the models and methods proposed in the
research allow enterprises to reduce costs or maximize profits by optimizing
consumption or production schedule.

In the Economics section the calculations of the software development
complexity, the costs of software creation and the duration of its development, as well
as marketing researches of the market of the created software product were carried out.

Keywords: time series, forecasting model, autoregression, correlation, hybrid

model, feed-forward neural network, spectral analysis.
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INTRODUCTION

Relevance of research. Electricity is a uniqgue commodity on the market that is
by nature difficult to manage. Its storage is expensive, non-productive, and requires a
tremendous amount of facilities. Consequently, unlike other types of trading products,
it is impossible to keep it in stock and have it being available on demand. Demand and
supply vary continuously and are not always easily predictable. Such qualities of
electricity as a commodity define the essence of electricity market.

The main challenge of electricity market is to ensure that generation and
consumption are synchronized and that sufficient capacity is provided even during
peaks in demand. Moreover, the recent introduction of smart grids and integration of
renewable energy sources increases the complexity of the market and uncertainty of
future supply and demand. That's why electricity price forecasting is increasingly
gaining importance for all market participants.

Electricity market has become deregulated and is made up of various competitive
submarkets. Electricity price, unlike any other commodity or financial asset, is
extremely volatile. These reasons make price forecasts of greater interest for
customers, generators, traders, power portfolio managers, etc. Now they are forced to
hedge not only volume but price risk. With an accurate forecasting model company can
adjust its bidding strategy, production, consumption.

Electricity price forecasting focuses on predicting spot prices and forward prices
with different time horizons for wholesale electricity markets.

Purpose of research reduction of electricity costs of enterprises due to
optimization of consumption and / or production schedules.

Tasks of research:

* Analyze the basic rules of the electricity market and strategies of its
participants.

» Analyze electricity prices for the past period and draw conclusions about its
nature.

* Pre-process the dataset for subsequent application of forecasting models.
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* Apply ARIMA and ANN models and analyze the results.

* Evaluate and analyze the possibility of creating hybrid prognostic models.

* Draw conclusions about the results obtained.

Object of research is an optimization process of time series forecasting models
by combining statistical and non-statistical approaches. Both have been widely used in
forecasting separately, however, in case of electricity prices, it was found that
combining forecast methods by some means generally results in greater accuracy.

Subject of research. This thesis specifically focuses on developing a two-stage
forecasting model, combining Auto-Regressive Integrated Moving Average (ARIMA)
and feed-forward neural networks. ARIMA is a linear model that uses lagged values
of a variable to predict its future values. It is often used in cases where data show
evidence of non-stationarity, i.e. the way time-series changes is not time-dependent.
Feed-forward neural networks are used to find a non-linear relationship in time series.
Model is applied to day-ahead power market data from the European Power Exchange
(EPEX) SPOT over a period of one year till August 2020.

The model presented in this thesis is integrated into a virtual power plant Neckar-
Alb and is used to adjust the work timetable of connected distributed energy resources
(DERY).

Research methods. To analyze the data, following methods are used:
correlational analysis, models of auto-regression and moving average, Box-Jenkins
method, spectral analysis. To create forecasting models, mathematical and statistical
methods, feed-forward neural networks are used.

Originality of the results of the qualification work is the improvement of
methods for forecasting electricity prices.

Practical value of the results is that the models and methods proposed in the
research allow enterprises to reduce costs or maximize profits by optimizing
consumption or production schedule.

Personal contribution of the author:

e Structure of electricity market and price formation rules were deeply

investigated.
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e Real prices from the European Power Exchange (EPEX) SPOT were

analyzed.

e Knowledge of existing forecasting methods was researched and analyzed.

e Main challenges and tasks for improvement of forecasting processes as well

as ideas for future development were described

Structure and scope of work: This paper consists of the introduction, 4
sections, and conclusion.

In the first section analysis of topic and problem statement is made. Structure,
history, behavior, and main characteristics of the electricity market are described.
Influence of decentralization and deregulation of markets, a transition towards a low-
carbon economy, and growth of renewables were discussed. An example of German
electricity market was presented. A thorough study of electricity prices was made to
find out which determining factors play a vital role in setting the next days" electricity
price for a given power market.

Electricity price forecasting as a tool was introduced and its main tasks and
challenges were addressed. Previous researches in the area to evaluate the performance
of the most efficient forecasting tools were revised.

In the second section methods, models, main approaches as well as the process
of variable and model selection to forecasting are described.

In the third section, the analysis of electricity prices from the EPEX Power
Exchange is made. This process includes cleaning and pre-processing the data, analysis
of behavior, data decomposition. ldeas for future improvement of the models is
presented.

In the fourth section, the complexity of software development and important
stages are determined. The costs of software creation are calculated. Sales market
analysis for developed software was reflected.

Conclusion presents obtained scientific and practical results of the research,

recommendations for their scientific and practical use.



12

SECTION 1
ANALYSIS OF ELECTRICITY DOMAIN

1.1. Electricity market representation

Since the beginning of commercial distribution in the 1880s and until the middle
of 20" century electricity was considered a “natural monopoly”. It is an industry in
which multi-firm production is more costly than production by a monopoly” [1]. The
electric power industry consists of four main processes: electricity generation, electric
power transmission, electricity distribution, and electricity retailing. All of these
activities were commonly controlled by large utilities and there were no options for
smaller electric companies to be partly involved in some of these processes without
owning the whole infrastructure.

In the 1990s the traditional vertically integrated electricity market rapidly started
to go through a number of significant changes and reforms in many countries [2].
Deregulation and decentralization of the market lead to more opportunities for private
companies. And if the functions of transmission and distribution remain monopolized,
they are now separated from potentially competitive functions of generation and retail.
Thus, wholesale electricity market and retail electricity market were established. The
main difference is that the former market is a B-2-B (business-to-business) and the
latter is B-2-C (Business-to-consumer). In this paper, wholesale electricity market is
addressed.

A wholesale electricity market offers generators to sell their electricity to
retailers. Latter then re-price the electricity and take it to end-users [3].

Specific characteristics of electricity as an asset imply certain limitations on
power market system. As a regular commodity or financial asset, it can be bought, sold
or traded. However, its nature creates following restrictions.

e Electricity cannot be easily stored. One option is to save it in another form of
energy by pumping water into storages, however, storage possibilities are

limited (there should be enough space for water reservoirs). Another option is to
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use batteries, which are incredibly expensive and environmentally-unfriendly.
This means that electricity must be consumed right after its production.
Transmission of electricity involves losses;

Frequency and voltage deviations can lead to major consequences;

Moreover, electricity is grid-based. With a quite recent introduction of smart

grids, the structure of the market becomes even more complex [4]. Comparing to a

traditional system, smart grids cost-efficiently integrate actions and behaviors of all

users. Its most important characteristics are:

Bi-directional flow of electricity and data (when consumers become prosumers
and produce electricity too);

Systematic communication between producers and consumers, so the supply-
demand balance can be balanced better;

Integration of renewable energy sources;

A large number of diverse and distributed generation and storage devices
complementing the large generating power plants;

Self-healing capabilities (isolating network failure and protecting the power
infrastructure without human intervention);

Resilience to attacks and natural disasters;

Generally, the main task of electricity market is to ensure the security of supply.

Generation and consumption must be synchronized and sufficient capacity needs to be

provided during peaks of demand [5].

1.2. Structure of electricity market

Electricity market is made up of various submarkets which can be distinguished

based on their time horizons and properties. There are 3 common time horizons: short-

term, medium-term, and long-term. Regarding the properties, there are 3 market types:

Power Exchanges, OTC markets, and Organized OTC markets [6].
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- Power Exchange is a platform where electricity is traded through bids.
Market participants submit supply and demand bids. Then market operator
collects all submitted bids and clears the market. This type of market is used
for anonymous trading and allows direct anonymous contracts. Usually, it is
used for short-term and medium-term horizons, but there are some power
exchanges for long-term future products. It is a typical example of an auction
market system.

- OTC(Over-The-Counter) market — a decentralized market that is used for
bilateral trading and excludes a central exchange or broker. Here any type of
electricity product with any specific conditions or constraints can be traded.
Often most long-term contracts (up to a couple of years) are traded here.

- Organized OTC market — participants submit long-term supply and demand
bids to a platform similar to power exchange and then they are matched on a

continuous basis.

1.3. Electricity price

The main element to control any kind of electricity market is price [7]. Specific
characteristics of electricity as of asset results in incomparably high volatility. Even so
every financial commodity experiences a level of volatility, for electricity prices the
magnitude it can be up to two orders higher.

Fig. 1.1 demonstrates hourly prices for day-ahead market taken from the
European Power Exchange (EPEX) SPOT for a period of one month (December 2019).
Prices fluctuate from a local minimum of almost -50 euros up to about 80 euros with a
mean value of 38 euros. Weekly and daily patterns can be observed. One of the
purposes is to analyze the nature of observable peaks and fluctuations, so that this data

could be used as an input to the forecasting models.



80

60

40 ff |

20

Price, € MWh

-40

-60

T

T

9

9.—
9.—
9.—
9._
9_
9._
9._
9
9.—

9._

9_

W g g g g e g g g e g g

[ ZT SR P T TR I

01/12/20
02/12/20
03
0/12/20
1112120

04
05
06
07
08
09
12
13
14

1

Fig. 1.1. Hourly prices for day-ahead market

~ D2 B e el

1212019 |

9._

9._
9.—
9.-
9.—.
g._

9._

9._

9._

9+

9.—

9+

9.—

9._

9_

9._

9..

9+

N Y g g g g g g gee e g g g g e g g g

- -

21112120
22/12120
23/12/20
24/12/20
25/12/20
26/12/20

27

Globally, electricity price depends on various factors [8]:
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Demand levels;

Supply availability.
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All of these factors play a significant role in the process of price determination.

Some of them can only be predicted in the short-term, like weather, others in both
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short- and long-term with different precision (supply, demand). Others either cannot
be simplified enough to act as an input to forecasting models or are almost
unpredictable by nature.

Wholesale electricity market involves 3 different types of trading with different
time horizons: day-ahead, intraday, and continuous [9]. All of them take place in power
exchanges, however, they can also take place in OTC markets.

Intraday trading means that buying and selling of electricity happen on the same
day when power is delivered. Power is traded in quarter-hour and one-hour intervals.
Depending on the exact power exchange, a position can be traded up to 30 minutes
prior to delivery. Lead time (time between purchase and delivery) differs in different
markets. In Germany, it has been reduced to only five minutes. It can be explained by
an increased supply of power from renewable energy sources, which have a high level
of fluctuations as they are significantly dependent mostly on weather. It demonstrates
the necessity of reliable and precise forecasting models.

Continuous trading happens by the same principles as intraday, but the trading
takes place on an ongoing basis. A position is executed without the delay at the best

price available.

Day d-2 Day d-1 Dayd
A . A
r T T B
Bidding for d-1 Bidding for d
—_— —_—
‘ 12:40 p.m. ‘ 12:40 p.m. ‘ ‘
24 Hourly prices for day d-1 24 Hourly prices for day d

Fig. 1.2. Chronological representation of day-ahead market
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Fig. 1.2 demonstrates the schematic chronological representation of day-ahead
market. Day-ahead trading refers to the trading of electricity for the following day. It
Is also presented on power exchanges and OTC markets. Prices are finalized before a
particular market closing time. In the markets of Germany bids for auctions for the next
day must be submitted by 12 a.m. Resulting prices for the next day are published
approximately at 12:40 p.m.

1.4. Electricity Price Forecasting

Electricity price forecasting focuses on predicting spot and forward prices in
wholesale electricity markets. All market players use price forecasts as a fundamental
input to decision-making mechanisms at the corporate level. As price is extremely
volatile, companies have to hedge not only against volume (how much electricity is
needed), but also again its price movements [10]. The costs of mistakes in buying or
selling strategies and, as a consequence, buying wrong amount of electricity or at the
wrong time can lead to huge financial losses or bankruptcy. The more accurate forecast
is, the better generator, retailer, or consumer can adjust its bidding strategy or
production/consumption schedule in order to reduce the risk or maximize profits.

In the last few decades, a variety of models were applied to the challenging task
of electricity price foresting. They can be classified into six groups:

e Multi-agent models [11] — a broad variety of models that simulate the
behavior of market and its participants. Market participants called agents are
modeled as adaptive software agents who develop their strategies through
different ways of learning (usually machine learning). Such model can
include different markets, which are interrelated only through the agents”
trading strategies. Agents try to find profit-maximizing bidding strategies.
Such models are beneficial for companies who try to estimate their market
power and market position. They can provide insights on market behavior
depending on agents™ strategies or how the rise of electricity price can

influence the agent’s outcomes. However, these types of models are not



18

recommended for high-precision price forecasts or any kind of quantitative
conclusions. This class of models includes cost-based models, game-theoretic
approaches (Nash-Cournot framework), equilibrium approaches (supply
function equilibrium) [12].

Fundamental models — class of models that captures fundamental
characteristics of physical (transmission lines, generation units, power grids,
location, system parameters) and economical (financial speculations,
regulatory changes) parts of the market [13]. These approaches are aimed to
capture behaviors that cannot be explained by past behaviors in prices.
Fundamental methods try to estimate future electricity prices by simulating
market clearing process. It is a process of equation of supply to demand, so
there is no leftover. Such price when supply and demand are equal is also
called equilibrium price. Because of increasing complexity of markets, such
models are found to be very difficult to estimate. They strongly rely on the
objectivity and completeness of assumptions about economical and physical
relationships in the marketplace. Therefore, if these assumptions are violated,
model output can be considered as unreliable.

Reduced-Form models [14 — 16]. Reduced-form models evaluate dependent
and independent variables inside market and try to identify their relationships
with each other. Dependent values are received from functions of the
independent values. Independent values (also called exogenous) are assumed
to be determined by outside factors. Their goals are not to provide precise
hourly forecasts, but rather reproduce the main characteristics of price, its
correlation with other financial assets and commaodities. They are often used
for derivatives evaluation and risk analytics. Two most famous models are
Markov-regime-switching model and jump-diffusion models.

Statistical models — a variety of models that are often used in econometrics
for forecasting future values of the variable by evaluating the relation

between previous values of the same variable or values of exogenous factors
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[17]. In case of electricity prices, load consumption, weather, demand, and
supply-side variables are often used as exogenous variables. Such models are
found to work well as long as there are no significant changes in market
constraints, rules, and changes. Most of the models use a linear approach to
forecasting [18, 19]. Most used models in electricity price forecasting include
similar-day and exponential smoothing, regression models, time-series
models with and without exogenous variables [20 — 22].

Computational intelligence models — a wide type of models that uses a non-
linear approach to forecasting [23]. They include artificial neural networks,
machine learning, information fuzzy networks, support vector machines [].
Such models also use previous data to forecast future prices, but unlike
statistical models, they can handle and evaluate complex non-linear
dependencies.

Hybrid models — if the model combines two or more approaches it is
considered to be hybrid. Often market data is too complex to be handled by
only one method. Then a combination of them is used for a more accurate
forecast [27 — 30].

In this paper statistical models, computational intelligence models, and hybrid

models are further investigated.

1.5. Forecasting Horizons

Depending on how much further in future the price is needed to be forecasted,

three main time horizons are determined:

Short-term forecasting - usually is used for predicting spot and forward prices
in intraday and day-ahead markets. Mostly statistical, computational
intelligence, and hybrid models are used. Such forecasting plays an important

role in daily market operations [31].



20

Medium-term forecasting — such models include time horizons from a few
days to a few months. They do not focus on accurate forecasts of spot prices
and forward prices but are rather useful for estimating the trend and general
price changes. Such forecasts are used for adjusting risk management
strategies, balance sheet calculations, or derivatives pricing. In many cases,
not the actual point forecasts are used, but the price distribution over certain
future periods is evaluated for decision making.

Long-term forecasting — models focus on future months and years and are
used for strategic decisions on a corporate level [35]. Such information can
also be used for investment profitability analysis and planning, determining

the sites of new power plants, or planning on fuel sources usage [36 — 39].

Models developed in this work focus mostly on short-term electricity price

forecasting, but can also be applied to medium-term forecasting.

Statistical and computational intelligence models belong to the quantitative

forecasting methods. Such methods are applied when numerical data about the past is

available and it is assumed that past patterns will continue. Most of the time

information about the past is presented in time series datasets or in a form of cross-

sectional data.

Time series is a series of data that is arranged according to the time of its
observations. It is a sequence of values of one variable taken at successfully
equally spaced time intervals in the past.

Cross-sectional data includes values of different variables that were taken at
a single point in time in the past. In electricity price forecasting, it can be a

market-clearing price and load at the same point in time.

1.6. Analysis of common approaches

A lot of researchers dedicated their time to investigate possible solutions for

electricity price forecasting. Most important techniques include:

Statistical time series models;
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- Artificial Neural Networks;

- Wavelet transform models;

- Regime-Switching Markov models;

- Fundamental Market models;

- Equilibrium models;

- Ensemble and portfolio decision models.

In [40] authors focus on medium-term probabilistic forecasting of extremely low
electricity prices in Spanish market. Paper proposes a novel methodology to
simultaneously accomplish punctual and probabilistic hourly forecasts. Model
combines Monte Carlo simulation with spatial interpolation techniques. Logistic
regression for rare outliers, decision trees, multilayer perceptrons are used. The
proposed hybrid models are compared to naive approach. Author demonstrates
empirical results based on real case study of the Spanish electricity market.

In [41] Cheng proposes mid-term electricity clearing price forecasting in a
Yunnan electricity market. Author proposes a novel grey prediction model, where the
lower and upper bounds are firstly identified to give an interval estimation of the
forecasting value. A novel whitenization method is then proposed to determine definite
forecasting value from the forecasting interval. Model parameters are identified by an
improved particle swarm optimization (PSO). The accuracy of proposed model is
compared with multiple linear regression and artificial neural network.

In [42] authors present a hybrid multi-step model for day-ahead electricity price
forecasting based on optimization, fuzzy logic, and model selection. Model consists of
two stages: particle swarm-optimization with core mapping, self-organizing map and
fuzzy set followed by selection rule. Proposed model shows good results in reducing
the high volatility of the electricity price.

In [43] author proposes a novel technique to forecast day-ahead electricity prices
based on the wavelet transform and ARIMA models. Complex historical price series is
decomposed using the wavelet transform in a set of better-behaved constitutive series.

Then future values are forecasted using properly fitted ARIMA models. In the end,
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separate forecasts are reconstructed into a single one. Results from the electricity
market of Spain are reported.

In work [44] authors present a well-known ARIMA model to analyze and
forecast day-ahead spot price. The model is applied to time series consisting of prices

from EPEX power exchange.

1.7. Conclusions and problem statement

This thesis addresses the problem of selecting the effective and sufficient
methods for day-ahead electricity market clearing price forecasting. It analyzes
complex behavior and extreme volatility of electricity as a financial commodity.
Influence of external factors and complexity of power market is taken into account.
Historical data from EPEX power exchange is investigated. A combination of
statistical and computational methods as an alternative to usage of single approaches

IS proposed.
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SECTION 2
METHODS AND MODELS USED IN FORECASTING

2.1. Statistical methods

Statistical methods forecast future values by mathematical combination either of
past values of the same variable and/or values of other (exogenous) variables. All
statistical methods can be divided into two main categories: additive and multiplicative.
Additive models represent forecasted price as a sum of components, while
multiplicative represent it as a product of a number of factors. Below there is a
representation of most used statistical approaches in electricity price forecasting.

Average approach is a simple method that suggests that future value is equal to

the mean of previous values (eq 2.1).

y=Q1+ - +yr)/T, (2.1)

where ¥ is forecasted price, (y; + -+ + y;) are all past values, T is period.

This approach is rarely used separately. More complex version of this approach
is called Moving Average (MA). It has been widely used in time series decomposition
and forecasting and is a base part of more complex methods.

A moving average of order m can be written as (eq 2.2):

_ 1
To== Yy, 2.2)

where m = 2k + 1. The estimation of trend at time t is obtained by averaging
historical values within k periods of t. As the process eliminates some randomness in

the data, it is also called moving average smoothing.



24

- Hourly prices for 5 days (120 hours)
T : — T T

60

S5 I bl I

S
(9]
T

N
o
T

Price, €/MWh

w
(3]
T

51 | i

20 F\J

Time, hrs
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Fig. 2.2. Moving average

Fig. 2.1 demonstrates hourly prices for a period of 5 days, which is equal to 120

hours. Fig. 2.2 shows the moving average of order 24 of the same dataset. Such a

technique helps in determining the trend.
It is also possible to apply moving average to moving average. Combination of

them results in weighted moving average. In general, it can be represented as follows

(eq 2.3):

T = Z AiYt+j (2.3)



25

where k = (m — 1) /2 and the weights are given by [a_,, ..., ax].

Main advantage of such approach is smoothing the trend. Weights of
observations slowly increase and decrease, resulting in a smoother trend.

Linear regression approach is another basic approach that is present in more
sophisticated models. Simply it means that the forecasted value of y has a linear
relationship with its past values or with other time series. Forecasted variable is called
the regressand or explained. Variable that are used for prediction are called the
regressors or explanatory. Relationship between the forecasted variable y and

explanatory variable x can be written as (eq 2.4):

Vi = Bo + B1x: + &, (2.4)

where 0 + B1xt are explained part of the model and ¢t is the random error.

Linear regression is found to be insufficient in forecasting electricity prices
because it doesn't address the underlying complexity behind historical data.
Exponential smoothing. Forecasted values obtained using this method are weighted
averages of past observations with weights decaying exponentially as the observations
get older. The further in the past observation is, the smaller is weight that it is associated
with (eq 2.5).

VT+1|T=ayr+a(1—a)yr—1 +a(1—a)2yp_, 4+, (2-5)

where o <a <1 IS a smoothing parameter and. y;, ..., y; are averages of time

series.
ARIMA approach is one of the most reliable approaches in time series
forecasting. To forecast future values, they aim to describe autocorrelations in

historical data.
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ARIMA stands for Autoregressive Integrated Moving Average. It is a
combination of two different models: Autoregressive model and Moving Average
model. Autoregressive model uses values from previous time steps to predict values at
next time steps. Moving average, for its part, takes arithmetic mean of a set of previous
values over the specified number of time steps in the past [45].

For an ARIMA model to be applied, time series must be stationary. A stationary
time series is one whose properties such as mean, variance, autocorrelation do not
depend on the time at which the series is observed. Thus, if time series has a trend or
seasonality, it is not stationary. In simple words, a stationary time series will have no
predictable patterns in long term. To get rid of a trend and/or seasonality, differencing
can be applied. After that, it is assumed that statistical properties will be the same in
the future, as they have been in the past. Differencing means subtracting the previous
value from the current value. Practically differencing helps in stabilizing the mean of
time series.

An ARIMA model is characterized by 3 terms: p, d, g, where p is the Auto-
Regression order, q is Moving-Average order and d is the number of differences
required to make the time series stationary. Order in these terms refers to the number
of lagged values that should go into the model. ARIMA model has the following

mathematical representation (eq 2.6):

Vi=CH b1+ -+ Opyip+ 0181+ + 084+, (2.6)

where
y¢ - is the differenced time series;
gt — is a white noise;
¢ —i1s AR coefficient for lagged value;
6 — is MA coefficient for lagged value;
To build an accurate ARIMA model, p, d, g parameters have to be determined.

As ARIMA model uses only values of a time series, it is necessary to determine the
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correlation between them. Two functions are used to estimate the correlation: Auto -
Correlation Function (ACF) and Partial Auto-Correlation Function (PACF).
Autocorrelation function (ACF) is a (complete) correlation function that shows
autocorrelation of any value in time series with its lagged values. Lag is a time gap
between these values. Mostly, ACF describes how well the present value of the series
is related to its previous values and is used to detect non-randomness in data.

Partial Auto-Correlation Function (PACF) is the amount of correlation between
a variable and a lag of itself, that is not explained by their mutual correlations with
other variables of the same series. For example, let’'s assume there is a time series Y.
Then, autocorrelation at lag 1 is a coefficient of correlation between Yt and Y., which
Is presumably a correlation between Y:; and Y., PACF is needed to find direct
correlation between Y;and Yi,. The correlation at lag 1 "propagates” to lag 2 and
presumably to higher-order lags. The partial autocorrelation at lag 2 is therefore the
difference between the actual correlation at lag 2 and the expected correlation due to
the propagation of correlation at lag 1.

Order of differencing is the minimal differencing required to get a stationary

time series. Fig. 2.3 demonstrates main steps in creating Arima model.

VISUALIZE TIME SERIES

~.

| STATIONARIZE TIME |
SERIES

PARAMETERS USING

‘-' FIND OPTIMAL |
ACFIPACF

‘ BUILD THE MODEL ‘

.

| APPLY THE MODEL ‘

Fig.2.3. ARIMA flowchart
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Variations of ARIMA models: ARMA, SARIMA [46], ARIMAX [47].
SARIMA states for Seasonal ARIMA. To the original ARIMA model, seasonal

parameters are added. It incorporates both factors in a multiplicative model (eq 2.7):
ARIMA(p,d,q) X (P,D,Q)s, (2.7)

where (p,d,q) are non-seasonal parameters and (P,D,Q)s are seasonal
parameters.

Seasonality in a time series is a regular pattern that repeats with a certain
periodicity. ARIMAX states for Autoregressive Integrrated Moving Average with
Explanatory Variable, where there are one or more autoregressive (AR) terms and/or
one or more moving average (MA) terms. It can be roughly seen as a multiple
regression model. While ARIMA is used for datasets that are univariate (consists on
observations on only one characteristic), ARIMAX is applied to multivariate datasets
[48]. Multivariate means there are additional explanatory variables. Its mathematical

representation (eq 2.8):

p q M
Py = Gl i+ ) e+ ) BnXmtte, (28
i=1 j=1 m=1

where
y; — time series data

Xt — exogenous data

2.2. Feed-forward neural networks

Artificial neural networks allow complex non-linear relationship between the

response variable and its predictors. In case of time series forecasting, they can be
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applied both to univariate and multivariate time series. In this paper univariate time
series is addressed.

Neural network that can handle univariate time series is called feed-forward
neural network (FNN) [49].

The simplest feed-forward neural network contains no hidden layers and is
equivalent to linear regression. Forecasts are obtained using linear combination of
inputs with weights attached to them. Weights are selected so that cost function such
as mean square error (MSE) is minimized. Fig. 2.4 demonstrates the simplest neural

network.

INPUT 1

INPUT 2 \
INPUT 3 /

OUTPUT

INPUT 4

Fig. 2.4. Simplest Neural network
Once a hidden layer with hidden neurons is added, neural networks become non-
linear. Fig. 2.5 shows the example of multilayer feed-forward network, where each

layer receives inputs from the previous layers. Inputs to each node are combined

linearly (eq 2.9):

4
zj = b; + Z Wi jX;, (2.9)
=1

where b1, b2, b3 and w1,1, ..., w4,3 are “learned” from the data.
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In hidden layer, the weighted linear combination of inputs is modified using a non-
linear function, such as sigmoid (eq 2.10) to give the input for the next layer. This

process reduces the effect of extreme input values [51].

1
1+e2

s(z) = (2.10)

Usually, several parameters are used as inputs to the neural network, but in time
series forecasting it is possible to take previous values of one parameter and use them

as inputs. It can be called a neural network autoregression [52].

INPUT LAYER HIDDEN LAYER OUTPUT LAYER

INPUT 1

INPUT 4

OUTPUT

Fig. 2.5. Feed-forward neural network

2.3. Hybrid forecasting models

Usually, time-series data is too complicated to be explained by one or even two
models. Thus, hybrid models provide a solution by combining the best of different
forecasting techniques. Often statistical and machine learning methods are combined.
However, multi-agent or fundamental models can be also taken into consideration
when designing a hybrid model. The fundamental idea is that such a combination
compensates for the limitations of one approach with the strengths of the other [53].

For instance, statistical methods mostly assume linear relationships in the data and they



31

outperform neural networks in this task. But it is not necessarily the case in real-world
data, where datasets contain both linear and non-linear components. On the other hand,
machine learning techniques can exploit cross-series information. As they do not have
an assumption of linearity, they have an exceptional capability of approximating almost
every function [54].

There are 2 main ways to obtain a hybrid forecast (Fig. 2.6).

Initial data Initial data
v
Decomposition into
[ components ] [ Model 1 ] [ Model 2 ]
¥ N
. i Combination through
DIﬁEFEnt r‘ﬂUdE|S Tor Aueragell‘llﬂfmghted ﬁverage
each component

l l

Forecast Forecast
Fig. 2.6. Classification of hybrid approaches

In the first case, models are applied simultaneously with an aim to catch different
patterns, model linear or non-linear components etc. It can be understood as a
sophisticated combination of different approaches that in one way or another interact
with each other. Main challenge of this approach is to find an appropriate way for data
decomposition. In electricity price forecasting domain, there is a presupposition that

historical data consists of 2 components: linear and non-linear (eq 2.11) [55]

Vi = Lt + Nt, (2.11)
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where L; and N; are linear and non-linear components respectively. Firstly,
statistical model such as ARIMA is applied to give a linear forecast. Then residuals
from the fitted model are obtained and used as inputs to the non-linear model. If e,
denotes residuals from ARIMA, then (eq 2.12)

er =Y — L, (2.12)

where L, is a forecasted value from ARIMA. Then non-linear component N is
modelled by neural networks. In the end, results are combined into single forecast.

Predicted values of time series can be defined as (eq 2.13):

S\’t = Nt + Lt' (213)

First option to split data into subcomponents is to fit ARIMA model first and
then obtain residuals from it. Fig. 2.7 demonstrates an example of fitting ARIMA
model to electricity prices and obtaining residuals as a difference between forecasted
and real value. In a properly fitted ARIMA model, residuals are white noise, which
means that they contain no autocorrelation. However, it only means that there is no
linear correlation between values. Thus, non-linear methods can be considered to be

effective in residuals analysis.
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Fig. 2.7. ARIMA and its residuals
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As it was said earlier, traditional time series datasets are thought to be an aggregate or
combination of the following components: level, trend, seasonality, noise. All series
have a level and noise, but trend and seasonality are optional.

In additive model, the components are added together as follows (eq 2.14):
y(t) = Level + Trend + Seasonality + Noise. (2.14)

An additive model is linear, where changes over time are consistent and are made
by the same amount. Trend is a straight line and seasonality has constant frequency
and amplitude.

In multiplicative model components are multiplied instead of being added (eq
2.15):

y(t) = Level * Trend * Seasonality * Noise. (2.15)

A multiplicative model is non-linear, such as quadratic or exponential. Changes
increase or decrease over time, Trend is not a curved line, seasonality has changing
frequency and amplitude over time.

Datasets can also be transformed through different transformation techniques.
Most promising of them are Fourier Transform and Wavelet Transform.

Fourier analysis represents any function by sums of simpler trigonometric
functions, usually sines. It is used to map signals from the time domain to the frequency
domain. After, Inverse Fourier Transform is used to remap the signals from the
frequency domain back to the time domain [57]. The Fourier transform of a time

series yt for frequency p cycles per n observations can be written as (eq 2.16):

n-1
Zy, = Z vy exp(—2mipt/n). (2.16)
t=0
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If applied properly, Fourier Transform can give a powerful insight into the

data.

Time domain >  Frequency domain

Fig. 2.8. Fourier transform

Fig. 2.8 shows the decomposition of function to 2 sine functions.

However, it cannot cover both time and frequency simultaneously. It is a
theoretical limit that is known as the uncertainty principle. The smaller is the size of
the window, the more information we get about a location of frequency, but less about
the frequency value. In time series analysis it is often important to know not only the
frequency of an event, such as price peaks but also the time when it happened. Thus,
Fourier transformation implies limitations and has to be used carefully.

As an alternative to Fourier Transform Wavelet Transform is used. It has been
used as a preprocessing method since the 2000s [57]. Wavelet transform decomposes
time series data into approximation and detail components, and different forecasting
methods are applied to each component. Compared to the Fourier Transform, Wavelet
has a high resolution in both frequency and time domain. It provides information not
only about which frequencies are presented in a signal, but also at which time these
frequencies occurred. It is achieved by scaling. Firstly, large features are analyzed, then
smaller features are analyzed after shrinking the scale. As Fourier Transform uses a
series of sine waves with different frequencies, Wavelet Transform uses functions

called wavelets. Sine functions are infinite, while wavelets are localized in
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time (Fig. 2.9). This localization allows obtaining time information in addition to

frequency information.
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Fig. 2.9. wavelet function

Fig. 2.10 demonstrates the decomposition of differentiated hourly electricity
prices. S is the original signal, that is decomposed on 7 levels: one approximation level
and 6 detailed levels. All levels can be then analyzed separately and with different
approaches. As signal is a linear combination of its components, original signal can be
obtained through addition [58].
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Fig.2.10. Decomposition of differentiated prices through wavelets
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Another decomposition approach is splitting the time series into different
datasets based on their values. In simple case, electricity prices can be split into three
groups: high prices, medium prices, and low-prices. Such process belongs to
preprocessing. Core idea of this approach is that high and low prices have different
patterns and together create the level of volatility that one model is not able to
cover[59]. For this purpose, fuzzy logic can be established:

e |IF price(i) IS High price, THEN price(i) equals price(i) * Highweight;
e |IF price(i) IS Medium price, THEN price(i) equals price(i) *Mediumweight;
e IF price(i) IS Low price, THEN price(i) equals price(i) * Lowweight.

This method reduces the volatility of price [60]. As an alternative dataset can be
divided into 3 different datasets, each containing high, medium, and low prices
respectively. Then, they can be analyzed separately and different forecasting

techniques can be applied.

2.4. Conclusions

In this section analysis of electricity price formation was made. As predictors,
historical values of electricity prices are chosen. Such data gives a deep insight into
rules under which electricity price was formed and allows to make generalizations
about them. The possibility to add exogenous factors to forecasting models is also
described, however, this work does not focus on it.

Main approaches to MCP forecasting are presented. Both ARIMA and ANN are
considered to be promising models, however, a deep understanding of underlying data
Is required to fully utilize their strengths. VVolatile nature of electricity makes it difficult
to properly fit the model.

There are several ways for models to be combined into a hybrid one. Thus, data-
preprocessing techniques, such as Wavelet or Fourier decomposition, as well as fuzzy

logic are presented. It allows utilizing strengths of linear and non-linear models while
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neglecting their weaknesses. Similarities and differences, as well as advantages and
disadvantages of decomposition techniques, are reflected.
In the next section, pre-processing, analysis of historical prices, and application

of ARIMA and ANN to day-ahead electricity market in Germany is described.
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SECTION 3
APPLICATION OF ARIMA, ANN TO DAY-AHEAD MARKET

In this section ARIMA Model, ANN model, and hybrid model are described and
compared with each other. Models are trained on dataset containing hourly electricity
prices from European Power Exchange (EPEX) Spot.

3.1. Preprocessing the data

Original dataset contains hourly prices for the period from 09 May 2019 to 22
October 2020 that corresponds to 533 days or 12792 hours.

Before analysis of the prices, dataset was preprocessed. Missing entries were
filled using linear interpolation (Fig. 3.1).

Filled missing entries
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Fig.3.1. Cleaned dataset

Fig. 3.2 demonstrates average price for every weekday. Prices for Monday —

Friday stay almost on the same level, while on Saturday and Sunday they are noticeably
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lower. It was decided to exclude weekends out from the dataset and focus only on

working days (Fig. 15).
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Fig. 3.2. Average prices for every weekday
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Fig. 3.3. Prices on workdays

8000 9000 10000

Time series dataset consists of systematic and non-systematic components.

Systematic are those that have consistency or recurrence and can be described and

modeled. Non-systematic components cannot be directly modeled and are called noise.
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A given dataset is thought to consist of three systematic components: level, trend, and
seasonality. Level is the average value in the series, the trend is the
increasing/decreasing value, seasonality is the repeating short-term cycle in the time
series and noise is the random variation in the series. Fig. 3.4 demonstrates the overall

trend by applying a moving average with a window of twelve months. There is a clear
increasing trend since April, 21, 2020.
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Fig. 3.4. Moving average with window of 12 months

Fig. 3.5 shows averaged daily fluctuations of price. There is a pattern for
electricity prices throughout the day. Starting at midnight, price decreases until 02 am,
with the local minimum at this point. Then price starts increasing and reaches its first
peak at 05:30 am. It is followed by a significant decrease and gets to a local minimum
at noon. After that, the pattern repeats, rising rapidly until 05:30 pm, where it reaches
day's maximum value. Since then, there is a massive decrease until midnight, where

price gets close to the price at the beginning of a day.
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Fig. 3.5. Averaged daily fluctuations

3.2. Estimation of ARIMA model

To estimate an ARIMA model, autoregressive order, differencing order, and
moving average order need to be determined.

Looking at Fig. 3.3, it is clear that data, as many macroeconomic time series, is

not stationary. There is a downward trend followed by an upward trend and the mean
IS not constant over the time.

To make data stationary, differencing is applied (Fig. 3.6).
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Fig. 3.6. Differenced data
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It can be concluded that variance is now constant and differenced prices are
distributed around 0. However, besides visual estimation, there are 2 common tests that
can be used to test if time series is stationary.

Kwiatkowski—Phillips—Schmidt-Shin (KPSS) test - used for testing a null
hypothesis that an observable time series is stationary around a deterministic trend
against the alternative of a unit root [62]. Null Hypothesis that the differenced time
series is trend stationary is failed to reject (Fig. 3.7), which means that our dataset is

trend stationary.

KPSS Test for Stationarity(PriceDiff)

Null Hypothesis: PriceDiff is trend stationary

Results
Select |Null Rejected| P-Value |Test Statistic|Critical Value| Lags |Include Trend|Significance Level
1 |:| false 0.1000 8.2706e-04 0.1460 Otrue 0.0500

Fig. 3.7. KPSS test

Augmented-Dickey-Fuller Test tests the null hypothesis that a unit root is
present in a time series. The alternative hypothesis is that time series is stationary. In
other words, time series is not stationary, if it contains a unit root. As null hypothesis
IS rejected, it can be stated that data contains no unit roots and hence is stationary [61]
(Fig. 3.8).

Augmented Dickey-Fuller Test(PriceDiff)

Null Hypothesis: PriceDiff contains a unit root

Results
Select | MNull Rejected| P-Value |Test Statistic|Critical Value| Lags Model |Test Statistic|Significance Level
1 O true 1.0000e-03 -64.0518 -1.9416 0AR 1 0.0500

Fig.3.8. Augmented-Dickey Fuller test
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First-order differencing is enough to make data stationary. Next step is to
determine autoregressive and moving average orders. Figures 3.9 and 3.10 show

Autocorrelation and Partial Autocorrelation functions for a given time series.
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Fig. 3.9. Autocorrelation function
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Fig.3.10. Partial autocorrelation function

Partial autocorrelation helps in determining autoregressive order. The most
significant partial correlation is in lags 1, 24, 48, 120, 600. Also, partial correlations in

the first 12 lags can be considered. Autocorrelation function crosses the x-axis after 1
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lag, so moving average of order 1 is considered to be the most likely. However,
increasing the moving average order to 2 can also be considered.
Based on these results, the following ARIMA models were estimated and

compared with each other.

Table 3.1
Comparison of ARIMA models
Model AR parameters _Degree c_>f MA parameters | AIC
integration

ARIMA1 1 1 1 5.5253e+04
ARIMAZ2 1,24 1 1 5.3586e+04
ARIMA3 1,24, 48 1 1 5.2795e+04
ARIMA4 1, 24, 48,120 1 1,2 5.1769e+04
ARIMAS 1,2 1 1 5.4114e+04
ARIMAG 1,2,24 1 1,2 5.3220e+04

Goodness of fit of the models is compared using the Akaike information criterion
(AIC) (table 3.1) [63]. It is estimator of prediction error and thereby shows the relative
quality of the model. It can be used to compare only models that were estimated using
the same dataset. The lower AIC value is, the better is quality of the model.

Based on the AIC criteria, ARIMA4 model has the best results. Its mathematical

representation is (eq 3.1):

(1 = 1L — sl — pagl®® — ¢p150L"*°) (1 — L)y, = c + (1 + 6,L + 6,L%)e;,  (3.1)

Where

¢ — autoregressive parameter;
6 — moving average parameter;
L — lagged value;

C — constant;
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¢ — white noise;

Table 3.2 shows the estimation results of the ARIMA4 model. Standard Error
corresponds to the estimate of the standard deviation. T-statistic is the ratio of the
coefficient to the standard error. P-value is the probability of obtaining results at least

as extreme as observed results.

Table 3.2

ARIMA4 estimation results
Parameter | Value Standard Error | t Statistic | P-Value
Constant | 4.9851e-05 | 0.03414 0.0014602 | 0.99883
AR{1} 0.19839 0.010963 18.0961 | 3.4181e-73
AR{24} 0.19975 0.005291 37.7519 6.99e-312
AR{48} 0.19569 0.0063782 30.6813 | 1.0103e-206
AR{120} |0.2968 0.0044064 67.3568 |0
MA{1} -0.097981 | 0.012226 -8.0143 1.1076e-15
MA{2} -0.13658 | 0.0067122 -20.3476 | 4.8741e-92
Variance |16.8095 0.080738 208.199 |0

Fig. 3.11 shows the fit of the ARIMA4 model.
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Fig. 3.11. Fit of ARIMA4 model
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Residual Plot

60

40 _

20 :

| Lekd L4l ‘, H[ \H | LTI !

_60 1 1 1 1 1 1
Jul 2019 Oct 2019 Jan 2020 Apr 2020 Jul 2020 Oct 2020

Time

Fig. 3.12. plot of the model residuals

Fig. 3.12 shows the plot of the residuals. Model is considered sufficient if
residuals are white noise. It means there is no information left there that can be used
for model improvement. Applying Ljung-Box test for residuals autocorrelation shows
that there still is some autocorrelation and residuals are not white noise. Visually it can
be seen that they often reach up to 10 euros, so this information can be used for
significant improvement of the model.

However, improvement of the existing model by entering more autoregressive
or moving average parameters can lead to overfitting and lack of generalization.
Moreover, such approach may try to explain non-linear dependencies linearly. It can
work well on this dataset but will fail badly in a real forecasting scenario. It makes
sense to apply other forecasting methods to the information contained in residuals.

Fig. 3.13 — 3.16 show 24 hours ahead forecast made by ARIMA4 model. Daily
pattern is repeated properly, however, the deviation of actual prices is higher. First

forecasted price almost perfectly matches the actual price
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Fig. 3.18. 120 hours ahead forecast

Fig. 3.18 shows 120 hours ahead forecast. The precision of forecast declines as
it goes further in the future. It can be concluded that ARIMA model is not suitable for

forecasts more than 48 hours ahead.

3.3. Application of feed-forward neural network
Feed-forward neural network was applied to find non-linear dependencies

between prices at different lags.

It takes 24 lags as inputs and has 1 hidden layer with 12 neurons (Fig. 3.19).

Hidden Qutput

y(t) 7

12 1

Fig. 3.19. Graphical representation of the neural network
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Firstly, model is trained in the open-loop. It means that that it uses target values
as inputs to improve performance of the model. Then, it is switched to the closed-loop
to obtain a forecast for the time extent that is not included in the dataset. Model is
trained using Bayesian Regularization method.

Fig. 3.20 shows error autocorrelation. It can be seen that correlations do not cross

the confidence limit and the only significant correlation is at lag O, that is correlation

of the error with itself.

Autocorrelation of Error 1

15 I Correlations

Zero Correlation
Confidence Limit

10

Correlation

Lag

Fig. 3.20. Error autocorrelation

It was found that applying a neural network to stationarized time series gives
better results in forecasting. So before training the neural network, dataset was

differenced once. After that, forecast was added to initial dataset (concatenated) and

the inverse difference was applied.
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Figures 3.21 to 3.24 demonstrate the daily forecast made by neural network.
After each day, prices of the previous day were added to the dataset, and model was

retrained.

3.4. Conclusions

ARIMA and ANN can be considered as reliable models for electricity price
forecasting. ARIMA model generally performs better than ANN, however, there are
days, when ANN completely outperforms ARIMA. Both models are not reactive to
rapid price changes. Daily pattern is repeated properly for both models; however,
prediction of outliers needs improvement.

Combination of models through averaging didn't show the expected results. One
of the reasons is that both models were obtained through the same dataset. Hybrid
forecasting model that combines ARIMA and ANN was investigated. Residuals from
fitting an ARIMA model were obtained and used as an input to the feed-forward neural
network. It was supposed, that they contain non-linear autocorrelation and this
information can be used for model improvement. Feed-forward network with 24 lags
and 12 neurons in the hidden layer was chosen. However, no significant autocorrelation
was found. Predicted values were negligible.

In 5 days ahead forecast ANN showed better results than ARIMA. Better
performance of ANN in trend estimation can be subjected to further investigation.
Overall, the goodness of forecast does not depend directly on the complexity of the
forecasting model. It was found that simpler models can outperform more complex
ones in certain situations. In periods when price can be considered as stable, models

show similar results.
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PO3/ILI 4
EKOHOMIKA

[Ipu po3poO1ii mporpaMHOro 3a0e3neueHHs BaXKJIMBUMU €TallaMy € BUSHAUEHHS
TPYAOMICTKOCTI po3poOku I3, po3paxyHOK BHTpaT Ha CTBOPEHHS MPOTPAMHOTO

MPOAYKTY 1 aHaJli3 PUHKY 30yTy PO3pOOIEHOTO MPOTPaMHOTO 3a0e3MeYeHHS.

4.1. BU3HAYEHHS TPYAOMICTKOCTI POBeIeHHS A0CTITKeHHsI Ta PO3POOKHU

HeOOXITHOTO IJIs1 ioro MpoBeeHHs MPOrPaMHOro 3a6e3neYeHHs

3anani gaui:

1. [lepenbauyBane uncio onepatopis — 950.

2 Koedimient cxmaanocti nporpamu — 1,6.

3 Koedimient kopekiii nporpamu B xoi ii po3poOku — 0,3.

4, I'onunana 3apobiTHa T1aTa iporpamicra, rpa/rom — 70.

5 KoedimieHT 301bIIIEHHS] BUTPAT TIpalll BHACIIIOK HEJOCTATHLOTO OIHCY
3agaul — 1,1.

6. Koedimient kBamidikamii mporpamicra — 1,5.

7. Bapricts mamuno-roguau EOM, rpu/rox — 15.

HopmyBanus mpami B mporeci cTBopeHHs [I3 iCTOTHO yCKJIQAHEHO B CHITY
TBOPUOTO XapakTepy mpaiii rnporpamicta. ToMmy TpyaoMicTKicTh po3podku 13 moxe
OyTH po3paxoBaHa Ha OCHOBI CUCTEMH MOJIEJIEH 3 Pi3HOIO TOYHICTIO OIIHKH.

TpynomicTkicTs po3pooku [13 MoxxHa po3paxyBaTu 3a HoOpMyIIOIO:

t=t,+t,+t, +t,+t,,, +t,, 1H00uno0 — 200uH, (4.1)

ne to- BUTpATH Ipalli Ha MiATOTOBKY i ONMC TIOCTABIICHO1 3a71a4i (IPUITMAEThCSI

50);

t, - BUTpaTu mpai Ha JOCHIKEHHS aJIrOPUTMY PIIIEHHS 3a7a4i;
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ta - BUTpaTu npatii Ha po3poOKy OJIOK-CXEMU aJITOPUTMY;

t, - BUTpaTu mpaill Ha IpOrpaMyBaHHs 110 TOTOBINA OJOK-CXEMI;

tors - BUTpPATH Mpalll Ha HaJaropkeHHs nporpamMu Ha EOM;

t, - BUTpaTH mpail Ha MiAroTOBKY JOKYMEHTAIIil.

CkuaioBl BUTpaTH Tpalll BU3HAYAIOTHCS Yepe3 YMOBHE uncio oneparopis y 13,
AKE pO3pOOJIAETHCA.

YMOBHE 4HCIIO onepaTopiB (MiAMIpOrpam):

Q=qxCx(+p) (4.2)

ae q - nmependadyBaHe YHUCIIO ONEPATOPIB;
C - KoedilIeHT CKIAAHOCTI TPOTrpamu;

P - KoedIlIEHT KOPEKIIli MporpamMu B XO/I1 ii po3pOOKH.
Q=950x1,6x(1+03)= 1976, 1100uno — 200un 4.3

Burtpatu mnpaii Ha BUBYEHHS ONMHUCY 3aadi ty BU3HAYAETHCS 3 YpaxyBaHHSIM

YTOUHEHHS OMHCY 1 KBamidikalii mporpamicra:

QB

= 5.8 v K’ JHOOUHO — 200UH, (4.4)

ty

ne B - koedimieHT 301bIIEHHS BUTPAT Mpalli BHACTIAOK HEIOCTATHBOTO OMUCY
3aj1a4i;
K - xoedimient kBamidikarii mporpamicra, 00yMOBJICHHIA BiJl CTaXy POOOTH 3

JTAHOI CIeriaabHOCTI.

1976+ 1,1 2390,96

t, = = = 19,32, — 4.5
u 75213 1123 32, moouno — 200un (4.5)




Burtpatu npaii Ha po3poOKy aaropuTMmy pilleHHs 3aj1adi:

tg = (20 35) e JIOOUHO — 200UH,
t, = 1976 = 59,87, 1100 0
«= e 13 | IIOOUHO — 200UH

BurtpaTtu Ha ckiagaHHs NporpaMu Mo roToBii OJI0K-CXeMi:

t, = (20 35) . k,ﬂioduno — 200UH
1976
t, = 0% 15 = 65,806, 1100UHO — 200UH

Butparu npairi Ha HajaropkeHHs nporpamu Ha EOM:

- 3d YMOBHU aBTOHOMHOTI'O HAJIAI'OJPKCHHA OAHOI'O 3aBJIaHHA:

Q

tomn = 7", IOOUHO — 200UH,

4.5k’

1976

Comn = 713 = 329,3, 1100uno — 200uH

- 3d YMOBHU KOMILUICKCHOI'O HAJIAIrOA>KCHHA 3aBJaHHA:

tk = 15%t,,,,100uno — 200uH.

tk = 1,5%3293 = 493,95, mioouno — 200un

BuTtparu npaiii Ha niArOTOBKY JOKYMEHTAIIIi:

56

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)
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ty = top + toos JIOOUHO — 200UH, (4.14)

1€ typ - TPYAOMICTKICTh HIATOTOBKY MaTepiaiiB 1 pyKOIHUCY.

Q
- — , 4.15
top 75 205k , JIOOUHO — 200UH ( )
1976
top = 3+15 = 87,82, moouno — 200un (4.16)

t10 - TPYZJOMICTKICTh peiaryBaHHs, eyaTku i 0OpMIIEHHS JOKyMEHTAIll1

too = 0,75 * tyy, M00UHO — 200UH (4.17)
tyo = 0,75 % 87,82 = 65,86, 1100uno — 200un (4.18)
ty =87,82+ 6586 = 153,68, 11o0urno — 200un (4.19)

Tenep po3paxyemo TpynomicTkicTs [13:
t = 19505+ 164,6+ 3293 + 153,68 = 842,63, 1100uno — 200uH. (4.20)

4.2. BurpaTu Ha CTBOPEHHS MPOrPaMHOro 3ade3nevyeHHs sl NPOBeIeHHSs

AOCITIKeHHS
Butpatu Ha ctBopenns 113 Kno BkIIOYaroTh BUTpAaTH Ha 3apoOITHY ATy

BUKOHABI[S MPOTPaMU 1 BUTPAT MAIIMHHOTO Yacy, HEOOXITHOTO Ha HaJIaroKCHHS

nporpamu Ha EOM:

K,, = 3,, + 3,,, TPH. (4.21)
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3apo0iTHa IJ1aTa BUKOHABI[IB BU3HAYAETHCS 32 (OPMYJIOIO:

3 = U * Cpp, 2pH, (4.22)

ne: t - 3arajibHa TPYAOMICTKICTb, JIFOAUHO-TOJIUH;

Cup - cepenHs roAMHHA 3ap0o0iITHA TUIaTa MporpamicTa, rpH/TouHa

3,, = 842,63 70 = 58984,1, 2pn. (4.23)

BapTiCTB MAalllMHHOI'O 4acy, H€O6Xi)1HOI‘O IJIA HAaJIaroJPKCHHA IIporpaMm Ha

EOM:

3/\46 = toms * CMw 2PH, (424)

ne  tors - TPYAOMICTKICTh HAJIArOKeHHs nporpamu Ha EOM, rog.

Cuws - BapTicTh MamuHo-roguau EOM, rpu/ron.
3.6 = 3293 % 15 = 4939,5, epn. (4.25)

BusnadeHni B Takuii crmoci® BUTpaTH HA CTBOPEHHS MPOTPAMHOTO 3a0€3IeUCHHS

€ YaCTUHOIO OJTHOPA30BUX KaliTaJbHUX BUTpAT Ha cTBOpeHHS ACVYII.
K, o = 58984,1 + 4939,5 = 63923,6, 2pH. (4.26)

OuikyBanuii iepion crBoperHs [13:

_ t
By *F,

T , Mic, (4.27)
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He

Bk - uMc10 BUKOHABIIIB;

Fo - Micsunuii ¢ponn podoyoro vacy (mpu 40 rogMHHOMY poOOYOMY THKHI
Fo=176 ronun).

Bk =1

842,63 . (4.28)
T_1*176_4'7' MiC

TakuM YWMHOM, TPYAOMICTKICTE PO3POOKHM MPOrpamMHOro 3abe3neueHHs

CTAaHOBUTH 4.8 MicC.

4.3. MapKkeTHHIOBi J0CTiI:KeHHs]I pUHKY BUKOPUCTAHHS pe3yJbTaTiB

JMOCJIIKEeHHSA

€C nepedyBae B mipolieci Tpancopmarrii CBo€i eKOHOMIKH 3 METOIO MiHIMI3ZAIl
BUkuAiB mapHukoBux rasiB (III"). OuikyeThcs, 110 KIOYOBY POJIb B IIBOMY Bifirpae
enexktpoeHepris. [lo-mepmie, OuTbll epEeKTUBHE BHKOPHUCTAHHS EJICKTPOCHEPTii Ta
3pocTaroya 4acTKa €JEKTPOEHEPTii 3 BIIHOBIIOBAHUX JKEPEN JTOTIOMOXKE 3MEHIIUTU
BUKHUIW IMTAPHUKOBUX Ta3iB. [lo-Apyre, OUiKyeTbes 3pOCTaHHS YaCTKH €JICKTPOSHeprii
B 3arajbHOMY CIIOKMBaHHI €HEpPrii, OCOOJMBO B TPAHCIOPTHOMY CEKTOpI
(emexkTpoMoO1Ii) Ta B CHCTEMax OMNAJCHHS Ta OXOJIOJKEHHS (€JICKTPUYHI TEIUIOBI
HacocH). BUpoOHUIITBO eeKTpOoeHEPTii PO3IIIIA€THCA K KIIOYOBUI KOMIIOHEHT JIJIst
MOCTYIIOBOTO MPUIMTMHEHHS BUKU/IIB TAPHUKOBUX Ta31B 3 BUKOITHOT'O MaJuBa A0 APYroi
MOJIOBUHU 1HOTO CTOMITTS. LI06 yci 111 3MiHu BinOynuch, MOTPiOHI 3HAYHI 1HBECTHIIIT
B BHUPOOHHUIITBO €JIEKTPOCHEPrii, 1 TpaHCMOPTYBaHHA Ta PO3MOIITY, a TAaKOX B
CIIO’KMBY1 €JICKTPOTOBApH. bisbIie TOro, IHBECTHIIIT Ta iHHOBAIIIT € HCOOXITHUMH IS
TOr0, 100 3a0e3meunTy CTaOUIBHICTh MOCTaYaHHS EIEKTPOSHEPrii B yMOBax
MIABUIIEHHS TIONMHUTY Ta 30UIBIIEHHS KUIBKOCTI €JIEKTPOCHEPTii 3 BIIHOBIIIOBAaHUX

JOKEpEJ, 10 3aJIeXkKaTh BlJl COHAYHOIO CBITJIA, BITPY Ta JOMIIB. Y pe3ybTaTl L€l TyxKe
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MIHJIMBOI Ta HEBU3HAYEHOI MPUPOJIM PHUHKY €JIEKTPOEHEprii Ta TOro, IIO
€JIEKTPOEHEPTis - L€ TOBAp, KU CIOKHUBAYl MOTPEOYIOTh Y CBOEMY MOBCAKIACHHOMY
KUTT1 B 3HAUHI{ Mipi, TOUHE IPOrHO3YBAHHS LI1H € BAKJIMBUM JJIs BCIX IPABIIIB PUHKY:
reHepyIoYUX KOMIaHii, AUCTPUO I0TOPIB, KIHLIEBUX CIOKHBAYIB.

VYnopasniHHS (IHAHCOBUMM PU3HKAMU YacCTO € TOJIOBHUM IMPIOPUTETOM MJIs
YYaCHUKIB JIepEryJIbOBAaHUX PUHKIB €JIEKTPOCHEPrii uepe3 3HauHi I[IHOBI Ta 00'eMHI
pu3uku. Oco0IMBI XapaKTEPUCTUKH 1IbOTO IIIHOBOI'O PU3MKY B 3HAYHIM Mipi 3aJeXaTh
BiJ (pi3MYHUX OCHOB PMHKY, TAKUX SK MOEHAHHS THIIIB F'€HEPATOPHUX YCTAHOBOK Ta
B3a€MO3B'SA30K MDK TOMUTOM Ta TMOTOJHOIO cHTyamicr. L[iHOBUI pH3MK MoOXke
OpOSBIATUCS IIHOBUMHU "cTpuOkamu'", sKI BaXKo mepeadauyuTd, 1 LIHOBUMHU
"Kpokamu'", KOJIM OCHOBHE MaJIMBO a0O0 TOJIOKEHHS 3aBOAY 3MIHIOIOTHCS MPOTITOM
TpuBanoro mepioxy. OO'€eMHUN PHU3WK YacTO BHUKOPHUCTOBYETHCS IS MO3HAYCHHS
SBHIA, KOJHM YYAaCHUKH PHUHKY EJEKTPOCHEprii MarTh HEBU3Ha4YeHI o0cAru abo
KUIBKOCT1 CITOKMBaHHS 4u BUpOOHUIITBA. Hampukian, po3apiOHUN TOProBelb HE
MO3K€ TOUYHO MPOTHO3YBATH CIIOKUBYUH MOMUT MPOTATOM MEBHOT TOJAMHH OLIbIIE, HIXK
3a KUIbKa JHIB, a BHPOOHUK HE MOXKE IMepea0aYuTH TOYHHH Yac, KOJIH Oyje
BIJIKJTIOUEHA YCTaHOBKA a00 He BUcTayaTuMe nanuBa. CKiIagoBUM (aKTOPOM € TaKOXK
3arajlbHA  B3a€MO3B'A30K MDK EKCTpeMaJbHUMH I[IHAMH Ta OOCSITOM TOMdiN.
Hamnpukman, crijecku IiH 9acTO TPAIUISIOTHCS, KOJHM JesKi BUPOOHHUKH TEPECTAIOTh
IIpaIffoBaTH Ha 3aBoJiax ab0 KOJIM JIesIKiI CIIOKMBAY1 Mepe0yBarOTh Y MEPioJil MKOBOTO
CIO’KMBaHHs. Po31piOHI TOProBIll €JIEKTPOSHEPri€lo, sAKi B IIJIOMY KyNylOTh Ha
ONTOBOMY PHUHKY, Ta BUPOOHWKH, fKi B LUJIOMY MPOJAIOTh HA ONTOBUI PHHOK,
MiIJA0TECS MM I[IHOBHM Ta 00'eMHUM edekTaM, a Imo0 3aXHCTHTH cebe Bia
HECTaOUTBHOCTI, BOHU YKJIQJAalOTh MDK €000 "KOHTpPakTH Ha XeHKyBaHHS'.
CTpyKTypa IIuX KOHTPAKTIB PI3HUTHCS 3aJI€KHO BiJl PETIOHATLHOTO PUHKY Yepe3 pi3Hi
KOHBEHIIIi Ta pUHKOBI CTPYKTYPH.

OTXe, pUHOK eNeKTPOeHeprii Ta WOTro YYaCHUKH BCE OUIbINE 3aliexaTh Bij

SKICHHX IIHOBUX IPOTHO3IB.



61

4.4. OniHka eKOHOMiYHOI e()eKTMBHOCTI BIIPOBA/I>KEHHSI IPOTPAMHOI0

3a0e3MmeYeH A

['enepatop, KOMyHaabHE MIATPUEMCTBO a00 BETUKHUI MPOMUCIOBUM CIIOKUBAY,
AKUU 3IaTHUN POTHO3YBATH HECTAOLIbHI ONITOBI LIIHU 3 aIEKBATHUM PIBHEM TOYHOCTI,
MOXKE CKOpEryBaTH CBOIO CTpAaTeril0 TOPriB Ta BiacHUM rpadik BHUpOOHHMITBA abo
CIO’KMBAHHS, 11100 3MEHIIUTH PU3HK a00 MaKCUMIi3yBaTu MpuOyToK. OgHAK, OCKIIBKU
NPOTHO3W HAaBaHTAXCHHS Ta I[iH BHUKOPUCTOBYIOThCSA OararbMa MiApo3aiiaMu
EHEepPreTUYHOI KOMIIaHii, JyK€ Ba)XKO BHU3HAYUTH KUIBKICHI BHUTOAM BiI 1X
nokparnieHHs. OpieHTOBHA OIIHKa €KOHOMII BiJ 3MEHIIEHHS cepeaHbOi abCOIIOTHOI
nporeHTHoi nomunku (MAPE) Ha 1% 11 KOMyHaJIBHOTO TOCTIOJIAPCTBA 3 TIKOBUM
HaBaHTaxeHHsM | Bt ctanoBuTh[64]:
e 500 000 monapiB Ha piK 3a JOBIOCTPOKOBUM IMPOTHO3YBAHHAM HABaHTaKCHHS,
e 300000 pmomapie Ha piK Bl KOPOTKOCTPOKOBOTO  MPOTHO3yBaHHS
HaBaHTaXECHHS,
e 600 000 momapiB Ha piK BiJ KOPOTKOCTPOKOBOT'O MPOTHO3Y HABAHTAXKCHHS Ta
I[IHH.
Ockinbku JaHa po0oTa Ma€ aHANITUYHUN XapakTep, B HiI HE PO3POOISIETHCS
nporpamMHe 3a0e3nedeHHs. OTKe, HEMOXXJIMBO pO3paxyBaTH EKOHOMIYHUN €QeKT,

o0csT HEOOX1THUX 1HBECTHIIIN, TEPMiH OKYITHOCTI 1 TPHOYTKOBICTb.
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CONCLUSIONS

This work investigates the structure and main characteristics of deregulated
electricity market. Due to increasing complexity of power markets, electricity price
forecasting domain constantly needs improvements. Creation of high-quality MCP
forecasts becomes a difficult task, due to increasing complexity of bidding strategies
used by participants and interaction of uncertainties in an intricate way. Moreover, in
most competitive power markets, hourly prices depend on a number of factors, such as
weather, day of the week, load, consumption etc. Changes of these factors due to
weather swings or seasonal changes cause MCP to be non-stationary. Other complex
stochastic signals like fuel costs and equipment outages also cause nonlinear behavior
and sudden unpredictable changes of it.

Many researchers have developed forecasting models. Some of them are
described in the first section. Despite that that numerous methods and approaches exist,
prediction of market clearing prices still involves large errors.

Two main approaches exist in this field: linear and non-linear. Linear approaches
are found to be effective for stable behaviors of MCP, however they have difficulties
predicting the non-linear behaviors and rapid changes. Neural are considered to be
more efficient in this task. Single neural network cannot reconstruct all parts of the
complex mapping function of prices.

Combination of different forecasting methods can lead to a higher accuracy;
however, it is highly depended on the market being investigated. While in one market
certain forecasting model can show promising results, it can be completely inapplicable
to another. Combination of ARIMA and ANN didn’t show the expected performance.
Initial suggestion that ANN can model the residual part was not proved.

As was discussed, electricity prices are dependent on various factors. Adding
additional parameters to the forecasting models can significantly improve results.
Adding exogenous factors to forecasting models can help in modelling non-linear

behavior. ARIMAX (Autoregressive integrated moving average with an exogenous
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variable) or NNARX (Neural Network Autoregressive with exogenous variable) can

be used for this purpose.
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APPENDIX A

SOURCE CODE

import data

dayahead auction result = readtable('Data/dayahead auction result new.csv');

dayahead auction result.timestamp dt = datetime (dayahead auction result.timestamp, 'ConvertFrom',
'epochtime', 'TicksPerSecond', 1le3, 'Format',6 'dd-MMM-yyyy HH:mm:ss');

dayahead auction result.issue time dt = datetime(dayahead auction result.issue time, 'ConvertFrom',
'epochtime', 'TicksPerSecond', 1le3, 'Format',6 'dd-MMM-yyyy HH:mm:ss');

dayahead auction result.timestamp dt = datetime (dayahead auction result.timestamp, 'ConvertFrom',
'epochtime', 'TicksPerSecond', 1le3, 'Format',6 'dd-MMM-yyyy HH:mm:ss');

dayahead auction result.issue time dt = datetime (dayahead auction result.issue time, 'ConvertFrom',
'epochtime', 'TicksPerSecond', 1le3, 'Format', 'dd-MMM-yyyy HH:mm:ss');

Clean Data

Prices = timetable(dayahead auction result.timestamp dt,dayahead auction result.price);
Prices.Properties.VariableNames ("Varl") = "Price";

msVl = Prices.Price > 90

Prices (msV1l, "Price") = num2cell (NaN) ;

temp = Prices.Price;

% Fill missing data

[cleanedData,missingIndices] = fillmissing(Prices.Price, 'linear');

o

% Visualize results

clf

plot (cleanedData, 'Color', [0 114 189]/255, 'LineWidth',1.5,...
'DisplayName', 'Cleaned data')

hold on

o

% Plot filled missing entries
plot (find (missingIndices),cleanedData (missingIndices),'.', '"MarkerSize',12, ...

'Color', [217 83 25]/255,'DisplayName', 'Filled missing entries')
title('Filled missing entries');
ylabel ("Price, €/MWh");
xlabel ("Time, hrs");
hold off
legend
clear missingIndices
Prices.Price = cleanedData;
Prices = retime (Prices, 'regular',"fillwithmissing", "TimeStep", minutes(15));
Prices = Prices(l:4:end, :);
Prices(1:2,:) = [];
Prices(12793:end, :) = [];
clear cleanedData temp msVl1;
Fill in NaNs
for i = l:height (Prices)

try

if (isnan(Prices.Price(i)))
Prices.Price (i) = Prices.Price(i-168);
end
catch
Prices.Price (i) = Prices.Price(i+168);

end
end
clear i;

Prices.weekday = weekday (Prices.Time) ;

wd = Prices.weekday;

workdays = Prices(wd == 2| wd == 3| wd == | wd == 5| wd == 6 ,:);
clear wd;

workdays test = workdays(end-119:end, :);
workdays trainingl = workdays (l:end-120,:);

workdays training2 = workdays (l:end-96,:);
workdays training3 = workdays(l:end-72,:);
workdays training4 = workdays (l:end-48,:);
workdays training5 = workdays (l:end-24,:);



ylabel ("Price, €/MWh");
xlabel ("Time, hrs");

mondayAvg = mean (Prices (Prices.weekday == 2,"Price") .Price);
tuesdayAvg = mean (Prices (Prices.weekday == 3,"Price") .Price);
wednesdayAvg = mean (Prices (Prices.weekday == 4,"Price") .Price);
thursdayAvg = mean (Prices (Prices.weekday == 5,"Price") .Price);
fridayAvg = mean (Prices (Prices.weekday == 6,"Price") .Price);
saturdayAvg = mean (Prices (Prices.weekday == 7,"Price") .Price);
sundayAvg = mean (Prices (Prices.weekday == 1,"Price") .Price);

bar ([mondayAvg tuesdayAvg wednesdayAvg thursdayAvg fridayAvg saturdayAvg sundayAvgl, 0.5,
"stacked");

xticklabels (["monday" "tuesday" "wednesday" "thursday" "friday" "saturday" "sunday"1):
ylabel ("Price, €/MWh");

xlabel ("Weekdays") ;

plot (workdays.Price);
ylabel ("Price, €/MWh");
xlabel ("Time, hrs");

plot (movmean (workdays.Price, 168));
ylabel ("Price, €/MWh");
xlabel ("Time, hrs");

september = workdays.Price(8233:8760,:);
plot (september) ;

hold on;

plot (movmean (movmean (september, 24),4)) ;
hold off;

ylabel ("Price, €/MWh");

xlabel ("Time, hrs");

workdays diff = diff (workdays.Price);
plot (workdays diff);

ylabel ("Price, €/MWh");

xlabel ("Time, hrs");

september diff = diff (september);
plot (movmean (september diff (end-120:end, :), 120));

Res3 = infer (ARIMA43,workdays training3.Price);
plot (Res3);

ARIMA41 = arima ('Constant',NaN, 'ARLags', [1l, 24,
48,120],'D',1, 'MALags',1:2, 'Distribution', 'Gaussian');
ARIMA42 = arima ('Constant',NaN, 'ARLags', [1l, 24,
48,120],'D',1, '"MALags',1:2, 'Distribution', 'Gaussian');
ARIMA43 = arima ('Constant',NaN, 'ARLags', [1, 24,
48,120],'D',1, 'MALags',1:2, 'Distribution', 'Gaussian');
ARIMA44 = arima ('Constant',NaN, 'ARLags', [1l, 24,
48,120],'D',1, 'MALags',1:2, 'Distribution', 'Gaussian');
ARIMA45 = arima ('Constant',NaN, 'ARLags', [1, 24,
48,120],'D',1, 'MALags',1:2, 'Distribution', 'Gaussian');

ARIMA41 = estimate (ARIMA41l,workdays trainingl.Price, 'Display', 'off"');
ARIMA42 = estimate (ARIMA42,workdays training2.Price, 'Display', 'off"');
ARIMA43 = estimate (ARIMA43,workdays training3.Price, 'Display', 'off"');
ARIMA44 = estimate (ARIMA44,workdays training4.Price, 'Display', 'off"');
ARIMA45 = estimate (ARIMA45,workdays training5.Price, 'Display', 'off');
[ARIMA4D1,RMSE1] = forecast (ARIMA41,24,workdays trainingl.Price);

[ARIMA4D2,RMSE2] forecast (ARIMA41, 24,workdays_training2.Price);
[ARIMA4D3,RMSE3] forecast (ARIMA42,24,workdays_training3.Price);
[ARIMA4D4,RMSE4] = forecast (ARIMA43,24,workdays training4.Price);



[ARIMA4D5, RMSES]
[days5for, RMSE] =

plot (workdays test.Price(1:24),'Color',"#77AC30",
hold on;

plot (ARIMA4D1, 'Color', "#0072BD",
hold off;

legend ("Actual price","Forecast",
title("15 october 2020");

xlabel ("time, hrs");

ylabel ("Price, €/MWh");

'LineStyle',

'LineStyle', "-

, '"Marker',"o

"
’

"Location", "northoutside");

plot (workdays test.Price(25:48), 'Color',"#77AC30",
hold on;

plot (ARIMA4D2, 'Color',"#0072BD",
hold off;

legend ("Actual price","Forecast",
title("16 october 2020");

xlabel ("time, hrs");

ylabel ("Price, €/MWh");

'LineStyle’,

'LineStyle’, -

, '"Marker',"o

n
’

"Location", "northoutside");

plot (workdays test.Price(49:72),'Color',"#77AC30", 'LineStyle',
hold on; B

plot (ARIMA4D3, 'Color', "#0072BD",
hold off;

legend ("Actual price","Forecast",
title ("17 october 2020");

xlabel ("time, hrs");

ylabel ("Price, €/MWh");

'LineStyle’, -

, '"Marker',"o

"
’

"Location", "northoutside");

plot (workdays_ test.Price(73:96), 'Color',"#77AC30",
hold on;

plot (ARIMA4D4, 'Color',"#0072BD",
hold off;

legend ("Actual price","Forecast",
title ("18 october 2020");

xlabel ("time, hrs") ;

ylabel ("Price, €/MWh");

'LineStyle',

'LineStyle', "-",'Marker',6"o",

"Location", "northoutside");

plot (workdays_ test.Price(97:120), 'Color',"#77AC30",
hold on;

plot (ARIMA4DS5, 'Color', "#0072BD",
hold off;

legend ("Actual price","Forecast",
title("19 october 2020");

xlabel ("time, hrs") ;

ylabel ("Price, €/MWh");

'LineStyle’

'LineStyle', "-",'Marker',6"o",

"Location", "northoutside");

plot (workdays test.Price(1:120), 'Color',"#77AC30",
hold on;

plot (days5for, 'Color',"#0072BD",
hold off;

legend ("Actual price","Forecast",
title("15-19 october 2020");
xlabel ("time, hrs") ;

ylabel ("Price, €/MWh");

'LineStyle',
'LineStyle', "-",'Marker',6"o",

"Location", "northoutside");

2 ANN DAY 1

’

wd_training diff =tonndata (diff (workdays trainingl.Price), false,

net = narnet(1:24,12);

net.trainFcn = 'trainbr';
net.divideFcn = 'divideblock';
[Xs,Xi,Ai,Ts] = preparets(net,{},{},wd training diff);

net = train(net,Xs,Ts,Xi,Ail);

forecast (ARIMA44,24,workdays training5.Price);
forecast (ARIMA41,120,workdays trainingl.Price);

, "Marker',

n
’

(e]

"LineWidth",1.5);

o

"-" 'Marker', ",

"LineWidth",1.5);

"-" 'Marker', ",

o

"LineWidth",1.5);

"_" 'Marker',6"o",

"LineWidth",1.5);

"_" 'Marker',6"o",

"LineWidth",1.5);

mom, 'Marker' ,"o",

"LineWidth",1.5);

false);
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"LineWidth",1.5);

"LineWidth",1.5);

"LineWidth",1.5);

"LineWidth",1.5);

"LineWidth",1.5);

"LineWidth",1.5);



[Y,Xf,Af] = net(Xs,Xi,Ai);

perf = perform(net,Ts,Y)
[netc,Xic,Aic] = closeloop (net,Xf,Af);
NNfrclday = netc(cell (0,24),Xic,Aic);

Inverse differencing

temp = [workdays trainingl.Price (1) wd training diff NNfrclday];

temp = cell2mat (temp) ;

temp2 = cumsum(temp) ;

NNfrclday = temp2(:, end-119:end);

plot (workdays test.Price(1:24),'Color',"#77AC30", 'LineStyle', "-",'Marker',
hold on;

plot (NNfrclday(:,1:24),'Color',"#0072BD", 'LineStyle', "-",'Marker',

hold off;

legend ("Actual price","Forecast", "Location", "northoutside");

title("15 october 2020");
xlabel ("time, hrs");

ylabel ("Price, €/MWh");

3 ANN DAY 2

wd_training diff =tonndata(diff (workdays training2.Price), false, false);

net = narnet(1:24,12);

net.trainFcn = 'trainbr';

[Xs,Xi,Ai,Ts] = preparets(net,{},{},wd _training diff);
net = train(net,Xs,Ts,Xi,Al);

[Y,Xf,Af] = net(Xs,Xi,Ai);

perf = perform(net,Ts,Y)
[netc,Xic,Aic] = closeloop (net,Xf,Af);
NNfrc2day = netc(cell(0,24),Xic,Aic);

Inverse differencing
temp = [workdays_ training2.Price(l) wd_training diff NNfrc2day];

temp = cell2mat (temp) ;

o

n
’

73

"LineWidth",1.5);

"LineWidth",1.5);

"LineWidth",1.5);

temp2 = cumsum(temp) ;

NNfrc2day = temp2(:, end-23:end);

plot (workdays test.Price(25:48), 'Color',"#77AC30", 'LineStyle', "-",'Marker',6"o
hold on;

plot (NNfrc2day, 'Color',"#0072BD", 'LineStyle', "-",'Marker',6 "o", "LineWidth",1.5);
hold off;

legend ("Actual price","Forecast", "Location", "northoutside");
title("16 october 2020");
xlabel ("time, hrs");

ylabel ("Price, €/MWh");
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JIOIATOK B

BIAI'YK
KePIBHMKA €KOHOMIYHOI'0 PO3AilLy
Ha KBaJjdidikauiiiny podoTy MaricTpa
Ha Temy: «MogeJii, aJITOPUTMH TA POrPaMHe
3a0e3me4eHHsl AJIs1 MIPOTHO3YBAHHS IiH HA e€JIEKTPOEHEPril0 Ha OCHOBI
CTATUCTHYHUX METOMIB TA IITYYHUX HEHPOHHUX MEPEK»

cryaenta rpynu 121m-19-1 Meauncbkoro Aurona I'ennajaiiiopuyua

KepiBHUK eKOHOMIYHOTO PoO31iay
JI. B. KacbsiHeHKO
noueHt kad. IIEII ta I1Y, k.e.H.



75

APPENDIX C
LIST OF FILES ON THE DISC
File name | Description

Explanatory documents

ThesisMedynskyiAnton.doc Explanatory note to the diploma
project. Word document.

ThesisMedynskyiAnton.pdf Explanatory note to the diploma project in PDF
format

Program

Thesis.zip Archive. Contains program codes and
a program

Presentation

PresentationMedynskyiAnton.ppt |Presentation of the diploma project




