MiHicTepcTBO OCBITH I HAYKH YKpaiHH
HaunionaabHuii TeXHIYHNH YHiBepcUTeT
«/lHimpoBCcbKAa MOJIiTEXHIKa»

[HCTUTYT €JIEKTPOCHEPrETUKH
(iHCTHTYT)

QPakynbTeT iHGOpPMAIITHIX TEXHOJIOTIN
(dpakynbrer)

Kadenpa [IporpamHoro 3a06e3neueHHs] KOMIT IOTEPHUX CUCTEM
(moBHa Ha3Ba)

HOACHIOBAJIBHA 3AIINCKA
KBaJdi(ikaniiiHol pod0TH CTyNeHsA

mazicmpa
(Ha3Ba OCBITHBO-KBATi(iKaLIHHOTO PIBHS)

CTYJAEHTA Psabuyesa Oneza Onecosuua
(TTIB)
aKaJeMi4yHOI rpynu 122M-19-1
(umchp)
crneniajbHOCTI 122 Komn romepHi nayku

(xox 1 Ha3Ba CIIELiaTBEHOCTI)

HA TeMY: [IpoeKmy8aHHA XMAPHORO ANAapanHO-NpOSPAMHO20 Kommnaekcy ot 3D opyky

0.0. Psabuues
OniHka 3a mKaJ010
KepiBHuku pisBuine, iHiianu | pedTUHr | iHCTHTYWI Hignue

0BOIO WHOI0

O3B

KBaTiQiKaIiiHoi

poboTtu

cneuiajJbHuii Hom. Cupotkina O.1.

€KOHOMIiYHM Hou. Kacesnenko JI.B.

\ Penienzent \ \ \ \

| HopmokonTpouep | Jlon. Cuporkina O.1. | | |

JAninpo
2020

MiHicTepcTBO OCBITH I HAYKH YKpaiHH
HaunionaabHuii TeXHIYHNH YHiBepCcUTeT
«/lHinpoBCcbKa MOJITEXHIKa»

3ATBEP/IKEHO:
3aBigyBau kadenpu
[IporpamHoro 3a6e3ne4eHHs KOMIT IOTEPHUX CUCTEM

(ToBHa Ha3Ba)

.M. V¥ noBux
(Tmiammc) (mpi3BwIIe, iHIIIATH)
« » 20 20 Poky

3ABIAHHS

HA BUKOHAHHA KBaJjidikauniiiHoi podoTu maricrpa

crneniajbHOCTI 122 Komn romepHi nayku
(k00 i Ha38a cneyiatbHOCMi)

CTYEHTY 122M-19-1 Pabuuesy Oneey Onezosuuy

(rpyma) (pizBHIIE Ta iHIMIATH)
Tema kBagidikaniinoi podoTu [IpockmyBaris XmMapHo20 anapammo- NpoSPamMHO20
Kovmmiekcy o 3D opyky

1 HIACTABHA IJ1s1 IPOBEAEHHA POBOTHU

Haka3s pextopa HTY «/lninpoBcbka nonitexHikay Big 22.10.2020 p. Ne 888-c

2 META TA BUXITJIHI JAHI AJI ITPOBEJEHHSA POBIT

O0’ekT pocaixxkenb — rnpoiec podoTu 3 cuctemamu st 3D npyky.

Ilpeamer moc/izKeHb — MOJENi Ta METOAM CTBOPEHHS Ta BHOOpY apXITEKTYpH

MPOrpaMHO-aNapaTHUX KOMIUIEKCIB A 3D npyky.
Meta po60TH — iABUIIICHHS SKOCTI pOOOTH 3 TPOTPAMHO-aNapaTHUMU KOMIUIEKCAMHU

Juist 3D ApyKy HIISXOM MPOEKTYBAHHS HAIMHOT Ta e(PEeKTUBHOT apXITEKTYPH.

OYIKYBAHI HAYKOBI PE3YJIBTATHU

HaykoBa HOBM3HA PE3yJIbTATIB IUIIJIOMHOI POOOTH:

® YJIOCKOHAJEHO MAaTeMAaTHYHY MOJIEJb MPOIECIB OOPOOKH KOMaH/I, 10 HAAXOASATh
Ha KepYyI4y IUIaTy IpUHTEPa;
OTpUMAaB MOJANBIINNA PO3BUTOK METOJ OaraTOKpUTEpiaibHUX 3BAKEHUX OI[IHOK

U1t BHOOPY HAHONITUMAIBHINIO! apXITEKTYypH CUCTEMH.

3
IIpakTyHa WiHHICTH pE3yJIbTATIB MOJAra€ y TOMY, IO 3alpONOHOBAaHA B pPoOOTI
apXiTeKTypa J03BOJISIE 3a0€3MEYUTH HAMIMHICT, Ta €(EeKTUBHICTH POOOTH KOMIUICKCHOI

cucrtemu 15 3D npyky.
4 ETAIIN BUKOHAHHS POBIT

Crtpokn
. . . BUKOHAHHSH POOIT
HaiimenyBaHHs1 eTamiB po0it
(mo4arTok —
KiHelb
AHaJi3 TeMH Ta IOCTaHOBKA 3a1a4l 01.09.2020-30.09.2020

[IpoekTyBaHHS apXITEKTypH IporpaMmHoi Ta anapatHoi yactud | 01.10.2020-31.10.2020
cuctemu st 3D OpyKy 3 BUKOPUCTaHHSM METOIY
OaraToKpUTepiaJbHUX 3BAXKEHUX OLIHOK Ta (HOPMYIIOBAHHS

MaTeMaTHYHOI MOJeTi MPOolEeciB 0O0poOKM KOMaHi, IO

HAJIXOJATh HA KEPYIOUY IUIaTy IIPUHTEPA

Po3poOka mporpamuoro 3abesneueHHst s xmapHoi cuctemu | 01.11.2020-30.11.2020

st 3D npyky
3aBaaHHS BUIAB Cupomkina O.1
(migmmc) (mpi3BuILe, iHIiamM)
3aB/IaHHs MPUIHSB 10 BUKOHAHHS Pabuues O.O.
(Tmiammc) (mpi3BwIIe, iHIIIIATH)

Jara Bugaui 3aBnans: 01.09.2020 p.

Tepmin noganHs kBajigikaniiinoi podotu no EK _ 04.12.2020

PEDEPAT

IosicHoBaabHa 3anucka: 128 ctop., 38 puc., 9 Tabnui, 3 nogarka, 70 mpxepen.

O0'eKkT HocaigKeHHsI: npoiec podoTH 3 cucteMamu st 3D apyky.

IIpeamMeTr MOCJIIKEHHS: MOJEII Ta METOIU CTBOPEHHS Ta BHOOPY apXiTekTypu
IPOrpaMHO-anapaTHUX KOMIUIEKCIB Aig 3D npyky;

Meta Maricrepcbkoi po0OTH: TIJIBUIIEHHS SKOCTI POOOTH 3 MPOTrpamMHO-
anapaTHUMHM KomIuiekcamu it 3D JpykKy HUIIXOM NpPOEKTYBAaHHS HAJIMHOI Ta
e(eKTHUBHOI apXITEKTYPH.

Metonn nociigskennsi. Jljis BUpPINIEHHS TOCTABJICHUX 3a7a4 BHUKOPUCTaHI
METO/AM aHaJ3y HaJIIMHOCTI Ta €PEKTUBHOCTI apXITEKTypH KOMIUIEKCHUX arapaTHO-
MPOrpaMHUX CUCTEM, METOAH 00'€KTHO-OPIEHTOBAHE MPOrPaMyBaHHS.

HaykoBa HOBHM3HA pe3yibTaTiB TUILIOMHOT POOOTH:

® yJIOCKOHAJIEHO MaTeMaTUYHY MOJIEJIb MPOIIeCciB 00pOOKH KOMaH], 1110
HAJIXOJSITh HA KePYyIOUy IJIaTy MPUHTEPA;

® OTPUMMaB MOJAJBIIUN PO3BUTOK METOJI OaraTOKPUTEPIATbHUX 3BAXKCHUX
OLIIHOK J1J1s1 BUOOPY HAaHONTUMANIBHIIIOL apXITEKTYpU CUCTEMHU.

IIpakTu4Ha HiIHHICTH PE3yJILTATIB MOJISATAE Y TOMY, 110 3aIIPOIIOHOBAHA B pOOOTI
apxXiTeKTypa [I03BOJIsIE 3a0€3MEeUUTH HAIIMHICTh Ta €(PEKTHUBHICTH POOOTH
KOMIUIEKCHOI cuctemu 1t 3D npyky.

Y po3nini «ExoHoMika» TpOBEIEHI PO3PaXyHKH TPYIOMICTKOCTI PO3POOKH
anapaTHO-IPOrPaMHOI0 KOMIUIEKCY, BUTpPAT Ha CTBOPEHHS 1 TPUBAJIOCTI HOro
PO3pOOKH, a TAKOX MPOBEJICHI MAPKETUHTOBI JOCIIHKEHHSI PUHKY 30yTy CTBOPEHOIO
MPOAYKTY.

Cnucok kawuoBux ciaiB: 3D npyk, 3D mozaeni, 3D npuntep, NodelJS, Docker,

Cubernetes, WEB, xmapHi 004KCIIEHHS, arlapaTHO-IIPOTpaMHUN KOMILJIEKC.

ABSTRACT

Explanatory note: 128 pages, 38 figures, 9 tables, 3 apps, 70 sources.

Object of research: process of working with system for 3D printing.

Subject of research: models and methods of creation and selection of
architecture for 3D printing computer appliance.

Purpose of Master's thesis: increasing the quality of work done with 3D printing
computer appliance via the design of a reliable and efficient architecture.

Research methods. In order to solve the given tasks, we used such methods as:
analysis of reliability and effectiveness of designs for complex computer appliances,
including object-oriented programming.

Originality of the research:

e improved a mathematical model for processing commands received on the
motherboard;

e obtained further development for the method of multicriteria-weighted
estimations for design of the most optimal system architecture.

Practical value of the results consists of the suggested design, which guarantees
the stability and effectiveness of the work in a complex 3D printing system.

In the Economics section, labour input and the length of time taken to develop a
3D printing system was defined and the estimation of expenses for creating it was
executed.

Keywords: 3D printing, 3D models, 3D printer, NodeJS, Docker, Cubernetes,

WEB, cloud computing, computer appliance.

LIST OF ACRONYMS

DB — data base;

CA — computer appliance;

OS — operating system;

API — application programming interface;
SQL — structured query language;

ORM - object-relational mapping;

UI — user interface;

UX — user experience;

GUI — graphical user interface;

IT — information technologies;

IDE — Integrated Development Environment.

CONTENTS

INEOAUCTION. ...ttt ettt e 9

SECTION 1. ANALYSIS OF THE SUBJECT AREA AND PROBLEM
STATEMENT ...ttt st sttt 12
1.1. Computer appliance systems and principles of their design............. 12
1.1.1. Examples of successful implementations.............ccceeeveeriuieennenne 15
1.2. Main terms and concepts of 3D printing..........ccccceeeevveeeecveeeeeneeeenns 18
1.2.1. 3D printing technolOgies..........cccccvvreirciireeriiieeeieee e 21
1.2.2. Types of 3D Printers......cc.ceeeecuieieeiiiieeeiieeeeeiiee e et e e eireeeeevvee e 23
1.2.3. Types of software for 3D printers.........ccceeervveeeerevereerieieeeesieeenns 24
1.3. Application of 3D Printers.......c.ccceecveieeiciiieeiiiee e 26
1.3.1. Industrial application...........cccceveeeeeiiiieiiiiieeeiee e 26
1.3.2. Household and amateur application.............cccccceeeeeciieeennneeeennenn. 27
1.4. Analysis of existing 3D printing SySte€ms..........ccceeeeeveeeeecrreeesceneeeenns 30
1.4.1. Analysis of problems in the existing 3D printing systems............ 32
1.5. Conclusions for SECtion L.........ccccceevuieiiiiiniiiiiiieeieeee e, 33
SECTION 2. HARDWARE DESIGN.......cooiiiiiiiiiiiiiieieeeeeeeeeee e 34
2.1. Control elements 0f 3D Printer.......ccceeeveuiieeeiiieeeeiiee e 34
2.1.1. Controller board...........ooouviiiriiiiiinieieeeeee e 34
2.1.2. User-interaction UNit.........occeevvueeriierieenieenieenienieenieeseeenieeeeeeneees 38
2.2. Controlled elements of 3D printer..........ccceeveveiieeeiiiiieeiiee e 42
2.2.1. EXTUACT ... 43
2.2.2. Motion CONtrOlLErS.covviiiiiiiiiiiiiceeee e 46
2.2.3. Heating platform...........ccccoeieoiiiiiiiiieee e 48
2.2.4. TOUCRSCIEEN. ..ottt 50
2.3. Defining the parameters of the 3D printer..........ccccvveeeiiieeencnieennee, 52

54 Hardware architecture design using method of multicriteria
o weighted eStimations...........cccvieieeiiiee e 54

2.5. ConcluS1ONS fOr SECTION 2......eeeeee e 59

SECTION 3. SOFTWARE DESIGN......ccociiiiiiiiiiiniieierieeeeeeteeeeee e 60
3.1. Critical software elements for 3D printing system...............ccuveeeneee. 60
3.1.1. Microcontroller firmware............cccocueeriiiiniieniiieinieeeeeee e 60
3.1.1.1. Firmware mathematical model..............cccccooviiniiniinninnninnnnn 60
3.1.2. Local user interface..........ccoceeeviiiiiiiniiiiiieeeeeeee e 66
3.1.3. Remote user INterface.ccceevueerriiiiiiiiiieiieeee e 78
3.2. Additional software elements for 3D printing system....................... 84
32010 SOOI it 86
3.2.2. Cloud STOTAZE......eeieecivieeeeiiieeeeieee ettt e et e e et e e ear e e e sara e e e e areeeens 89
3.3, Conclusions for SECtiONn 3...........cocieriieiiiniiinienieeie e 91
PO3IJT 4. EKOHOMIKAL.......cooiiiiieieeieee ettt 92
Buznauenns TPYAOMICTKOCTI PO3pOOKHU MIPOTPAMHOI0
1 BADCBIIEUEHHSL.vteenereeeniteeeuiteenuteeeteeesbeeesieeeebteesbeeesaseeenbeeesnseesneeas .
1o Butparu Ha CTBOPCHHSI IPOrPaMHOTO o6
BAOCBIIEUCHHSveeuvteeteeuteeniteeteesiteeteesiteebeesatesbeesbeesbeesbeeeareenaeeeane
MapkeTuHITOBl ~ JIOCHI/DKEHHS PUHKY 30yTy pO3poOJeHOro
+3 MIPOTPAMHOTO TIPOIIYKTY ..uvvvvrreeeeanerrrreeeessnrreeeeesssssseseesssssseeeeeesnnnnens 97
OniHka €KOHOMIYHOT €()EKTUBHOCTI BIPOBAKEHHS TPOrPAMHOTO
4 BADCIIEUEHHSL. .. uvteenereeeniteeeuiteeniteeeieeesteeesaeeeebteesteeesaseeenbeeesabeeeneeas 99
CONCLUSIONS ...ttt ettt et ettt enaees 102
REFERENCESottt sttt sttt st 105
APPENDIX A. SOURCE CODE........coooiiiiiiiiiiiiaiiteiesieeeeseeeeee e 111
JNOIATOK b. BIII'VK KEPIBHUKA EKOHOMIYHOI'O PO3IJTY HA
KBAJIDIKALIAHY POBOTY MATICTPA........coooveeeeeeeeeeeeeeeeeeenan. 127

APPENDIX C. LIST OF FILES ON THE DISC.......ccooiiiiiiiiiiiiniiceieeeeceeen 128

Introduction

Relevance of the research. For the last decade we can see a strong trend in
development of IT companies in direction of building private ecosystems or computer
appliance. The first most popular ecosystem, and basically, the only one that really
works is the computer appliance, created by American company, called Apple. This
CA includes a lot of different devices, such as: smartphones, tablets, laptops,
computers, headphones and smart watches. As well as all kinds of software, such as
own operating systems for aforementioned devices, cloud systems for data storing and
synchronization, different online services and a lot of other things. As real live
experience shows, this approach gives a possibility to provide the best user experience
to customers. As a result, profits of the company grow as well as
customers’ “brand loyalty”. Thankfully to self-sufficient of the system, companies gain
an opportunity to bring unique features and use cases for their customers.

Mostly, because of the commercial success of computer appliance from Apple,
we can see creation of similar solutions from other big, as well as not really big, players
in IT market. Such companies, as Google, Microsoft, Amazon invest tons of money
and efforts in research, design and development of such kind of systems. Even some
of Ukrainian companies, start moving in this direction. The most successful examples
are AJAX Systems —a company, which main area of interest lays in area of smart home
devices and home security, and PrivatBank — the biggest and one of the most advanced
and popular banks in Ukraine.

Moreover, for the last couple of years, we can see not only growth in popularity
of CA systems, but also in popularity of 3D printing. Year after year it is being
embedded in absolutely different areas of live — from creation of different kinds of
spare parts and prototyping, right up to printing of prostheses and food. This splash of
popularity comes with a need of simplification of how users work with 3D printers -
devices for 3D printing. This issue was addressed by many companies and famous
researchers in 3D printing area, some of them are Adrian Bowyer (RepRap), Josef

Prusa (Prusa Research), Siert Wijnia, Erik de Bruijn, Martijn Elserman (Ultimaker),

10
Bre Pettis, Adam Mayer, Zach "Hoeken" Smith, Simon Shen (XY Zprinting) and many
others.

Unfortunately, right now entrance in area of 3D printing requires from the user
some really deep knowledge and expertise in designing of models, work with and
maintenance of 3D printers, preparation of models for printing and following
afterwork, and sometimes even programming. Such complexity of usage, relatively
high price of the equipment itself and its maintenance, as well as lack of user-friend
software, has a remarkable impact on the pace of development of 3D prinitng
technologies.

Nowadays, there are no ready-to-use complex solution, which would have fairly
low entry level for an average user of 3D printer.

The purpose of the research is increasing the quality of work done with 3D
printing computer appliance via the design of a reliable and efficient architecture.

Tasks of the research. In order to achieve the desired results, such tasks were
formed and solved:

1. Describe principles of designing and optimization of CA in 3D printing area;

2. Define the most crucial components of the system,;

3. Hardware design through analysis of existing works in this area and choosing
the most appropriate components.

4. Software design through analysis of existing works in this area and choosing
the most appropriate technologies.

5. Design interaction of all parts of the software among themselves, as well as
with the hardware part.

6. Obtain conclusions regarding the feasibility of creation of such system.

Object of research: process of working with system for 3D printing.

Subject of research: models and methods of creation and selection of
architecture for 3D printing computer appliance.

Research methods. In order to solve the given tasks, we used such methods as:
analysis of reliability and effectiveness of designs for complex computer appliances,

including object-oriented programming.

11
Originality of the research:
e improved a mathematical model for processing commands received on the
motherboard;
e obtained further development for the method of multicriteria-weighted
estimations for design of the most optimal system architecture.
Practical value of the results consists of the suggested design, which
guarantees the stability and effectiveness of the work in a complex 3D printing system.
Author’s personal contribution:
. The scientific results were received solely by the author;
Choice of the research methods and implementation tools for the CA;

Computer appliance design and software development for 3D printing;

N

Definition of the evaluation criteria of CA’s work and argumentative selection
of the most critical software and hardware parts of the system;
5. Evaluation of the results.
Structure and capacity of the work. The diploma project consists of
introduction, three main chapters and conclusion. It includes 128 pages, including 87
pages of the main part with 38 figures, the list of used resources with 70 items on 6

pages, 3 applications on 17 pages.

12
SECTION 1
ANALYSIS OF THE SUBJECT AREA AND PROBLEM STATEMENT

1.1. Computer appliance systems and principles of their design

Computer appliance is a complex of hardware and software, which work
together in order to execute one or more tasks [15]. Usually, deep integration of
software and hardware parts allows manufacturers to achieve not only high level of
performance and reliability, but also the best UX from usage of the whole CA, as well
as of each single part of it. In such kind of systems, manufacturers can provide the most
efficient interaction of the parts of the system, due to having the full control over each
separate part of the system.

Generally, hardware part is one or a few devices, which are used to perform
some specific tasks of the CA. Communication of the hardware components is done
via specific software and a set of hardware interfaces, both wired and wireless. The
most common wired interfaces are: USB (2.0, 3.0, 3.1, Type-C, Thunderbolt), HDMI,
DisplayPort, pins, etc. [4]. Quite often, in such kind of system, we might find some
custom standards of wired interfaces, invented by manufacturers in order to achieve
the most effective interaction or to provide unique functionality in boundaries of the
system. Those interfaces are, usually, called proprietary interfaces. The most common
ones are — Lightning and Magsafe from Apple. If we talk about wireless interfaces, it
worth mentioning the most common and popular examples, such as Bluetooth, WiFi
and NFC. The hardware part might include devices for the end-customers, such as
smartphones, printers, air-conditioners, fridges, headphones, etc. It might also include
some internal devices, which are hidden from the end-customers, some of them are:
servers, data storages, systems for cloud computations, etc.

The software part is a set of different applications, which are used either for
communication between the components of the system or performing some particular
tasks for the user. The list of tasks, performed by this software can vary. Starting with

some global challenges, such as management of the hardware parts of the system,

13
generation of graphical user interface, support of system’s vital parts, up to some really
small and local tasks, among them are storing, processing and other kinds of work with
data, execution of some specific computations and other functions. The best example
of a complicated software is operating systems, which are responsible for distribution
of the system resources, work with internal and external hardware and software,
processing of user’s input and lots of other tasks. The other one is firmware is a piece
of software, which is usually responsible for low-level work with different devices. At
the same time, there are some examples of more local software: data storages, data
processors, graphical editors, remote control systems, etc.

Those systems have to meet extremely high requirements to reliability,
performance and convenience of use of the whole system and each separate part of it.
Moreover, quite often some unique functionality and interaction between elements of
the system is required from the computer appliance systems.

The successful work of CA relies on many things, one of the most important 1s
stability and efficiency of controlling software, which is defined by the organization
level inside the system.

Currently, there are a huge number of standards, which define each and every
step of the CA’s lifecycle [15] and meant to be the basis for creation of reliable and
productive computer appliances. Some problems might arise, while creating such
complex systems. Some of them are defined by the specificity of a particular system,
meanwhile others are defined by peculiarities of the development process.
Development of both hardware and software parts of the system is done simultaneously
during the whole lifecycle of the system — from sketch design up to the testing phase.
This process is followed by the need of constant approvement discussions, usually
contradictory requirements, which the system should meet.

When designing CA, architects should consider requirements to each single
element of the system, while providing the best flexibility in terms of functionality
extending and introducing new elements of the system and means of their interaction

[31]. The mistakes, made on early phases of design seem to become the most critical

14
when trying to add new elements or communication processes to the existing computer
appliance system.

In order to minimize risks when extending the system, the flexible modular
approaches for system’s architecture are usually used [29]. Modular systems, both
software and hardware, when build correctly, are usually marked by high level of
flexibility and scalability.

Modular system is a system, which is split into small independent blocks or
modules, usually, responsible for performing a single specific task. Based on the
complexity of the system it might include from dozens, up to hundreds and thousands
of such modules. It allows developers to bring changes into the system, replace, remove
and add specific elements of the system almost without any changes to any other parts
of the system.

Modular systems are featured with a low level of binding between components
and high level of scalability [31]. When building such kind of systems, the separation
into modules is performed based on the functional principle, which minimizes the
number of cross-modular connections and by doing so — reduces the overall complexity
of the system. Usually, a specific software is used to provide cross-modular
communication. It helps to keep parts of the system as independent and opened to
changes, as possible.

Also, rightly designed modular system makes it much easier and cheaper to test,
maintain and support both the system itself and each separate part of it.

One of the most common example of a modular computer appliance is a familiar
computer and the operating system, which is installed on it [31]. The computer itself
consists of many small independent components, as well the OS is built of many
hundreds of components. This whole diversity of software and hardware communicates

between itself in order to solve specific tasks of the end-user.

15

1.1.1. Examples of successful implementations

During the last couple of years, it became really popular, among different big
companies, to create proprietary computer appliances. It allows the manufacturers to
“bind” the user to their ecosystem by providing some unique software and hardware
products and ways of interaction with them.

One of the first and most advanced CA, which defined the direction of evolution
of the technical world for many years ahead is ecosystem of devices and software,
created by an American company, called Apple.

This computer appliance system (Fig. 1.1.) includes lots of different devices,
such as: smartphones, tablets, laptops, computers, TV-stations, smart watches, sound
bars, periphery (headphones, chargers, etc.), components of the smart home and others.
Moreover, it includes all kinds of applications, responsible for both communication
between software and hardware parts of the system, such as: operating systems (OS X,
10S, 1PadOS, WatchOS) and systems of remote control for different devices
(applications — Watch, Home, etc.), and for solving of particular tasks for the user —

browser Safari, Apple Music, Apple TV and many other services.

Fig. 1.1. Apple’s CA

Each component of this computer appliance is capable of being a highly efficient

independent part, as well as a well-fit part of the whole, huge ecosystem. It allows

16
developers to create unique use-cases, meant to improve the overall user experience.
There are some examples of such scenarios: seamless transferring of the content of
clipboard between different devices, unlocking of laptops ad phones via smart watches,
editing of pictures on the computer via smartphone, seamless reconnection of wireless
headphones between different devices. Also, one of the biggest Apple’s achievement
in the area of computer appliance systems is synchronization of the user’s data between
all their devices, which makes it more comfortable to switch between devices, update
and replace them.

Although, Apple is a leader in development of ecosystems, there are many other
popular brands, trying to create their own computer appliances. Such foreign
companies are Google, Microsoft (Fig. 1.2.), Samsung (Fig. 1.3.), Huawei (Fig. 1.4.)
and Xiaomi (Fig. 1.5.). Each one of their own ecosystems, which have different size
and the level of progressiveness. They are being constantly extended with different

new software and hardware components.

Microsoft Ecosystem A ARBELA

Application Platform - Common Data Service

wew arbelatech.com

Fig. 1.2. Microsoft’s ecosystem

Fig. 1.3. Samsung’s ecosystem

17

Fig. 1.4. Huawei’s ecosystem

55 29

companies comprise of which were

Mi Ecosystemn, incubated from the
ground up
by Xiaomi.

4

of Mi Ecosystem
companies

20

Mi Ecosystem companies

are already have launched products
and

unicorns
‘ 1%\ won
om0 28
companies have Mi Ecosystem @ ﬂ

Mi Ecosystem
annual sales of over international

design awards
rve1O0M s
—
2 have reached W
annual sales 1 M Alr purifiers shipped annually

of over (Zhimi)

RMB 1 B 47 M Power banks sold to date

(Zimi)

18.5M.n*
Fig. 1.5. Xiaomi’s ecosystem

As well it worth mentioning, that there are some domestic companies, which
also work in this direction. Ajax Systems is a manufacturer of hardware and software
for smart home and home security, their solutions are ones of the most popular around
the globe. Another famous example is one the largest and most advanced banks of
Ukraine — PrivatBank. They have one of the largest networks of different terminals,

ATMs, as well as different applications for finance management.

18
So, in general, it is possible to state that there is a stable tendency in direction of

creation of proprietary ecosystems.

1.2. Main terms and concepts of 3D printing

Additive technologies (3D printing) — one of the forms of additive technologies
manufacturing, where a three-dimensional object is created via sequential imposition
(printing, growing) of layers of the material, based on a digital model [1]. Printing is
performed by a special device — 3D printer, which assures creation of a physical object
by sequential imposition of plastic material, using virtual 3D model. Generally, 3D
printers are faster, more accessible and simpler in usage, than other technologies of
additive manufacturing. 3D printers give manufactures a possibility to print different
kinds of spare parts and mechanisms, using different materials with different
mechanical and physical properties in one printing session.

Starting from 2003, we can see a huge growth in amount of sold 3D printers.
Moreover, the cost of 3D printers keeps decreasing. 3D printing technology also finds
different applications in manufacturing of jewelry, shoes, industrial design,
architecture, design and construction as well as in atomic, automobile, aerospace,
dental and other areas.

Many of different, concurrent technologies of creating 3D models has become
available in the mid-2010s. The main difference between them lay in step of detail
layers’ construction. Some technologies use melting or softening of the material for
creation of layers (SLS, FDM), while others use liquid materials, which become hard,
based on different principles [42].

There are 2 ways of 3D models’ creation: manual graphical design, using
computer and 3D scanning. Manual modeling or preparation of the geometrical data in
order to create three-dimensional computer graphic is a complicated and creative
process, which kind of similar to sculpture. Usually for creation of 3D models,
professionals use specific software. The most famous and popular examples are:

Autodesk Maya, Autodesk Mudbox, Autodesk 3Ds Max, Blender, FreeCAD and

19
OpenSCAD. 3D scanning is a process of automatic gathering and analysis of the real-
world object’s data, such as form, color and other properties, followed by converting
it into a three-dimensional model. Both manual and automated creation of 3D models
might cause some troubles for an average user, who does not have any expertise in
areas of modeling and 3D printing. That is the main reason, behind growth in popularity
of marketplaces for 3D printing.

3D printer is a specific machine with an appropriate software [32], which builds
a model, using an additive approach. Such kind of machines can work with different
materials, starting with different kinds of plastic: PLA, ABS, PVA, Nylone, HIPS
straight to pasty foods, such as cheese, chocolate, pate, etc.

In the process of printing, a 3D printing reads content of a file in special format,
usually, GCode, which contains a set of primitive consecutive commands and inflicts
consistent layers of special material, constructing a 3D model from a series of cross-
sections [32]. Those layers, which correspond to virtual cross-sections of a CAD model
are being combined of fused together in order to create an object of the given form.
The main advantage of this approach is a possibility to create geometrical forms with
almost endless complexity.

“Resolution” of a printer is defined by thickness of layer, which are being
accumulated (Z-axis) and accuracy of print head’s (extruder’s) positioning in
horizontal area (X and Y axes) [32]. Resolution is measured in DPI (amount points per
inch) or micrometers (microns). Usually standard thickness is 100mkm (250 DPI),
however there are some devices, which are capable of printing with higher accuracy,
up to 16mkkm (1 600 DPI). Resolution of axes X and Y is similar to usual values of.
two-dimensional laser printers. The typical particle size is something between 50 and
100mkm (from 510 to 250 DPI) in diameter.

Creation of a model, using modern additive technologies might take from a few
hours to a few days and sometimes even weeks, depending on the used methods and
model’s complexity [48]. Industrial additive systems, in general, are capable of

reducing the time, required for a model to be printed to a few hours, but it highly

20
depends on the type of the machine, size and number of details, which are being
produced simultaneously.

When producing huge batches of polymer products, traditional manufacturing
methods, such as die-casting might be a lot cheaper. However, additive technologies
have some benefits, when producing smaller batches, which allow us to achieve higher
production pace and design flexibility, as well as increased economy per unit of
manufactured goods.

Production of some models with high accuracy, usually requires some extra
processing. Even though, the resolution of modern printers is more than enough for
most projects, printing of objects with slightly increased measurements and following
subtractive machining with high-precision tools allows users to create models with
higher accuracy.

Some methods of additive manufacturing allow usage of a few different
materials as well as colors within one production cycle. Lots of 3D printers use
“backing” or “supports”, while printing [32]. They are required in order to construct
parts of the model, which do not touch neither lower layers nor the working platform.
Supports themselves are not a part of the model, so once printing is over, they are being

either broke off or melted, using some specific solvent (usually — water or acetone).

Support matenial filament =——————-==
Bulld matenal Mamen! =———————.

Extrusion head \
Drive wheels
Liquifiers
Extrusion nozzles

Foam base

Build platform .

Support matenal spool

Buid material spool ~ °

Fig. 1.6. Working scheme for an FDM 3D printer

21
1.2.1. 3D printing technologies

From the end of the 70s of the 20th century, the world has seen a few methods
of 3D printing. The very first printers had huge sizes, high cost and limited
functionality [42].

Currently there is a wide variety of different methods of additive manufacturing.
The main difference lays in the way of how layers are being created and materials,
which can be used for printing. Some methods are based on melting or softening
materials to create layers. The most common ones of them are: selective laser sintering
(SLS), selective laser melting (SLM), direct metal laser sintering (DMLS), printing,
based on layers surfacing (FDM or FFF) [42]. Meanwhile, another direction is
production of solid models, using polymerization or liquid materials, well-known as
stereolithography (SLA).

In case of laminated object manufacturing (LOM), thin layers of the material are
being cut to the required contour, with following junction into a single piece. Paper,
polymers and metals can be used as materials for LOM.

Each mentioned method has unique advantages and disadvantages, that is why
some companies provide a choice of material, while constructing a model — either
polymer or powder. Printers, which are based on LOM technology, usually use
common office paper for constructing solid prototypes.

The most important things, while picking the most optimal device are printing
speed, price, cost of printed prototypes, variety and pricing of compatible consumables.

Printers, which are capable of producing complete metal models have quite high
price, however it is possible to use cheaper devices for producing molds with following
casting of metal parts.

It is worth mentioning that some of the printers require specific conditions of
use (for example, maintenance of a fixed temperature or humidity of the environment,
where they are placed), which implies additional limitations, while selecting the most

appropriate device.

22
Apart, from aforementioned model creation methods there are some other

popular ones. The main 3D printing methods are listed in table 1.1.

Table 1.1
The main 3D printing methods
Method Technology Materials
Extrusion Modeling via melting or Thermoplastics (PLA,
softening of the material for | ABS, etc.)
creation of layers
(FDM or FFF)
Wiry Construction of random Almost any metal alloys
forms via electron-beam
freeform fabrication (EBF3)
Powder Direct metal laser sintering | Almost any metal alloys
(DMLS)
Electron-beam melting Titan alloys
(EBM)
Selective laser melting Titan, cobalt-chromium
(SLM) alloys, stainless steel,
aluminum
Selective heat sintering Powder thermoplastic
(SHS)
Selective laser sintering Thermoplastics, metal
(SLS) powders, ceramic
powders
Streamed 3D printing (3DP) Hips, plastics, metal
powder, sand mixtures

23
Continuation of Table 1.1

Lamination Constructing of objects via | Paper, metal foil, plastic
lamination film

Polymerization Stereolithography (SLA) Photopolymers
Digital light processing Photopolymers
(DLP)

1.2.2. Types of 3D printers

In general, all 3D printers can be split in two main categories: industrials
machines and household devices [64].

Industrial machines, usually, are being used in huge manufacturing to create
prototypes and complex details with high accuracy. Lately, development of industrial
additive production has been evolving with tremendous pace. For example, joint
American-Israel company Stratasys supplies devices for additive manufacturing,
which price goes from 2 000 to 500 000 dollars, while compony General Electric uses
high-class machines for creation of parts of gas pipes.

Meanwhile, household devices are created for an average user, for solving their
daily tasks. Mainly, private companies and enthusiasts are involved in. development of
such devices. Their count grows every day. The most part of work is done by amateurs
for personal or community needs, with help from academic associations and hackers.

Those printers can be used by both, private manufacturers for production of
different prototypes, parts of toys and confectionery for creation of unusual and
complicated products from chocolate and other pasty mixtures.

Household 3D printers can be separated into two different categories: food and
non-food printers. The first ones use different kinds of pasty materials for creation of
decorations and deserts, which impress the imagination and attract new customers.
While another kind uses differed kinds of plastics and metals. They are the most

popular amongst engineers and companies, who have a need for prototyping (for

24
example, manufacturers of home appliance, automobile spare parts, different
machines, etc.).

Typical user of a household 3D printer does not possess any specific knowledge
and skills in areas of 3D printing, design, electronics, programing and chemistry. This
implies additional requirements to usability and simplicity of usage of those devices.
Even though, for the last couple years industry of household 3D printiner made a huge
step towards an average customer, unfortunately this is still quite complicated piece of
equipment, usually without a good user-friendly software and with relatively high
price. Those issues scare household customers away from buying, which slows the
pace of development, popularization and as a result availability of equipment for 3D

printing.

1.2.3. Types of software for 3D printers

3D printing is a complicated process, which consists of many stages with
different complexity. Each of those stages requires from the user knowledge and skills
in different areas, related to the process of additive models’ creation [68]. Some of
them require direct physical work from the user, for example, calibration of printers
and processing of printed object. While others require some specific software.

The first stage for creation of any model is design. Usually, 3D models are being
created, using specific software for 3D modelling. Using it, the user is capable of
constructing of geometrical figures with almost any shape and complexity. However,
when designing a particular model, complexity of printing it on a specific 3D printer
should be taken into consideration. Because, too big or complex figures might simply
not fit onto printer’s working platform, or take days to be printed on a single device, or
it might take tons of material to print it, which will lead to the necessity of replacing
coils with material during the printing. All of those problems might have a negative
impact on the final product. In order to solve this problem, complicated figures are
usually split into smaller parts, which are much easier to print, because they take less

space, require less material (in terms of one printing session) and can be printed

25
simultaneously and independently. Also, this approach reduces the overall complexity
of the construction and makes it modular and so more suitable for future usage and
maintenance.

After the model was designed, we can export it as an STL file, which contains
the information about the object in form of the list of triangle edges, which describe its
surface and their normal. However, most of 3D printers do not understand this format,
so before the printer will be able to print the desired model it is required to prepare it
for printing, using a specific software, called slicer [2].

While preparing the model, the user should correctly set dimensions of the
printer (size of working platform), temperature of nozzle and platform (in case if printer
supports it), nozzle diameter, material diameter, and much more configurations, which
are related to properties of a particular 3D printer. Then they should add one or more
models on a virtual platform, move them around the platform and one another,
configure their angles of infliction over the platform, their proportions and sizes. In
most cases, as a result of the software’s work, the customer receives a file in GCode
format, which consists of a set of primitive commands, supported by the most of 3D
printers.

After the GCode was received, it should be passed onto the 3D printer in some
way. Different companies use really different approaches for interaction of customer
with the device. An example of the most-primitive interface is a printer with a single
socket for a USB flash drive or SD-card. Such kind of printers does not have neither
an embedded screen nor a possibility of remote control. Software of this printer has
really primitive functionality: read file from the drive and gradually send command
from it to the controlling devices (extruder, platform, etc.). This approach allows
manufacturers to reduce the cost of the product, but it might not be really convenient
for the customer if they work with it on a daily basis.

That is why, for more advanced work with 3D printer, usually, a whole set of
software, which is responsible for user’s interactions is being developed [5]. The most
important and low-level part of it is the firmware. This piece of software is responsible

for the low-level interaction with the control elements, such as heating platform,

26
extruder, drivers for moving platform via axis Z and extruder via axes X and Y,
temperature controllers and others. Quite often, user does not have neither a need nor
tools to interact with it.

Then, for some 3D printers, a GUI is being developed. It helps user to manipulate
control elements, control the printing process and calibrate moving elements of the
printer. This piece of software acts as an agent between the user and the device’s
firmware. Usually, this interface is shown on the display, which is embedded into the
printer and gives a possibility to: launch, pause and cancel printing process, control
the temperature of the heating elements, position platform and extruder, etc.

The most advanced systems also include a graphical user interface. For. Remote
control over the 3D printer. It provides all the features of the local interface, but it does
not require the user to be anywhere near the device. This software might be provided
in the form or WEB or mobile applications. They connect to the printer, which is
connected to the global network via a. specific proxy-server.

By the way, it is possible to see other kinds of software, which acts as different
additions and plugins for the core of the ecosystem (firmware, local and remote-control
interface). For example, a cloud storage of 3D models, where users can store their
models in STL or GCode formats, share them with other users, etc. As well, as a cloud
slicer, which allows the customer to prepare their model to be either printed on their

particular printer or saved into the aforementioned cloud storage.

1.3. Applications of 3D printers
1.3.1. Industrial application

Industrial 3D printers are often used for quick prototyping and research. Usually
those are quite big machines, which use powder metals, sand mixtures, plastic and
paper. This type of devices is used by universities and commercial companies.

Achievements in quick prototyping led to creation of materials, which can be
used for production of final products, which facilitated evolvement of 3D

manufacturing of final products, as alternative to the traditional methods. One of the

27
biggest advantages of quick manufacturing is relatively low costs of production of
small batches.

Some companies provide services for customization of objects, using simplified
software with posterior creation of unique 3D models. One of the most popular
directions is production of bodies for telephones.

Current printing speed of 3D printing is quite low, which might become a deal-
breaker for using them for huge manufacturing. In order to overcome this flaw, some
FDM devices use two or more extruders [8], which allow printing using different
colors, polymers and even creating a few different models simultaneously. In general,
this approach increases productivity, without usage of a few printers. Just one
microcontroller in more than enough for reliable work of a few nozzles.

Those devices allow creation of a few identical objects, based on the same digital
3D model, with usage of different materials and colors. The printing speed increases
proportionally to the number of nozzles. Moreover, it also results in some kind of
economy of electricity, thanks to usage of just one working platform, which quite often
requires heating. Together those two factors decrease production costs.

Quick production is still a relatively new method, which is not full studied yet.
However, different experts believe, that quick production is the technology of a new
level. Some of the most promising quick prototyping direction, which can be used for

quick production are SLS and DMLS [11].

1.3.2. Household and amateur application

Nowadays, household devices for 3D printing attract only enthusiasts and
amateurs, while practical usage is still quite limited. However, 3D printers are being
used of printing of mechanical watches, gears, decorations, etc. Web markets in area
of household 3D prinntinng often provide design of hooks, doorknobs, massage tools

and similar stuff.

28

3D printing is also being used in amateur veterinary and zoology. In 2013 3D

printed prothesis helped a duckling to stay on its feet. 3D printers are quite popular for
household manufacturing of different bijouterie — necklaces, rings, handbags, etc.

The main purpose of a public project, called Fab@Home is development of
household printers for general usage. It was organized by a small group or reesearchers:
Evan Malone and Hod Lipson. Over the years many people have joined their cause:
Daniel Cohen, Jeffery Lipto, Dan Periard, Max Lobovsky (CEO Formlabs), James
Smith, Michael Heinz, Warren Parad, Garrett Bernstien, Tianyou Li, Justin Quartiere,
Daniel Sheiner, Kamaal Washington, Abdul-Aziz Umaru, Rian Masanoff, Justin
Granstein, Jordan Whitney, Scott Lichtenthal, Karl Gluck. Those devices were tested
in laboratories for production of chemical connections. Printer can use any kind of
material, which can be extruded from syringe in state of liquid or paste.

3D printing has found appliance in clothing area. Couturier use printers for
experiments, while designing swimwear, shoes and dresses. Commercial usage
includes quick prototyping and 3D printing manufacturing of professional sports shoes.

Studies in area of 3D printing are being actively conducted by biotechnological
companies and academic institutions [19]. Those studies are targeted at looking for
possibilities of usage of inkjet / drip 3D printing in tissue engineering to create artificial
organs. Technology is based on infliction of layers of living cells upon gel substrate or
sugar matrix, with gradual layered build-up to create three-dimensional structures,
including vascular systems. First production system for tissue 3D printing, based on
bioprinting technology from NovoGen was introduced in 2009 by Mickael Le Helloco
and Thierry Burlot.

Organovo is one of 3D printing pioneers conducts laboratory studies and
develop manufacturing of functional three-dimensional samples of human tissue for
usage in medical and therapeutic studies. For bioprinting company uses 3D printer
NovoGen MMX. Organovo believes, that bioprinting will allow speeding up testing of
new medical supplies before clinical studies, which will result in reducing of costs and

time, which are required for development of treatments. In long-term perspective

29
Organovo hops to adapt those technologies for creation of grafts and in surgical
applications.

3D printing is used for creation of implants and devices for medical purposes.
Successful operations include such examples as implantation of titanium pelvic and
jaw implants, as well as plastic tracheal splints. The widest usage of 3D printing is
expected in the area of hearing aids and dentistry.

Some companies provide service for online 3D printing, which are available for
both private clients and industrial companies. User only has to upload a 3D design to
the website, which then will be printed, using industrial machines.

The future appliance of 3D printing might include creation of scientific
equipment with opened source code for usage in public laboratories and other scientific
usages, like reconstruction of fossils in paleontology, duplicating priceless
archaeological artifacts, reconstructing bones and body parts for forensic science,
reconstructing badly damaged evidence collected from crime scenes. The technology
is also being considered for construction applications.

Usage of 3D scanning technologies allows creation of duplicates of real objects
without the need for casting methods, which require high costs, complicated in
execution and might have a destructive impact in cases with precious and fragile
objects of cultural heritage.

An additional example of appliance of 3D printing technologies is usage of
additive manufacturing in construction. It might help to speed up pace of construction,
while reducing costs. More specifically, 3D printing technologies are being
investigated in terms of usage of those technologies for construction of space colonies.

Additive manufacturing can be used to create waveguides, couplings and bends
in terahertz devices. High geometrical complexity of such devices could not be
achieved, using traditional production methods.

Additive production requires high flexibility and constant improvements of
available technologies from manufacturing companies in order to support
competitiveness. Protectors of additive production predict confrontation of 3D

prrinting and globalization, because of potential growth of household manufacturing,

30
which might eventually replace huge companies. In reality, integration of additive
technologies inn commercial production serves rather as an addition for traditional

subtractive methods than a full replacement.

1.4. Analysis of existing 3D printing systems

Over the last decade the world has seen quite a few commercially successful
systems for 3D printing. All of them provide the base features, like printing itself,
settings management, etc., as well as more unique features, like models’ preparation
(slicing), remote control, etc. However, at the time being there is not any system which
would not require the user to be a professional engineer. Most commercial and not
commercial solutions for 3D printers are based on RepRap project, which was
originated by one of the most famous researches in area of 3D printing - Adrian
Bowyer.

The main goal of RepRap is to provide means for creation of 3D printers with
an open-source code [1], which is provided under the public GNU license. Devices,
based on RepRap are capable of printing of plastic component, which could be used to
create copies of the original device.

Because of the public access to the blueprints of printers from RepRap, a lot of
projects take over analog technical solutions, creating kind of a global ecosystem,
which mostly contains free-to-modify devices. Unfortunately, it leads to high diversity
of the quality level as well as the complexity of designs and devices, based on them.

One of the most popular 3D printer making companies is Ultimaker. This
company was founded by a small group of scientists from Netherlands - 1 by Martijn
Elserman, Erik de Bruijn, and Siert Wijnia in 2011. They design and create modern 3D
printers as well as software for them. Currently Ultimaker has brought 8 different 3D
printers to the market [34]. All of them, primarily use different sorts of plastic as a
printing material. Mostly, apart from some low-priced models they provide an
embedded screen, with a user interface for local control over the printing process and

calibration. But, one of the biggest achievements of Ultimaker company is a specific

31
software, which helps the user to prepare their models to be printed on their particular
3D printer, called Ultimaker Cura. Cura is a frontend part, of the slicer, which provides
a U, where users have an opportunity to configure lots of different settings, which are
specific for a particular 3D printer, like dimensions (X, Y and Z axed), number of
extruders, used materials, presence of a heating platform, printing speed, nozzle
diameter, printing resolution, dialect of GCode, etc. This piece of software
communicates with a general backend, called CuraEngine, which basically does all the
heavy lifting in terms of computations and generation of the final result — Gcode file
with a set of commands, which can be interpreted by the printer’s firmware. Also, it is
possible to connect to the printer, using a USB connector and control 3D printing
process, using UltimakerCura [34]. But they do not provide any kind of remote-control
interface, or cloud storage or any other additional software, which would provide some
extra functionality for the core system components.

The most interesting thing about this software, is the fact that it has an open-
sourced code base. Which means, that it is free and driven by the community, which
grows every day. Moreover, their software can be used as a base for other developers
and companies.

Another example of commercially successful 3D printing system is Prusa from Prusa
Research. Prusa Research was founded as a one-man startup in 2012 by Josef Prusa, a
Czech hobbyist, maker and inventor - and now one of the most famous names in the
3D printing industry. Currently they have delivered 4 different 3D printers which are
available as both RepRap kits and fully assembled printers. Their printers support
different kinds of plastic, as well as SLA printing. Although, they provide not as much
functionality as devices from Ultimaker, but they target the low-priced segment of the
market. As well as the system from Ultimaker, Prusa do not provide any kind of
secondary software, only the core functionality.

Printers from Prusa do not have neither an embedded colorful touchscreen with a
comprehensive Ul nor a specific software for slicing. However, their prices start from

299$, while prices for printers from Ultimaker start from 3 500$. Most users of their

32
3D printers are enthusiastic engineers, which now not only how to use the 3D printer,
but also how to assemble and maintain it.

However, there are much more other solutions from different companies and

independent engineers and scientists, but they are not as famous and popular.

1.4.1. Analysis of problems in the existing 3D printing systems

It 1s safe to say, that current solutions have at least three major problems:

1. None of the currently available systems provides a full, comprehensive CA,
which would meet all modern requirements and cover all phases of computer-
related 3D printing, such as: slicing, local Ul, remote-control, cloud storage for
printed or sliced models, 3D modeling software;

2. Although, we can see a strong tendency of decreasing of the prices on 3D
printers, users are still forced to pick between either functionality or reasonable
price. As we can see, comparing two of the biggest manufacturers of 3D printers,
the price for slightly more advanced devices might be more than 10 times higher,
than the price of more simple solutions;

3. However, the biggest problem seems to lay in extremely high entry level for an
average customer. It looks like all existing solutions require user to have
knowledge and skills in modeling, physics, chemistry, engineering,
programming and electronics.

The mentioned issues cause slowing of development and expansion of 3D printing
technologies in different areas of life. 3D printing industry might get a huge boost, if
someone were to a relatively cheap, reliable, comprehensive and most importantly
simple enough system, which would include different devices, such as 3D printers, as
well as different kinds of software, like slicers, 3D modelling tools, user-friendly local
and remote interface for printing management, cloud storages and a reliable cloud

system, which would allow all those parts to communicate between each other.

33

1.5. Conclusions for section 1

The modern 3D printing industry grows quite rapidly, and made a huge step
forward over the last few decades. A lot of different 3D printing methods were
introduced and modernized over the years, giving people the opportunity to create all
kinds of models, using different materials, like paper, plastic, metals, chocolate, cheese
and other kinds of pasty food. 3D printing technologies are being used in all areas of
life. Manufacturers of automobiles, toys, household appliances use them for
prototyping and even full-size production. Scientists, engineers and designers use them
to bring their most interesting and ambitious ideas to life, via prototyping. 3D printers
even used for creation of prostheses, which help people with different health problems
to get back to the normal life. Recently, even confectioners and bakers had found an
appliance of 3D printing in their daily work by printing different sorts of deserts and
decorations, which help to attract customers.

The pricing on devices for 3D printing can be really different. From super cheap
kits, for 100$ up to highly advanced complex industrial systems for over 500 000S.
This diversity allows users to select the most appropriate solution, based on their needs,
from small household engineering purposes to big industrial manufacturing.

However, it looks like the area of local non-engineering intrapreneurs is not
covered well enough. Most of the modern solutions seem to completely ignore this part
of market. Almost all of them are either way too complex for an average user or do not
provide a complete ecosystem, which would cover all customer’s needs with robust
user-friendly interface and reliable ways of communications between all parts of the

system, both software and hardware.

34
SECTION 2
HARDWARE DESIGN

2.1. Control elements of 3D printer

A 3D printer is a complicated piece of tech, which consists of hundreds of
smaller parts, which are responsible for different functions of the printer. There are lots
of different variations of design for 3D printers, each of them has its own cons and
pros. However, the one common thing between all of them is that, all of their parts ca
be split in two main groups [3].

The first ones are controllers, which are responsible for interpreting commands
send by user or other control units and then passing them onto the controlled elements
of printer.

Meanwhile the second group is responsible for execution of the received
commands. They can be called the controlled elements. Usually, they are responsible
for a very limited set of primitive operations.

Quality and efficiency of the both groups are crucial, as the quality of the final
product depends on them both, as well as, on their inter-communication. If either of
them fails to perform its role, or has any defects it may have a negative impact on the
appearance, internal structure and overall integrity of the produced model. In some
cases, it might even lead to disability of the printer to create some complex figure or
detail.

In this work we will take a look on the biggest and most important hardware
parts of a 3D printer, like controller board, user-interaction unit, motion controllers,

heating platform and a touch screen.

2.1.1. Controller board

The controller board, also known as motherboard is a main control unit of the

3D printer [3]. It is responsible for maintaining the smooth processing of the machine.

35
Being responsible for all the fundamental operations, motherboard works as the brain
of the 3D printers. It directs the motion components as per the instructions sent from a
computer and at the same time, interprets signals from the sensors. Usually, the role of
a controller board is given to one of the boards from Arduino family. The first Arduino
board was created by famous researches in the computer hardware area: Hernando
Barragan, Massimo Banzi and David Cuartielles.

Arduino is an open-source platform used for building electronics projects.
Arduino consists of both a physical programmable circuit board (often referred to as a
microcontroller) and a piece of software, or IDE that runs on your computer, used to
write and upload computer code to the physical board.

The Arduino platform has become quite popular with people just starting out
with electronics, and for good reason. Unlike most previous programmable circuit
boards, the Arduino does not need a separate piece of hardware (called a programmer)
in order to load new code onto the board -- you can simply use a USB cable.
Additionally, the Arduino IDE uses a simplified version of C++, making it easier to
learn to program. Finally, Arduino provides a standard form factor that breaks out the
functions of the micro-controller into a more accessible package.

The Arduino hardware and software were designed for artists, designers,
hobbyists, hackers, newbies, and anyone interested in creating interactive objects or
environments. Arduino can interact with buttons, LEDs, motors, speakers, GPS units,
cameras, the internet, and even smart-phone or TV. This flexibility combined with the
fact that the Arduino software is free, the hardware boards are pretty cheap, and both
the software and hardware are easy to learn has led to a large community of users who
have contributed code and released instructions for a huge variety of Arduino-based
projects.

For everything from robots and a heating pad hand warming blanket to honest
fortune-telling machines, and even a Dungeons and Dragons dice-throwing gauntlet,

the Arduino can be used as the brains behind almost any electronics project.

36
There are many varieties of Arduino boards that can be used for different
purposes. Some boards look a bit different from the one below, but most Arduinos have

the majority of these components in common (Fig. 2.1.):

0 NOWLTMNAS
1 ! ~

DIGITAL (PWM~) E 1 1

-
(-
- s
ol = H
> ¢ H
> 5
-,

ARDUINO

s
S5 WWW.ARDUINO.CC — MADE IN ITALY

T

H a m b O C

,,,,,,,,,

Fig. 2.1 Schematics of Arduino Uno

Every Arduino board needs a way to be connected to a power source. The
Arduino UNO can be powered from a USB cable coming from computer or a wall
power supply that is terminated in a barrel jack. In the picture above the USB
connection is labeled (1) and the barrel jack is labeled (2). The USB connection is also
the way of loading the code onto the Arduino board [27].

The pins on the Arduino are the places to connect wires to construct a circuit
(probably in conjunction with a breadboard and some wire) [6]. They usually have
black plastic ‘headers’ that allow us to just plug a wire right into the board. The
Arduino has several different kinds of pins, each of which is labeled on the board and
used for different functions.

e GND (3): Short for ‘Ground’. There are several GND pins on the Arduino, any

of which can be used to ground the circuit [6].

37
e 5V (4) & 3.3V (5): As the names imply, the 5V pin supplies 5 volts of power,
and the 3.3V pin supplies 3.3 volts of power. Most of the simple components
used with the Arduino run happily off of 5 or 3.3 volts [6].

e Analog (6): The area of pins under the ‘Analog In’ label (A0 through A5 on the
UNO) are Analog In pins. These pins can read the signal from an analog sensor
(like a temperature sensor) and convert it into a digital value that we can read.

e Digital (7): Across from the analog pins are the digital pins (0 through 13 on
the UNO). These pins can be used for both digital input (like telling if a button
is pushed) and digital output (like powering an LED) [6].

e PWM (8): some of the digital pins have tilde (~) next to them (3, 5, 6, 9, 10,
and 11 on the UNO). These pins act as normal digital pins, but can also be used
for something called Pulse-Width Modulation (PWM) [6].

e AREF (9): Stands for Analog Reference. Most of the time this pin is not used.
It is sometimes used to set an external reference voltage (between 0 and 5 Volts)
as the upper limit for the analog input pins [6].

Just like the original Nintendo, the Arduino has a reset button (10). Pushing it will
temporarily connect the reset pin to ground and restart any code that is loaded on the
Arduino. This can be very useful if the uploaded code doesn’t repeat, but user would
like to test it multiple times.

Just beneath and to the right of the word “UNO” on the circuit board, there’s a tiny
LED next to the word ‘ON’ (11). This LED should light up whenever the Arduino is
pluged into a power source. If this light doesn’t turn on, there’s a good chance
something is wrong.

TX is short for transmit, RX is short for receive. These markings appear quite a bit
in electronics to indicate the pins responsible for serial communication. In our case,
there are two places on the Arduino UNO where TX and RX appear - once by digital
pins 0 and 1, and a second time next to the TX and RX indicator LEDs (12). These
LEDs will give some nice visual indications whenever the Arduino is receiving or

transmitting data (like when a new program is being uploaded onto the board).

38

The black thing with all the metal legs is an IC, or Integrated Circuit (13). It is the
brains of the Arduino. The main IC on the Arduino is slightly different from board type
to board type, but is usually from the ATmega line of IC’s from the ATMEL company.

The voltage regulator (14) does exactly what it says - it controls the amount of
voltage that is let into the Arduino board. It is kind of a gatekeeper; it will turn away
an extra voltage that might harm the circuit. Unfortunately, it has its limits, so it is not
recommended to hook up theArduino to anything greater than 20 volts.

There are lots of different models and modification of circuits from Arduino
family. The most popular and common of them are Arduino Uno, Arduino Mega and
Arduino Leonardo. There are a lot of different custom variations of Arduino board, but
most of them are proprietary, which means they do not have such a huge community
of engineers around them, as the three mentioned boards.

Moreover, some additional supplements and addons for Arduino boards can be
found on the market. From different sensors, which can measure light, temperature,
degree of flex, pressure, proximity, acceleration, carbon monoxide, radioactivity,
humidity, barometric pressure, up to shields, which are basically pre-build circuit
boards that fit on top of the Arduino board and provide some additional functions, like
controlling motors, connecting to the internet, providing cellular or other wireless
communication, controlling an LCD screen.

It is safe to say that the motherboard is one of the most crucial parts of a 3D printer,
as it will be responsible for giving orders to different controlled elements, gathering
info from different sensors, like extruders’ and heating platform’s temperature sensors
and passing it to the user-interaction unit. So, one should think wisely when choosing

a controller board for a 3D printer.

2.1.2. User-interaction unit

Arduino is very powerful tool and in general it can be used for direct user

interactions via different control buttons and LCD screens. However, as the examples

from the real-world show, it is not possible to provide a simple, efficient and robust

39
U, using only the motherboard. So, a good decision here might be to leave the work
with controlled elements and sensors to the controller board and pick some other device
for interactions with user.

The selected device should be able to: work with external displays with
touchscreen, render a complex, modern and robust Ul, process input from user via the
touchscreen, connect to internet via either Wi-Fi or an Ethernet cable to communicate
with remote server for fetching and uploading data and, most importantly, it should
support connection to the Arduino board to be able to send user’s input in form of
commands.

It seems like, some kind of microcomputer would be the most appropriate fit this
case. Because, they are usually much cheaper than full-size computers and laptops,
they provide all of the requested functionality and moreover, they have really small
physical sizes, which makes them a good solution for a relatively small 3D printer.
However, it is worth noticing that such kind of devices are much less performant then
their desktop alternatives, which comes with much smaller sizes and some of the
features, like Wi-Fi or Bluetooth modules, or Ethernet connectors might be missing
out-of-the-box, but could be bought as an addon in form of a dongle.

Currently, ones of the most popular, advanced and well-supported
microcomputers on the market are the devices from Raspberry Pi family. The
Raspberry Pi Foundation was originated by David Braben, Jack Lang, Pete Lomas,
Alan Mycroft, Robert Mullins and Eben Upton.

The Raspberry Pi is a low cost, credit-card sized computer that plugs into a
computer monitor or TV, and uses a standard keyboard and mouse [28]. It is a capable
little device that enables people of all ages to explore computing, and to learn how to
program in languages like Scratch and Python. It is capable of doing everything you
would expect a desktop computer to do, from browsing the internet and playing high-
definition video, to making spreadsheets, word-processing, and playing games.

What is more, the Raspberry Pi has the ability to interact with the outside world,
and has been used in a wide array of digital maker projects, from music machines and

parent detectors to weather stations and tweeting birdhouses with infra-red cameras.

40
We want to see the Raspberry Pi being used by kids all over the world to learn to
program and understand how computers work.

There have been three generations of Raspberry Pis: Pi 1, Pi 2, Pi 3, and there
has generally been a Model A and a Model B of most generations. Model A is a cheaper
variant and tends to have reduced RAM and ports like USB and Ethernet. The Pi Zero
is a spinoff of the original (Pi 1) generation, made even smaller and cheaper.

The Raspberry Pi operates in the open source ecosystem: it runs Linux (a variety
of distributions), and its main supported operating system, Raspbian, is open source
and runs a suite of open source software. The Raspberry Pi Foundation contributes to
the Linux kernel and various other open source projects as well as releasing much of
its own software as open source

The Raspberry Pi's schematics are released, but the board itself is not open
hardware. The Raspberry P1 Foundation relies on income from the sale of Raspberry
Pis to do its charitable work.

The Raspberry Pi hardware has evolved through several versions that feature
variations in the type of the central processing unit, amount of memory capacity,
networking support, and peripheral-device support.

The Raspberry Pi Foundation provides Raspberry Pi OS (formerly called
Raspbian), a Debian-based (32-bit) Linux distribution for download, as well as third-
party Ubuntu, Windows 10 [oT Core, RISC OS, and LibreELEC (specialized media
center distribution) [28]. It promotes Python and Scratch as the main programming
languages, with support for many other languages. The default firmware is closed
source, while unofficial open source is available. Many other operating systems can
also run on the Raspberry Pi. Third-party operating systems available via the official
website include Ubuntu MATE, Windows 10 IoT Core, RISC OS and specialized
distributions for the Kodi media center and classroom management. The formally
verified microkernel sel.4 is also supported [39].

At the time of the conduction of the research, there are two most popular models

of Raspberry Pi on the market, which might fit as a user-interaction unit for 3D printer:

41

The model with the highest specification is the Raspberry Pi 3 Model B (Fig.

2.2.), so for many general-purpose projects this is the best bet. It is the most powerful
Pi, with the fastest clock speed, the most RAM, and best all-round feature set. It
provides speed and power as well as some additional benefits if form of built-in Wi-Fi

and Bluetooth modules.

Fig. 2.2. Raspberry Pi 3 Model B

The Pi 3 gives a genuinely pleasant desktop PC experience, in no small part
thanks to four years of extreme work in optimizing the official Pi operating system,
Raspbian. The Pi 3 boots in a matter of seconds, the web browser flies, you can open
Minecraft and create a world in no time at all, and intensive applications like
LibreOffice and Mathematica respond as they should on a decent PC.

However, as basically, anything in the world it has some cons and pros. The pros
are: fast, powerful, excellent value for money, while the main con is a decent amount
of consumed power.

Another popular model is Pi Zero (Fig. 2.3.). The Pi Zero is the smallest, lightest,

cheapest Pi available.

Fig. 2.3. Raspberry Pi Zero

42

It's not available in bulk, so it's not ideal if lots of them are needed, but it's perfect
for embedded projects that don't rely on wireless connectivity, though it is always
possible to add a Wi-Fi or Bluetooth dongle.

The Pi Zero's CPU is the P1 1's BCM2835 overclocked to 1GHz, so it's even
faster than a Pi 2 (though only single-core). It also packs 512MB RAM, giving it a
surprisingly reasonable desktop experience. In terms of power usage, it's one of the
lowest, around the same as a Model A+.

Now that the Pi Zero has a camera interface, it's perfect for projects like high-
altitude ballooning, where size and weight really count.

The Pi Zero is not ideal for use as a general-purpose PC, as you need adapters
to convert from mini-HDMI and micro-USB, plus a USB hub, although this could still
work out cheaper than a full-sized Pi 3 [39].

Its pros are price, size, weight while the cons are limited availability, no wireless
connectivity, GPIO header unpopulated.

So, it looks, like, with some additional efforts any of those models might be
selected as a user-interaction unit for a 3D printer, because both of them can: be used
with an external touchscreen display (via HDMI or mini-HDMI), connect to the
Internet via Wi-Fi (though an additional dongle is needed for Pi Zero), connect to
Arduino via a USB connection. Most importantly, both of them can run on the full
desktop version of a Linux distributive, which would allow us to render a complex Ul

and provide robust and stable work of the system.

2.2. Controlled elements of 3D printer

Apart from a controlling part of a 3D printerer, there are some controlled pieces
of hardware, which are responsible for different phases of printing. They should be
chosen wisely, as their quality and reliability are crucial, when printing some complex

detail or figure.

43
2.2.1. Extruder

The 3D extruder is the part of the 3D printer that ejects material in liquid or
semi-liquid form in order to deposit it in successive layers within the 3D printing
volume. In some cases, the extruder serves only to deposit a bonding agent used to
solidify a material that is originally in powder form.

Found in 3D Fused Deposition Modeling (FDM) or Fused Filament Fabrication
(FFF) printers, the extruder is also required for proper operation of machines using
Binder Jetting or Polyjet technologies, and even 3D Systems’ CPX machines. These
are additive manufacturing machines that need to deposit material before transforming
it either by adding a bonding agent to it (Binder Jetting) or by changing the chemical
properties (Polyjet and CPX). These technologies are explained in our guide about the
different kinds of 3D printing.

The filament extruder on a FDM printer is the part that extrudes the plastic
filament in a liquid form and deposits it on a printing platform by adding successive
layers. The printing head is made of many distinct parts including a motor to drive the
plastic filament and a nozzle (or extruder) to extrude the plastic.

Some 3D FDM / FFF printers are now equipped with two extruders. This enables
you, in particular, to print two materials simultaneously in order to obtain 3D prints in
two colors. The presence of two extruders also allows support material to be extruded,
which can be removed afterward using a solvent.

To regulate the plastic cooling process, some printers are enclosed. This helps
maintain a uniform temperature in the manufacturing chamber, ensuring greater
consistency in the print result.

The most common kinds of Binder Jetting printers are probably the Projet
printers from 3D Systems. These printers have an extruder that projects a bonding
agent (or color) onto a powder material. It’s the action of projecting this bonding agent

onto successive layers of powder that creates the object.

44

Polyjet technology, originally developed by Objet (which is now owned by
Stratasys), is also based on the projection of resin in the form of droplets onto the
printing platform. Once the droplets are projected, UV polymerizes the resin.

The cold end is the cold part in the upper portion of the 3D printer extruder. At
this point, there is no heating of the filament. This is just the part with the motor and
gearing, pushing the 3D printer filament into the hot end. Different systems actually
exist, there is usually a combination of gears and hobbed bolts, dictating the movement
of the printing filament

The hot end is the part where the filament is transitioning from solid to liquid,
while extruded on the building plate. But how is the filament melting? Indeed,
something has to be hot enough to melt materials and as we want to print an accurate
part, the temperature between the cold filament, the hot end, and the final cold and
solid part has to be perfectly managed. The heat break, in combination with the heat
sink, maintains a boundary at which the filament is confronted with high temperatures.
There is, in the system, a heater cartridge that is getting hot, transferring heat to the
nozzle via the heater block in aluminum.

Most desktop 3D printers ship with 0.4mm nozzles as standard, but there are
many other sizes available. Brass is usually used for 3D printer nozzles, but there are
also several options. For some materials, stainless steel can be preferred.

There is not a single extruder type, the choice will depend on the kind of 3D
printer that you have, on the used materials, and on the required printing speed and
accuracy.

There are two different possibilities: Direct or Bowden extruders. The nature of
your projects will determine which extruder you need to use. First, all extruders have
motors, but there are also geared extruders to control your print speed. It is not
essential, but it can help you to customize your setups in order to improve your print
quality.

Direct extruders are directly attached to the hot end, while a Bowden extruder
(or remote extruder) has a tube to link the hot end and the extruder body. For direct

extruders, the gear rotates by a stepper motor driving directly the filament to the

45
extruder hot end. The filament path is shorter, that is why Direct extruders are better to
3D print flexible materials than Bowden extruders You can totally 3D print flexible
filament with a Direct extruder, but it is not really convenient.

With Bowden extruders you can 3D print your projects faster. It is easier to
accelerate or decelerate because there is just the printing head to move, not the whole
extruder hot end.

They both can have a direct drive system. Indeed, for both of them the filament
drive mechanism can be mounted to the motor shaft, directly.

Moreover, there are extruders for all filament thickness, for 3mm filament,
1.75mm filament, etc.

Differences between Bowden and direct extruders can be seen on Fig. 2.4.

filament 3
feed direction

filament
feed direction

Drive gear [

Bowden tube extrusion system !

Fig. 2.4. Bowden extruder vs direct extruder

Direct
extrusion
hot end

Overall, it looks, like, when selecting a proper extruder for a 3D printer the

following moments should be taken into consideration:
e type of the extruder (Bowden or direct);
e material which is expected to be used for this 3D printer;

e the number of extruders

46

2.2.2. Motion controllers

Motion control systems and motors are invaluable for the growing 3D printing
industry. As the industry grows across services and sectors, the precision, accuracy,
and speed of the printers are becoming increasingly important.

Motion control systems coordinate and regulate the many moving parts in a 3D
printer. They serve to accurately synchronize multiple axes, increase the precision of
printing mechanisms, reduce noise, and increase print speed. Motors assist gantries to
achieve the necessary positioning and movement.

Motion control systems also provide the precision and accuracy required to
make unprecedented progress in 3D printing and other fields. Bioprinting pioneers that
are manufacturing living organs, tissue, bones, and cartilage are researching 3D
printing as a viable option.

The following motion control systems are used with different end goals in mind:

e The Advanced Motion Controls (AMC) Click & Move motion control system
can run several different 3D printers at once. The Click & Move coordinates all
the different axes with different motor types, enabling efficient, precise, and
effective 3D printing. Furthermore, Click & Move can coordinate systems with
multiple print nozzles that are used to make single parts with distinctive
materials or colors. The motion control system is modular and scalable,
providing ease for 3D printer manufacturers to keep using the system as their
product line evolves;

e The PI (Physik Instrumente) ACS-based motion controller with EtherCat
connectivity runs the gantry and communicates with the high precision
dispenser. The motion controller brings the medical field one step closer to
fabricating human organs layer-by-layer. The PI motion controller allows 3D
printing systems to be constructed in a few days or less. They are designed to
provide a high level of performance and to be compatible with STL files.

A stepper motor (Fig. 2.5.) is a type of electric motor that can be accurately

controlled with the controller. Most 3D printer use four or five stepper motors. Three

47
or four motors control the x/y/z axis movement (sometimes the z axis is controlled by

two motors) and one motor is used per extruder.

Fig. 2.5. Stepper motor

A stepper driver (Fig. 2.6.) is a chip that acts as a kind of middle-man between
a stepper motor and the controller. It simplifies the signals that need to be sent to the

stepper motor in order to get it to move.

Fig. 2.6. RepRap Stepper Motor Driver v2.x

Sometimes the stepper drivers are on separate circuit boards that are linked to
the controller via cables.

Sometimes the stepper drivers are on small circuit boards that plug directly into
the controller itself. In this case, the controller will have space for at least 4 of these
small circuit boards (one for each stepper motor).

Finally, sometimes the stepper drivers are soldered right onto the controller

itself.

48

Both the horizontal movement of the nozzle gantry and the vertical movement
of the build plate need to move and be positioned precisely. The material comes out in
small increments, but overlapping or diverging too much within the same layer can
make the print very messy. The printer nozzle needs to move very carefully in order to
draw out the shape of each layer, which can consist of completely separate parts for
some layers of certain shapes. There is very little room for error. And if the nozzle is
too close or too far away from the build plate, the filament will not stick correctly.

All of the movement and positioning of the build plate are usually accomplished
with some form of linear actuator. The nozzle gantry, on the other hand, usually uses
linear motors of stepper motors with belts to achieve the necessary positioning and
movement. And where there is a stepper motor or linear motor, there must be some
sort of drive, often a servo drive.

Another critical motion control component is in the extruder, the feeding
mechanism that pushes and pulls filament through the nozzle. material i1sn’t always
flowing through the nozzle. It needs to stop when the nozzle is moving over a gap in
the layer and while the build plate is lowering. The nozzle flow also needs to be
regulated when the nozzle moves through different geometries. For example, if the
nozzle keeps extruding material at a continuous speed when it makes a sharp turn, you
can end up with corner swell. The material flow rate needs to be lowered during the
corner to get an even thickness with no swell.

When choosing the most appropriate type of motion controllers, we should
consider, if the printer should support multiple nozzles and what precision of the

printing is required.

2.2.3. Heating platform

A heated build platform (Fig. 2.7.), also known as a heated bed, on a 3D printer
is where the part is printed out, layer by layer. By having the build platform heated,
there will be less warping and curling of the plastic by evenly distributing the cooling

process for a part

49

A common type of heated bed uses circuity boards (PCBs) as heating elements.
While such type of printers is cheaper to buy, they are not specifically designed to work
as heating elements for the complex process of 3D printing. One disadvantage of using
such types of heated beds is that, since the PCBs are made of aluminum and copper

strips, they can deform over time after continuously being subjected to heat.

HOT ZONE
DO NOT TOUCH!

HOT ZONE
DO NOT TOUCHI

CAUTION:

Bafore touching, power off e heotbed ond woit ot ecst 10 minutes!
St hot ofter powered off

Do not leave unattended!

Keep oway from chidrend

\
ﬁ WARNNG: Sti hot ofter LED goes out!

Fig. 2.7. Heating platform

ABS and PLA plastic can sometimes shrink and curl up at the edges as the part
cools. This causes a problem as more layers are added, which causes the part to warp.
To solve this problem, heated build platforms are used to keep the bottom layers of the
part warm as layers are added, which helps the part to cool evenly. The heated bed is
insulated so that the parts do not soften or melt. Heated bed material includes glass,
metal, or ceramic. Heated build platforms should be about 120° Celsius for ABS plastic
and 55° Celcius for PLA plastic.

When extruded plastic is released from the printer nozzle, it begins to cool.
During that cooling process, it also shrinks in size, and it is during shrinking that the
part may become uneven and warped, since the cooling may occur at different rates at

different points on the part’s surface.

50

The heated bed ensures that the printed part stays warm all over during the
printing process to allow for more even shrinking once it beings to cool below its
melting point. All in all, the heated bed fulfils two tasks:

e [t increases the surface energy of the print bed. This improves the bonding
strength at the top layer;

e [t keeps the bottom part hot enough to eliminate the risk of warping for the rest
of the print. The bed carries out a delicate balancing act of cooling the plastic
without over-cooling it.

The extruder part of the printer deposits molten plastic into the receiver bed
while supplying a certain degree of heat. The temperature of the heat bed needs to be
below the glass point to ensure the print cools into a solid. A lot depends on the
temperature sensor of the heat bed to get the required heat that needs to be supplied
just right.

Regardless of the materials used, the heated bed should be thermally insulated
so that it doesn't melt or soften any plastic parts underneath the bed. Commonly used
insulator materials are cardboard, wool, and cotton cloth on top of medium density
fiberboard MDF. The heated bed can also be mounted directly to a wooden platform
without any noticeable negative effects. Wool may be a good option for insulation
because its ignition temperature is 600C.

It is safe to conclude, that if we want to achieve the highest quality of printed
goods and avoid having a problem with them, being glued to the platform, when using

some materials, like ABS and PLA, it is required to use a heating platform.

2.2.4. Touchscreen

The last, but not least is a touch screen. This is the part of the print which will
be one of the most used by the customer. So, it should be reliable, responsive, it should
be able to properly display the UI and, most importantly, process user’s input and send

1t to the user-interaction unit.

51

As Raspberry Pi was selected as a user-interaction unit for this project, the

touchscreen should be supported by the selected version of Raspberry Pi (either
Raspberry Pi 3 Model B or Raspberry Pi Zero).

There are lots of different models of touch screens in the market right now, but

still the most reliable and popular solution is the official one from Raspberry P1, called

Raspberry Pi Touch Display (Fig. 2.8.).

!
T
|!!§X
1850

Fig. 2.8. Raspberry Pi Touch Display

The 800 x 480 display connects via an adapter board which handles power and
signal conversion. Only two connections to the Pi are required; power from the Pi’s
GPIO port and a ribbon cable that connects to the DSI port present on all Raspberry
Pis (except Raspberry Pi Zero and Zero W). Touchscreen drivers with support for 10-
finger touch and an on-screen keyboard will be integrated into the latest Raspberry Pi

OS for full functionality without a physical keyboard or mouse.

52
2.3. Defining the parameters of the 3D printer

In the previous chapters, the most crucial hardware elements of a 3D printer
were described. It looks, like for the 3D printer we will need: a controller unit, a user-
interaction unit, extruder(s), motion controllers (motion steppers and drivers), heating
bed and a touchscreen.

Before choosing the most appropriate hardware, some basic requirements to the
3D printer should be formulated:

« the sizes of the printer;
o number of extruders;

e supported materials;

e accuracy;

o filament thickness;

e speed;

e nozzle diameter;

» presence of a heating bed;

required sensors.

For this particular project, the following parameters were chosen as optimal (table

2.1.):

Table 2.1

3D printer parameters

Parameter Requirements
Size of the printer 400x300x400
Number of extruders 1

Supported materials

ABS, ABS+, PLA, HIPS

Accuracy

For a household printer,
recommended level of accuracy

50microns

the

1S

53
Continuation of Table 2.1

Filament thickness

The most common thickness for

household printers is 1,75mm

Speed

Recommended speed for a household

printer is 50-200mm/s

Nozzle diameter

In general, the nozzle diameter of
0.4mm is enough to provide the chosen

accuracy

Presence of a heating bed

As ABS, ABS+ and PLA are listed as
supported materials, it is recommended

to add a heating platform

Required sensors

As only 1 extruder is used and a heating
platform is requested, then we will need
at least 2 temperature sensors. Also, as
we will have moving steppers for three
axes (X, Y and Z), six end-stops are
required in order to prevent the moving
parts from collapsing into the sides of

the printer.

Now, as the strict set of requirements is defined, it is possible to prepare a

suggestion on architecture design of hardware part of a 3D printer. In order to design

the most optimal, reliable and robust architecture, the most appropriate parts of the

system should be picked.

While some parts, like extruder, motion controllers, heating platform and touch

screen are pretty standardized, so, basically, any of the currently available offers on the

market can be used, there are two crucial parts, which are the “brains” of the printer

should be considered and estimated in order to come up with the most optimal solution.

54
2.4. Hardware architecture design using method of multicriteria weighted

estimations

In this work we will use the method of multicriteria weighted estimations to
analyze alternatives of controller unit and user-interaction unit and select the most
appropriate one.

This method is used for choosing of the most optimal variant in cases, when the
choice is made, based on quality criteria. Moreover, it is used for simplification of
calculations, when quantity criteria are used.

Quantity criteria give the estimation in quantity indications, like size, square,
width, etc.

Meanwhile, quality criteria give the estimation in quality indications, like
efficiency, reliability, speed, etc.

Method of multicriteria weighted estimations uses the following algorithm:

1. formulation of choosing criteria;
picking weights of criteria;
choice of a rating scale;
ranking of options according to the selected criteria;
calculation of a weighted score for each option for each criterion;

calculation of the final weighted score for each option;

NS kN

choosing the best option.
The option with the highest final weighted score is selected, if the calculations
use positive criteria, otherwise — the option with the lowest score is selected.
Advantages of this method are:
 the simplicity of calculations;
« it is possible to use this method in cases, when retrieving of quantity criteria
is limited or not possible at all;
o the result of calculations might be a choice of the most optimal variant as
well ranking according to the degree of attractiveness of all investigated

options;

55

However, this method also has its disadvantages, the biggest one is not the
highest accuracy, which is related to the fact, that expert scores, which are used for
choosing of criteria as well for defining their weights and estimating by the given
criteria are subjective.

In order to select the most appropriate device for both controller board, the
following criteria were selected: price, performance, reliability, extensibility.

As follows from the section 2.1.1., we have two most popular options for the
motherboard: Arduino Uno and Arduino Mega. They were giving the following weight

scores for each criterion:

Table 2.2
Motherboards criterion weight scores
Device / . o o
o Price | Performance | Reliability | Extensibility | Sum }/%; 1;

Criterion
Arduino Uno 5 2 4 3 14
Arduino Mega 3 5 4 5 17
Scores sum 7; 8 7 8 8 31

The weight of each score can be calculated by the following formula:

T
B X @1

0;

Therefore, the weights for each criterion are following:
e Price: 8/31=0.26;

e Performance: 7/31=0.22;

o Reliability: 8 /31 =0.26;

o Extensibility: 8/31 =0.26

Weighted coefficients for each criterion:

56
Table 2.3

Weighted coefficients for each criterion

Score of the criterion on a 10-point scale
Criterion Criterion weight
Arduino Uno Arduino mega
Price 0.26 8 5
Performance 0.22 6 9
Reliability 0.26 8 8
Extensibility 0.26 5 9

The weighted score for each option for each criterion can be calculated, using

the following formula
Kij weightea = Kij * 0; (2.2)

The calculation of the final score for each option is done, using this formula:

S; = Kij weighted (2.3)

m
j=i

The results of final weighted estimation for each device are listed in table 2.4:

Table 2.4
Result scores for each device
Device / — ot
Price | Performance | Reliability | Extensibility Sum
Criterion
Arduino Uno 2.08 1.32 2.08 1.3 6.78
Arduino Mega 1.3 1.98 2.08 2.34 7.7

57

Based on the results of the performed calculations, Arduino Mega seems to be a
slightly better choice. Even though it has much higher price, than Arduino Uno, it
comes with better performance and extensibility, which compensate the price
difference. However, the difference of final scores is not very high, which means, it is
still possible to select Arduino Uno if the main goal is to create the cheapest possible
solution.

The same method can be applied for analysis of available options for user-
interaction control unit. As of now, two of the most popular Raspberry Pi versions are:
Raspberry P13 Model B and Raspberry Pi Zero. They will be compared, using the same
criteria as for motherboard: price, performance, reliability, extensibility.

The user-interaction units criterion weight scores are shown in table 2.5.

Table 2.5
User-interaction units criterion weight scores
Device / _ o o
. Price | Performance | Reliability | Extensibility Sum 7%, 7
Criterion
Raspberry Pi 3
poerLy 2 4 5 5 16
Model B
Raspberry Pi
poErLy 5 2 3 2 12
Zero
Scores sum 7; 7 6 8 7 28

Using formula (2.1), we can get the weights for each criterion are following:
e Price: 7/28=0,25;

e Performance: 6 /28 =0,21;

o Reliability: 8 /28 =0,29;

o Extensibility: 7/28 =0,25.

Weighted coefficients for each criterion:

Weighted coefficients for each criterion

58
Table 2.6

o o Score of the criterion on a 10-point scale
Criterion Criterion weight
Raspberry Pi 3 Model B | Raspberry Pi Zero
Price 0.25 5 8
Performance 0.21 7 4
Reliability 0.29 9 5
Extensibility 0.25 9 4

Using formulas (2.2) and (2.3) we can get the results of final weighted estimation

for each device:

Table 2.7
Result scores for each device
Device / _ o o
o Price | Performance | Reliability | Extensibility Sum
Criterion
Raspberry P13
POy 1.25 1.47 2.61 2.25 7.58
Model B
Raspberry Pi
POy 2 0.84 1.45 1 5.29
Zero

As we can see from the results table, even though Raspberry Pi 3 Model B is

more expensive than Raspberry Pi Zero, it shows higher performance, reliability and

extensibility, which completely overweight the price difference. The difference in final

scores between models is rather noticeable, so it looks like Raspberry Pi Zero cannot

be recommended as a user-interaction unit for a 3D printer.

59

2.5. Conclusions for section 2

In the second part of the work, the most crucial elements of 3D printer hardware
part were described and analyzed. Such elements are: controller board, user-interaction
unit, extruder, motion controllers, heating platform and LCD touchscreen.

Then the requirements to the 3D printer were formulated in terms of the sizes of
the printer, number of extruders, supported materials, accuracy, filament thickness,
speed, nozzle diameter, presence of a heating bed and required sensors.

Some of the hardware components, like extruder, motion controllers, heating
platform and LCD touchscreen are quite standard, so almost any available solution on
the market would fit the give requirements.

However, in order to select and find some strong arguments in favor of the best,
currently available solution on the market for motherboard and user-interaction unit,
the method of multicriteria weighted estimations was used.

Using the most important criteria, which are price, performance, reliability and
extensibility we were able to conduct, that the most appropriate motherboard for the
desired 3D printer is Arduino Mega, while the best choice of a user-interaction unit
would be Raspberry Pi 3 Model B.

In general, during this part we were able to formulate the requirements, suggest

and prove the most appropriate architecture design for a 3D printer.

60
SECTION 3
SOFTWARE DESIGN

3.1. Critical software elements for 3D printing system

Now, when the hardware part of the system was defined it is required to come
up with the requirements to the software part. The software is just as important as the
hardware, because it gives the means for the hardware to work properly as well as it
provides different user interfaces for all kinds of interactions and manipulations over
the hardware.

The design of the software part should consider all user requirements (such as
local and remote Uls), as well as handle all internal system communications between
hardware and different parts of software.

It looks like, in order to satisfy the minimal requirements, it is necessary to
introduce such pieces of software:

e Microcontroller firmware — a proxy between the printer’s hardware and

software, which handles user’s interactions;

e Local UI — to provide the ability to work with the device directly;

e Remote Ul — to provide the ability to with the device remotely;

o Slicer — to prepare 3D models to be printed via the printer;

e Cloud Storage — to store original and prepared 3D models and share them

with other users;

e Proxy-server — to provide the communication between the 3D printer and

Remote UI.

3.1.1. Microcontroller firmware

As stated in 2.1.1, Arduino motherboard was chosen as the primary

microcontroller of the printer. It will be one of the most crucial parts of the system,

61
because it is responsible for passing commands from user to the different hardware
parts of the system.

In order to do so, the specific software, called firmware should be installed on
the Arduino board.

Firmware, like its name implies, is the bridge between the hardware and software
of a computer system. When software sends commands to the hardware of a computer
system, the firmware interprets and translates the software commands into a form that
1s recognizable by the hardware.

When the 3D printer software sends G-code to your 3D printer, the firmware
translates the G-code commands into specific electrical signals that are sent to the
motors, heaters, fans and other components on the 3D printer.

For example, if the host software sends “G1 X50 Y50 to the 3D printer, the 3D
printer firmware determines how far the motors need to turn to move the extruder to X
=50 mm and Y = 50 mm, then sends the electrical signals to the motors to turn them
the appropriate amount.

As this piece of software is highly complex, it seems to be a wise choice to select
one of the available open-source solutions, with a few years of production usage and a
big, active community.

Nowadays, one of the most popular and well-adopted firmware for 3D printers
is Marlin. Marlin 1s an open-source firmware for the RepRap family of replicating rapid
prototypes — popularly known as “3D printers.” It was derived from Sprinter and grbl,
and became a standalone open-source project on August 12, 2011. Marlin is licensed
under the GPLv3 and is free for all applications.

From the start Marlin was built by and for RepRap enthusiasts to be a
straightforward, reliable, and adaptable printer driver that “just works.” As a testament
to its quality, Marlin is used by several respected commercial 3D printers. Ultimaker,
Printrbot, AlephObjects (Lulzbot), and Prusa Research are just a few of the vendors
who ship a variant of Marlin. Marlin is also capable of driving CNC’s and laser

cngravers.

62

One key to Marlin’s popularity is that it runs on inexpensive 8-bit Atmel AVR

micro-controllers - Marlin 2.x has added support for 32-bit boards. These chips are at

the center of the popular openOsource Arduino/Genuino platform. The reference

platforms for Marlin are an Arduino Mega2560 with RAMPS 1.4 and Re-Arm with

Ramps 1.4.

As a community product, Marlin aims to be adaptable to as many boards and

configurations as possible. We want it to be configurable, customizable, extensible,

and economical for hobbyists and vendors alike. A Marlin build can be very small, for

use on a headless printer with only modest hardware. Features are enabled as-needed

to adapt Marlin to added components.

Main features:

Full-featured G-code with over 150 commands

Complete G-code movement suite, including lines, arcs, and Bézier curves
Smart motion system with lookahead, interrupt-based movement, linear
acceleration

Support for Cartesian, Delta, SCARA, and Core/H-Bot kinematics
Closed-loop PID heater control with auto-tuning, thermal protection, safety
cutoff

Support for up to 5 extruders plus a heated printbed

LCD Controller UI with more than 30 language translations

Host-based and SD Card printing with autostart

Bed Leveling Compensation — with or without a bed probe

Linear Advance for pressure-based extrusion

Support for Volumetric extrusion

Support for mixing and multi-extruders (Cyclops, Chimera, Diamond)
Support for Filament Runout/Width Sensors

Print Job Timer and Print Counter

63

Marlin Firmware runs on the 3D printer’s main board, managing all the real-
time activities of the machine. It coordinates the heaters, steppers, sensors, lights, LCD
display, buttons, and everything else involved in the 3D printing process.

Marlin implements an additive manufacturing process called Fused Deposition
Modeling (FDM) — aka Fused Filament Fabrication (FFF). In this process a motor
pushes plastic filament through a hot nozzle that melts and extrudes the material while
the nozzle is moved under computer control. After several minutes (or many hours) of
laying down thin layers of plastic, the result is a physical object.

The control-language for Marlin is a derivative of G-code. G-code commands
tell a machine to do simple things like “set heater 1 to 180°,” or “move to XY at speed
F.” To print a model with Marlin, it must be converted to G-code using a program
called a “slicer.” Since every printer is different, you won’t find G-code files for
download; you will need to slice them yourself.

As Marlin receives movement commands it adds them to a movement queue to
be executed in the order received. The “stepper interrupt” processes the queue,
converting linear movements into precisely-timed electronic pulses to the stepper
motors. Even at modest speeds Marlin needs to generate thousands of stepper pulses
every second.

Heaters and sensors are managed in a second interrupt that executes at much
slower speed, while the main loop handles command processing, updating the display,
and controller events. For safety reasons, Marlin will actually reboot if the CPU gets
too overloaded to read the sensors.

Marlin can be controlled entirely from a host or in standalone mode from an SD
Card. Even without an LCD controller, a standalone SD print can still be initiated from
a host, so your computer can be untethered from the printer.

Using Marlin as firmware for the 3D printer will give an opportunity to
concentrate the efforts on providing the best possible Ul and UX, without having to

spent lots of time developing a custom firmware.

64

3.1.1.1. Firmware mathematical model

Firmware for a 3D printer is a complicated and multifunctional piece of
software. It is responsible for all the underlaying operations, such as communication
with hardware parts of the system, as well as for processing commands from the client
and sending the appropriate response.

The mathematical model of the commands processing workflow, is represented
on Fig. 3.1., where:

X — set of input parameters (commands in form of signals, received from the
client);

Y — set of output parameters (commands in form of signals, send to the hardware
elements of the 3D printer);

Z — set of disturbing effects of the environment (different signal interferences,
connection losses, etc.);

A — operator of a mathematical model that is a set of algorithms and

functions.
Z] 22 “es Zn(z)
X4 | Command(C) | Y1
! c 1 !
: N p N
Xz i 1 " Error(E) Vs
—> | Transformer(T) | : >
X |
.—n(x]> LN ﬂL}
Y=A(X Z1)

Fig. 3.1. Mathematical model of the command

processing workflow

65

The main terms and definitions from the object-classification model and
connections between them, are described further.
Command — a command in form of set of signals, received from the connected

client (Raspberry Pi in our case). The set of commands in the firmware is:

C = {c1,¢0 s iy} (3.1)

where, n(C) = |C| - the power of the set C, which corresponds to the number of
commands, supported by the firmware.

Transformer — the part of the firmware’s code, responsible for interpretation of
the received commands, to the commands, which can be send to a particular piece of

hardware (e.g., extruder, motion gears, etc.). The set of transformers:

T = {ti,ty .ty) (3.2)

where, n(T) = |T| - the power of the set T, which corresponds to the number of
transformations, supported by the firmware

Error — possible errors, which can occur in the firmware during the
interpretation of the command. They might be caused by incorrect input parameters
from the client, as well as by some disturbing environment events (signal interferences,

connection losses, etc.). The set of errors:

E={eyeenm} (3.3)

where, n(E) = |E| - the power of the set E, which corresponds to the number of errors,
handled by the firmware.

The connections between classes from the object-classification model are:

G — relation between the received command and transformer, which should

process it.

66
P — relation between the transformation and a set of errors, which might occur

in the process.

3.1.2. Local user interface

Even though Marlin will handle all low-level interactions with the hardware, the
user can’t work with it directly. So, it is necessary to provide some proxy between the
user and the firmware.

Usually, a local Ul is developed for this purpose. It should consist of at least two
parts:

e Backend — which will be responsible for communication between the

frontend and the firmware;

e Frontend — which will be responsible for user’s interactions and sending the

commands to the backend.

The communication between backend, frontend and the firmware is shown n

Fig. 3.1.:

Frontend

A

Y

Backend

I

Firmware

Fig. 3.2. Scheme of communication between

Frontend, Backend and Firmware

As was stated in 2.1.2., Raspberry Pi was selected as a user-interaction unit. One

of the biggest advantages of the boards from Raspberry foundation is the fact that they

67
can run a fully-functional distributive of Linux. Which gives unlimited possibilities to
the developers.

It seems like, for implementation of the local Ul the simplest approach would be
to implement a backend, using some server-side technology, like Python, NodelS, Go
or C#, which is capable of communication with the Arduino’s firmware. While the
frontend part can be implemented as a Web application, which runs in some locally
installed browser.

The communication between backend and hardware can be implemented in a
straightforward way, as described in 3.1.1. In this way the backend sends different
GCode commands to the firmware, and in response it receives some answers, which
should be handled properly.

Meanwhile, the Frontend should be very responsive and provide the real-time
data about the temperature, position of the extruder, the motion drivers, the platform,
about the printing progress, etc.

There are multiple ways to achieve this kind of responsiveness. For example,
one of the polling strategies.

The simplest way to get new information from the server is periodic polling.
That is, regular requests to the server, which are executed, for example, once every 10
seconds.

In response, the server first takes a notice to itself that the client is online, and
second — sends a packet of messages it got till that moment.

That works, but there are downsides:

e Messages are passed with a delay up to 10 seconds (between requests).

« Even if there are no messages, the server is bombed with requests every 10

seconds, even if the user switched somewhere else or is asleep. That is quite
a load to handle, speaking performance-wise.

So, this approach seems to be inappropriate for a real-time system, which
requires high performance, efficiency and reliability.

Long poling is essentially a more efficient form of the original polling technique.

Making repeated requests to a server wastes resources, as each new incoming

68
connection must be established, the HTTP headers must be parsed, a query for new
data must be performed, and a response (usually with no new data to offer) must be
generated and delivered. The connection must then be closed, and any resources
cleaned up. Rather than having to repeat this process multiple times for every client
until new data for a given client becomes available, long polling is a technique where
the server elects to hold a client’s connection open for as long as possible, delivering a
response only after data becomes available or a timeout threshold has been reached.

Implementation is mostly a server-side concern. On the client side, only a single
request to the server needs to be managed. When the response is received, the client
can initiate a new request, repeating this process as many times as is necessary. The
only difference to basic polling, as far as the client is concerned, is that a client
performing basic polling may deliberately leave a small-time window between each
request so as to reduce its load on the server, and it may respond to timeouts with
different assumptions than it would for a server that does not support long polling.
With long polling, the client may be configured to allow for a longer timeout period
(via a Keep-Alive header) when listening for a response — something that would usually
be avoided seeing as the timeout period is generally used to indicate problems

communicating with the server.

Fig. 3.3. Long polling strategy

69

Apart from these concerns, there is little else that a client needs to do that would
be different than if it were engaging in basic polling. By contrast, the server needs to
manage the unresolved state of multiple connections, and it may need to implement
strategies for preserving session state when multiple servers and load balancers are in
use (commonly referred to as session “stickiness”). It also needs to gracefully handle
connection timeout issues.

As long polling is really just an improvisation applied to an underlying request-
response mechanism, it comes with an additional degree of complexity in its
implementation.

Reliable message ordering can be an issue with long polling because it is
possible for multiple HTTP requests from the same client to be in flight
simultaneously. For example, if a client has two browser tabs open consuming the same
server resource, and the client-side application is persisting data to a local store such
as localStorage or IndexedDb, there is no in-built guarantee that duplicate data won’t
be written more than once. This could also happen if the client implementation uses
more than one connection at a time, whether deliberately or as a result of a bug in the
code.

Another issue is that a server may send a response, but network or browser issues
may prevent the message from being successfully received. Unless some sort of
message receipt confirmation process is implemented, a subsequent call to the server
may result in missed messages.

Depending on the server implementation, confirmation of message receipt by
one client instance may also cause another client instance to never receive an expected
message at all, as the server could mistakenly believe that the client has already
received the data it is expecting.

All of these concerns, and more need to be considered when implementing
robust support for long polling in any real-time messaging system.

Unfortunately, such complexity is difficult to scale effectively. To maintain the
session state for a given client, that state must either be shareable among all servers

behind a load balancer — a task with significant architectural complexity — or

70
subsequent client requests within the same session must be routed to the same server
to which their original request was processed. This form of deterministic “sticky”
routing is problematic by design, especially when routing is performed on the basis of
IP address, as it can place undue load on a single server in a cluster while leaving other
servers mostly idle instead of spreading the load around efficiently. This can also
become a potential denial-of-service attack vector — a problem which then requires
further layers of infrastructure to mitigate that might otherwise have been unnecessary.

So, it is safe to say that neither regular nor long polling are a good choice for a
complex real-time system because of their overall limitations and complexity.

An alternative solution might be to use a modern way for handling
communication between server and client in real-time systems — WebSockets.

A WebSocket is a persistent connection between a client and server.
WebSockets provide a bidirectional, full-duplex communications channel that operates
over HTTP through a single TCP/IP socket connection. At its core, the WebSocket
protocol facilitates message passing between a client and server.

The idea of WebSockets was borne out of the limitations of HTTP-based
technology. With HTTP, a client requests a resource, and the server responds with the
requested data. HTTP is a strictly unidirectional protocol — any data sent from the
server to the client must be first requested by the client. Long-polling has traditionally
acted as a workaround for this limitation. With long-polling, a client makes an HTTP
request with a long timeout period, and the server uses that long timeout to push data
to the client. Long-polling works, but comes with a drawback — resources on the
server are tied up throughout the length of the long-poll, even when no data is available
to send.

WebSockets, on the other hand, allow for sending message-based data, similar
to UDP, but with the reliability of TCP. WebSocket uses HTTP as the initial transport
mechanism, but keeps the TCP connection alive after the HTTP response is received
so that it can be used for sending messages between client and server. WebSockets

allow us to build real-time applications without the use of long-polling.

71

The protocol consists of an opening handshake followed by basic message
framing, layered over TCP. WebSockets begin life as a standard HTTP request and
response. Within that request response chain, the client asks to open a WebSocket
connection, and the server responds (if it is able to). If this initial handshake is
successful, the client and server have agreed to use the existing TCP/IP connection that
was established for the HTTP request as a WebSocket connection. Data can now flow
over this connection using a basic framed message protocol. Once both parties
acknowledge that the WebSocket connection should be closed, the TCP connection is

torn down.

WEBSOCKETS

A VISUAL REPRESENTATION
Client Server

Handshake (HTTP upgrade)

connection opened

Bi-directional messages 5
open and persistent connection d
One side closes channel <
connection closed
PubNub

Fig. 3.4. A visual representation of WebSockets

It looks like, in order to provide a robust real-time system for a 3D printer, the
WebSocket technology is the best choice.

Now, as the decision on architecture of the Local Ul was made, it is necessary
to choose a list of technologies, which should be used for the development.

As the Local Ul will consist of two parts — Frontend and Backend, we should

choose the technologies for both of them.

72

Frontend is going to be a Web application, so there is not too much of options if
we are talking about the programming language. There are a few different languages
for Web development around, however the most spread, popular and well-known one
is JavaScript. JavaScript (JS) is a lightweight, interpreted, or just-in-time compiled
programming language with first-class functions. While it is most well-known as the
scripting language for Web pages, many non-browser environments also use it, such
as Node.JS, Apache CouchDB and Adobe Acrobat. JavaScript is a prototype-based,
multi-paradigm, single-threaded, dynamic language, supporting object-oriented,
imperative, and declarative (e.g., functional programming) styles.

JavaScript runs on the client side of the web, which can be used to design /
program how the web pages behave on the occurrence of an event. JavaScript is an
easy to learn and also powerful scripting language, widely used for controlling web
page behavior.

JavaScript can function as both a procedural and an object-oriented language.
Objects are created programmatically in JavaScript, by attaching methods and
properties to otherwise empty objects at run time, as opposed to the syntactic class
definitions common in compiled languages like C++ and Java. Once an object has been
constructed it can be used as a blueprint (or prototype) for creating similar objects.

JavaScript's dynamic capabilities include runtime object construction, variable
parameter lists, function variables, dynamic script creation, object introspection, and
source code recovery (JavaScript programs can decompile function bodies back into
their source text).

Although, JS is a really powerful programming language, currently, one of its
biggest benefits and struggles at the same time is the lack of a strict types system. This
is good for beginners and small solution, like MVPs or quick prototypes, however this
approach does not scale really well for big, complex, sometimes even multipart
solutions.

In such cases the most appropriate solution would be to select one of the
available supersets of JavaScript, which provide a strict compile-time types system.

Nowadays, the most popular one is Typescript. TypeScript is an open-source language

73
which builds on JavaScript, one of the world’s most used tools, by adding static type
definitions.

Types provide a way to describe the shape of an object, providing better
documentation, and allowing TypeScript to validate that the code is working correctly.

The next step would be to select a frontend framework for the development.
There are lots of available options, number of which grows daily. However, over the
last few years, there have been three main leaders — Angular, React and Vue.

All three of them have many years of production usage, open-source code, huge
communities and big companies, like Google and Facebook behind them.

Choose of the framework is usually based on the project specific requirements,
however, right now all three main frameworks cover most of the cases, just in different
ways, So, it seems to be a choice of preference for a particular developer or team.

Angular is the oldest and the most advanced framework out of the big trinity.

Angular is a platform and framework for building single-page client applications
using HTML and TypeScript. Angular is written in TypeScript. It implements core and
optional functionality as a set of TypeScript libraries that you import into your apps.

The architecture of an Angular application relies on certain fundamental
concepts. The basic building blocks of the Angular framework are Angular
components that are organized into NgModules. NgModules collect related code into
functional sets; an Angular app 1s defined by a set of NgModules. An app always has
at least a root module that enables bootstrapping, and typically has many more feature
modules.

Components define views, which are sets of screen elements that Angular can
choose among and modify according to your program logic and data

Components use services, which provide specific functionality not directly
related to views. Service providers can be injected into components as dependencies,
making your code modular, reusable, and efficient.

Modules, components and services are classes that use decorators. These

decorators mark their type and provide metadata that tells Angular how to use them.

74

The metadata for a component class associates it with a template that defines a
view. A template combines ordinary HTML with Angular directives and binding
markup that allow Angular to modify the HTML before rendering it for display.

The metadata for a service class provides the information Angular needs to make
it available to components through dependency injection (DI).

An app's components typically define many views, arranged hierarchically.
Angular provides the Router service to help you define navigation paths among views.
The router provides sophisticated in-browser navigational capabilities.

The last step would be to select the technologies for the server side of the Local
Ul As Typescript was chosen as the programming language for the Frontend part, it
might be a wise choice to use the similar technology stack on the backend.

It can be done, via the server-side JavaScript runtime — NodeJS. NodeJS is an
open-source, cross-platform, JavaScript runtime environment. It executes JavaScript
code outside of a browser.

Nevertheless, the Backend will require some means to be able to connect to a
Wi-Finetwork, as well as to the Arduino motherboard. Gladly, it has almost full access
to the underlying APIs of the Linux distributive, which will give us a possibility to
implement those connections.

So, it looks like in order to implement the Local UI, the following technology
stack can be used: TypeScript, Angular, NodeJS.

The basic interaction algorithm would look like:

o User uploads a model’s file in GCode format to the 3D printer and starts the

printing process;

e Backend retrieves the file and starts reading it line-by-line, validating the

commands and forwarding them to the Arduino motherboard;

e Arduino handles the commands appropriately and sends response;

e As Backend sends the commands, it can send some progress to the Frontend,

as well as different statistic, like current temperature, position of the moving

units, etc.;

75

e Once the printing is over, all moving parts are returned to the initial position
and Frontend shows some kind of notification for the user;

o Then the user can verify if the model was printed correctly and get it off the

heating platform.

Some of the Ul screens are listed below:

S CHOCOLA3D

& Printing @ Stats

<
Expected time of printing: 9h 15m 0s
Printing time:
@E Progress: 0%
* 25.5°C
Print speed: 100%
T
el Extruder

Fig. 3.5. Printing process

Status Connected

Signal level 70%

Fig. 3.6. Connection to Wi-Fi network

g’FLASTY 24.1°C/0.0°C/0.0°C

8 Extrusion % Basic

.

- A # -
& = XryY z
==
= - A A e

trud) i

o Extruder 1 - Reset Z offset Disable mot & Auto-calibrate

Fig. 3.7. Manual control over the extrusion

and X, Y, Z motion-drivers

Priasty 156°C/154°C = O
@ Hot bed & Thermoregulation
e
Extruder temperature 1: 210°C
8 Bed temperature: 80°C
(15.4°C) (15.4°C) o

&
*
'u' Set Disable heater Disable bed

Fig. 3.8. Thermoregulation section

D

it

%4 CHOCOLA3D

= & [5 [

ot extr. gcode very_big. gcode catushka_fix_plast very_big. gcode
gcode
i A
== == e
25x25x25(new). 25x25x25(new). 25x25x25(new).
blg gCOde gcode extr. gCOde gcode gcode
[N [N A [N
=
25x25x25(new).
gcode Hollow_Draudi. Temp_test. gcode catushka_fix_plast extr. gcode
gcode gcode
[N [N
=
25x25x25(new).
big. gcode extr. gcode gcode

Fig. 3.9. Local file storage

An error occured during updating.

Provided archive is not suitable for your printer, please upload an appropriate one and try
again.

< Update from USB ® Update system

Fig. 3.10. System update UI

78

3.1.3. Remote user interface

Apart from being able to interact with a 3D printer directly, it should also be
possible to be able to access it remotely. This feature might be useful for remote control
over the printing process. For example, it is possible to provide an embedded camera
as an additional option, which would send the printing live-stream to the Remote UI.
Also, sometimes the printing process might take hours or even days. In such cases it
would be extremely useful to be able to see the progress to properly plan the next steps
or, even, to adjust the temperature of an extruder or the heating if it is necessary.

It seems, like the best choice for a Remote UI, would be a Web-application,
because it can give us the best coverage for users on different platforms, mobile,
desktop, etc.

A consistent design choice would be to use the same technology stack, as was
used for the Local Ul — Typescript, Angular, NodeJS, WebSockets.

However, the Remote UI a bit more complicated, than the Local one, because
multiple users can access the same device from different devices at the time. This
requirement brings a need to support multiple connections to the same device. As 3D
printers are usually connect to some local Wi-Fi1 or Ethernet networks, they don’t have
a public IP-address, which can be accessed from any part of the planet.

In order to solve this issue, the proposed solution would be to implement a proxy
server. This server would be responsible for establishing the communication between
a device and client.

In general, the communication algorithm might look like:

e Once the device is connected to a Wi-Fi network, it connects to the proxy-server
via the WebSocket connection;

e Proxy-server marks device as “online”;

« When client wants to connect to a particular device, they should pick the one
from “online” list;

« Proxy-server registers a connection between the device and the client and starts

forwarding messages between them;

79

e Once the connection is established, the Remote UI can send different commands

directly to the device, which means, that now it has the same capabilities as the
Local UL

A simplified connection schema is shown in Fig. 3.11.:

Device

A

A 4

Proxy server

A

v v v

Client 1 Client 2 Clientn

Fig. 3.11. Proxy-server connection schema

Another difference from the Local Ul is that, for local Ul we always have one
user and we do not really care about their authorization and authentication. However,
for the Remote UI it is critical to provide some security measures to protected the
devices from unsanctioned access.

It seems, like a huge amount of work to implement a custom authorization
solution. The better alternative would be to use one of the existing platforms instead.
Currently, there are a lot of different offers in the Web ecosystem in area of security.
One of the most popular solutions is AuthO.

AuthO is an identity management platform for application builders and
developers. It provides a web-scale cloud solution that includes APIs and tools that
enable developers to eliminate the friction of authentication and authorization of their
applications and APIs.

AuthO enables users to single sign-on for applications running on various
platforms with various identity providers; add few lines of JavaScript to power their

applications; customize various stages of the authentication and authorization pipeline,

80
and connect their applications and APIs to their database of users and passwords. Its
platform also allows users to authenticate to active directory, LDAP, SAML, Integrated
Windows Authentication, Google Apps, Salesforce, and other IdPs without having to
configure firewall; add and remove users, modify profiles and authorization attributes,
and identify root cause user login issues; see a stream of recent logins and their
locations; and enable various SaaS and SAML-enabled applications.

Having a reliable authorization system, it is now possible to implement a well-
secured, robust and highly accessible Web-Application for a remote access.

So, just to summarize, the Remote Ul should meet the following requirements:

o Adaptiveness (supporting desktop, mobile and tablets);

o User-friendly UI;

o Connection to the proxy-server for interactions with the 3D printer;

o All the features of Local Ul

Some screens of the Remote Ul can be seen next:

%

Flasty Dev

Sign Up

G SIGN IN WITH GOOGLE

(=] olehrb97@gmail.com

Don't remember your password?

Protected with §,9 Auth0

Fig. 3.12. Authorization page

Device Confirmation

Device name

Device name

Verification code

Verification code

Fig. 3.13. Device Confirmation

& Devices 28) Devices | Adding and managing your devices

£ Settings "
& Myprofile Andrew's choco

B Help

e2ala9

Test raspi1

N
=
a
&

[9]
=t}

Test wifi

ESP 1.1

m
[l
o

Moscow Choco

Virtual Test Choco1

Memory leak test

Fig. 3.14. List of devices

82

%FLASTY Oleh e
B8 Printing

I & Devices (22 @ Stats «
B Settings Status:
Choose File No file chosen

& My profile
== !
@ Help
22.8°C 0°C >
Extruder Extruder 2

§ Temperature =

Extruder temperature 1: 170°C Print speed: 100%

Extrusion factor: 100%

Extruder temperature 2: 65°C “

Cooling »

Bed temperature: 115°C

Print cooling: 0%

Disable heater 1 Disable heater 2 Disable bed

£ Settings « %= Manual Control

—@ Pause printing if material is end

@«

@y ~ y

Fig. 3.15. Status, printing, temperature and cooling controls

Priasty Oleh o

|
il | I

£ settings
2
@ My profile
Extrude < XY > =7 axis -
v # v #; ~
>_console ¥
>_ssh »
& Firmware ~
o -
B storage < Reboot
; ® Updates ~
UsB B Debug mode ~

Local storage

Fig. 3.16. Manual, z-axis, console, storage, firmware, reboot controls

83

\>FLA5TY Oleh o
Reboot o

| & = 8 Storage
£ Settings Updates
& My profile ; @ &
Y1 Curent version: 1.6.55
Local storage usB
Latest available version: 1.6.55
Your system is up-to-date.
B Debug mode

Open Extra Updates Control
Enter Debug Mode

@ Camera settings

Resolution 640 x| 490 px
Quality 66 %
skip 5 fr
—@ Vertical F ip —@ Horizontal Fi p

Fig. 3.17. Update, camera, debug mode controls

14:06 % 1.70K/s ® & Lall C D 16%

= Driasty Oleh e

Test raspiT o

@ Stats o

Status:
Expected time of printing: 15m 43s
Printing time: 10m 47s
Progress: 25%

220.3°C 100.1°C

220°C 100°C
Extruder Hot bed
& Printing a

Fig 3.18. Printing process (Mobile layout)

84
3.2. Additional software elements for 3D printing system

Once all crucial software parts of the system are in place, it is time to finish the
initial plans for the ecosystem. The system cannot work without the firmware, Local
UI, Remote UI and the proxy server, because they are the core of the ecosystem. Even
though, they are the minimal required pieces of software for such kind of system, there
is still a place for improving UX.

There might be various ways of bringing additional features and interfaces to
simplify the user’s daily work with the system. However, this work will focus on two
most usable applications:

e Slicer — for preparing 3D models to be printed via a particular 3D printer;

e Cloud storage — for storing the original and prepared 3D models and share

them with other users.

Also, just having those two additional interfaces in a vacuum what be really
helpful to the user. It is necessary to come up with some kind of communication
between those parts of the system, to provide a real ecosystem.

As the main thing between Slicer, Cloud Storage, Local and Remote Ul is 3D
models (either original in STL format, or converted to GCode), it seems reasonable to
build the ecosystem around work with those files.

One of the common user scenarios might be:

1. User uploads the model to Slicer, configures all required settings and receives

the GCode;

2. Then they either save the GCode to the Cloud Storage to be printed later, or

send it to be printed by a particular 3D printer via the Remote Ul, using a
specific command in the Slicer’s interface.

Another scenario might be as follows:

1. User opens previously prepared GCode file in the Cloud Storage;

2. Then they send it to the Remote Ul to be printed by a specific 3D printer via

the dedicated command in the Cloud Storage’s interface.

Yet another use case might be next:

85

1. User opens previously uploaded STL file in the Cloud Storage;

2. Then they send it to the Slicer, to prepare it for printing;

3. Once the slicing is done, they send the received GCode to the Remote UI and

select, which printer should print it;

4. As an addition step, they might want to safe the prepared GCode file to the

Cloud Storage, in order to repeat the printing later.

As you can see there is a lot of different ways for user to work with just those 2
addons. In future, as the ecosystem evolves, it is possible to come up with much more
different user scenarios and addons, which might improve the ecosystem. To be able
to do so, the architecture of the system should be flexible and allow us to add new parts
of the system without the need to change or notify in any way any already existing
parts of the system.

It looks like, one of the easiest and most flexible approach to this would be come
up with a number of commands, supported by each of applications, which could be
triggered via the specific URL parameters. For example, in order to print the prepared
model from the Cloud Storage, the Remote Ul might support a “modelURL” query
parameter, which when received, would start a chain of processes which should be
done to fetch the model from the Cloud Storage and then send it to a particular printer.

As we are going to use AuthO as main identity provide, it is crucial to make sure
that only owner of the model or 3D printer can interact with them.

In order to do so we would need to provide a seamless authorization between
our apps, so the user is not required to login each time they are being redirect from one
app to another. Usually, this feature is implemented via the SSO (Single Sign One)
approach. AuthO allows developers to enable this feature out-of-the-box, with just a
few additional settings.

At the end it looks like this particular set up will be enough to cover the most
basic use-cases and improve the UX, for the users.

So final schema of the 3D printer ecosystem might look like:

86

LocalUl

Remote Ul Cloud storage
GCode / STL

Slicer

Fig. 3.19. 3D printing ecosystem

3.2.1. Slicer

Slicing is a process, of preparation of 3D models in STL format to be printed by
a specific printer, using a tool from the “Slicers” class. Usually, such kind of software
provides means and tools to configure the printing parameters for a particular 3D
printer, such as platform dimensions, nozzle diameter, temperature mode (based on the
type of filament), number of extruders (if the printer supports more than 1 extruder),
speed limitations, printing quality, supports, filament skirts and many others.
Moreover, it i1s quite common to see the virtual platform in Slicer. It allows user to
place one or more models in one scene and configure their sizes, position and rotation.

The final product of the slicing process is a GCode file, which contains a set of
commands, which can be executed by a printer. In order to create such file, based on
initial models, their placement on the platform and the printing parameters, a lot of
different manipulations should be performed.

To avoid the necessity for creation of a custom transformation engine it seems
to be a good idea to use previously mentioned CuraEngine. It takes a STL as input
alongside with multiple configuration settings and produces a high quality optimized

GCode, which can be then passed onto printer.

87

Providing user with a possibility to preview the model(s) on the virtual platform
requires some kind of an engine for work with graphic. As we selected Web as the
target platform for our ecosystem, it is necessary to select an engine which is optimized
to be used in Web.

There are various of different 3D engines, which are based on WebGL
nowadays. WebGL (Web Graphics Library) is a JavaScript API for rendering high-
performance interactive 3D and 2D graphics within any compatible web browser
without the use of plug-ins. WebGL does so by introducing an API that closely
conforms to OpenGL ES 2.0 that can be used in HTMLS5 <canvas> elements. This
conformance makes it possible for the API to take advantage of hardware graphics
acceleration provided by the user's device.

Although, WebGL can be used on its own it requires a lot of work, development
wise, to use it. So, we still need to select an engine. One of most popular tools in this
area i1s Three.js. Three.js is a cross-browser JavaScript library and application
programming interface (API) used to create and display animated 3D computer
graphics in a web browser using WebGL. The source code is hosted in a repository on
GitHub. Three.js allows the creation of graphical processing unit (GPU)-accelerated
3D animations using the JavaScript language as part of a website without relying on
proprietary browser plugins. This is possible due to the advent of WebGL.

High-level libraries such as Three.js or GLGE, ScenelJS, PhiloGL, or a number
of other libraries make it possible to author complex 3D computer animations that
display in the browser without the effort required for a traditional standalone
application or a plugin

So, it seems, like all requirements are covered and the following technology
stack can be used to implement the Slicer:

o Typescript;
e NodelS;

e Angular;

e AuthO;

e Three.js;

88

But there is a lot of other additional things to consider for such type of system,
but they are not too important for this work and so, can be skipped.

Some screens of the applications are listed below:

solid layers Swonod olehrb97@gmail.com @
@ Machine v
= Qquality v
€7 Speed v
||H|| Material v
g3 infil v
% Cooling v
{S Support v
J{ shel v
= Build Plate Adhesion v

Fig. 3.20. Main interface

solid SwIwod olehrb97@gmail com @
@ Machine v
= qualiy "
€7y speed "
|H|I| Material v
2 nfin v
% cooling v
R0 Support "
I shen v
== guild Plate Adhesion v

Fig. 3.21. Complex scene

@ Machine

E Quality

@ Speed

|||||| Material
B fi
& cooling
ﬂ Support
DX shel

v

= Build Plate Adhesion

EI Machine ~

400 mm

300 mm
400 mm
0.4 mm

Has Heated Build Plate

Marlin v

= Quality v
€7 speed o
|||||| Material v
B infi v

Save

Fig. 3.22. Settings

@ Speed v

|||||| Material ~
175 mm

2 o

6 o c

Enable Retraction

6.5 mm

B3 i v
& cooling “
R\ Support v
JY shen v

%‘ Build Plate Adhesion v

Save

0 vewe
support
il

skin
s
walkoner

waltaute

" 0@ 0O0Em

solid layers

SwINd

olehrb97@gmail.com ®

@ Machine v
= Qualty M
€7) speed v
[watria v
£ i v
%5 cooling v
R Support v
I sren v
== Build Plate Adhesion v

3.2.2. Cloud storage

Fig. 3.23. Complex sliced scene

The last part of the ecosystem is represented by the Cloud Storage, which allows

users to store, preview, share and select for printing different models in STL and

GCode formats. This is the simplest part of the system, as it serves a very simple and

straightforward purpose — keeping user’s data safe and highly available.

90
However, this application has one single quirk, which should be considered,
when building such kind of applications. It is the storage itself. As it seems rather
redundant to develop custom implementation of the storage, because it should be fast,
reliable, with high availability rate. More appropriate solution might be select
something, already available on the market. For example, Google, Microsoft and
Amazon provide their own robust data storage centers, which met all the requirements
and 1n addition, they are not really expensive.
Otherwise, the technology stack for this piece of software is rather the same as
for the previous parts:
o Typescript, as the programming language;
e NodelS as the environment for the backend;
o Angular as the frontend framework;
o AuthO as the identity provider;

Some screens of the application are listed below:

%FLASTY AL

dgds from 25min sll from 2h ds from 4h 10min

NO IMAGE
AVAILABLE

Test model from 1h adssdad from 55min asdds from 40h 32min

s from 14min something from 8h 30min

Fig. 3.24. List of uploaded files

3 Some model

4 Some model

Some model

Some model

Fig 3.25. Files management

3.3. Conclusions for section 3

Some model's description

n
aliquam quia aperiam adipisci?

Some model's description

Some model's description

on:15

01:07

00:06

00:06

91

This part provides a set of suggestions on what should be implemented, software

wise, for a 3D printing computer appliance. Those pieces of software create a core of

the system, extended by some useful addons, like the Slicer and the Cloud Storage,

which improve overall user experience. The proposed design covers all basic user

scenarios, when working with a 3D printing system on the daily basis. As always, there

is still a room for different improvements and extensions for the platform, but the

provided architecture allows us to easily bring new parts to the system from both

software and hardware perspective.

92
PO3JILI 4

EKOHOMIKA
4.1. BusHaveHHsI TPYAOMICTKOCTI pO3pO0KH MPOrpaMHOro 3ade3nev4eHHs

[TouaTkoBi AaHi:

1. mnepenbadyBane yucio oneparopiB mporpamu — 1800;

2. Koe(]illeHT ckIagHoCTI mporpamu — 1,7;

3. koedillieHT KOpeKIii mporpamu B xo/ii ii po3pooku — 0,07;

4. roauHHAa 3apo0iTHA IJ1aTa nporpamicra— 70rpH/ron;

5. KoediuieHT 30UIbIIEHHS BUTPAT Mpalll B HACII0K HEJJOCTATHHOIO
onucy 3anayi — 1,2;

6. KoediuleHT KBamidikalii nporpamicta, 0OyMOBJIEHUN BiJ CTaxy
pobotu 3 1aHoi cnenianbHocTi — 1,0;

7. Bapticth MammHO-ToguHu EOM —17 rpu/rog.

HopmyBanns mpari B mporeci ctBopeHHs [13 iCTOTHO yCKIagHEHO B CHITY
TBOPUYOI'O XapakTepy mnpati nporpamicra. Tomy TpyaomicTkicTb po3poOku [13 moxe
OyTH po3paxoBaHa Ha OCHOBI CUCTEMHU MOJIEJIEN 3 PI3HOIO TOYHICTIO OIL[IHKH.

Tpynomictkicts po3poOku [13 MmoxkHa po3paxyBatu 3a GOpMYIIOH0:

[= to + tu + ta + tn + tosz + t() » JIIOAUHO-TOJAUH 4. 1)

1€ fo- BUTPATH Mpalll Ha MATOTOBKY M OMUC MOCTaBJICHOT 3a7a4i (IpUiMa€eThCs
70 MHOAUHO-TOIH);

fu - BUTPATH TpaLll HA TOCIIJIKEHHS aJrOPUTMY PILICHHS 3a]1ay4i;

f,~ BUTPATH TIparli Ha po3poOKy OJI0K-CXEMHU aITrOpUTMY;

t,-BUTPATH Tpall Ha NPOrpaMyBaHHs 10 TOTOBINA OJIOK-CXeMI;

fom-BUTPATH Mpalll Ha HaJaro/JukKeHHs nporpamu Ha EOM;

fo - BUTPATH TIpaIll HAa MATOTOBKY JTOKYMEHTAII]i.

93
CxiazioBi BUTpaTH Tpaill BU3HAYAIOTHCS 4Y€Pe3 YMOBHE YHUCIIO OMEPaTOpPIB Y
IPOrpaMHOTMY 3a0e3MeUeHHI, IKe pO3pOOIIIETHCA.

YMOBHE 4KCIIO oniepaTopiB (MigIporpam):
O=q-C-(1+p),

ne q - nependadyBane yucio oneparopis (1800);
C - xoediieHT cknagHocTi nporpamu (1,7);
P - KOeilleHT KOpeKUii mporpamu B xo/i ii po3pooku (0,07).

3BIJICM YMOBHE YHMCJIO ONIEPATOPIB B IpOrpami:
QO=1,7-1800- (1 +0,07)=3274,2 m0AUHO-TO/IH,

Butpatu mpaii Ha BUBUYEHHS ONMHUCY 3a/ayl f, BU3HAYAETHCS 3 ypaxXyBaHHAM

YTOUHEHHA ONuUCY 1 KBaji(ikalli mporpamicra:

=28
“ " (75.85) -k

, TFIOAUHO-TOAMH,

ne B - koediieHT 301Ib1IIEHHS] BUTPAT Ipall BHACIIIOK HEIOCTATHHOTO OMHUCY
3a1a4i;

k - xoedimienT kBamigikanii mporpamicta, 0OyMOBIEHUN BIJ CTaxKy poOOTH 3
naHoi criemanbHOCT.ITpu cTaxi podotu Bix 2 10 3 pokiB BiH ckiagae 1,0.

[IpuitmeMo 301UIbIIIEHHS BUTpAT TMpalll BHACIIJIOK HEJOCTAaTHHOTO OMHUCY
3aBaaHHs He OutbIne 50% (B = 1,2). 3 ypaxyBanHsaM koedirienTa kpamidikaii £ = 1,0,

OTPUMYEMO BHUTPATH Hpaui Ha BUBUCHHS OIIUCY 3daBJAaHHA:

tw=(3274,2 - 1,2) /(80 - 1,0) =49,11 moauHo-roauH
Burtpatu mpaini Ha po3poOKy ajroputMmy pilIeHHS 3aJadl BU3HAYalOTHCS 3a

dhopmyIioro:

94

t, = m , JIIOJJMHO-TO/IMH (4.2)

ne J — yMOBHE YHCIIO ONepaToOpiB MPOTrpaMu;
k — xoedimieHT kBanmidikailii mporpamicra.

[TizcraBuBIIM BiAMOBIIHI 3HAYEHHS B hopmyity (4.2), OTpUMAEMO:

te=3274,2 /(22 - 1,0) = 148,8 mroauHO-TOMH.

Burtpatu Ha ckilagjaHHs IpOrpaMu Mo roTOBIi OJI0K-CXeMi:

t, = m , IIOJJMHO-TO/IMH.

tn=4002 /(22 - 1,0) = 148,8 Mm0quHO-TOIUH.

Burtparu nparii Ha HaylaromkeHHs nporpamu Ha EOM:

- 3a YMOBHM aBTOHOMHOI'O HAJIArOAKCHHA OJHOI'O 3aBAaHHS:

Lo = - , IIOOMHO-TOJWH.
4.5)-k > A

omn=3274,2 /(4 - 1,0) = 818,55 mr01MHO-TOIHH.

- 34 YMOBH KOMIIUICKCHOI'O HAJIAI'OPKCHHA 3aBIaHHA:

k
tOWlfl - 195 ’ tomﬂ , JJFOOUHO-TI'OJUH.

tom=1,5 - 818,55 = 1227,8 NHOAUHO-TOIHH.

Butpartu mpaiii Ha miArOTOBKY JOKYMEHTAIll1 BUBHAYAIOTHCS 32 (HOPMYJIOLO:

95
t, =1t,, t1,, , I0aMHO-TOIMH,

1€ top=TPYAOMICTKICTB MIJATOTOBKH MaTEPIaliB 1 PyKOIHUCY:

Q

tdp = m , IIOJJMHO-TOJINH,

too - TPYAOMICTKICTh PEIAaryBaHHs, IeYaTKU i OPOPMIIEHHS JOKYMEHTAIIIi:
t,, =0,75- l,, , TOJMHO-TOJNH.

[TizcraBnstoun BiANOBIIHI 3HAYEHHS, OTPUMAEMO:

top=3274,2 /(17 - 1,0) = 192,6 nt0quHO-rOAMH.
too=0,75 - 192,6 = 144,45 nroguHO-TOIUH.
1o=192,6 + 144,45 = 337,05 110JMHO-TOJIMH.

[ToBepTatouuce a0 popmyiu (4.1), oTpuMaEMO MOBHY OLIIHKY TPYAOMICTKOCTI

PO3pPOOKHU MPOTPAMHOTO 3a0€3MEUEHHS:

t=70+49,11+ 148,8 + 148,8 + 818,55 +337,05 =1572, 31 nroquHO-rouH.

96

4.2. ButpaTtu Ha CTBOPEHHS MPOrPAMHOI0 3a0e3MeYeHHs
Butpatu nHa ctBOpeHHst 13 Ko BKIIOUaOTh BUTpATH Ha 3apoOITHY IUIATy

BUKOHABIIS MTporpamMu 3371 BATPAT MAIIMHHOTO Yacy, HEOOX1JHOTO Ha HAJIArO/I>KEHHS

nporpamu Ha EOM:
Kpo =337 + 3y, pH.
3apo0iTHa M1aTa BUKOHABIIIB BU3HAYAETHCSA 32 (HOPMYJIIOHO:
33 =t Cpp, rph,

7Ie: ¢ - 3arajibHa TPYJOMICTKICTb, JTIOJIMHO-TO/IVH;

Crp - cepelHs roJIMHHA 3apo0iTHA TUIaTa Mporpamicra, TpH/ToIMHA

3 ypaxyBaHHSM TOr0, [0 CEPEJIHS TOAMHHA 3apIljiaTa porpaMmicta CTaHOBUTH 60
I'PH / TOJ, OTPUMYEMO:

33m=1572,31 - 70 = 110061,7 rpH.

Bapricth MammmHHOT0 Yacy, HeoOX1HOTO JJI HaJIaroixKeHHs nporpamu Ha EOM,

BHU3HAYA€THCS 32 (HOPMYIIOL0:

3 =7 ° C 4 , TPH, (43)

1€ toms - TPYJAOMICTKICTD HaJIaropKeHHs mporpamMu Ha EOM, rog;
Cyw - BapTicTh MalinHO-Toguau EOM, rpu/rona (13 rpu/ron).
[linctaBuBmmm B dopmyny (4.3) BIANOBIAHI 3HAYEHHS, BU3HAYUMO BapTICTh

HEOOX1IHOTO JJIsl HAJIArO/[KEHHS MAIlIMHHOTO Yacy:

97
3ue= 818,55 - 17 =13915,35 rpH.

3BIJICH BUTPATH HA CTBOPEHHS ITPOTPAMHOTO MPOAYKTY:

Kio=110061,7 + 13915,35 = 123977,05 rpHx.

OuikyBanuii nepioa cropenus I13:

ne Bj- 4nciio BUKOHABINB (OpiBHIOE 1);
Fy - micaunuii ¢ong poboyoro yacy (mpu 40 ronMHHOMY poOOYOMY THXKHI
F,=176 rogun).

3BiJicH BUTPATH HA CTBOPEHHS MPOTPAMHOTO MIPOIYKTY:

T=1572,31/(1-176) ~ 8,9 mic.

4.3. MapKeTHHIOBI J0CTiIKEeHHSI

Po3pobmtoBaHa cuctema CTaBUTH mepe]; coO000 3aBIaHHSA 3MEHUIEHHS MOPOryY
BXO/DKEHHSI 10 c(depy aJuTHUBHOTO TEXHOJOTIM [UIsl CepelHbOCTATUCTUYHOIO
KopucTyBaua. Lleli amapaTHO-nporpaMHHil KOMILIEKC BKJIIOYAE B ceOe [K amaparHe
3a0e3nedeHHs y Bursial npuiaay g 3D npyky — 3D npunTepy, Tak i mporpamHy
CKJIAJIOBY, 110 3a0e3medye MIBUIKY, CTaOUIbHY Ta HaAiIiHYy poOOTy, K KOMIUIEKCY B
LIJIOMY TakK 1 KOro OKpPEMUX E€JIEMEHTIB.

Taxa cuctema cTaBUTh 3a METY CIPOILEHHS LI0IEHHOI B3aEMOJII1 KOpUCTyBaya
3 3D npuntepamu. [IpoGiema B3aeMOJii € peIEBaHTHOIO Yepe3 Te, 10 OUIBIIICTh

cydacHux cuctem it 3D IpyKy po3poOIOETHCS IHKEHEpaMHU JJIs 1HKEHEPaM, a TOMY

98
CEPEIHbOCTATUCTUYHUI KOPUCTYBa4 MOBUHEH BUTPATUTU OAraTo BIACHOTO 4acy Ta
KOIITI, 11100 HaJamTyBaTH poboyl mporecu it B3aemoii 3 3D npuntepom.

Anxe, 3D apyk € 6GararopiBHEBUM CKJIAIHUM IPOLIECOM, IIO BKJIIOYA€E y cede
0arato KOMIUIEKCHUX KpPOKIB, TaKuX, SK: CTBOpeHHs 3D Mojeni, maAroroBka Ta
HaJaIITyBaHHS MOJEN 10 JAPYKYy Ha KOHKpeTHoMmy 3D mpuHTEpi, KOHTPOJIL 3a
MPOIIECOM APYKY, MoJaibina o0podKa roTOBOro BUpoOy Ta IHIIII.

Po3pobmntoBana cuctema CTaBUThH 32 METY BUPIIICHHS I[i€l MPOoOJIeMH MUISIXOM
HaJaHHS KOPUCTYyBady MOKJIMBOCTI MPOXOKEHHs BCix eramiB 3D apyky B pamkax
OJIHI€T CUCTEMH, BCl KOMIIOHEHTH SIKOi OB’ sI3aH1 MK COOOI0 Ta HAJAI0Th 3pYYHUN Ta
npoctuii inTepderic.

HporpaMHa JacTUHA arnapaTHoO-IIpOorpaMHOro KOMINICKCY CKIIAJa€TbCA 3!

CUCTEMHU JIJIS JIOKAIBHOTO KEPYBaHHS Ta B3aeMozii 3 3D npuntepom;

- CHUCTEMH JJIsl BIIIAJICHOTO KepyBaHHs Ta B3aemoii 3 3D npuHTepoMm;

- cnaiicepy — I13, 1m0 703BOJIsI€ HaNAITYBAaTU Ta MiAroTyBatu 3D Mozeni 10
JIpYyKy Ha KoHKpeTHOMY 3D mpunTepi;

- XMapHOro CXOBHWIIAa — 110 JO3BOJUTh KOpHUCTyBayaMm 30epiratu

OpUT1HAJIbHI Ta MiAroToBJeH1 3D Mojeni Ta JUITUTUCS HUMU 3 1HIIHMHU.

VHIKQJIBHICTh IBOTO MPOJIYKTY TMOJIATa€ y TOMY, LIO 3aBISKH KOHTPOJIIO
MOBHOI'O LIMKITy pO3pOOKHM IIPOrpaMHO]i Ta arapaTHOi YaCTUHU CUCTEMH € MOXKIIUBICTh
3a0€3MeunT HaWKpally 1HTerpaio eIeMEeHTIB CUCTEMH MiX CO0O010, 1110 TO3UTUBHO
BIUIMBA€ Ha 3arajbHUM JTOCBIJ KOPUCTYBAHHSA, CIPOLIY€E Ta MPUCKOPIOE pOOOTY
KOPUCTYBaua B paMKaxX CUCTEMH.

Hapaszi Ha puHKY HEMae >KOJIHOI CHCTEMH, 10 HajaBajga O MOBHOI[IHHY
IHTErpallil0 MPOrpaMHOI0 Ta amapaTHOro 3a0e3medeHHs. AJKe, sIK OyJ0 BHSIBJICHO
paHiie, MmoJii0HI CUCTEMH PO3POOJIOIOTHCS 3 MPUILJIOM Ha 1HXKEHEPIB, IO 3J/IaTHI
CaMOCTIITHO CKOMIIOHYBATH CHCTEMY, BUKOPHCTOBYIOUM OKpPEMI, HE IOB’sA3aHI MIXK
cO00I0 €JIEMEHTH, 1110 YHEMOXKJIUBIIIOE TTIOBHOIIIHHY Ta OE31IOBHY 1HTETpaIlilo.

Yepe3 BIJICYTHICTh aHAJOriB Ha pPUHY HE € MOXJIMBUM MOPIBHSHHS

PO3pOOIIFOBAHOTO MPOIYKTY.

99

Po3noBCIO/)KEHHS MpPOrpamMHOi YacTUHM CHCTEMU BOAYa€eThCsl JAOLUIBHUM

MO>KJIUBICTh TOKPUTH HANOUIBIINK CIEKTP MOTEHUIMHUX KOpPUCTYyBauiB, amxke WEB

BIJIKpUBAE JJIA HAC ycl momyJisipHi mnatdopmu, Taki, sk Windows, OS X, Linux, 10S

ta Android. [1pu npomy po3pobiaenust ogqHoro WEB-1o1aTky € 3Ha4HO JI€IIEBIINM Y

MOPIBHSHHI 3 PO3POOKOIO CIELIaTbHOTO HATUBHOTO TOAATKY JJIsl KOKHOT 3 IIIaT(hOpM.
Ile 103BOAUTH 3HAUHO MPUCKOPUTH OYATKOBUH 3aITyCK MPOAYKTY HA PUHKY.

Ha nouatky po3BuTKy 1moaioHo1 1miaaTGopMu, TApHOIO 1JI€€10 € HAJaHHS JOCTYITY

710 He1 0OMEXKEHI1H KIJTbKOCTI KOPUCTYBauiB, HAIPUKJIIA, TUTBKHU BIIACHUKIB arapaTHUX

MIPUIIAJIIB 3 EKOCUCTEMH.

4.4. ExonomiuHa epeKTUBHICTH

ExoHoMiunuii edekT BiJ BOpOBa/pKeHHA cuctemMu s 3D npyky Ha
BUPOOHMIITBI, 10 TOTpedye peryisipHoro Apyky 3D mpoTOTHUIB Pi3HOTO POy
JieTanei Moxe J03BOJUTH MiINPUEMCTBY:

® 330LIAJUTH HA JOCUTh KOIUTOBHOMY HaBYaHHI MPaLiBHUKIB JJis1 podoTu Ha 3D
MPUHTEPAX;

® CIIPOCTUTH, TOJIMIIUTHA a MPUIIBUIIIUTH PYTUHHY POOOTY MpAaIliBHHUKIB, IO
B3a€MOJIIIOTH 3 3D npuHTEepamu;

® [IJBUIIMTU IMIBUAKICTb IPYKY HPOTOTHUIIB, IIO0 y CBOIO YEPry JAOMOMOXE

MPUCKOPUTH HAJIATOJKEHHS CEPIHHOro BUPOOHULITBA MPOAYKIII.

Taomung 4.1

Po3paxyHOK YMCTHX IPOLIOBUX HAAXO/I:KeHb Bix po3pooku 113

[Toka3Huku, TUC TpH 3a pokamu Yeworo | Cepenn

0 | 2 3 4 5 3a 5 €3a5s

POKIB POKIB

1. ImBecTmi Ha I13 124 | - - - - - 124 24,8

100

IIpooosocenns mabauyi 4.1

2. Burparu 1o 320 170 | 320 | 170 | 320 | 1300 260
BIIPOBAKEHHS 113

- Ha HaBYaHHS 150 60 | 150 | 60 | 150 570 114
IpaIiBHUKIB

- Ha 00CIyTOBYBaHHS 90 30 90 30 90 330 66
3D npunTepin

- Ha €JIEKTPOCHEPTII0 15 15 15 15 15 75 15
- Ha LOpPIYHY 15 15 15 15 15 75 15
EPEBIPKY

Hepxcrannaprty

- Ha OIUIaTy mpari 50 50 50 50 50 250 50
oreparopa

3. Burparu nicns 452,5 [92,5]132,5]92,5|132,5| 902,5 | 180,5
BIIPOBaKEHHS 113

- Ha mpu10aHHS TUIaT 320 - - - - 320 64
KepyBaHHS

- Ha 00CITyTOBYBaHHSI 70 30 70 30 70 270 54
3D npunTepin

- Ha €JICKTPOCHEPT1I0 12,5 [12,5] 12,5 [12,5] 12,5 | 62,5 12,5
- Ha LOpPIYHY 15 15 15 15 15 75 15
EPEBIPKY

Hepxcrangapty

- Ha OIuIaTy mpari 35 35 35 35 35 175 35
oreparopa

4. ExonoMist -132,5 | 77,5|187,5| 77,5 | 187,5| 397.,5 79,5
5. AMopTtu3auis 60 355 - - - 95,5 19,1
6. HucTi rpomiosi -72,5 | 42 | 187,5|77,5|187,5| 422 84,4
Ha/IXOJKCHHSI

101

IIpooosocenns mabauyi 4.1

7. KoediwieHt - 10,907 10,81510,724 | 0,68 | 0,61 - -
JVCKOHTYBaHHS
JuckoHTOBI rpomoBl | - | -65,8 | 32,2 | 135,8 | 52,7 | 114,4 | 269,3 53,9
HAJIXOJKEHHS

Yucra moTo4Ha BapTICTh JOXOIB:

NPU =269,3 — 124 =145,3 Tuc. rpp >0

CTpOK OKYMHOCTI:

T=124/53,9 = 2,3 pokis

Innexc npruOyTKOBOCTI:

I =269,3/124=22

[Toka3uuk ekoHOMI4HOI epekTrBHOCTI NPU - uncTa moToyHa BapTiCTh TOXO/IB
3a pOKH peaizallii BpoBapkeHHs (3-5 pokiB) ckiaze 145,3 Tvc. rpH TOOTO BiJINOBIAA€E
yMoBaM e(heKTUBHOCTI, ToMy 110 NPU > 0.

CepenHili CTPOK OKYITHOCTI KanBKJIaJAeHb CKIale _ PIK.

Innexc npuOyTKOBOCTI 32 5 pokiB ckiazae 2,2, Tooto [J] > 1, npoekt BapTo
IIPUMHATH.
TakuM 4YWMHOM, TOKAa3HUK €(PEKTUBHOCTI CBIIYUTHL MpPO TE, L0 JaHe

BIIPOBAPKCHHS € €KOHOMIYHO BUT1THUM.

102
CONCLUSIONS

The conducted research studied the idea of implementing a full-size ecosystem
in the area of 3D printing. The root of the idea lies in the assumption, that this relatively
new approach to building 3D printing systems is going to bring much better UX. This
improvement might result in further popularization of 3D printing for wider layers of
society and so, give a boost in development of additive technologies.

In order to prove this assumption, the following steps were taken:

e we analyzed existing ecosystems outside the 3D printing area;

e we analyzed existing solutions in 3D printing area;

e we defined requirements for both hardware and software parts of the system;

e we defined the most crucial hardware elements of the system,;

e we defined the most crucial software elements of the system;

e we analyzed available options on hardware market;

e we selected the most appropriate hardware elements for the system, using

method of multicriteria weighted estimations;

e we described a mathematical model for the firmware;

e we developed the software part of the system;

e we designed a 3D printing computer appliance from scratch.

In general, any modern 3D printer consists of the following main parts:
controller board, user interaction unit, motion controllers, extruder, heating platform
and a touch screen. However, it is worth noticing, that in this study it was decided to
concentrate on the biggest parts of a 3D printer. But there is still a lot of smaller pieces,
which should be taken into consideration, when designing a 3D printing system.

Motion controllers, extruder, heating platform and a touch screen are pretty
much standardized on the market. But it is not that obvious, when it comes to the brains
of the 3D printer — motherboard and user-interaction unit. To provide the most robust,
reliable and efficient system it was decided to compare the available options for those

two units, using method of multicriteria weighted estimations.

103

For the motherboard we compared two most popular editions of Arduino board
— Arduino Uno and Arduino Mega. Although, both of them are really close to each
other, the analysis has shown, that Arduino Mega is slightly more preferrable, when
building a reliable and robust system.

The two most popular options for user-interaction controller are Raspberry Pi 3
and Raspberry Pi Zero. Here the method of multicriteria weighted estimations got
further application and provided a strong analytical data. The data helped to decide in
favor of Raspberry Pi 3, as Raspberry Pi Zero proved to be much less reliable and
efficient, even though it is much more attractive when it comes to the price.

As the initial analysis shows, in order to satisfy the market’s needs, the software
part of the system should provide not only the most crucial parts, but also some extra
addons.

When it comes to the software part, the most crucial pieces are: firmware, local
Ul remote Ul and a proxy server to connect a particular 3D printer to a particular
remote user.

To get a better understanding of how a 3D printing system should, a
mathematical model for the firmware was created and applied to the developed system.
The other crucial pieces of software were developed relaying on the most advanced
technologies and solutions, available right now. Such as:

e Marlin — for the robust and reliable firmware;

e CuraEngine for the fast and precise slicing;

e AuthO for secure remote access;

e Typescript — as the main programming language;

e Angular — as frontend framework;

e NodelS — as server-side environment;

e and a lot of other tools and technologies.

Moreover, apart from the most crucial part, some additional elements were also
defined and implemented. In order to improve user experience, decrease the entrance
level to 3D printing and provide all required tools for daily work with a 3D printing

system, some addons were introduced. Those are:

104

o Slicer — for preparation of the models to be printed on a particular printer;

e Cloud storage — for keeping and sharing prepared and original models;

However, it would not be a true ecosystem without some inner communication
between different software and hardware parts. In order to cover this area, we
introduced a special communication protocol, which allows all of the software parts to
communicate and cover as much of user scenarios as possible.

So, the result of this research is a design for a full-size 3D printing ecosystem,
which includes: 3D printers with embedded software and different WEB-applications,
which make it much easier to work within the 3D printing system.

Furthermore, the most critical hardware decisions were made, using method of

multicriteria weighted estimations.

105
REFERENCES

1. Bertier Luyt, Samuel N. Bernier, Tatiana Reinhard Design for 3D Printing:
Scanning, Creating, Editing, Remixing, and Making in Three Dimensions / Make
Community, LLC — New York, 2015. — 162 p.

2. Neil Rosenberg Designing 3D Printers: Essential Knowledge / 3D Hubs —
Amsterdam, 2020 — 197 p.

3. Dr. Dan-Andrei Marinescu How to build a 3D Printer: DIY project: “EASY
CoreXY 3D Printer Model 350 / LM Publishing House — Volendam, 2019 — 87 p.

4. William Shotts The Linux Command Line, 2nd Edition: A Complete
Introduction / No Starch Press — San Francisco, California, 2019 — 502 p.

5. Ben Redwood, Filemon Schoffer, Brian Garret The 3D Printing Handbook:
Technologies, design and applications / 3D Hubs — Amsterdam, 2017 — 304 p.

6. J. M. Hughes Arduino: A Technical Reference: A Handbook for Technicians,
Engineers, and Makers (In a Nutshell) / O'Reilly Media — Sebastopol, California, 2016
- 738 p.

7. Hod Lipson Fabricated: The New World of 3D Printing / Wiley — New Jersey,
2012 — 280 p.

8. Joan Horvath Mastering 3D Printing (Technology in Action) / Apress —
California, 2014 — 354 p.

9. James Shelby PH.D THE RASPBERRY PI GUIDE BOOK: The Master
Guide To Mastering The Fundamental Of Raspberry Pi / Independently published —
London, 2020 — 28p.

10. James W. Hardin, Joseph M. Hilbe Generalized Estimating Equations /
Chapman and Hall/CRC — London, 2012 — 280 p.

11. Kevin Koekkoek 3D Printing Projects: 20 design projects for your 3D printer
/ 3DKev — New Orleans, 2014 — 112 p.

12. Jon Duckett Web Design with HTML, CSS, JavaScript and jQuery Set/ Wiley
— Hoboken, New Jersey, 2014. — 1152 p.

106

13. Mark Myers A Smarter Way to Learn JavaScript. The new tech-assisted
approach that requires half the effort / CreateSpace Independent Publishing Platform —
Scotts Valley, 2014 — 254 p.

14. Marijn Haverbeke Eloquent JavaScript, 3rd Edition: A Modern Introduction
to Programming / No Starch Press — San Francisco, California, 2018 — 472 p.

15. Darrel Ince The Computer: A Very Short Introduction (Very Short
Introductions) / OUP Oxford — Oxford, 2011 — 152 p.

16. Johannes Wild 3D Printing 101: The Ultimate Beginner's Guide / 3D Hubs —
Amsterdam, 2019 — 56 p.

17. Daniel J. Barrett Linux Pocket Guide: Essential Commands / O'Reilly Media
— Sebastopol, California, 2016 — 274 p.

18. Jacob Cabral, Gareth Halfacree The Official Raspberry Pi Beginner’s Guide:
How to use your new computer (The Raspberry Pi Beginner’s Guide Book 3) /
Manning Publications — Shelter Island, New York 2020 — 309 p.

19. James Floyd Kelly 3D Printing: Build Your Own 3D Printer and Print Your
Own 3D Objects / Que Publishing — London, 2013 — 190 p.

20. Christopher Barnatt 3D Printing: Third Edition / ExplainingTheFuture.com —
Nottingham, 2016 — 320 p.

21. Stephanie Torta, Jonathan Torta 3D Printing: An Introduction / Mercury
Learning and Information — Herndon, 2019 — 517 p.

22. Christopher D. Winnan Adventures in 3D Printing: Limitless Possibilities and
Profit Using 3D Printers (3D Printing for Entrepreneurs) / Que Publishing — London,
2013 -394 p.

23. Russell Scott Computer Networking Beginners Guide: An Easy Approach to
Learning Wireless Technology, Social Engineering, Security and Hacking Network,
Communications Systems (Including CISCO, CCNA and CCENT) / Que Publishing —
London, 2019 — 183 p

24. Elisabeth Robson, Eric Freeman Head First JavaScript Programming: A
Brain-Friendly Guide / O'Reilly Media — Sebastopol, California, 2014 — 704 p.

107

25. Raymond T Reeves 3D Printing: Modern Technology in a Modern World /
LM Publishing House — Volendam, 2015 — 63 p.

26. HowExpert, Zachary Hestand How To Use a 3D Printer / HowExpert —
California, 2016 — 25 p.

27. Jeremy Blum Exploring Arduino: Tools and Techniques for Engineering
Wizardry / Wiley — New Jersey, 2019 — 512 p.

28. Michail Ko6lling Raspberry PI: A complete guide to start learning RaspberryPi
on your own. Learn an easy way to setup and build your projects, avoid common
mistakes, and develop solid skills in computer technology / Independently Published —
Bremen, 2020 — 95 p.

29. Martin Campbell-Kelly Computer: A History of the Information Machine
(The Sloan Technology Series) / Routledge — Abingdon, 2018 — 360 p.

30. Sean Aranda 3D Printing Failures: 2019 Edition: How to Diagnose and Repair
ALL Desktop 3D Printing Issues / Make Community, LLC — New York, 2018. — 291
p.

31. William M. Springer II A Programmer's Guide to Computer Science: A virtual
degree for the self-taught developer / Jaxson Media — Boston, 2019 — 190 p.

32. Henry Segerman Visualizing Mathematics with 3D Printing / Johns Hopkins
University Press — Baltimore, 2016 — 200 p.

33. Dan Phillips Linux: Learn the Ultimate Strategies to Master Operating System
and Command Line. Improve Your Computer Programming Skills and Start Coding /
Independently Published — New York, 2020 — 146p.

34. Matthew Kent So You Want to Buy a 3d Printer / Peragrine Ebook Press —
Bonn, 2015, 61 p.

35. Edward A. Bender An Introduction to Mathematical Modeling (Dover Books
on Computer Science) / Dover Publications (Educa Books) — Mineola, 2000 — 272p.

36. Wladston Ferreira Filho Computer Science Distilled: Learn the Art of Solving
Computational Problems / Code Energy LLC — Las Vegas, 2017 — 175 p.

37. John Resig, Bear Bibeault, Josip Maras Secrets of the JavaScript Ninja /
Manning Publications — Shelter Island, New York 2016 — 464 p.

108

38. Joel Kilty, Alex McAllister Mathematical Modeling and Applied Calculus /
OUP Oxford — Oxford, 2018 — 816 p.

39. Craig Berg Raspberry Pi 4 For Beginners And Intermediates: A
Comprehensive Guide for Beginner and Intermediates to Master the New Raspberry
Pi 4 and Set up Innovative Projects / Independently Published — Milwaukee, 2020 —
135 p.

40. Federico Kereki Mastering JavaScript Functional Programming: In-depth
guide for writing robust and maintainable JavaScript code in ES8 and beyond / Packt
Publishing — Birmingham, 2017 — 386 p.

41. Nathan Rozentals Mastering TypeScript 3: Build enterprise-ready, industrial-
strength web applications using TypeScript 3 and modern frameworks / Packt
Publishing — Birmingham, 2014 — 207 p.

42. M Buth 3D Printer: Patents & Innovations / Make Community, LLC — New
York, 2018. — 291 p.

43. Yakov Fain, Anton Moiseev Angular Development with Typescript /
Manning Publications — Shelter Island, New York 2018 — 560 p.

44. Steve Fenton Pro TypeScript: Application-Scale JavaScript Development /
Apress — New York City, 2017 — 320 p.

45. Asim Hussain Angular 5: From Theory To Practice: Build the web
applications of tomorrow using the new Angular web framework from Google /
CodeCraft — Sunnyvale, 2017 — 846 p.

46. Steven Bradley Sass for Beginners: How to Write More Organized and
Maintainable Stylesheets / Steven Bradley — San Francisco, California, 2018 — 275 p.

47. Luke Watts Mastering Sass / Packt Publishing — Birmingham, 2016 — 318 p.

48. Robert Davis Inexpensive 3D Printer Projects: How to build your own 3D
printer and accessories / Que Publishing — London, 2014 — 112 p.

49. C. Sean Bohun, Samantha McCollum, Thea van Roode, Reinhard Illner
Mathematical Modelling: A case studies approach (Student Mathematical Library) /
American Mathematical Society — Providence, 2002 — 196 p.

109

50. Gerardus Blokdyk AuthO A Complete Guide / SSTARCooks — New York,
2018 — 168 p.

51. Michael Margolis, Brian Jepson, Nicholas Robert Weldin Arduino Cookbook:
Recipes to Begin, Expand, and Enhance Your Projects / O'Reilly Media — Sebastopol,
California, 2020 — 796 p.

52. Richard Petersen Linux: The Complete Reference / Independently Published
— London, 2020 — 597 p.

53. Matt Timmons-Brown Learn Robotics with Raspberry Pi: Build and Code
Your Own Moving, Sensing, Thinking Robots / No Starch Press — San Francisco,
California, 2019 — 240 p.

54. Robert Sedgewick Computer Science: An Interdisciplinary Approach /
Addison-Wesley Professional — Boston, 2016 — 1168 p.

55. Jos Dirksen Learn Three.js: Programming 3D animations and visualizations
for the web with HTMLS5 and WebGL / Packt Publishing — Birmingham, 2018 — 528
p.

56. Jos Dirksen Three.js Cookbook / Packt Publishing — Birmingham, 2015 — 302

57. Tony Parisi Programming 3D Applications with HTMLS5 and WebGL: 3D
Animation and Visualization for Web Pages / O'Reilly Media — Sebastopol, California,
2014 — 404 p.

58. David Herron Node.js Web Development: Server-side development with
Node 10 made easy / Packt Publishing — Birmingham, 2018 — 492 p.

59. Jim Wilson Node.js 8 the Right Way: Practical, Server-Side JavaScript That
Scales / Pragmatic Bookshelf — Raleigh, 2018 — 336 p.

60. Lydia Sloan Cline 3D Printer Projects for Makerspaces / McGraw-Hill
Education TAB — New York 2017 — 352 p.

61. Andrew Mead Learning Node.js Development: Learn the fundamentals of
Node.js, and deploy and test Node.js applications on the web / Packt Publishing —
Birmingham, 2018 — 658 p.

110

62. Nicholas C. Zakas Understanding ECMAScript 6: The Definitive Guide for
JavaScript Developers / No Starch Press — San Francisco, California, 2016 — 352 p.

63. Jeffry Houser Learn With: Angular 7, Bootstrap, and NodelS: Enterprise
Application Development with Angular 7 and NodeJS / DotComlIt — Connecticut, 2018
—262p.

64. Anna Kaziunas France Make: 3D Printing: The Essential Guide to 3D Printers
/ Maker Media, Inc — New York, 2013 — 471 p.

65. Russell Scott Computer Networking: This Book Includes: Computer
Networking for Beginners and Beginners Guide (All in One) / Independently Published
— London, 2019 — 361 p.

66. Mark Meerschaert Mathematical Modeling / Academic Press — Cambridge,
2013 — 384 p.

67. Richard Horne, Kalani Kirk Hausman 3D Printing For Dummies (For
Dummies (Computers)) / For Dummies — Hoboken, 2017 — 408 p.

68. John L. Hennessy, David A. Patterson Computer Architecture: A Quantitative
Approach (ISSN) / Morgan Kaufmann — Burlington, 2017 — 936 p.

69. Simon Monk Raspberry Pi Cookbook: Software and Hardware Problems and
Solutions / O'Reilly Media — Sebastopol, California, 2019 — 610 p.

70. Simon Monk Programming Arduino Next Steps: Going Further with
Sketches, Second Edition McGraw-Hill Education TAB — New York 2018 — 320 p.

flicer-api

app.js
'use strict';

const port = 5080;

SOURCE CODE

const server = require('./lib/Server');

server.create ({
port
)

server.start () ;

controllers/auth. js
'use strict';

const auth = require('../lib/Authorization');

class AuthController {

/**

* Signs user in

* @param { IncomingMessage } reqg
* @param { ServerResponse } res
* @param { function } next

res.json(await auth.signIn (reqg.body));

res, next) {

{

next (error) ;

*/
async signIn(req,
try {
} catch (error)
}
}
/**

* Signs user up

* @param { IncomingMessage } reqg
* @param { ServerResponse } res
* @param { function } next

*/
async signUp (req,
try {

res.json (await auth.signUp (reqg.body)) ;
} catch (error)

res, next) {

{

next (error) ;

}

}

module.exports = exports

controllers/config-manager

new AuthController();

111
APPENDIX A

'use strict';

112

const printerHelper = require('../helpers/db/PrinterHelper');
const profileHelper = require('../helpers/db/PrintProfileHelper"');

const ConfigManager = require('../lib/ConfigManager"');

class ConfigManagerController {

/**

* Compiles
* @param {
* @param {
* @param {

*/

lists of possible configs
IncomingMessage } req
ServerResponse } res
function } next

async listConfigs(req, res, next) {

const

{ user } = reqg;

console.log (user);

try {

const printers = await user.getPrinters();
const profiles = awailt user.getPrintProfiles();
const printerslList = printers.map(printer => ({

id: printer.id,
name: printer.name

const profilesList = profiles.map(profile => ({
id: profile.id,
name: profile.name

return res.json ({
printers: printersList,
profiles: profilesList

) ;

} catch (error) {

}
/**

return next (error);

* Retrieves printer(s) record(s) from database

* @param {
* @param {
* @param {

*/

IncomingMessage } req
ServerResponse } res
function } next

async getConfigs (req, res, next) {

const
const

try {
printerId);

profileld);

profile.confiqg);

{ printerId, profileId } = req.body;
{ user } = reqg;

const printer = await printerHelper.getUserPrinter (user,

const profile awailt profileHelper.getUserPrintProfile (user,

const manager = new ConfigManager (printer.path);
const diff = Object.assign({}, printer.config,

const allowed = manager.getAllowed(diff);

113

printer.config = allowed.machine;
profile.config allowed.print;

return res.json ({
printer,
profile
1)
} catch (error) {
return next (error);

}

/**
* Updates configs
* @param { IncomingMessage } req
* @param { ServerResponse } res
* @param { function } next
*/
async updateConfigs (req, res, next) {
const { printerId, profileId, printerConfig, profileConfig } =

reqg.body;
const { user } = req;
try {
const printer = await printerHelper.getUserPrinter (user,
printerId);
const profile = await profileHelper.getUserPrintProfile (user,

profileId);

profile.config profileConfig;
printer.config = printerConfig;

await printer.save();
await profile.save();

const manager = new ConfigManager (printer.path);
const diff = Object.assign({}, printerConfig, profileConfiqg);

const allowed = manager.getAllowed(diff);

printer.config allowed.machine;
profile.config = allowed.print;

return res.json ({
printer,
profile
1)
} catch (error) {
return next (error);

}
/**

* Recomputes configs
* @param { IncomingMessage } req
* @param { ServerResponse } res
* @param { function } next
*/
recomputeConfigs (req, res, next) {
const { printerConfig, profileConfig, path, dependency } = req.body;

const manager = new ConfigManager (path);
const diff = Object.assign({}, printerConfig, profileConfigqg);

const allowed = manager.getAllowedDependants (dependency,

res.json ({
printer: {
config: allowed.machine
by
profile: {
config: allowed.print

}

}
module.exports = exports = new ConfigManagerController();

controllers/mail. js
'use strict';

const mailer = require('../lib/Mailer');

class MailController {

/**

* Sends message

* @param { IncomingMessage } req
* @param { ServerResponse } res
* @param { function } next

*/
async send(req, res, next) {
const { message } = reqg.body;
try {
await mailer.send (message) ;
return res.sendStatus (200);
} catch (error) {
next (error) ;
}
}
}
module.exports = exports = new MailController();

controllers/slicer-process.js
'use strict';

const fs = require('fs');
const path = require('path');

const { Slice } = require('../models') .models;

const printerHelper = require('../helpers/db/PrinterHelper');
const profileHelper = require('../helpers/db/PrintProfileHelper"');
const sliceHelper = require('../helpers/db/SliceHelper');

const metricHelper = require('../helpers/db/MetricHelper');

const figureHelper = require('../helpers/db/FigureHelper');

const previewHelper = require('../helpers/db/PreviewHelper');
const pubSub = require('../lib/PubSub');

const storage = require('../lib/Storage');

const ConfigManager = require('../lib/ConfigManager');

diff);

114

// Retrieve statuses

const statusesPath = path.join(dirname, '..', 'config', 'statuses.json');

const statuses = JSON.parse (
fs.readFileSync (statusesPath, 'utf8')

) .reduce ((map, status) => {
map[status.name] = status.statusId;
return map;

oo A1)
class SliceProcessController {

constructor () {
this.extension = '.gcode';

/**

* Retrieves slice's record

* @param { IncomingMessage } reqg
* @param { ServerResponse } res
* @param { function } next

*/
async get(req, res, next) {
const { id } = reg.params;
const { user } = reqg;
try {
const slice = await sliceHelper.getUserSlice (user,

let preview;

if (slice.statusId === statuses.completed) {

preview = await previewHelper.getSlicePreview(slice);

res.json ({
slice,
downloadURL: preview && await
storage.getReadUrl (preview.name)
1)
} catch (error) {
next (error) ;

/**

* Initializes slice process

* @param { IncomingMessage } req
* @param { ServerResponse } res
* @param { function } next

*/
async init(req, res, next) {
const { user } = req;
const { name, figures, figuresRenderingTime } = reqg.body;
try {
const slice = await user.createSlice ({
name,

statusId: statuses.uploading

const parsedFigures = await this. parseFigure (figures,

slice.id);

await this. createFiguresForSlice(slice, parsedFigures);

115

uuid

116

const uploadURLs = parsedFigures.map (urls => urls.uploadURL) ;

const parsedName = name.replace(/.{32}/, ''); // Remove added

const previewName =
"${slice.id}/${parsedName} .replace (/\..+$/, this.extension); // Replace

extension
awalit slice.createPreview ({
name: previewName
1)
await slice.createMetric ({
figuresRenderingTime
1)
return res.json ({
slice,
uploadURLs
1)
} catch (error) {
return next (error);
}
}
/**

* Sends request to start specified slice-process
* @param { IncomingMessage } req

* @param { ServerResponse } res

* @param { function } next

*/
async start (req, res, next) {
const { id } = reqg.params;
const { user } = reqg;

const { printerId, profileld, figuresUploadingTime } = reqg.body;

try |

printerId);

profileld);

profile.confiqg);

const slice =
const printer

const profile

const figures
const preview

a

walt sliceHelper.getUserSlice (user, id);
awailt printerHelper.getUserPrinter (user,

awailt profileHelper.getUserPrintProfile (user,

= await figureHelper.getSliceFigures(slice);

awailt previewHelper.getSlicePreview(slice);

await slice.update ({
statusId:

const manager
const diff =

const config
const metric

await metric.

)

statuses.pending

new ConfigManager (printer.path);

Object.assign({}, printer.config,

manager.computeRealDiff (diff);

await metricHelper.getSliceMetric(slice);

update ({
figuresUploadingTime,
slicePendingTimeStart: Date.now()

pubSub.publish ('pendingSlices', {

117

preview,

figures,

config,

sliceId: slice.id,
configName: printer.path

) ;

res.json(slice);
} catch (error) {
return next (error);

}

// TODO: Discuss error handling while working with pubsub
/**
* Updates slice's record after slice-process has been started
* @param { object } process Object, which describes current state of
slice-process
* @param { number } process.sliceId
* @param { number } process.figuresDownloadingTime
*/
async started(process) {
const { sliceld, figuresDownloadingTime } = process;

const slice = await Slice.findById(sliceId);
const metric = await metricHelper.getSliceMetric(slice);

await metric.update ({
figuresDownloadingTime,
slicePendingTimeEnd: Date.now(),
slicingTimeStart: Date.now ()

await slice.update ({
statusId: statuses.started

}
/**

* Updates slice's during slice-process

* @param { object } process Object, which describes current state of
slice-process

* (@param { number } process.sliceld

* @param { number } process.progress

*/
async active (process) {
const slice = await Slice.findById(process.sliceId);
const { progress } = process;
await slice.update ({
progress,
statusId: statuses.active
1)
}
/**

* Updates slice's record affter slice-process has been completed
* (@param { number } process.sliceld
* @param { number } process.size
* @param { number } process.previewUploadingTime
*/
async completed (process) {
const { sliceld, size, previewUploadingTime } = process;

const
await

const
await

const

await

}
/**

118

slice = await Slice.findById(sliceId);
slice.update ({

progress: null,

statusId: statuses.completed

metric = await metricHelper.getSliceMetric(slice);
metric.update ({

previewUploadingTime,

slicingTimeEnd: Date.now ()

preview = await previewHelper.getSlicePreview(slice);
preview.update ({
size

* Updates slice's record if slice-process has failed

* @param {
slice-process

* @param {

* @param {
process' failure

*/

object } process Object, which describes current state of
number } process.sliceld

(string | object) } process.error Error, which lead to slice-

async failed(process) {

const
const

await

1)
}

/**
* Manually
* @param {
* @param {
* @param {

slice = await Slice.findById(process.slicelId);
{ error } = process;

slice.update ({
error,

statusId: statuses.failed

cancels slice-process
IncomingMessage } req
ServerResponse } res
function } next

*/
async cancel (req, res, next) {
const { id } = reg.params;
const { user } = reqg;
try {
const slice = await sliceHelper.getUserSlice (user, id);
if |
slice.statusId === statuses.started
|| slice.statusId === statuses.active
) A
pubSub.publish ('canceledSlices', { id });
}
await slice.update ({
statusId: statuses.canceled
1)
res.json(slice);
} catch (error) {

return next (error);

119

/**
* Marks slice as seen

@param { IncomingMessage } req
* @param { ServerResponse } res

* @param { function } next

*

*/
async seen(req, res, next) {
const { id } = reg.params;
const { user, body } = req;
try {
const slice = await sliceHelper.getUserSlice (user, id);
const metric = await metricHelper.getSliceMetric(slice);
const { previewDownloadingTime, previewRenderingTime } = body;
await metric.update ({
previewDownloadingTime,
previewRenderingTime,
seen: true
1)
res.json(slice);
} catch (error) {
return next (error);
}
}
/**
* Asynchronously parses given array of figures
* @
* @param { object[] } figures
* @property { string } name
* @property { object } config
* @param { number } sliceld
*

@returns { Promise<object[]> } Array of parsed figure, which can be
used to create Figure recors
*/
_parseFigure (figures, slicelId) {
return Promise.all (
figures.map (async figure => {

const name = “${sliceld}/${figure.name} " ;
const uploadURL = await storage.getWriteUrl (name) ;
return {

name,

uploadURL,

config: figure.config,
size: figure.size

}

/**

* Creates Figures records from parsed figures, associated with given
slice

* @param { Slice } slice

* @param { object[] } parsedFigures

*/

async createFiguresForSlice(slice, parsedFigures) {
await Promise.all (

parsedFigures.map (async figure => await
slice.createFigure (figure))
)i
}

/**
* Merges given banch of configs into single one
* @param { ...Object } configs
* @returns { Object }
*/

_mergeConfigs(...configs) {

return Object.assign({}, ...configs);
}
}

module.exports = exports = new SliceProcessController();

controllers/slices.js
'use strict';

const sliceHelper = require('../helpers/db/SliceHelper');
class SlicesController {

/**
* Retrieves slice(s) record(s) from database
@param { IncomingMessage } req

@param { ServerResponse } res

* @param { function } next

*

*

*/
async get(req, res, next) {
const { id } = reqg.params;
const { user } = req;
try {
res.json (await sliceHelper.getUserSlice (user, 1id));
} catch (error) {
return next (error);
}
}
/**
* Updates specified slice record
* @param { IncomingMessage } req
* (@param { ServerResponse } res
* @param { function } next
*/
async update(req, res, next) {
const { id } = reqg.params;
const { user } = reqg;
const name = reqg.body.name || reg.query.name;
try {
const slice = await sliceHelper.getUserSlice (user,

await slice.update ({
name
1)
} catch (error) {
return next (error);

}

res.sendStatus (201) ;

id);

120

/**
* Deletes specified slice record
* @param { IncomingMessage } req
* @param { ServerResponse } res
* @param { function } next
*/
async delete(req, res, next) {
const { id } = reg.params;
const { user } = reqg;

try f
const slice = await sliceHelper.getUserSlice (user,

await slice.destroy();

} catch (error) {
return next (error);

res.sendStatus (204) ;

module.exports = exports = new SlicesController();

controllers/users.js
'use strict';

const userHelper = require('../helpers/db/UserHelper"');
class UsersController {

/**

* Retrieves user(s) record(s) from database
* @param { IncomingMessage } req

* @param { ServerResponse } res

* @param { function } next

*/
async get(req, res, next) {
const { id } = reqg.params;
try |
if (id) {

121

id);

return res.json (await userHelper.getUser (id));

}

res.json (await userHelper.getUsers());
} catch (error) {
return next (error);

}

// ToDo implement or remove

async create(req, res, next) {
res.sendStatus (500) ;

}

/**

* Updates specified user record

* @param { IncomingMessage } req
* @param { ServerResponse } res

* @param { function } next

*/

}

async update (req, res, next) {

const { id } = reqg.params;
const email = reqg.body.email || reqg.query.email;
try {

const user = await userHelper.getUser (id);

await user.update ({
email,
)
} catch (error) {
return next (error);

}

res.sendStatus (201) ;
}

/**
* Deletes specified user record
* @param { IncomingMessage } reqg
* @param { ServerResponse } res
* @param { function } next

*/

async delete(req, res, next) {

const { id } = reg.params;

try |

const user = awailt userHelper.getUser (id);

await user.destroy();
} catch (error) {
return next (error);

}

res.sendStatus (204) ;

module.exports = exports = new UsersController();

helpers/ConfigHelper.js
'use strict';

class ConfigHelper ({

/**

* Recursevily looks up for field in settings
* @param { string } field
* @param { Object } config

*/

findField(field, settings) {

}
/**

let result;

for (const category in settings) {

result = this.findInCategory(field, settings[category]);

if (result) {
return result;

* Looks up for field in category

122

123

* @param { string } field
* @param { Object } category
*/
findInCategory(field, category) {
let result;

if (category.children && category.children[field]) {
return category.children[field];

}

for (const child in category.children) {
if |
typeof category.children[child] === 'object'
&& category.children[child].children
) |
result = this.findInCategory(field,
category.children([child]);

if (result) {
return result;

}
/**

* Looks up for all leafs in settings
* @param { Object } settings
*/
findLeafs (settings) {
const leafs = [];

const fields = this.getFieldsList (settings);

for (const fieldName of fields) {
const field = this.findField(fieldName, settings);
if (!field.children && field.valueStatement) {
leafs.push(field);

}

return leafs;

}

/**

* Looks up for all leaf dependants of dependency
* @param { Object } dependency

* @param { Object } settings

*/
findLeafDependants (dependency, settings) {

if (!dependency.dependants) {
return [];

}

const depentantsFields = dependency.dependants.map (
dependant => this.findField(dependant, settings)
)7

const leafs = depentantsFields.filter (dependant =>
!dependant.children) ;

const dependencies = depentantsFields.filter (dependant =>
dependant.children) ;

for (const dependant of dependencies) {

leafs.push(...this.findLeafDependants (dependant, settings))
}
const filteredLeaves = leafs.filter((leaf, index, array) =>
index === array.findIndex(l => (
leaf.label === 1l.label

))
) 7

return filteredLeaves;

}

/**

* Looks up for all dependants of dependency
* @param { Object } dependency
* @param { Object } settings
*/
findAllDependants (dependency, settings) {
if (!dependency.dependants) {
return [];

}

const depentantsFields = dependency.dependant
dependant => this.findField (dependant,

)7

const dependants = [...depentantsFields];
const dependencies = depentantsFields.filter (

s.map (

settings)

dependant => dependant && (dependant.children
dependant.dependants)

) 7

for (const dependant of dependencies) {

settings));

array)

if |
dependency.dependencies
&& dependency.dependencies.includes (dependant.name)
) A
continue;
}
dependants.push(...this.findAllDependants (dependant,
}
const filteredDependants = dependants.filter ((dependant, index,
=>
dependant && index === array.findIndex (1l => (
dependant.label === 1l.label
))
)
return filteredDependants;
}
/**

* Recursevily compiles list of categories' fields
* @param { Object } settings
* @param { Object[] } target Target array
*/
categoryFieldsList (settings, target = []) {
for (const field in settings) {
target.push (field);

if (settings[field].children) {

124

125

this.categoryFieldsList (settings[field].children,
target);

}
/**

* Recursevily compiles list of settings' fields
* @param { Object } settings

*/

getFieldsList (settings) {
const fields = [];
for (const category in settings) {

this.categoryFieldsList (settings[category].children, fields);

}
return fields;

}

/**

* Checks i1if value includes any dependencies, based on fields' list
* @param { string } value
* @param { string[] } fieldsList
*/
valueIncludesDependencies (value, fieldsList) {
if (typeof value !== 'string') {
return false;

}

for (const field of fieldsList) {
const hasDependenciesRegExp = new
RegExp (7 (?: (2<! ("] ")) \\b$ {field}\\b[\\b${field}\\b (2! ("["))) ") ;
const hasResolveOrValueDependenciesRegExp =
/resolveOrValue\ (" (\w+ (_ \w+)+)"\)/;

if |
hasDependenciesRegExp.test (value)
| | hasResolveOrValueDependenciesRegExp.test (value)

return true;

}

return false;

}

module.exports = exports = new ConfigHelper();

helpers/db/FigureHelper. js
'use strict';

class FigureHelper ({

/**
* Retrieves slice's figures
* @param { Slice }
*/
async getSliceFigures(slice) {
try {
const figures = await slice.getFigures();

126

if (!figures || figures.length === 0) {
throw new Error ('No figures found');

}
return figures;

} catch (error) {
throw error;

module.exports = exports = new FigureHelper();

helpers/MetricHelper.js
'use strict';

class MetricHelper ({
/**

* Retrieves slice's metric
* @param { Slice }

*/
async getSliceMetric(slice) {
try {
const metric = await slice.getMetric();
if (!metric) {
throw new Error ('No metric found');
}
return metric;
} catch (error) {
throw error;
}
}
}
module.exports = exports = new MetricHelper();

helpers/PreviewHelper. js
'use strict';
class PreviewHelper ({

/**
* Retrieves slice's preview
* @param { Slice }

*/
async getSlicePreview(slice) {
try {
const preview = await slice.getPreview();
if (!'preview) {

throw new Error ('No preview found');

return preview;
} catch (error) {
throw error;

}

module.exports = exports = new PreviewHelper();

127
JIOJIATOK B

BIATI'YK
KepPIBHMKA €KOHOMIYHOI'0 PO3aLITYy
Ha kBajdidikaniiiny podoTy maricTpa
Ha TeMy: «IIpo€KTyBaHHSI XMapHOI0 AaAPATHO-NPOTrPAMHOI0 KOMILIEKCY
nis 3D apyky»

cryaenta rpynu 122m-19-1 PsaoudeBa Ousera OsieroBnya

KepiBHHK eKOHOMIYHOI0 PO3/iTy
JI. B. KacbsiHeHKO
poueHT Kag. IIEII Ta I1V, k.e.H.

128
APPENDIX C

LIST OF FILES ON THE DISK

File name

Description

Explanatory documents

Diploma_Riabychev.doc

Explanatory note to the Diploma Project. Word
document.

Diploma_Riabychev.pdf

Explanatory note to the Diploma Project in PDF
format

Presentation

Presentation Riabychev.ppt

Presentation of Diploma Project

