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РЕФЕРАТ 

 

Пояснювальна записка: 128 стор., 38 рис., 9 таблиці, 3 додатка, 70 джерел. 

Об'єкт дослідження: процес роботи з системами для 3D друку.  

Предмет дослідження: моделі та методи створення та вибору архітектури 

програмно-апаратних комплексів для 3D друку; 

Мета магістерської роботи: підвищення якості роботи з програмно-

апаратними комплексами для 3D друку шляхом проєктування надійної та 

ефективної архітектури. 

Методи дослідження. Для вирішення поставлених задач використані 

методи аналізу надійності та ефективності архітектури комплексних апаратно-

програмних систем, методи об'єктно-орієнтоване програмування.  

Наукова новизна результатів дипломної роботи: 

• удосконалено математичну модель процесів обробки команд, що 

надходять на керуючу плату принтера; 

• отримав подальший розвиток метод багатокритеріальних зважених 

оцінок для вибору найоптимальнішої архітектури системи.  

Практична цінність результатів полягає у тому, що запропонована в роботі 

архітектура дозволяє забезпечити надійність та ефективність роботи 

комплексної системи для 3D друку. 

У розділі «Економіка» проведені розрахунки трудомісткості розробки 

апаратно-програмного комплексу, витрат на створення і тривалості його 

розробки, а також проведені маркетингові дослідження ринку збуту створеного 

продукту.  

Список ключових слів: 3D друк, 3D моделі, 3D принтер, NodeJS, Docker, 

Cubernetes, WEB, хмарні обчислення, апаратно-програмний комплекс. 
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ABSTRACT 

 
Explanatory note: 128 pages, 38 figures, 9 tables, 3 apps, 70 sources. 

Object of research: process of working with system for 3D printing.  

Subject of research: models and methods of creation and selection of 

architecture for 3D printing computer appliance. 

Purpose of Master's thesis: increasing the quality of work done with 3D printing 

computer appliance via the design of a reliable and efficient architecture.  

Research methods. In order to solve the given tasks, we used such methods as: 

analysis of reliability and effectiveness of designs for complex computer appliances, 

including object-oriented programming. 

Originality of the research: 

• improved a mathematical model for processing commands received on the 

motherboard; 

• obtained further development for the method of multicriteria-weighted 

estimations for design of the most optimal system architecture. 

Practical value of the results consists of the suggested design, which guarantees 

the stability and effectiveness of the work in a complex 3D printing system. 

In the Economics section, labour input and the length of time taken to develop a 

3D printing system was defined and the estimation of expenses for creating it was 

executed. 

Keywords: 3D printing, 3D models, 3D printer, NodeJS, Docker, Cubernetes, 

WEB, cloud computing, computer appliance. 
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LIST OF ACRONYMS 

 

DB – data base; 

CA – computer appliance; 

OS – operating system; 

APІ – application programming interface; 

SQL – structured query language; 

ORM – object-relational mapping; 

UI – user interface; 

UX – user experience; 

GUI – graphical user interface; 

IT – information technologies; 

IDE – Integrated Development Environment. 
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Introduction 

 

Relevance of the research. For the last decade we can see a strong trend in 

development of IT companies in direction of building private ecosystems or computer 

appliance. The first most popular ecosystem, and basically, the only one that really 

works is the computer appliance, created by American company, called Apple. This 

CA includes a lot of different devices, such as: smartphones, tablets, laptops, 

computers, headphones and smart watches. As well as all kinds of software, such as 

own operating systems for aforementioned devices, cloud systems for data storing and 

synchronization, different online services and a lot of other things. As real live 

experience shows, this approach gives a possibility to provide the best user experience 

to customers. As a result, profits of the company grow as well as  

customers’ “brand loyalty”. Thankfully to self-sufficient of the system, companies gain 

an opportunity to bring unique features and use cases for their customers. 

Mostly, because of the commercial success of computer appliance from Apple, 

we can see creation of similar solutions from other big, as well as not really big, players 

in IT market. Such companies, as Google, Microsoft, Amazon invest tons of money 

and efforts in research, design and development of such kind of systems. Even some 

of Ukrainian companies, start moving in this direction. The most successful examples 

are AJAX Systems – a company, which main area of interest lays in area of smart home 

devices and home security, and PrivatBank – the biggest and one of the most advanced 

and popular banks in Ukraine. 

Moreover, for the last couple of years, we can see not only growth in popularity 

of CA systems, but also in popularity of 3D printing. Year after year it is being 

embedded in absolutely different areas of live – from creation of different kinds of 

spare parts and prototyping, right up to printing of prostheses and food. This splash of 

popularity comes with a need of simplification of how users work with 3D printers - 

devices for 3D printing. This issue was addressed by many companies and famous 

researchers in 3D printing area, some of them are Adrian Bowyer (RepRap), Josef 

Prusa (Prusa Research), Siert Wijnia, Erik de Bruijn, Martijn Elserman (Ultimaker), 
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Bre Pettis, Adam Mayer, Zach "Hoeken" Smith, Simon Shen (XYZprinting) and many 

others. 

Unfortunately, right now entrance in area of 3D printing requires from the user 

some really deep knowledge and expertise in designing of models, work with and 

maintenance of 3D printers, preparation of models for printing and following 

afterwork, and sometimes even programming. Such complexity of usage, relatively 

high price of the equipment itself and its maintenance, as well as lack of user-friend 

software, has a remarkable impact on the pace of development of 3D prinitng 

technologies. 

Nowadays, there are no ready-to-use complex solution, which would have fairly 

low entry level for an average user of 3D printer. 

The purpose of the research is increasing the quality of work done with 3D 

printing computer appliance via the design of a reliable and efficient architecture. 

Tasks of the research. In order to achieve the desired results, such tasks were 

formed and solved: 

1. Describe principles of designing and optimization of CA in 3D printing area; 

2. Define the most crucial components of the system; 

3. Hardware design through analysis of existing works in this area and choosing 

the most appropriate components. 

4. Software design through analysis of existing works in this area and choosing 

the most appropriate technologies. 

5. Design interaction of all parts of the software among themselves, as well as 

with the hardware part. 

6. Obtain conclusions regarding the feasibility of creation of such system. 

Object of research: process of working with system for 3D printing.  

Subject of research: models and methods of creation and selection of 

architecture for 3D printing computer appliance. 

Research methods. In order to solve the given tasks, we used such methods as: 

analysis of reliability and effectiveness of designs for complex computer appliances, 

including object-oriented programming. 
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Originality of the research: 

• improved a mathematical model for processing commands received on the 

motherboard; 

• obtained further development for the method of multicriteria-weighted 

estimations for design of the most optimal system architecture. 

Practical value of the results consists of the suggested design, which 

guarantees the stability and effectiveness of the work in a complex 3D printing system. 

Author’s personal contribution: 

1. The scientific results were received solely by the author; 

2. Choice of the research methods and implementation tools for the CA; 

3. Computer appliance design and software development for 3D printing; 

4. Definition of the evaluation criteria of CA’s work and argumentative selection 

of the most critical software and hardware parts of the system; 

5. Evaluation of the results. 

Structure and capacity of the work. The diploma project consists of 

introduction, three main chapters and conclusion. It includes 128 pages, including 87 

pages of the main part with 38 figures, the list of used resources with 70 items on 6 

pages, 3 applications on 17 pages. 

  



 12 
SECTION 1 

ANALYSIS OF THE SUBJECT AREA AND PROBLEM STATEMENT 

 

1.1. Computer appliance systems and principles of their design 

 

Computer appliance is a complex of hardware and software, which work 

together in order to execute one or more tasks [15].  Usually, deep integration of 

software and hardware parts allows manufacturers to achieve not only high level of 

performance and reliability, but also the best UX from usage of the whole CA, as well 

as of each single part of it. In such kind of systems, manufacturers can provide the most 

efficient interaction of the parts of the system, due to having the full control over each 

separate part of the system. 

Generally, hardware part is one or a few devices, which are used to perform 

some specific tasks of the CA. Communication of the hardware components is done 

via specific software and a set of hardware interfaces, both wired and wireless. The 

most common wired interfaces are: USB (2.0, 3.0, 3.1, Type-C, Thunderbolt), HDMI, 

DisplayPort, pins, etc. [4]. Quite often, in such kind of system, we might find some 

custom standards of wired interfaces, invented by manufacturers in order to achieve 

the most effective interaction or to provide unique functionality in boundaries of the 

system. Those interfaces are, usually, called proprietary interfaces. The most common 

ones are – Lightning and Magsafe from Apple. If we talk about wireless interfaces, it 

worth mentioning the most common and popular examples, such as Bluetooth, WiFi 

and NFC. The hardware part might include devices for the end-customers, such as 

smartphones, printers, air-conditioners, fridges, headphones, etc. It might also include 

some internal devices, which are hidden from the end-customers, some of them are: 

servers, data storages, systems for cloud computations, etc. 

The software part is a set of different applications, which are used either for 

communication between the components of the system or performing some particular 

tasks for the user. The list of tasks, performed by this software can vary. Starting with 

some global challenges, such as management of the hardware parts of the system, 
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generation of graphical user interface, support of system’s vital parts, up to some really 

small and local tasks, among them are storing, processing and other kinds of work with 

data, execution of some specific computations and other functions.  The best example 

of a complicated software is operating systems, which are responsible for distribution 

of the system resources, work with internal and external hardware and software, 

processing of user’s input and lots of other tasks.  The other one is firmware is a piece 

of software, which is usually responsible for low-level work with different devices. At 

the same time, there are some examples of more local software: data storages, data 

processors, graphical editors, remote control systems, etc. 

Those systems have to meet extremely high requirements to reliability, 

performance and convenience of use of the whole system and each separate part of it. 

Moreover, quite often some unique functionality and interaction between elements of 

the system is required from the computer appliance systems. 

 The successful work of CA relies on many things, one of the most important is 

stability and efficiency of controlling software, which is defined by the organization 

level inside the system. 

 Currently, there are a huge number of standards, which define each and every 

step of the CA’s lifecycle [15] and meant to be the basis for creation of reliable and 

productive computer appliances. Some problems might arise, while creating such 

complex systems. Some of them are defined by the specificity of a particular system, 

meanwhile others are defined by peculiarities of the development process. 

Development of both hardware and software parts of the system is done simultaneously 

during the whole lifecycle of the system – from sketch design up to the testing phase.  

This process is followed by the need of constant approvement discussions, usually 

contradictory requirements, which the system should meet. 

When designing CA, architects should consider requirements to each single 

element of the system, while providing the best flexibility in terms of functionality 

extending and introducing new elements of the system and means of their interaction 

[31]. The mistakes, made on early phases of design seem to become the most critical 
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when trying to add new elements or communication processes to the existing computer 

appliance system. 

In order to minimize risks when extending the system, the flexible modular 

approaches for system’s architecture are usually used [29]. Modular systems, both 

software and hardware, when build correctly, are usually marked by high level of 

flexibility and scalability. 

Modular system is a system, which is split into small independent blocks or 

modules, usually, responsible for performing a single specific task. Based on the 

complexity of the system it might include from dozens, up to hundreds and thousands 

of such modules. It allows developers to bring changes into the system, replace, remove 

and add specific elements of the system almost without any changes to any other parts 

of the system. 

Modular systems are featured with a low level of binding between components 

and high level of scalability [31]. When building such kind of systems, the separation 

into modules is performed based on the functional principle, which minimizes the 

number of cross-modular connections and by doing so – reduces the overall complexity 

of the system. Usually, a specific software is used to provide cross-modular 

communication. It helps to keep parts of the system as independent and opened to 

changes, as possible. 

Also, rightly designed modular system makes it much easier and cheaper to test, 

maintain and support both the system itself and each separate part of it. 

One of the most common example of a modular computer appliance is a familiar 

computer and the operating system, which is installed on it [31]. The computer itself 

consists of many small independent components, as well the OS is built of many 

hundreds of components. This whole diversity of software and hardware communicates 

between itself in order to solve specific tasks of the end-user. 
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 1.1.1. Examples of successful implementations  

 

 During the last couple of years, it became really popular, among different big 

companies, to create proprietary computer appliances. It allows the manufacturers to 

“bind” the user to their ecosystem by providing some unique software and hardware 

products and ways of interaction with them. 

  One of the first and most advanced CA, which defined the direction of evolution 

of the technical world for many years ahead is ecosystem of devices and software, 

created by an American company, called Apple. 

 This computer appliance system (Fig. 1.1.) includes lots of different devices, 

such as: smartphones, tablets, laptops, computers, TV-stations, smart watches, sound 

bars, periphery (headphones, chargers, etc.), components of the smart home and others. 

Moreover, it includes all kinds of applications, responsible for both communication 

between software and hardware parts of the system, such as: operating systems (OS X, 

iOS, iPadOS, WatchOS) and systems of remote control for different devices 

(applications – Watch, Home, etc.), and for solving of particular tasks for the user – 

browser Safari, Apple Music, Apple TV and many other services. 

 

 

Fig. 1.1.  Apple’s CA 

 

 Each component of this computer appliance is capable of being a highly efficient 

independent part, as well as a well-fit part of the whole, huge ecosystem. It allows 
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developers to create unique use-cases, meant to improve the overall user experience. 

There are some examples of such scenarios: seamless transferring of the content of 

clipboard between different devices, unlocking of laptops ad phones via smart watches, 

editing of pictures on the computer via smartphone, seamless reconnection of wireless 

headphones between different devices. Also, one of the biggest Apple’s achievement 

in the area of computer appliance systems is synchronization of the user’s data between 

all their devices, which makes it more comfortable to switch between devices, update 

and replace them. 

 Although, Apple is a leader in development of ecosystems, there are many other 

popular brands, trying to create their own computer appliances. Such foreign 

companies are Google, Microsoft (Fig. 1.2.), Samsung (Fig. 1.3.), Huawei (Fig. 1.4.) 

and Xiaomi (Fig. 1.5.). Each one of their own ecosystems, which have different size 

and the level of progressiveness. They are being constantly extended with different 

new software and hardware components. 

 

 

Fig. 1.2. Microsoft’s ecosystem 

 

 

Fig. 1.3. Samsung’s ecosystem 
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Fig. 1.4. Huawei’s ecosystem 

 

 

Fig. 1.5. Xiaomi’s ecosystem 
 

 As well it worth mentioning, that there are some domestic companies, which 

also work in this direction. Ajax Systems is a manufacturer of hardware and software 

for smart home and home security, their solutions are ones of the most popular around 

the globe. Another famous example is one the largest and most advanced banks of 

Ukraine – PrivatBank. They have one of the largest networks of different terminals, 

ATMs, as well as different applications for finance management. 
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 So, in general, it is possible to state that there is a stable tendency in direction of 

creation of proprietary ecosystems. 

  

1.2. Main terms and concepts of 3D printing 

 

 Additive technologies (3D printing) – one of the forms of additive technologies 

manufacturing, where a three-dimensional object is created via sequential imposition 

(printing, growing) of layers of the material, based on a digital model [1]. Printing is 

performed by a special device – 3D printer, which assures creation of a physical object 

by sequential imposition of plastic material, using virtual 3D model. Generally, 3D 

printers are faster, more accessible and simpler in usage, than other technologies of 

additive manufacturing. 3D printers give manufactures a possibility to print different 

kinds of spare parts and mechanisms, using different materials with different 

mechanical and physical properties in one printing session. 

 Starting from 2003, we can see a huge growth in amount of sold 3D printers. 

Moreover, the cost of 3D printers keeps decreasing. 3D printing technology also finds 

different applications in manufacturing of jewelry, shoes, industrial design, 

architecture, design and construction as well as in atomic, automobile, aerospace, 

dental and other areas. 

 Many of different, concurrent technologies of creating 3D models has become 

available in the mid-2010s. The main difference between them lay in step of detail 

layers’ construction. Some technologies use melting or softening of the material for 

creation of layers (SLS, FDM), while others use liquid materials, which become hard, 

based on different principles [42]. 

 There are 2 ways of 3D models’ creation: manual graphical design, using 

computer and 3D scanning. Manual modeling or preparation of the geometrical data in 

order to create three-dimensional computer graphic is a complicated and creative 

process, which kind of similar to sculpture. Usually for creation of 3D models, 

professionals use specific software. The most famous and popular examples are: 

Autodesk Maya, Autodesk Mudbox, Autodesk 3Ds Max, Blender, FreeCAD and 
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OpenSCAD. 3D scanning is a process of automatic gathering and analysis of the real-

world object’s data, such as form, color and other properties, followed by converting 

it into a three-dimensional model. Both manual and automated creation of 3D models 

might cause some troubles for an average user, who does not have any expertise in 

areas of modeling and 3D printing. That is the main reason, behind growth in popularity 

of marketplaces for 3D printing. 

3D printer is a specific machine with an appropriate software [32], which builds 

a model, using an additive approach. Such kind of machines can work with different 

materials, starting with different kinds of plastic: PLA, ABS, PVA, Nylone, HIPS 

straight to pasty foods, such as cheese, chocolate, pate, etc. 

In the process of printing, a 3D printing reads content of a file in special format, 

usually, GCode, which contains a set of primitive consecutive commands and inflicts 

consistent layers of special material, constructing a 3D model from a series of cross-

sections [32]. Those layers, which correspond to virtual cross-sections of a CAD model 

are being combined of fused together in order to create an object of the given form.  

The main advantage of this approach is a possibility to create geometrical forms with 

almost endless complexity. 

“Resolution” of a printer is defined by thickness of layer, which are being 

accumulated (Z-axis) and accuracy of print head’s (extruder’s) positioning in 

horizontal area (X and Y axes) [32]. Resolution is measured in DPI (amount points per 

inch) or micrometers (microns). Usually standard thickness is 100mkm (250 DPI), 

however there are some devices, which are capable of printing with higher accuracy, 

up to 16mkkm (1 600 DPI).  Resolution of axes X and Y is similar to usual values of. 

two-dimensional laser printers. The typical particle size is something between 50 and 

100mkm (from 510 to 250 DPI) in diameter. 

Creation of a model, using modern additive technologies might take from a few 

hours to a few days and sometimes even weeks, depending on the used methods and 

model’s complexity [48]. Industrial additive systems, in general, are capable of 

reducing the time, required for a model to be printed to a few hours, but it highly 
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depends on the type of the machine, size and number of details, which are being 

produced simultaneously. 

When producing huge batches of polymer products, traditional manufacturing 

methods, such as die-casting might be a lot cheaper. However, additive technologies 

have some benefits, when producing smaller batches, which allow us to achieve higher 

production pace and design flexibility, as well as increased economy per unit of 

manufactured goods.  

 Production of some models with high accuracy, usually requires some extra 

processing. Even though, the resolution of modern printers is more than enough for 

most projects, printing of objects with slightly increased measurements and following 

subtractive machining with high-precision tools allows users to create models with 

higher accuracy. 

 Some methods of additive manufacturing allow usage of a few different 

materials as well as colors within one production cycle. Lots of 3D printers use 

“backing” or “supports”, while printing [32]. They are required in order to construct 

parts of the model, which do not touch neither lower layers nor the working platform. 

Supports themselves are not a part of the model, so once printing is over, they are being 

either broke off or melted, using some specific solvent (usually – water or acetone). 

 

 

Fig. 1.6. Working scheme for an FDM 3D printer 
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1.2.1. 3D printing technologies 

 

From the end of the 70s of the 20th century, the world has seen a few methods 

of 3D printing. The very first printers had huge sizes, high cost and limited 

functionality [42]. 

Currently there is a wide variety of different methods of additive manufacturing. 

The main difference lays in the way of how layers are being created and materials, 

which can be used for printing. Some methods are based on melting or softening 

materials to create layers. The most common ones of them are:  selective laser sintering 

(SLS), selective laser melting (SLM), direct metal laser sintering (DMLS), printing, 

based on layers surfacing (FDM or FFF) [42]. Meanwhile, another direction is 

production of solid models, using polymerization or liquid materials, well-known as 

stereolithography (SLA). 

In case of laminated object manufacturing (LOM), thin layers of the material are 

being cut to the required contour, with following junction into a single piece. Paper, 

polymers and metals can be used as materials for LOM. 

Each mentioned method has unique advantages and disadvantages, that is why 

some companies provide a choice of material, while constructing a model – either 

polymer or powder. Printers, which are based on LOM technology, usually use 

common office paper for constructing solid prototypes. 

The most important things, while picking the most optimal device are printing 

speed, price, cost of printed prototypes, variety and pricing of compatible consumables. 

Printers, which are capable of producing complete metal models have quite high 

price, however it is possible to use cheaper devices for producing molds with following 

casting of metal parts. 

It is worth mentioning that some of the printers require specific conditions of 

use (for example, maintenance of a fixed temperature or humidity of the environment, 

where they are placed), which implies additional limitations, while selecting the most 

appropriate device. 
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Apart, from aforementioned model creation methods there are some other 

popular ones.  The main 3D printing methods are listed in table 1.1. 

 

Table 1.1 

The main 3D printing methods 

Method Technology Materials 

Extrusion Modeling via melting or 

softening of the material for 

creation of layers 

 (FDM or FFF) 

Thermoplastics (PLA, 

ABS, etc.) 

Wiry Construction of random 

forms via electron-beam 

freeform fabrication (EBF3) 

Almost any metal alloys 

Powder Direct metal laser sintering 

(DMLS) 

 

Almost any metal alloys 

Electron-beam melting 

(EBM) 

Titan alloys 

Selective laser melting 

(SLM) 

Titan, cobalt-chromium 

alloys, stainless steel, 

aluminum 

Selective heat sintering 

(SHS) 

Powder thermoplastic 

 Selective laser sintering 

(SLS) 

Thermoplastics, metal 

powders, ceramic 

powders 

Streamed 3D printing (3DP) Hips, plastics, metal 

powder, sand mixtures 
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Continuation of Table 1.1 

Lamination Constructing of objects via 

lamination 

Paper, metal foil, plastic 

film 

Polymerization Stereolithography (SLA) Photopolymers 

Digital light processing 

(DLP) 

Photopolymers 

 

1.2.2. Types of 3D printers 

 

 In general, all 3D printers can be split in two main categories: industrials 

machines and household devices [64]. 

 Industrial machines, usually, are being used in huge manufacturing to create 

prototypes and complex details with high accuracy. Lately, development of industrial 

additive production has been evolving with tremendous pace. For example, joint 

American-Israel company Stratasys supplies devices for additive manufacturing, 

which price goes from 2 000 to 500 000 dollars, while compony General Electric uses 

high-class machines for creation of parts of gas pipes. 

 Meanwhile, household devices are created for an average user, for solving their 

daily tasks. Mainly, private companies and enthusiasts are involved in. development of 

such devices. Their count grows every day. The most part of work is done by amateurs 

for personal or community needs, with help from academic associations and hackers. 

 Those printers can be used by both, private manufacturers for production of 

different prototypes, parts of toys and confectionery for creation of unusual and 

complicated products from chocolate and other pasty mixtures. 

 Household 3D printers can be separated into two different categories:  food and 

non-food printers. The first ones use different kinds of pasty materials for creation of 

decorations and deserts, which impress the imagination and attract new customers. 

While another kind uses differed kinds of plastics and metals. They are the most 

popular amongst engineers and companies, who have a need for prototyping (for 
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example, manufacturers of home appliance, automobile spare parts, different 

machines, etc.). 

 Typical user of a household 3D printer does not possess any specific knowledge 

and skills in areas of 3D printing, design, electronics, programing and chemistry. This 

implies additional requirements to usability and simplicity of usage of those devices. 

Even though, for the last couple years industry of household 3D printiner made a huge 

step towards an average customer, unfortunately this is still quite complicated piece of 

equipment, usually without a good user-friendly software and with relatively high 

price. Those issues scare household customers away from buying, which slows the 

pace of development, popularization and as a result availability of equipment for 3D 

printing. 

 

1.2.3. Types of software for 3D printers 

 

 3D printing is a complicated process, which consists of many stages with 

different complexity. Each of those stages requires from the user knowledge and skills 

in different areas, related to the process of additive models’ creation [68].  Some of 

them require direct physical work from the user, for example, calibration of printers 

and processing of printed object. While others require some specific software. 

 The first stage for creation of any model is design. Usually, 3D models are being 

created, using specific software for 3D modelling. Using it, the user is capable of 

constructing of geometrical figures with almost any shape and complexity. However, 

when designing a particular model, complexity of printing it on a specific 3D printer 

should be taken into consideration. Because, too big or complex figures might simply 

not fit onto printer’s working platform, or take days to be printed on a single device, or 

it might take tons of material to print it, which will lead to the necessity of replacing 

coils with material during the printing. All of those problems might have a negative 

impact on the final product. In order to solve this problem, complicated figures are 

usually split into smaller parts, which are much easier to print, because they take less 

space, require less material (in terms of one printing session) and can be printed 
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simultaneously and independently. Also, this approach reduces the overall complexity 

of the construction and makes it modular and so more suitable for future usage and 

maintenance. 

 After the model was designed, we can export it as an STL file, which contains 

the information about the object in form of the list of triangle edges, which describe its 

surface and their normal. However, most of 3D printers do not understand this format, 

so before the printer will be able to print the desired model it is required to prepare it 

for printing, using a specific software, called slicer [2]. 

While preparing the model, the user should correctly set dimensions of the 

printer (size of working platform), temperature of nozzle and platform (in case if printer 

supports it), nozzle diameter, material diameter, and much more configurations, which 

are related to properties of a particular 3D printer. Then they should add one or more 

models on a virtual platform, move them around the platform and one another, 

configure their angles of infliction over the platform, their proportions and sizes. In 

most cases, as a result of the software’s work, the customer receives a file in GCode 

format, which consists of a set of primitive commands, supported by the most of 3D 

printers. 

After the GCode was received, it should be passed onto the 3D printer in some 

way. Different companies use really different approaches for interaction of customer 

with the device. An example of the most-primitive interface is a printer with a single 

socket for a USB flash drive or SD-card. Such kind of printers does not have neither 

an embedded screen nor a possibility of remote control. Software of this printer has 

really primitive functionality: read file from the drive and gradually send command 

from it to the controlling devices (extruder, platform, etc.). This approach allows 

manufacturers to reduce the cost of the product, but it might not be really convenient 

for the customer if they work with it on a daily basis. 

That is why, for more advanced work with 3D printer, usually, a whole set of 

software, which is responsible for user’s interactions is being developed [5]. The most 

important and low-level part of it is the firmware. This piece of software is responsible 

for the low-level interaction with the control elements, such as heating platform, 



 26 
extruder, drivers for moving platform via axis Z and extruder via axes X and Y, 

temperature controllers and others. Quite often, user does not have neither a need nor 

tools to interact with it. 

Then, for some 3D printers, a GUI is being developed. It helps user to manipulate 

control elements, control the printing process and calibrate moving elements of the 

printer. This piece of software acts as an agent between the user and the device’s 

firmware. Usually, this interface is shown on the display, which is embedded into the 

printer and gives a possibility to:  launch, pause and cancel printing process, control 

the temperature of the heating elements, position platform and extruder, etc. 

The most advanced systems also include a graphical user interface. For. Remote 

control over the 3D printer. It provides all the features of the local interface, but it does 

not require the user to be anywhere near the device. This software might be provided 

in the form or WEB or mobile applications. They connect to the printer, which is 

connected to the global network via a. specific proxy-server. 

By the way, it is possible to see other kinds of software, which acts as different 

additions and plugins for the core of the ecosystem (firmware, local and remote-control 

interface). For example, a cloud storage of 3D models, where users can store their 

models in STL or GCode formats, share them with other users, etc. As well, as a cloud 

slicer, which allows the customer to prepare their model to be either printed on their 

particular printer or saved into the aforementioned cloud storage. 

 

1.3. Applications of 3D printers 

1.3.1. Industrial application 

 

Industrial 3D printers are often used for quick prototyping and research. Usually 

those are quite big machines, which use powder metals, sand mixtures, plastic and 

paper. This type of devices is used by universities and commercial companies. 

Achievements in quick prototyping led to creation of materials, which can be 

used for production of final products, which facilitated evolvement of 3D 

manufacturing of final products, as alternative to the traditional methods. One of the 
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biggest advantages of quick manufacturing is relatively low costs of production of 

small batches. 

Some companies provide services for customization of objects, using simplified 

software with posterior creation of unique 3D models. One of the most popular 

directions is production of bodies for telephones. 

Current printing speed of 3D printing is quite low, which might become a deal-

breaker for using them for huge manufacturing. In order to overcome this flaw, some 

FDM devices use two or more extruders [8], which allow printing using different 

colors, polymers and even creating a few different models simultaneously. In general, 

this approach increases productivity, without usage of a few printers. Just one 

microcontroller in more than enough for reliable work of a few nozzles. 

Those devices allow creation of a few identical objects, based on the same digital 

3D model, with usage of different materials and colors. The printing speed increases 

proportionally to the number of nozzles. Moreover, it also results in some kind of 

economy of electricity, thanks to usage of just one working platform, which quite often 

requires heating. Together those two factors decrease production costs. 

Quick production is still a relatively new method, which is not full studied yet. 

However, different experts believe, that quick production is the technology of a new 

level. Some of the most promising quick prototyping direction, which can be used for 

quick production are SLS and DMLS [11]. 

 

1.3.2. Household and amateur application 

 

Nowadays, household devices for 3D printing attract only enthusiasts and 

amateurs, while practical usage is still quite limited. However, 3D printers are being 

used of printing of mechanical watches, gears, decorations, etc. Web markets in area 

of household 3D prinntinng often provide design of hooks, doorknobs, massage tools 

and similar stuff. 
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3D printing is also being used in amateur veterinary and zoology. In 2013 3D 

printed prothesis helped a duckling to stay on its feet. 3D printers are quite popular for 

household manufacturing of different bijouterie – necklaces, rings, handbags, etc. 

The main purpose of a public project, called Fab@Home is development of 

household printers for general usage. It was organized by a small group or reesearchers: 

Evan Malone and Hod Lipson. Over the years many people have joined their cause: 

Daniel Cohen, Jeffery Lipto, Dan Periard, Max Lobovsky (CEO Formlabs), James 

Smith, Michael Heinz, Warren Parad, Garrett Bernstien, Tianyou Li, Justin Quartiere, 

Daniel Sheiner, Kamaal Washington, Abdul-Aziz Umaru, Rian Masanoff, Justin 

Granstein, Jordan Whitney, Scott Lichtenthal, Karl Gluck. Those devices were tested 

in laboratories for production of chemical connections. Printer can use any kind of 

material, which can be extruded from syringe in state of liquid or paste. 

3D printing has found appliance in clothing area. Couturier use printers for 

experiments, while designing swimwear, shoes and dresses. Commercial usage 

includes quick prototyping and 3D printing manufacturing of professional sports shoes. 

Studies in area of 3D printing are being actively conducted by biotechnological 

companies and academic institutions [19]. Those studies are targeted at looking for 

possibilities of usage of inkjet / drip 3D printing in tissue engineering to create artificial 

organs. Technology is based on infliction of layers of living cells upon gel substrate or 

sugar matrix, with gradual layered build-up to create three-dimensional structures, 

including vascular systems. First production system for tissue 3D printing, based on 

bioprinting technology from NovoGen was introduced in 2009 by Mickael Le Helloco 

and Thierry Burlot. 

Organovo is one of 3D printing pioneers conducts laboratory studies and 

develop manufacturing of functional three-dimensional samples of human tissue for 

usage in medical and therapeutic studies. For bioprinting company uses 3D printer 

NovoGen MMX. Organovo believes, that bioprinting will allow speeding up testing of 

new medical supplies before clinical studies, which will result in reducing of costs and 

time, which are required for development of treatments. In long-term perspective 
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Organovo hops to adapt those technologies for creation of grafts and in surgical 

applications. 

3D printing is used for creation of implants and devices for medical purposes. 

Successful operations include such examples as implantation of titanium pelvic and 

jaw implants, as well as plastic tracheal splints. The widest usage of 3D printing is 

expected in the area of hearing aids and dentistry. 

Some companies provide service for online 3D printing, which are available for 

both private clients and industrial companies. User only has to upload a 3D design to 

the website, which then will be printed, using industrial machines. 

The future appliance of 3D printing might include creation of scientific 

equipment with opened source code for usage in public laboratories and other scientific 

usages, like reconstruction of fossils in paleontology, duplicating priceless 

archaeological artifacts, reconstructing bones and body parts for forensic science, 

reconstructing badly damaged evidence collected from crime scenes. The technology 

is also being considered for construction applications. 

Usage of 3D scanning technologies allows creation of duplicates of real objects 

without the need for casting methods, which require high costs, complicated in 

execution and might have a destructive impact in cases with precious and fragile 

objects of cultural heritage. 

An additional example of appliance of 3D printing technologies is usage of 

additive manufacturing in construction. It might help to speed up pace of construction, 

while reducing costs. More specifically, 3D printing technologies are being 

investigated in terms of usage of those technologies for construction of space colonies. 

Additive manufacturing can be used to create waveguides, couplings and bends 

in terahertz devices. High geometrical complexity of such devices could not be 

achieved, using traditional production methods. 

Additive production requires high flexibility and constant improvements of 

available technologies from manufacturing companies in order to support 

competitiveness. Protectors of additive production predict confrontation of 3D 

prrinting and globalization, because of potential growth of household manufacturing, 
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which might eventually replace huge companies. In reality, integration of additive 

technologies inn commercial production serves rather as an addition for traditional 

subtractive methods than a full replacement. 

 

1.4. Analysis of existing 3D printing systems 

 

 Over the last decade the world has seen quite a few commercially successful 

systems for 3D printing. All of them provide the base features, like printing itself, 

settings management, etc., as well as more unique features, like models’ preparation 

(slicing), remote control, etc. However, at the time being there is not any system which 

would not require the user to be a professional engineer. Most commercial and not 

commercial solutions for 3D printers are based on RepRap project, which was 

originated by one of the most famous researches in area of 3D printing - Adrian 

Bowyer. 

 The main goal of RepRap is to provide means for creation of 3D printers with 

an open-source code [1], which is provided under the public GNU license. Devices, 

based on RepRap are capable of printing of plastic component, which could be used to 

create copies of the original device. 

 Because of the public access to the blueprints of printers from RepRap, a lot of 

projects take over analog technical solutions, creating kind of a global ecosystem, 

which mostly contains free-to-modify devices. Unfortunately, it leads to high diversity 

of the quality level as well as the complexity of designs and devices, based on them.  

 One of the most popular 3D printer making companies is Ultimaker. This 

company was founded by a small group of scientists from Netherlands - 1 by Martijn 

Elserman, Erik de Bruijn, and Siert Wijnia in 2011. They design and create modern 3D 

printers as well as software for them. Currently Ultimaker has brought 8 different 3D 

printers to the market [34]. All of them, primarily use different sorts of plastic as a 

printing material. Mostly, apart from some low-priced models they provide an 

embedded screen, with a user interface for local control over the printing process and 

calibration. But, one of the biggest achievements of Ultimaker company is a specific 
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software, which helps the user to prepare their models to be printed on their particular 

3D printer, called Ultimaker Cura. Cura is a frontend part, of the slicer, which provides 

a UI, where users have an opportunity to configure lots of different settings, which are 

specific for a particular 3D printer, like dimensions (X, Y and Z axed), number of 

extruders, used materials, presence of a heating platform, printing speed, nozzle 

diameter, printing resolution, dialect of GCode, etc. This piece of software 

communicates with a general backend, called CuraEngine, which basically does all the 

heavy lifting in terms of computations and generation of the final result – Gcode file 

with a set of commands, which can be interpreted by the printer’s firmware. Also, it is 

possible to connect to the printer, using a USB connector and control 3D printing 

process, using UltimakerCura [34]. But they do not provide any kind of remote-control 

interface, or cloud storage or any other additional software, which would provide some 

extra functionality for the core system components. 

 The most interesting thing about this software, is the fact that it has an open-

sourced code base. Which means, that it is free and driven by the community, which 

grows every day. Moreover, their software can be used as a base for other developers 

and companies. 

Another example of commercially successful 3D printing system is Prusa from Prusa 

Research. Prusa Research was founded as a one-man startup in 2012 by Josef Prusa, a 

Czech hobbyist, maker and inventor - and now one of the most famous names in the 

3D printing industry. Currently they have delivered 4 different 3D printers which are 

available as both RepRap kits and fully assembled printers. Their printers support 

different kinds of plastic, as well as SLA printing. Although, they provide not as much 

functionality as devices from Ultimaker, but they target the low-priced segment of the 

market. As well as the system from Ultimaker, Prusa do not provide any kind of 

secondary software, only the core functionality. 

Printers from Prusa do not have neither an embedded colorful touchscreen with a 

comprehensive UI nor a specific software for slicing. However, their prices start from 

299$, while prices for printers from Ultimaker start from 3 500$. Most users of their 
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3D printers are enthusiastic engineers, which now not only how to use the 3D printer, 

but also how to assemble and maintain it. 

However, there are much more other solutions from different companies and 

independent engineers and scientists, but they are not as famous and popular. 

 

1.4.1. Analysis of problems in the existing 3D printing systems 

 

It is safe to say, that current solutions have at least three major problems: 

1. None of the currently available systems provides a full, comprehensive CA, 

which would meet all modern requirements and cover all phases of computer-

related 3D printing, such as: slicing, local UI, remote-control, cloud storage for 

printed or sliced models, 3D modeling software; 

2. Although, we can see a strong tendency of decreasing of the prices on 3D 

printers, users are still forced to pick between either functionality or reasonable 

price. As we can see, comparing two of the biggest manufacturers of 3D printers, 

the price for slightly more advanced devices might be more than 10 times higher, 

than the price of more simple solutions; 

3. However, the biggest problem seems to lay in extremely high entry level for an 

average customer. It looks like all existing solutions require user to have 

knowledge and skills in modeling, physics, chemistry, engineering, 

programming and electronics. 

The mentioned issues cause slowing of development and expansion of 3D printing 

technologies in different areas of life. 3D printing industry might get a huge boost, if 

someone were to a relatively cheap, reliable, comprehensive and most importantly 

simple enough system, which would include different devices, such as 3D printers, as 

well as different kinds of software, like slicers, 3D modelling tools, user-friendly local 

and remote interface for printing management, cloud storages and a reliable cloud 

system, which would allow all those parts to communicate between each other. 
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1.5. Conclusions for section 1 

  
 The modern 3D printing industry grows quite rapidly, and made a huge step 

forward over the last few decades. A lot of different 3D printing methods were 

introduced and modernized over the years, giving people the opportunity to create all 

kinds of models, using different materials, like paper, plastic, metals, chocolate, cheese 

and other kinds of pasty food. 3D printing technologies are being used in all areas of 

life. Manufacturers of automobiles, toys, household appliances use them for 

prototyping and even full-size production. Scientists, engineers and designers use them 

to bring their most interesting and ambitious ideas to life, via prototyping. 3D printers 

even used for creation of prostheses, which help people with different health problems 

to get back to the normal life. Recently, even confectioners and bakers had found an 

appliance of 3D printing in their daily work by printing different sorts of deserts and 

decorations, which help to attract customers. 

 The pricing on devices for 3D printing can be really different. From super cheap 

kits, for 100$ up to highly advanced complex industrial systems for over 500 000$. 

This diversity allows users to select the most appropriate solution, based on their needs, 

from small household engineering purposes to big industrial manufacturing. 

 However, it looks like the area of local non-engineering intrapreneurs is not 

covered well enough. Most of the modern solutions seem to completely ignore this part 

of market. Almost all of them are either way too complex for an average user or do not 

provide a complete ecosystem, which would cover all customer’s needs with robust 

user-friendly interface and reliable ways of communications between all parts of the 

system, both software and hardware. 
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SECTION 2 

HARDWARE DESIGN 

 

2.1. Control elements of 3D printer 

 

 A 3D printer is a complicated piece of tech, which consists of hundreds of 

smaller parts, which are responsible for different functions of the printer. There are lots 

of different variations of design for 3D printers, each of them has its own cons and 

pros. However, the one common thing between all of them is that, all of their parts ca 

be split in two main groups [3]. 

 The first ones are controllers, which are responsible for interpreting commands 

send by user or other control units and then passing them onto the controlled elements 

of printer. 

 Meanwhile the second group is responsible for execution of the received 

commands. They can be called the controlled elements. Usually, they are responsible 

for a very limited set of primitive operations. 

 Quality and efficiency of the both groups are crucial, as the quality of the final 

product depends on them both, as well as, on their inter-communication. If either of 

them fails to perform its role, or has any defects it may have a negative impact on the 

appearance, internal structure and overall integrity of the produced model. In some 

cases, it might even lead to disability of the printer to create some complex figure or 

detail. 

 In this work we will take a look on the biggest and most important hardware 

parts of a 3D printer, like controller board, user-interaction unit, motion controllers, 

heating platform and a touch screen. 

 

2.1.1. Controller board 

 

 The controller board, also known as motherboard is a main control unit of the 

3D printer [3]. It is responsible for maintaining the smooth processing of the machine. 
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Being responsible for all the fundamental operations, motherboard works as the brain 

of the 3D printers. It directs the motion components as per the instructions sent from a 

computer and at the same time, interprets signals from the sensors. Usually, the role of 

a controller board is given to one of the boards from Arduino family.  The first Arduino 

board was created by famous researches in the computer hardware area: Hernando 

Barragán, Massimo Banzi and David Cuartielles. 

 Arduino is an open-source platform used for building electronics projects. 

Arduino consists of both a physical programmable circuit board (often referred to as a 

microcontroller) and a piece of software, or IDE that runs on your computer, used to 

write and upload computer code to the physical board. 

The Arduino platform has become quite popular with people just starting out 

with electronics, and for good reason. Unlike most previous programmable circuit 

boards, the Arduino does not need a separate piece of hardware (called a programmer) 

in order to load new code onto the board -- you can simply use a USB cable. 

Additionally, the Arduino IDE uses a simplified version of C++, making it easier to 

learn to program. Finally, Arduino provides a standard form factor that breaks out the 

functions of the micro-controller into a more accessible package. 

The Arduino hardware and software were designed for artists, designers, 

hobbyists, hackers, newbies, and anyone interested in creating interactive objects or 

environments. Arduino can interact with buttons, LEDs, motors, speakers, GPS units, 

cameras, the internet, and even smart-phone or TV. This flexibility combined with the 

fact that the Arduino software is free, the hardware boards are pretty cheap, and both 

the software and hardware are easy to learn has led to a large community of users who 

have contributed code and released instructions for a huge variety of Arduino-based 

projects. 

For everything from robots and a heating pad hand warming blanket to honest 

fortune-telling machines, and even a Dungeons and Dragons dice-throwing gauntlet, 

the Arduino can be used as the brains behind almost any electronics project. 
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There are many varieties of Arduino boards that can be used for different 

purposes. Some boards look a bit different from the one below, but most Arduinos have 

the majority of these components in common (Fig. 2.1.): 

 

 

Fig. 2.1 Schematics of Arduino Uno 

  

 Every Arduino board needs a way to be connected to a power source. The 

Arduino UNO can be powered from a USB cable coming from computer or a wall 

power supply that is terminated in a barrel jack. In the picture above the USB 

connection is labeled (1) and the barrel jack is labeled (2). The USB connection is also 

the way of loading the code onto the Arduino board [27].  

The pins on the Arduino are the places to connect wires to construct a circuit 

(probably in conjunction with a breadboard and some wire) [6]. They usually have 

black plastic ‘headers’ that allow us to just plug a wire right into the board. The 

Arduino has several different kinds of pins, each of which is labeled on the board and 

used for different functions. 

• GND (3): Short for ‘Ground’. There are several GND pins on the Arduino, any 

of which can be used to ground the circuit [6]. 
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• 5V (4) & 3.3V (5): As the names imply, the 5V pin supplies 5 volts of power, 

and the 3.3V pin supplies 3.3 volts of power. Most of the simple components 

used with the Arduino run happily off of 5 or 3.3 volts [6]. 

• Analog (6): The area of pins under the ‘Analog In’ label (A0 through A5 on the 

UNO) are Analog In pins. These pins can read the signal from an analog sensor 

(like a temperature sensor) and convert it into a digital value that we can read. 

• Digital (7): Across from the analog pins are the digital pins (0 through 13 on 

the UNO). These pins can be used for both digital input (like telling if a button 

is pushed) and digital output (like powering an LED) [6]. 

• PWM (8): some of the digital pins have tilde (~) next to them (3, 5, 6, 9, 10, 

and 11 on the UNO). These pins act as normal digital pins, but can also be used 

for something called Pulse-Width Modulation (PWM) [6]. 

• AREF (9): Stands for Analog Reference. Most of the time this pin is not used. 

It is sometimes used to set an external reference voltage (between 0 and 5 Volts) 

as the upper limit for the analog input pins [6]. 

Just like the original Nintendo, the Arduino has a reset button (10). Pushing it will 

temporarily connect the reset pin to ground and restart any code that is loaded on the 

Arduino. This can be very useful if the uploaded code doesn’t repeat, but user would 

like to test it multiple times. 

Just beneath and to the right of the word “UNO” on the circuit board, there’s a tiny 

LED next to the word ‘ON’ (11). This LED should light up whenever the Arduino is 

pluged into a power source. If this light doesn’t turn on, there’s a good chance 

something is wrong. 

TX is short for transmit, RX is short for receive. These markings appear quite a bit 

in electronics to indicate the pins responsible for serial communication. In our case, 

there are two places on the Arduino UNO where TX and RX appear - once by digital 

pins 0 and 1, and a second time next to the TX and RX indicator LEDs (12). These 

LEDs will give some nice visual indications whenever the Arduino is receiving or 

transmitting data (like when a new program is being uploaded onto the board). 
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The black thing with all the metal legs is an IC, or Integrated Circuit (13). It is the 

brains of the Arduino. The main IC on the Arduino is slightly different from board type 

to board type, but is usually from the ATmega line of IC’s from the ATMEL company. 

The voltage regulator (14)  does exactly what it says - it controls the amount of 

voltage that is let into the Arduino board. It is kind of a gatekeeper; it will turn away 

an extra voltage that might harm the circuit. Unfortunately, it has its limits, so it is not 

recommended to hook up theArduino to anything greater than 20 volts. 

There are lots of different models and modification of circuits from Arduino 

family. The most popular and common of them are Arduino Uno, Arduino Mega and 

Arduino Leonardo. There are a lot of different custom variations of Arduino board, but 

most of them are proprietary, which means they do not have such a huge community 

of engineers around them, as the three mentioned boards. 

Moreover, some additional supplements and addons for Arduino boards can be 

found on the market. From different sensors, which can measure light, temperature, 

degree of flex, pressure, proximity, acceleration, carbon monoxide, radioactivity, 

humidity, barometric pressure, up to shields, which are basically pre-build circuit 

boards that fit on top of the Arduino board and provide some additional functions, like 

controlling motors, connecting to the internet, providing cellular or other wireless 

communication, controlling an LCD screen. 

It is safe to say that the motherboard is one of the most crucial parts of a 3D printer, 

as it will be responsible for giving orders to different controlled elements, gathering 

info from different sensors, like extruders’ and heating platform’s temperature sensors 

and passing it to the user-interaction unit. So, one should think wisely when choosing 

a controller board for a 3D printer. 

 

2.1.2. User-interaction unit 

 

 Arduino is very powerful tool and in general it can be used for direct user 

interactions via different control buttons and LCD screens. However, as the examples 

from the real-world show, it is not possible to provide a simple, efficient and robust 
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UI, using only the motherboard. So, a good decision here might be to leave the work 

with controlled elements and sensors to the controller board and pick some other device 

for interactions with user. 

 The selected device should be able to: work with external displays with 

touchscreen, render a complex, modern and robust UI, process input from user via the 

touchscreen, connect to internet via either Wi-Fi or an Ethernet cable to communicate 

with remote server for fetching and uploading data and, most importantly, it should 

support connection to the Arduino board to be able to send user’s input in form of 

commands. 

 It seems like, some kind of microcomputer would be the most appropriate fit this 

case. Because, they are usually much cheaper than full-size computers and laptops, 

they provide all of the requested functionality and moreover, they have really small 

physical sizes, which makes them a good solution for a relatively small 3D printer. 

However, it is worth noticing that such kind of devices are much less performant then 

their desktop alternatives, which comes with much smaller sizes and some of the 

features, like Wi-Fi or Bluetooth modules, or Ethernet connectors might be missing 

out-of-the-box, but could be bought as an addon in form of a dongle. 

 Currently, ones of the most popular, advanced and well-supported 

microcomputers on the market are the devices from Raspberry Pi family. The 

Raspberry Pi Foundation was originated by David Braben, Jack Lang, Pete Lomas, 

Alan Mycroft, Robert Mullins and Eben Upton. 

 The Raspberry Pi is a low cost, credit-card sized computer that plugs into a 

computer monitor or TV, and uses a standard keyboard and mouse [28]. It is a capable 

little device that enables people of all ages to explore computing, and to learn how to 

program in languages like Scratch and Python. It is capable of doing everything you 

would expect a desktop computer to do, from browsing the internet and playing high-

definition video, to making spreadsheets, word-processing, and playing games. 

What is more, the Raspberry Pi has the ability to interact with the outside world, 

and has been used in a wide array of digital maker projects, from music machines and 

parent detectors to weather stations and tweeting birdhouses with infra-red cameras. 
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We want to see the Raspberry Pi being used by kids all over the world to learn to 

program and understand how computers work. 

There have been three generations of Raspberry Pis: Pi 1, Pi 2, Pi 3, and there 

has generally been a Model A and a Model B of most generations. Model A is a cheaper 

variant and tends to have reduced RAM and ports like USB and Ethernet. The Pi Zero 

is a spinoff of the original (Pi 1) generation, made even smaller and cheaper. 

The Raspberry Pi operates in the open source ecosystem: it runs Linux (a variety 

of distributions), and its main supported operating system, Raspbian, is open source 

and runs a suite of open source software. The Raspberry Pi Foundation contributes to 

the Linux kernel and various other open source projects as well as releasing much of 

its own software as open source 

The Raspberry Pi's schematics are released, but the board itself is not open 

hardware. The Raspberry Pi Foundation relies on income from the sale of Raspberry 

Pis to do its charitable work. 

 The Raspberry Pi hardware has evolved through several versions that feature 

variations in the type of the central processing unit, amount of memory capacity, 

networking support, and peripheral-device support. 

 The Raspberry Pi Foundation provides Raspberry Pi OS (formerly called 

Raspbian), a Debian-based (32-bit) Linux distribution for download, as well as third-

party Ubuntu, Windows 10 IoT Core, RISC OS, and LibreELEC (specialized media 

center distribution) [28]. It promotes Python and Scratch as the main programming 

languages, with support for many other languages. The default firmware is closed 

source, while unofficial open source is available. Many other operating systems can 

also run on the Raspberry Pi. Third-party operating systems available via the official 

website include Ubuntu MATE, Windows 10 IoT Core, RISC OS and specialized 

distributions for the Kodi media center and classroom management. The formally 

verified microkernel seL4 is also supported [39]. 

 At the time of the conduction of the research, there are two most popular models 

of Raspberry Pi on the market, which might fit as a user-interaction unit for 3D printer: 
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 The model with the highest specification is the Raspberry Pi 3 Model B (Fig. 

2.2.), so for many general-purpose projects this is the best bet. It is the most powerful 

Pi, with the fastest clock speed, the most RAM, and best all-round feature set. It 

provides speed and power as well as some additional benefits if form of built-in Wi-Fi 

and Bluetooth modules. 

 

 

Fig. 2.2. Raspberry Pi 3 Model B 

 

The Pi 3 gives a genuinely pleasant desktop PC experience, in no small part 

thanks to four years of extreme work in optimizing the official Pi operating system, 

Raspbian. The Pi 3 boots in a matter of seconds, the web browser flies, you can open 

Minecraft and create a world in no time at all, and intensive applications like 

LibreOffice and Mathematica respond as they should on a decent PC. 

However, as basically, anything in the world it has some cons and pros. The pros 

are: fast, powerful, excellent value for money, while the main con is a decent amount 

of consumed power. 

Another popular model is Pi Zero (Fig. 2.3.). The Pi Zero is the smallest, lightest, 

cheapest Pi available.  

 

Fig. 2.3. Raspberry Pi Zero 
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It's not available in bulk, so it's not ideal if lots of them are needed, but it's perfect 

for embedded projects that don't rely on wireless connectivity, though it is always 

possible to add a Wi-Fi or Bluetooth dongle. 

The Pi Zero's CPU is the Pi 1's BCM2835 overclocked to 1GHz, so it's even 

faster than a Pi 2 (though only single-core). It also packs 512MB RAM, giving it a 

surprisingly reasonable desktop experience. In terms of power usage, it's one of the 

lowest, around the same as a Model A+. 

Now that the Pi Zero has a camera interface, it's perfect for projects like high-

altitude ballooning, where size and weight really count. 

The Pi Zero is not ideal for use as a general-purpose PC, as you need adapters 

to convert from mini-HDMI and micro-USB, plus a USB hub, although this could still 

work out cheaper than a full-sized Pi 3 [39]. 

Its pros are price, size, weight while the cons are limited availability, no wireless 

connectivity, GPIO header unpopulated. 

So, it looks, like, with some additional efforts any of those models might be 

selected as a user-interaction unit for a 3D printer, because both of them can: be used 

with an external touchscreen display (via HDMI or mini-HDMI), connect to the 

Internet via Wi-Fi (though an additional dongle is needed for Pi Zero), connect to 

Arduino via a USB connection. Most importantly, both of them can run on the full 

desktop version of a Linux distributive, which would allow us to render a complex UI 

and provide robust and stable work of the system. 

 

2.2. Controlled elements of 3D printer 

 

 Apart from a controlling part of a 3D printerer, there are some controlled pieces 

of hardware, which are responsible for different phases of printing. They should be 

chosen wisely, as their quality and reliability are crucial, when printing some complex 

detail or figure. 
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2.2.1. Extruder 

 

 The 3D extruder is the part of the 3D printer that ejects material in liquid or 

semi-liquid form in order to deposit it in successive layers within the 3D printing 

volume. In some cases, the extruder serves only to deposit a bonding agent used to 

solidify a material that is originally in powder form. 

 Found in 3D Fused Deposition Modeling (FDM) or Fused Filament Fabrication 

(FFF) printers, the extruder is also required for proper operation of machines using 

Binder Jetting or Polyjet technologies, and even 3D Systems’ CPX machines. These 

are additive manufacturing machines that need to deposit material before transforming 

it either by adding a bonding agent to it (Binder Jetting) or by changing the chemical 

properties (Polyjet and CPX). These technologies are explained in our guide about the 

different kinds of 3D printing. 

 The filament extruder on a FDM printer is the part that extrudes the plastic 

filament in a liquid form and deposits it on a printing platform by adding successive 

layers. The printing head is made of many distinct parts including a motor to drive the 

plastic filament and a nozzle (or extruder) to extrude the plastic. 

Some 3D FDM / FFF printers are now equipped with two extruders. This enables 

you, in particular, to print two materials simultaneously in order to obtain 3D prints in 

two colors. The presence of two extruders also allows support material to be extruded, 

which can be removed afterward using a solvent. 

To regulate the plastic cooling process, some printers are enclosed. This helps 

maintain a uniform temperature in the manufacturing chamber, ensuring greater 

consistency in the print result. 

The most common kinds of Binder Jetting printers are probably the Projet 

printers from 3D Systems. These printers have an extruder that projects a bonding 

agent (or color) onto a powder material. It’s the action of projecting this bonding agent 

onto successive layers of powder that creates the object. 
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Polyjet technology, originally developed by Objet (which is now owned by 

Stratasys), is also based on the projection of resin in the form of droplets onto the 

printing platform. Once the droplets are projected, UV polymerizes the resin. 

The cold end is the cold part in the upper portion of the 3D printer extruder. At 

this point, there is no heating of the filament. This is just the part with the motor and 

gearing, pushing the 3D printer filament into the hot end. Different systems actually 

exist, there is usually a combination of gears and hobbed bolts, dictating the movement 

of the printing filament 

The hot end is the part where the filament is transitioning from solid to liquid, 

while extruded on the building plate. But how is the filament melting? Indeed, 

something has to be hot enough to melt materials and as we want to print an accurate 

part, the temperature between the cold filament, the hot end, and the final cold and 

solid part has to be perfectly managed. The heat break, in combination with the heat 

sink, maintains a boundary at which the filament is confronted with high temperatures. 

There is, in the system, a heater cartridge that is getting hot, transferring heat to the 

nozzle via the heater block in aluminum. 

Most desktop 3D printers ship with 0.4mm nozzles as standard, but there are 

many other sizes available. Brass is usually used for 3D printer nozzles, but there are 

also several options. For some materials, stainless steel can be preferred. 

 There is not a single extruder type, the choice will depend on the kind of 3D 

printer that you have, on the used materials, and on the required printing speed and 

accuracy. 

There are two different possibilities: Direct or Bowden extruders. The nature of 

your projects will determine which extruder you need to use. First, all extruders have 

motors, but there are also geared extruders to control your print speed. It is not 

essential, but it can help you to customize your setups in order to improve your print 

quality. 

Direct extruders are directly attached to the hot end, while a Bowden extruder 

(or remote extruder) has a tube to link the hot end and the extruder body. For direct 

extruders, the gear rotates by a stepper motor driving directly the filament to the 
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extruder hot end. The filament path is shorter, that is why Direct extruders are better to 

3D print flexible materials than Bowden extruders You can totally 3D print flexible 

filament with a Direct extruder, but it is not really convenient.   

With Bowden extruders you can 3D print your projects faster. It is easier to 

accelerate or decelerate because there is just the printing head to move, not the whole 

extruder hot end. 

They both can have a direct drive system. Indeed, for both of them the filament 

drive mechanism can be mounted to the motor shaft, directly. 

Moreover, there are extruders for all filament thickness, for 3mm filament, 

1.75mm filament, etc. 

Differences between Bowden and direct extruders can be seen on Fig. 2.4. 

 

 
Fig. 2.4. Bowden extruder vs direct extruder 

 

 Overall, it looks, like, when selecting a proper extruder for a 3D printer the 

following moments should be taken into consideration: 

• type of the extruder (Bowden or direct); 

• material which is expected to be used for this 3D printer; 

• the number of extruders 
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2.2.2. Motion controllers 

 

 Motion control systems and motors are invaluable for the growing 3D printing 

industry. As the industry grows across services and sectors, the precision, accuracy, 

and speed of the printers are becoming increasingly important.  

Motion control systems coordinate and regulate the many moving parts in a 3D 

printer. They serve to accurately synchronize multiple axes, increase the precision of 

printing mechanisms, reduce noise, and increase print speed. Motors assist gantries to 

achieve the necessary positioning and movement.  

Motion control systems also provide the precision and accuracy required to 

make unprecedented progress in 3D printing and other fields. Bioprinting pioneers that 

are manufacturing living organs, tissue, bones, and cartilage are researching 3D 

printing as a viable option. 

The following motion control systems are used with different end goals in mind: 

• The Advanced Motion Controls (AMC) Click & Move motion control system 

can run several different 3D printers at once. The Click & Move coordinates all 

the different axes with different motor types, enabling efficient, precise, and 

effective 3D printing. Furthermore, Click & Move can coordinate systems with 

multiple print nozzles that are used to make single parts with distinctive 

materials or colors. The motion control system is modular and scalable, 

providing ease for 3D printer manufacturers to keep using the system as their 

product line evolves; 

• The PI (Physik Instrumente) ACS-based motion controller with EtherCat 

connectivity runs the gantry and communicates with the high precision 

dispenser. The motion controller brings the medical field one step closer to 

fabricating human organs layer-by-layer. The PI motion controller allows 3D 

printing systems to be constructed in a few days or less. They are designed to 

provide a high level of performance and to be compatible with STL files. 

A stepper motor (Fig. 2.5.) is a type of electric motor that can be accurately 

controlled with the controller. Most 3D printer use four or five stepper motors. Three 
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or four motors control the x/y/z axis movement (sometimes the z axis is controlled by 

two motors) and one motor is used per extruder. 

 

 
 

Fig. 2.5. Stepper motor 
 

A stepper driver (Fig. 2.6.) is a chip that acts as a kind of middle-man between 

a stepper motor and the controller. It simplifies the signals that need to be sent to the 

stepper motor in order to get it to move. 

 

 
 

Fig. 2.6. RepRap Stepper Motor Driver v2.x 
 

Sometimes the stepper drivers are on separate circuit boards that are linked to 

the controller via cables. 

Sometimes the stepper drivers are on small circuit boards that plug directly into 

the controller itself. In this case, the controller will have space for at least 4 of these 

small circuit boards (one for each stepper motor). 

Finally, sometimes the stepper drivers are soldered right onto the controller 

itself. 
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Both the horizontal movement of the nozzle gantry and the vertical movement 

of the build plate need to move and be positioned precisely. The material comes out in 

small increments, but overlapping or diverging too much within the same layer can 

make the print very messy. The printer nozzle needs to move very carefully in order to 

draw out the shape of each layer, which can consist of completely separate parts for 

some layers of certain shapes. There is very little room for error. And if the nozzle is 

too close or too far away from the build plate, the filament will not stick correctly. 

All of the movement and positioning of the build plate are usually accomplished 

with some form of linear actuator. The nozzle gantry, on the other hand, usually uses 

linear motors of stepper motors with belts to achieve the necessary positioning and 

movement. And where there is a stepper motor or linear motor, there must be some 

sort of drive, often a servo drive. 

Another critical motion control component is in the extruder, the feeding 

mechanism that pushes and pulls filament through the nozzle. material isn’t always 

flowing through the nozzle. It needs to stop when the nozzle is moving over a gap in 

the layer and while the build plate is lowering. The nozzle flow also needs to be 

regulated when the nozzle moves through different geometries. For example, if the 

nozzle keeps extruding material at a continuous speed when it makes a sharp turn, you 

can end up with corner swell. The material flow rate needs to be lowered during the 

corner to get an even thickness with no swell. 

When choosing the most appropriate type of motion controllers, we should 

consider, if the printer should support multiple nozzles and what precision of the 

printing is required. 

 

2.2.3. Heating platform 

 

 A heated build platform (Fig. 2.7.), also known as a heated bed, on a 3D printer 

is where the part is printed out, layer by layer. By having the build platform heated, 

there will be less warping and curling of the plastic by evenly distributing the cooling 

process for a part 
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 A common type of heated bed uses circuity boards (PCBs) as heating elements. 

While such type of printers is cheaper to buy, they are not specifically designed to work 

as heating elements for the complex process of 3D printing. One disadvantage of using 

such types of heated beds is that, since the PCBs are made of aluminum and copper 

strips, they can deform over time after continuously being subjected to heat. 

 

 

Fig. 2.7. Heating platform 

 

 ABS and PLA plastic can sometimes shrink and curl up at the edges as the part 

cools. This causes a problem as more layers are added, which causes the part to warp. 

To solve this problem, heated build platforms are used to keep the bottom layers of the 

part warm as layers are added, which helps the part to cool evenly. The heated bed is 

insulated so that the parts do not soften or melt. Heated bed material includes glass, 

metal, or ceramic. Heated build platforms should be about 120° Celsius for ABS plastic 

and 55° Celcius for PLA plastic. 

 When extruded plastic is released from the printer nozzle, it begins to cool. 

During that cooling process, it also shrinks in size, and it is during shrinking that the 

part may become uneven and warped, since the cooling may occur at different rates at 

different points on the part’s surface. 
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The heated bed ensures that the printed part stays warm all over during the 

printing process to allow for more even shrinking once it beings to cool below its 

melting point. All in all, the heated bed fulfils two tasks: 

• It increases the surface energy of the print bed. This improves the bonding 

strength at the top layer; 

• It keeps the bottom part hot enough to eliminate the risk of warping for the rest 

of the print. The bed carries out a delicate balancing act of cooling the plastic 

without over-cooling it. 

The extruder part of the printer deposits molten plastic into the receiver bed 

while supplying a certain degree of heat. The temperature of the heat bed needs to be 

below the glass point to ensure the print cools into a solid. A lot depends on the 

temperature sensor of the heat bed to get the required heat that needs to be supplied 

just right. 

Regardless of the materials used, the heated bed should be thermally insulated 

so that it doesn't melt or soften any plastic parts underneath the bed. Commonly used 

insulator materials are cardboard, wool, and cotton cloth on top of medium density 

fiberboard MDF. The heated bed can also be mounted directly to a wooden platform 

without any noticeable negative effects. Wool may be a good option for insulation 

because its ignition temperature is 600C.  

It is safe to conclude, that if we want to achieve the highest quality of printed 

goods and avoid having a problem with them, being glued to the platform, when using 

some materials, like ABS and PLA, it is required to use a heating platform. 

 

2.2.4. Touchscreen 

 

The last, but not least is a touch screen. This is the part of the print which will 

be one of the most used by the customer. So, it should be reliable, responsive, it should 

be able to properly display the UI and, most importantly, process user’s input and send 

it to the user-interaction unit. 
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As Raspberry Pi was selected as a user-interaction unit for this project, the 

touchscreen should be supported by the selected version of Raspberry Pi (either 

Raspberry Pi 3 Model B or Raspberry Pi Zero). 

There are lots of different models of touch screens in the market right now, but 

still the most reliable and popular solution is the official one from Raspberry Pi, called 

Raspberry Pi Touch Display (Fig. 2.8.). 

 

 

Fig. 2.8. Raspberry Pi Touch Display 

 

The 800 x 480 display connects via an adapter board which handles power and 

signal conversion. Only two connections to the Pi are required; power from the Pi’s 

GPIO port and a ribbon cable that connects to the DSI port present on all Raspberry 

Pis (except Raspberry Pi Zero and Zero W).  Touchscreen drivers with support for 10-

finger touch and an on-screen keyboard will be integrated into the latest Raspberry Pi 

OS for full functionality without a physical keyboard or mouse. 
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2.3. Defining the parameters of the 3D printer  

 

 In the previous chapters, the most crucial hardware elements of a 3D printer 

were described. It looks, like for the 3D printer we will need:  a controller unit, a user-

interaction unit, extruder(s), motion controllers (motion steppers and drivers), heating 

bed and a touchscreen. 

 Before choosing the most appropriate hardware, some basic requirements to the 

3D printer should be formulated: 

• the sizes of the printer; 

• number of extruders; 

• supported materials; 

• accuracy; 

• filament thickness; 

• speed; 

• nozzle diameter; 

• presence of a heating bed; 

• required sensors. 

For this particular project, the following parameters were chosen as optimal (table 

2.1.): 

 

Table 2.1 

3D printer parameters 

Parameter Requirements 

Size of the printer 400x300x400 

Number of extruders 1 

Supported materials ABS, ABS+, PLA, HIPS 

Accuracy For a household printer, the 

recommended level of accuracy is 

50microns 
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Continuation of Table 2.1 

Filament thickness The most common thickness for 

household printers is 1,75mm 

Speed Recommended speed for a household 

printer is 50–200mm/s 

Nozzle diameter In general, the nozzle diameter of 

0.4mm is enough to provide the chosen 

accuracy 

Presence of a heating bed  As ABS, ABS+ and PLA are listed as 

supported materials, it is recommended 

to add a heating platform 

Required sensors As only 1 extruder is used and a heating 

platform is requested, then we will need 

at least 2 temperature sensors. Also, as 

we will have moving steppers for three 

axes (X, Y and Z), six end-stops are 

required in order to prevent the moving 

parts from collapsing into the sides of 

the printer. 

 

 Now, as the strict set of requirements is defined, it is possible to prepare a 

suggestion on architecture design of hardware part of a 3D printer. In order to design 

the most optimal, reliable and robust architecture, the most appropriate parts of the 

system should be picked. 

 While some parts, like extruder, motion controllers, heating platform and touch 

screen are pretty standardized, so, basically, any of the currently available offers on the 

market can be used, there are two crucial parts, which are the “brains” of the printer 

should be considered and estimated in order to come up with the most optimal solution. 

 



 54 
2.4. Hardware architecture design using method of multicriteria weighted 

estimations 

 

 In this work we will use the method of multicriteria weighted estimations to 

analyze alternatives of controller unit and user-interaction unit and select the most 

appropriate one. 

 This method is used for choosing of the most optimal variant in cases, when the 

choice is made, based on quality criteria.  Moreover, it is used for simplification of 

calculations, when quantity criteria are used. 

 Quantity criteria give the estimation in quantity indications, like size, square, 

width, etc. 

 Meanwhile, quality criteria give the estimation in quality indications, like 

efficiency, reliability, speed, etc. 

 Method of multicriteria weighted estimations uses the following algorithm: 

1. formulation of choosing criteria; 

2. picking weights of criteria; 

3. choice of a rating scale; 

4. ranking of options according to the selected criteria; 

5. calculation of a weighted score for each option for each criterion; 

6. calculation of the final weighted score for each option; 

7. choosing the best option. 

The option with the highest final weighted score is selected, if the calculations 

use positive criteria, otherwise – the option with the lowest score is selected. 

Advantages of this method are: 

• the simplicity of calculations; 

• it is possible to use this method in cases, when retrieving of quantity criteria 

is limited or not possible at all; 

• the result of calculations might be a choice of the most optimal variant as 

well ranking according to the degree of attractiveness of all investigated 

options; 
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However, this method also has its disadvantages, the biggest one is not the 

highest accuracy, which is related to the fact, that expert scores, which are used for 

choosing of criteria as well for defining their weights and estimating by the given 

criteria are subjective. 

 In order to select the most appropriate device for both controller board, the 

following criteria were selected: price, performance, reliability, extensibility. 

 As follows from the section 2.1.1., we have two most popular options for the 

motherboard: Arduino Uno and Arduino Mega. They were giving the following weight 

scores for each criterion: 

 

Table 2.2 

Motherboards criterion weight scores 

Device / 

Criterion 
Price Performance Reliability Extensibility Sum ∑ 𝑟!"

!#$  

Arduino Uno 5 2 4 3 14 

Arduino Mega 3 5 4 5 17 

Scores sum 𝑟! 8 7 8 8 31 

 

 The weight of each score can be calculated by the following formula: 

 

𝜎! =
𝑟!

∑ 𝑟!"
!

 (2.1) 

  

 Therefore, the weights for each criterion are following: 

• Price: 8 / 31 = 0.26; 

• Performance: 7 / 31 = 0.22; 

• Reliability: 8 / 31 = 0.26; 

• Extensibility: 8 / 31 = 0.26 

Weighted coefficients for each criterion: 
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Table 2.3 

Weighted coefficients for each criterion 

Criterion Criterion weight 
Score of the criterion on a 10-point scale 

Arduino Uno Arduino mega 

Price 0.26 8 5 

Performance 0.22 6 9 

Reliability 0.26 8 8 

Extensibility 0.26 5 9 

 

 The weighted score for each option for each criterion can be calculated, using 

the following formula 

 

𝐾!%	'(!)*+(, = 𝐾!% ∗ 𝜎! (2.2) 

  

The calculation of the final score for each option is done, using this formula: 

 

𝑆! =(𝐾!%	'(!)*+(,

"

%#!

 (2.3) 

  

 The results of final weighted estimation for each device are listed in table 2.4: 

 

Table 2.4 

Result scores for each device 

Device / 

Criterion 
Price Performance Reliability Extensibility Sum 

Arduino Uno 2.08 1.32 2.08 1.3 6.78 

Arduino Mega 1.3 1.98 2.08 2.34 7.7 
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Based on the results of the performed calculations, Arduino Mega seems to be a 

slightly better choice. Even though it has much higher price, than Arduino Uno, it 

comes with better performance and extensibility, which compensate the price 

difference.  However, the difference of final scores is not very high, which means, it is 

still possible to select Arduino Uno if the main goal is to create the cheapest possible 

solution. 

The same method can be applied for analysis of available options for user-

interaction control unit. As of now, two of the most popular Raspberry Pi versions are: 

Raspberry Pi 3 Model B and Raspberry Pi Zero. They will be compared, using the same 

criteria as for motherboard: price, performance, reliability, extensibility. 

The user-interaction units criterion weight scores are shown in table 2.5. 

 

Table 2.5 

User-interaction units criterion weight scores 

Device / 

Criterion 
Price Performance Reliability Extensibility Sum ∑ 𝑟!"

!#$  

Raspberry Pi 3 

Model B 
2 4 5 5 16 

Raspberry Pi 

Zero 
5 2 3 2 12 

Scores sum 𝑟! 7 6 8 7 28 

 

 Using formula (2.1), we can get the weights for each criterion are following: 

• Price: 7 / 28 = 0,25; 

• Performance: 6 / 28 = 0,21; 

• Reliability: 8 / 28 = 0,29; 

• Extensibility: 7 / 28 = 0,25. 

Weighted coefficients for each criterion: 
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Table 2.6 

Weighted coefficients for each criterion 

Criterion Criterion weight 
Score of the criterion on a 10-point scale 

Raspberry Pi 3 Model B Raspberry Pi Zero 

Price 0.25 5 8 

Performance 0.21 7 4 

Reliability 0.29 9 5 

Extensibility 0.25 9 4 

 

 Using formulas (2.2) and (2.3) we can get the results of final weighted estimation 

for each device: 

 

Table 2.7 

Result scores for each device 

Device / 

Criterion 
Price Performance Reliability Extensibility Sum 

Raspberry Pi 3 

Model B 
1.25 1.47 2.61 2.25 7.58 

Raspberry Pi 

Zero 
2 0.84 1.45 1 5.29 

  

 As we can see from the results table, even though Raspberry Pi 3 Model B is 

more expensive than Raspberry Pi Zero, it shows higher performance, reliability and 

extensibility, which completely overweight the price difference. The difference in final 

scores between models is rather noticeable, so it looks like Raspberry Pi Zero cannot 

be recommended as a user-interaction unit for a 3D printer. 
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2.5. Conclusions for section 2 

 

 In the second part of the work, the most crucial elements of 3D printer hardware 

part were described and analyzed. Such elements are: controller board, user-interaction 

unit, extruder, motion controllers, heating platform and LCD touchscreen. 

 Then the requirements to the 3D printer were formulated in terms of the sizes of 

the printer, number of extruders, supported materials, accuracy, filament thickness, 

speed, nozzle diameter, presence of a heating bed and required sensors. 

 Some of the hardware components, like extruder, motion controllers, heating 

platform and LCD touchscreen are quite standard, so almost any available solution on 

the market would fit the give requirements. 

 However, in order to select and find some strong arguments in favor of the best, 

currently available solution on the market for motherboard and user-interaction unit, 

the method of multicriteria weighted estimations was used. 

 Using the most important criteria, which are price, performance, reliability and 

extensibility we were able to conduct, that the most appropriate motherboard for the 

desired 3D printer is Arduino Mega, while the best choice of a user-interaction unit 

would be Raspberry Pi 3 Model B. 

 In general, during this part we were able to formulate the requirements, suggest 

and prove the most appropriate architecture design for a 3D printer. 
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SECTION 3 

SOFTWARE DESIGN 

 

3.1. Critical software elements for 3D printing system 

 

 Now, when the hardware part of the system was defined it is required to come 

up with the requirements to the software part. The software is just as important as the 

hardware, because it gives the means for the hardware to work properly as well as it 

provides different user interfaces for all kinds of interactions and manipulations over 

the hardware. 

 The design of the software part should consider all user requirements (such as 

local and remote UIs), as well as handle all internal system communications between 

hardware and different parts of software. 

 It looks like, in order to satisfy the minimal requirements, it is necessary to 

introduce such pieces of software: 

• Microcontroller firmware – a proxy between the printer’s hardware and 

software, which handles user’s interactions; 

• Local UI – to provide the ability to work with the device directly; 

• Remote UI – to provide the ability to with the device remotely; 

• Slicer – to prepare 3D models to be printed via the printer; 

• Cloud Storage – to store original and prepared 3D models and share them 

with other users; 

• Proxy-server – to provide the communication between the 3D printer and 

Remote UI. 

 

3.1.1. Microcontroller firmware 

 

 As stated in 2.1.1, Arduino motherboard was chosen as the primary 

microcontroller of the printer. It will be one of the most crucial parts of the system, 
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because it is responsible for passing commands from user to the different hardware 

parts of the system. 

 In order to do so, the specific software, called firmware should be installed on 

the Arduino board. 

 Firmware, like its name implies, is the bridge between the hardware and software 

of a computer system. When software sends commands to the hardware of a computer 

system, the firmware interprets and translates the software commands into a form that 

is recognizable by the hardware. 

When the 3D printer software sends G-code to your 3D printer, the firmware 

translates the G-code commands into specific electrical signals that are sent to the 

motors, heaters, fans and other components on the 3D printer. 

For example, if the host software sends “G1 X50 Y50” to the 3D printer, the 3D 

printer firmware determines how far the motors need to turn to move the extruder to X 

= 50 mm and Y = 50 mm, then sends the electrical signals to the motors to turn them 

the appropriate amount. 

As this piece of software is highly complex, it seems to be a wise choice to select 

one of the available open-source solutions, with a few years of production usage and a 

big, active community. 

Nowadays, one of the most popular and well-adopted firmware for 3D printers 

is Marlin. Marlin is an open-source firmware for the RepRap family of replicating rapid 

prototypes — popularly known as “3D printers.” It was derived from Sprinter and grbl, 

and became a standalone open-source project on August 12, 2011. Marlin is licensed 

under the GPLv3 and is free for all applications. 

From the start Marlin was built by and for RepRap enthusiasts to be a 

straightforward, reliable, and adaptable printer driver that “just works.” As a testament 

to its quality, Marlin is used by several respected commercial 3D printers. Ultimaker, 

Printrbot, AlephObjects (Lulzbot), and Prusa Research are just a few of the vendors 

who ship a variant of Marlin. Marlin is also capable of driving CNC’s and laser 

engravers. 
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One key to Marlin’s popularity is that it runs on inexpensive 8-bit Atmel AVR 

micro-controllers - Marlin 2.x has added support for 32-bit boards. These chips are at 

the center of the popular open0source Arduino/Genuino platform. The reference 

platforms for Marlin are an Arduino Mega2560 with RAMPS 1.4 and Re-Arm with 

Ramps 1.4. 

As a community product, Marlin aims to be adaptable to as many boards and 

configurations as possible. We want it to be configurable, customizable, extensible, 

and economical for hobbyists and vendors alike. A Marlin build can be very small, for 

use on a headless printer with only modest hardware. Features are enabled as-needed 

to adapt Marlin to added components. 

Main features: 

• Full-featured G-code with over 150 commands 

• Complete G-code movement suite, including lines, arcs, and Bézier curves 

• Smart motion system with lookahead, interrupt-based movement, linear 

acceleration 

• Support for Cartesian, Delta, SCARA, and Core/H-Bot kinematics 

• Closed-loop PID heater control with auto-tuning, thermal protection, safety 

cutoff 

• Support for up to 5 extruders plus a heated printbed 

• LCD Controller UI with more than 30 language translations 

• Host-based and SD Card printing with autostart 

• Bed Leveling Compensation — with or without a bed probe 

• Linear Advance for pressure-based extrusion 

• Support for Volumetric extrusion 

• Support for mixing and multi-extruders (Cyclops, Chimera, Diamond) 

• Support for Filament Runout/Width Sensors 

• Print Job Timer and Print Counter 
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Marlin Firmware runs on the 3D printer’s main board, managing all the real-

time activities of the machine. It coordinates the heaters, steppers, sensors, lights, LCD 

display, buttons, and everything else involved in the 3D printing process. 

Marlin implements an additive manufacturing process called Fused Deposition 

Modeling (FDM) – aka Fused Filament Fabrication (FFF). In this process a motor 

pushes plastic filament through a hot nozzle that melts and extrudes the material while 

the nozzle is moved under computer control. After several minutes (or many hours) of 

laying down thin layers of plastic, the result is a physical object. 

The control-language for Marlin is a derivative of G-code. G-code commands 

tell a machine to do simple things like “set heater 1 to 180°,” or “move to XY at speed 

F.” To print a model with Marlin, it must be converted to G-code using a program 

called a “slicer.” Since every printer is different, you won’t find G-code files for 

download; you will need to slice them yourself. 

As Marlin receives movement commands it adds them to a movement queue to 

be executed in the order received. The “stepper interrupt” processes the queue, 

converting linear movements into precisely-timed electronic pulses to the stepper 

motors. Even at modest speeds Marlin needs to generate thousands of stepper pulses 

every second. 

Heaters and sensors are managed in a second interrupt that executes at much 

slower speed, while the main loop handles command processing, updating the display, 

and controller events. For safety reasons, Marlin will actually reboot if the CPU gets 

too overloaded to read the sensors. 

 Marlin can be controlled entirely from a host or in standalone mode from an SD 

Card. Even without an LCD controller, a standalone SD print can still be initiated from 

a host, so your computer can be untethered from the printer.  

 Using Marlin as firmware for the 3D printer will give an opportunity to 

concentrate the efforts on providing the best possible UI and UX, without having to 

spent lots of time developing a custom firmware. 
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3.1.1.1. Firmware mathematical model 

 

 Firmware for a 3D printer is a complicated and multifunctional piece of 

software. It is responsible for all the underlaying operations, such as communication 

with hardware parts of the system, as well as for processing commands from the client 

and sending the appropriate response. 

 The mathematical model of the commands processing workflow, is represented 

on Fig. 3.1., where: 

 X – set of input parameters (commands in form of signals, received from the 

client); 

 Y – set of output parameters (commands in form of signals, send to the hardware 

elements of the 3D printer); 

 Z – set of disturbing effects of the environment (different signal interferences, 

connection losses, etc.); 

 A – operator of a mathematical model that is a set of algorithms and 

functions. 

 
Fig. 3.1. Mathematical model of the command 

processing workflow 



 65 
 The main terms and definitions from the object-classification model and 

connections between them, are described further. 

 Command – a command in form of set of signals, received from the connected 

client (Raspberry Pi in our case). The set of commands in the firmware is: 

 

𝐶 = 	 +𝑐$, 𝑐-, … , 𝑐.(0)/, (3.1) 

 

where, n(C) = |C| - the power of the set C, which corresponds to the number of 

commands, supported by the firmware. 

 Transformer – the part of the firmware’s code, responsible for interpretation of 

the received commands, to the commands, which can be send to a particular piece of 

hardware (e.g., extruder, motion gears, etc.). The set of transformers: 

  

𝑇 = 	 +𝑡$, 𝑡-, … , 𝑡.(2)/, (3.2) 

  

where, n(T) = |T| - the power of the set T, which corresponds to the number of 

transformations, supported by the firmware 

 Error – possible errors, which can occur in the firmware during the 

interpretation of the command. They might be caused by incorrect input parameters 

from the client, as well as by some disturbing environment events (signal interferences, 

connection losses, etc.). The set of errors: 

 

𝐸 = 	 +𝑒$, 𝑒, … , 𝑒.(3)/, (3.3) 

 

where, n(E) = |E| - the power of the set E, which corresponds to the number of errors, 

handled by the firmware. 

 The connections between classes from the object-classification model are: 

 G – relation between the received command and transformer, which should 

process it. 
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 P – relation between the transformation and a set of errors, which might occur 

in the process. 

 

3.1.2. Local user interface 

 

 Even though Marlin will handle all low-level interactions with the hardware, the 

user can’t work with it directly. So, it is necessary to provide some proxy between the 

user and the firmware. 

 Usually, a local UI is developed for this purpose. It should consist of at least two 

parts: 

• Backend – which will be responsible for communication between the 

frontend and the firmware; 

• Frontend – which will be responsible for user’s interactions and sending the 

commands to the backend. 

The communication between backend, frontend and the firmware is shown n 

Fig. 3.1.: 

 
Fig. 3.2. Scheme of communication between  

Frontend, Backend and Firmware 

 

As was stated in 2.1.2., Raspberry Pi was selected as a user-interaction unit. One 

of the biggest advantages of the boards from Raspberry foundation is the fact that they 



 67 
can run a fully-functional distributive of Linux. Which gives unlimited possibilities to 

the developers. 

It seems like, for implementation of the local UI the simplest approach would be 

to implement a backend, using some server-side technology, like Python, NodeJS, Go 

or C#, which is capable of communication with the Arduino’s firmware. While the 

frontend part can be implemented as a Web application, which runs in some locally 

installed browser. 

The communication between backend and hardware can be implemented in a 

straightforward way, as described in 3.1.1. In this way the backend sends different 

GCode commands to the firmware, and in response it receives some answers, which 

should be handled properly. 

Meanwhile, the Frontend should be very responsive and provide the real-time 

data about the temperature, position of the extruder, the motion drivers, the platform, 

about the printing progress, etc. 

There are multiple ways to achieve this kind of responsiveness. For example, 

one of the polling strategies. 

The simplest way to get new information from the server is periodic polling. 

That is, regular requests to the server, which are executed, for example, once every 10 

seconds. 

In response, the server first takes a notice to itself that the client is online, and 

second – sends a packet of messages it got till that moment. 

That works, but there are downsides: 

• Messages are passed with a delay up to 10 seconds (between requests). 

• Even if there are no messages, the server is bombed with requests every 10 

seconds, even if the user switched somewhere else or is asleep. That is quite 

a load to handle, speaking performance-wise. 
So, this approach seems to be inappropriate for a real-time system, which 

requires high performance, efficiency and reliability. 

Long poling is essentially a more efficient form of the original polling technique. 

Making repeated requests to a server wastes resources, as each new incoming 
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connection must be established, the HTTP headers must be parsed, a query for new 

data must be performed, and a response (usually with no new data to offer) must be 

generated and delivered. The connection must then be closed, and any resources 

cleaned up. Rather than having to repeat this process multiple times for every client 

until new data for a given client becomes available, long polling is a technique where 

the server elects to hold a client’s connection open for as long as possible, delivering a 

response only after data becomes available or a timeout threshold has been reached. 

Implementation is mostly a server-side concern. On the client side, only a single 

request to the server needs to be managed. When the response is received, the client 

can initiate a new request, repeating this process as many times as is necessary. The 

only difference to basic polling, as far as the client is concerned, is that a client 

performing basic polling may deliberately leave a small-time window between each 

request so as to reduce its load on the server, and it may respond to timeouts with 

different assumptions than it would for a server that does not support long polling. 

With long polling, the client may be configured to allow for a longer timeout period 

(via a Keep-Alive header) when listening for a response – something that would usually 

be avoided seeing as the timeout period is generally used to indicate problems 

communicating with the server. 

 

Fig. 3.3. Long polling strategy 
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 Apart from these concerns, there is little else that a client needs to do that would 

be different than if it were engaging in basic polling. By contrast, the server needs to 

manage the unresolved state of multiple connections, and it may need to implement 

strategies for preserving session state when multiple servers and load balancers are in 

use (commonly referred to as session “stickiness”). It also needs to gracefully handle 

connection timeout issues. 

 As long polling is really just an improvisation applied to an underlying request-

response mechanism, it comes with an additional degree of complexity in its 

implementation. 

 Reliable message ordering can be an issue with long polling because it is 

possible for multiple HTTP requests from the same client to be in flight 

simultaneously. For example, if a client has two browser tabs open consuming the same 

server resource, and the client-side application is persisting data to a local store such 

as localStorage or IndexedDb, there is no in-built guarantee that duplicate data won’t 

be written more than once. This could also happen if the client implementation uses 

more than one connection at a time, whether deliberately or as a result of a bug in the 

code. 

Another issue is that a server may send a response, but network or browser issues 

may prevent the message from being successfully received. Unless some sort of 

message receipt confirmation process is implemented, a subsequent call to the server 

may result in missed messages. 

Depending on the server implementation, confirmation of message receipt by 

one client instance may also cause another client instance to never receive an expected 

message at all, as the server could mistakenly believe that the client has already 

received the data it is expecting. 

All of these concerns, and more need to be considered when implementing 

robust support for long polling in any real-time messaging system. 

 Unfortunately, such complexity is difficult to scale effectively. To maintain the 

session state for a given client, that state must either be shareable among all servers 

behind a load balancer – a task with significant architectural complexity – or 
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subsequent client requests within the same session must be routed to the same server 

to which their original request was processed. This form of deterministic “sticky” 

routing is problematic by design, especially when routing is performed on the basis of 

IP address, as it can place undue load on a single server in a cluster while leaving other 

servers mostly idle instead of spreading the load around efficiently. This can also 

become a potential denial-of-service attack vector – a problem which then requires 

further layers of infrastructure to mitigate that might otherwise have been unnecessary. 

 So, it is safe to say that neither regular nor long polling are a good choice for a 

complex real-time system because of their overall limitations and complexity. 

 An alternative solution might be to use a modern way for handling 

communication between server and client in real-time systems – WebSockets. 

 A WebSocket is a persistent connection between a client and server. 

WebSockets provide a bidirectional, full-duplex communications channel that operates 

over HTTP through a single TCP/IP socket connection. At its core, the WebSocket 

protocol facilitates message passing between a client and server. 

 The idea of WebSockets was borne out of the limitations of HTTP-based 

technology. With HTTP, a client requests a resource, and the server responds with the 

requested data. HTTP is a strictly unidirectional protocol — any data sent from the 

server to the client must be first requested by the client. Long-polling has traditionally 

acted as a workaround for this limitation. With long-polling, a client makes an HTTP 

request with a long timeout period, and the server uses that long timeout to push data 

to the client. Long-polling works, but comes with a drawback — resources on the 

server are tied up throughout the length of the long-poll, even when no data is available 

to send. 

WebSockets, on the other hand, allow for sending message-based data, similar 

to UDP, but with the reliability of TCP. WebSocket uses HTTP as the initial transport 

mechanism, but keeps the TCP connection alive after the HTTP response is received 

so that it can be used for sending messages between client and server. WebSockets 

allow us to build real-time applications without the use of long-polling. 
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The protocol consists of an opening handshake followed by basic message 

framing, layered over TCP. WebSockets begin life as a standard HTTP request and 

response. Within that request response chain, the client asks to open a WebSocket 

connection, and the server responds (if it is able to). If this initial handshake is 

successful, the client and server have agreed to use the existing TCP/IP connection that 

was established for the HTTP request as a WebSocket connection. Data can now flow 

over this connection using a basic framed message protocol. Once both parties 

acknowledge that the WebSocket connection should be closed, the TCP connection is 

torn down. 

 

 

Fig. 3.4. A visual representation of WebSockets 

 

It looks like, in order to provide a robust real-time system for a 3D printer, the 

WebSocket technology is the best choice. 

Now, as the decision on architecture of the Local UI was made, it is necessary 

to choose a list of technologies, which should be used for the development. 

As the Local UI will consist of two parts – Frontend and Backend, we should 

choose the technologies for both of them. 
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Frontend is going to be a Web application, so there is not too much of options if 

we are talking about the programming language. There are a few different languages 

for Web development around, however the most spread, popular and well-known one 

is JavaScript. JavaScript (JS) is a lightweight, interpreted, or just-in-time compiled 

programming language with first-class functions. While it is most well-known as the 

scripting language for Web pages, many non-browser environments also use it, such 

as Node.JS, Apache CouchDB and Adobe Acrobat. JavaScript is a prototype-based, 

multi-paradigm, single-threaded, dynamic language, supporting object-oriented, 

imperative, and declarative (e.g., functional programming) styles. 

JavaScript runs on the client side of the web, which can be used to design / 

program how the web pages behave on the occurrence of an event. JavaScript is an 

easy to learn and also powerful scripting language, widely used for controlling web 

page behavior. 

JavaScript can function as both a procedural and an object-oriented language. 

Objects are created programmatically in JavaScript, by attaching methods and 

properties to otherwise empty objects at run time, as opposed to the syntactic class 

definitions common in compiled languages like C++ and Java. Once an object has been 

constructed it can be used as a blueprint (or prototype) for creating similar objects. 

JavaScript's dynamic capabilities include runtime object construction, variable 

parameter lists, function variables, dynamic script creation, object introspection, and 

source code recovery (JavaScript programs can decompile function bodies back into 

their source text). 

Although, JS is a really powerful programming language, currently, one of its 

biggest benefits and struggles at the same time is the lack of a strict types system. This 

is good for beginners and small solution, like MVPs or quick prototypes, however this 

approach does not scale really well for big, complex, sometimes even multipart 

solutions. 

In such cases the most appropriate solution would be to select one of the 

available supersets of JavaScript, which provide a strict compile-time types system. 

Nowadays, the most popular one is Typescript. TypeScript is an open-source language 
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which builds on JavaScript, one of the world’s most used tools, by adding static type 

definitions. 

Types provide a way to describe the shape of an object, providing better 

documentation, and allowing TypeScript to validate that the code is working correctly. 

The next step would be to select a frontend framework for the development. 

There are lots of available options, number of which grows daily. However, over the 

last few years, there have been three main leaders – Angular, React and Vue. 

All three of them have many years of production usage, open-source code, huge 

communities and big companies, like Google and Facebook behind them. 

Choose of the framework is usually based on the project specific requirements, 

however, right now all three main frameworks cover most of the cases, just in different 

ways, So, it seems to be a choice of preference for a particular developer or team. 

Angular is the oldest and the most advanced framework out of the big trinity. 

Angular is a platform and framework for building single-page client applications 

using HTML and TypeScript. Angular is written in TypeScript. It implements core and 

optional functionality as a set of TypeScript libraries that you import into your apps. 

The architecture of an Angular application relies on certain fundamental 

concepts. The basic building blocks of the Angular framework are Angular 

components that are organized into NgModules. NgModules collect related code into 

functional sets; an Angular app is defined by a set of NgModules. An app always has 

at least a root module that enables bootstrapping, and typically has many more feature 

modules. 

Components define views, which are sets of screen elements that Angular can 

choose among and modify according to your program logic and data 

Components use services, which provide specific functionality not directly 

related to views. Service providers can be injected into components as dependencies, 

making your code modular, reusable, and efficient. 

Modules, components and services are classes that use decorators. These 

decorators mark their type and provide metadata that tells Angular how to use them. 
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The metadata for a component class associates it with a template that defines a 

view. A template combines ordinary HTML with Angular directives and binding 

markup that allow Angular to modify the HTML before rendering it for display. 

The metadata for a service class provides the information Angular needs to make 

it available to components through dependency injection (DI). 

An app's components typically define many views, arranged hierarchically. 

Angular provides the Router service to help you define navigation paths among views. 

The router provides sophisticated in-browser navigational capabilities. 

The last step would be to select the technologies for the server side of the Local 

UI. As Typescript was chosen as the programming language for the Frontend part, it 

might be a wise choice to use the similar technology stack on the backend. 

It can be done, via the server-side JavaScript runtime – NodeJS. NodeJS is an 

open-source, cross-platform, JavaScript runtime environment. It executes JavaScript 

code outside of a browser. 

Nevertheless, the Backend will require some means to be able to connect to a 

Wi-Fi network, as well as to the Arduino motherboard. Gladly, it has almost full access 

to the underlying APIs of the Linux distributive, which will give us a possibility to 

implement those connections. 

So, it looks like in order to implement the Local UI, the following technology 

stack can be used: TypeScript, Angular, NodeJS. 

 The basic interaction algorithm would look like: 

• User uploads a model’s file in GCode format to the 3D printer and starts the 

printing process; 

• Backend retrieves the file and starts reading it line-by-line, validating the 

commands and forwarding them to the Arduino motherboard; 

• Arduino handles the commands appropriately and sends response; 

• As Backend sends the commands, it can send some progress to the Frontend, 

as well as different statistic, like current temperature, position of the moving 

units, etc.; 
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• Once the printing is over, all moving parts are returned to the initial position 

and Frontend shows some kind of notification for the user; 

• Then the user can verify if the model was printed correctly and get it off the 

heating platform. 

 Some of the UI screens are listed below: 

 
Fig. 3.5. Printing process 

 

 
Fig. 3.6. Connection to Wi-Fi network 
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Fig. 3.7. Manual control over the extrusion 

and X, Y, Z motion-drivers 

 

 
Fig. 3.8. Thermoregulation section 
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Fig. 3.9. Local file storage 

 

 
Fig. 3.10. System update UI 
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3.1.3. Remote user interface 

 

 Apart from being able to interact with a 3D printer directly, it should also be 

possible to be able to access it remotely. This feature might be useful for remote control 

over the printing process. For example, it is possible to provide an embedded camera 

as an additional option, which would send the printing live-stream to the Remote UI. 

Also, sometimes the printing process might take hours or even days. In such cases it 

would be extremely useful to be able to see the progress to properly plan the next steps 

or, even, to adjust the temperature of an extruder or the heating if it is necessary. 

 It seems, like the best choice for a Remote UI, would be a Web-application, 

because it can give us the best coverage for users on different platforms, mobile, 

desktop, etc. 

 A consistent design choice would be to use the same technology stack, as was 

used for the Local UI – Typescript, Angular, NodeJS, WebSockets. 

 However, the Remote UI a bit more complicated, than the Local one, because 

multiple users can access the same device from different devices at the time. This 

requirement brings a need to support multiple connections to the same device. As 3D 

printers are usually connect to some local Wi-Fi or Ethernet networks, they don’t have 

a public IP-address, which can be accessed from any part of the planet. 

 In order to solve this issue, the proposed solution would be to implement a proxy 

server. This server would be responsible for establishing the communication between 

a device and client. 

 In general, the communication algorithm might look like: 

• Once the device is connected to a Wi-Fi network, it connects to the proxy-server 

via the WebSocket connection; 

• Proxy-server marks device as “online”; 

• When client wants to connect to a particular device, they should pick the one 

from “online” list; 

• Proxy-server registers a connection between the device and the client and starts 

forwarding messages between them; 
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• Once the connection is established, the Remote UI can send different commands 

directly to the device, which means, that now it has the same capabilities as the 

Local UI. 

A simplified connection schema is shown in Fig. 3.11.: 

 

 
Fig. 3.11. Proxy-server connection schema 

 

 Another difference from the Local UI is that, for local UI we always have one 

user and we do not really care about their authorization and authentication. However, 

for the Remote UI it is critical to provide some security measures to protected the 

devices from unsanctioned access. 

 It seems, like a huge amount of work to implement a custom authorization 

solution. The better alternative would be to use one of the existing platforms instead. 

Currently, there are a lot of different offers in the Web ecosystem in area of security. 

One of the most popular solutions is Auth0. 

 Auth0 is an identity management platform for application builders and 

developers. It provides a web-scale cloud solution that includes APIs and tools that 

enable developers to eliminate the friction of authentication and authorization of their 

applications and APIs. 

Auth0 enables users to single sign-on for applications running on various 

platforms with various identity providers; add few lines of JavaScript to power their 

applications; customize various stages of the authentication and authorization pipeline, 
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and connect their applications and APIs to their database of users and passwords. Its 

platform also allows users to authenticate to active directory, LDAP, SAML, Integrated 

Windows Authentication, Google Apps, Salesforce, and other IdPs without having to 

configure firewall; add and remove users, modify profiles and authorization attributes, 

and identify root cause user login issues; see a stream of recent logins and their 

locations; and enable various SaaS and SAML-enabled applications. 

Having a reliable authorization system, it is now possible to implement a well-

secured, robust and highly accessible Web-Application for a remote access. 

So, just to summarize, the Remote UI should meet the following requirements: 

• Adaptiveness (supporting desktop, mobile and tablets); 

• User-friendly UI; 

• Connection to the proxy-server for interactions with the 3D printer; 

• All the features of Local UI. 

Some screens of the Remote UI can be seen next: 

 

 
Fig. 3.12. Authorization page 
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Fig. 3.13. Device Confirmation 

 

 
Fig. 3.14. List of devices 
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Fig. 3.15. Status, printing, temperature and cooling controls 

 

 
Fig. 3.16. Manual, z-axis, console, storage, firmware, reboot controls 
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Fig. 3.17. Update, camera, debug mode controls 

 

 
Fig 3.18. Printing process (Mobile layout) 
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3.2. Additional software elements for 3D printing system 

 

 Once all crucial software parts of the system are in place, it is time to finish the 

initial plans for the ecosystem. The system cannot work without the firmware, Local 

UI, Remote UI and the proxy server, because they are the core of the ecosystem. Even 

though, they are the minimal required pieces of software for such kind of system, there 

is still a place for improving UX. 

 There might be various ways of bringing additional features and interfaces to 

simplify the user’s daily work with the system. However, this work will focus on two 

most usable applications: 

• Slicer – for preparing 3D models to be printed via a particular 3D printer; 

• Cloud storage – for storing the original and prepared 3D models and share 

them with other users. 

Also, just having those two additional interfaces in a vacuum what be really 

helpful to the user. It is necessary to come up with some kind of communication 

between those parts of the system, to provide a real ecosystem. 

As the main thing between Slicer, Cloud Storage, Local and Remote UI is 3D 

models (either original in STL format, or converted to GCode), it seems reasonable to 

build the ecosystem around work with those files. 

One of the common user scenarios might be: 

1. User uploads the model to Slicer, configures all required settings and receives 

the GCode; 

2. Then they either save the GCode to the Cloud Storage to be printed later, or 

send it to be printed by a particular 3D printer via the Remote UI, using a 

specific command in the Slicer’s interface. 

Another scenario might be as follows: 

1. User opens previously prepared GCode file in the Cloud Storage; 

2. Then they send it to the Remote UI to be printed by a specific 3D printer via 

the dedicated command in the Cloud Storage’s interface. 

Yet another use case might be next: 
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1. User opens previously uploaded STL file in the Cloud Storage; 

2. Then they send it to the Slicer, to prepare it for printing; 

3. Once the slicing is done, they send the received GCode to the Remote UI and 

select, which printer should print it; 

4. As an addition step, they might want to safe the prepared GCode file to the 

Cloud Storage, in order to repeat the printing later. 

As you can see there is a lot of different ways for user to work with just those 2 

addons. In future, as the ecosystem evolves, it is possible to come up with much more 

different user scenarios and addons, which might improve the ecosystem. To be able 

to do so, the architecture of the system should be flexible and allow us to add new parts 

of the system without the need to change or notify in any way any already existing 

parts of the system. 

It looks like, one of the easiest and most flexible approach to this would be come 

up with a number of commands, supported by each of applications, which could be 

triggered via the specific URL parameters. For example, in order to print the prepared 

model from the Cloud Storage, the Remote UI might support a “modelURL” query 

parameter, which when received, would start a chain of processes which should be 

done to fetch the model from the Cloud Storage and then send it to a particular printer. 

As we are going to use Auth0 as main identity provide, it is crucial to make sure 

that only owner of the model or 3D printer can interact with them. 

In order to do so we would need to provide a seamless authorization between 

our apps, so the user is not required to login each time they are being redirect from one 

app to another. Usually, this feature is implemented via the SSO (Single Sign One) 

approach. Auth0 allows developers to enable this feature out-of-the-box, with just a 

few additional settings. 

At the end it looks like this particular set up will be enough to cover the most 

basic use-cases and improve the UX, for the users. 

So final schema of the 3D printer ecosystem might look like: 
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Fig. 3.19. 3D printing ecosystem 

 

3.2.1. Slicer 

 

 Slicing is a process, of preparation of 3D models in STL format to be printed by 

a specific printer, using a tool from the “Slicers” class. Usually, such kind of software 

provides means and tools to configure the printing parameters for a particular 3D 

printer, such as platform dimensions, nozzle diameter, temperature mode (based on the 

type of filament), number of extruders (if the printer supports more than 1 extruder), 

speed limitations, printing quality, supports, filament skirts and many others. 

Moreover, it is quite common to see the virtual platform in Slicer. It allows user to 

place one or more models in one scene and configure their sizes, position and rotation. 

 The final product of the slicing process is a GCode file, which contains a set of 

commands, which can be executed by a printer. In order to create such file, based on 

initial models, their placement on the platform and the printing parameters, a lot of 

different manipulations should be performed. 

 To avoid the necessity for creation of a custom transformation engine it seems 

to be a good idea to use previously mentioned CuraEngine. It takes a STL as input 

alongside with multiple configuration settings and produces a high quality optimized 

GCode, which can be then passed onto printer. 
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 Providing user with a possibility to preview the model(s) on the virtual platform 

requires some kind of an engine for work with graphic. As we selected Web as the 

target platform for our ecosystem, it is necessary to select an engine which is optimized 

to be used in Web. 

 There are various of different 3D engines, which are based on WebGL 

nowadays. WebGL (Web Graphics Library) is a JavaScript API for rendering high-

performance interactive 3D and 2D graphics within any compatible web browser 

without the use of plug-ins. WebGL does so by introducing an API that closely 

conforms to OpenGL ES 2.0 that can be used in HTML5 <canvas> elements. This 

conformance makes it possible for the API to take advantage of hardware graphics 

acceleration provided by the user's device. 

 Although, WebGL can be used on its own it requires a lot of work, development 

wise, to use it. So, we still need to select an engine. One of most popular tools in this 

area is Three.js. Three.js is a cross-browser JavaScript library and application 

programming interface (API) used to create and display animated 3D computer 

graphics in a web browser using WebGL. The source code is hosted in a repository on 

GitHub. Three.js allows the creation of graphical processing unit (GPU)-accelerated 

3D animations using the JavaScript language as part of a website without relying on 

proprietary browser plugins. This is possible due to the advent of WebGL. 

High-level libraries such as Three.js or GLGE, SceneJS, PhiloGL, or a number 

of other libraries make it possible to author complex 3D computer animations that 

display in the browser without the effort required for a traditional standalone 

application or a plugin 

So, it seems, like all requirements are covered and the following technology 

stack can be used to implement the Slicer: 

• Typescript; 

• NodeJS; 

• Angular; 

• Auth0; 

• Three.js; 
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But there is a lot of other additional things to consider for such type of system, 

but they are not too important for this work and so, can be skipped. 

Some screens of the applications are listed below: 

 

 
Fig. 3.20. Main interface 

 

 
Fig. 3.21. Complex scene 
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Fig. 3.22. Settings 

 

 
Fig. 3.23. Complex sliced scene 

 

3.2.2. Cloud storage 

 

 The last part of the ecosystem is represented by the Cloud Storage, which allows 

users to store, preview, share and select for printing different models in STL and 

GCode formats. This is the simplest part of the system, as it serves a very simple and 

straightforward purpose – keeping user’s data safe and highly available. 



 90 
 However, this application has one single quirk, which should be considered, 

when building such kind of applications. It is the storage itself. As it seems rather 

redundant to develop custom implementation of the storage, because it should be fast, 

reliable, with high availability rate. More appropriate solution might be select 

something, already available on the market. For example, Google, Microsoft and 

Amazon provide their own robust data storage centers, which met all the requirements 

and in addition, they are not really expensive. 

Otherwise, the technology stack for this piece of software is rather the same as 

for the previous parts: 

• Typescript, as the programming language; 

• NodeJS as the environment for the backend; 

• Angular as the frontend framework; 

• Auth0 as the identity provider; 

Some screens of the application are listed below: 

 

 
Fig. 3.24. List of uploaded files 
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Fig 3.25. Files management 

 

3.3. Conclusions for section 3 

 

 This part provides a set of suggestions on what should be implemented, software 

wise, for a 3D printing computer appliance. Those pieces of software create a core of 

the system, extended by some useful addons, like the Slicer and the Cloud Storage, 

which improve overall user experience. The proposed design covers all basic user 

scenarios, when working with a 3D printing system on the daily basis. As always, there 

is still a room for different improvements and extensions for the platform, but the 

provided architecture allows us to easily bring new parts to the system from both 

software and hardware perspective. 
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РОЗДІЛ 4 

ЕКОНОМІКА 

 

4.1. Визначення трудомісткості розробки програмного забезпечення 

 

Початкові дані: 

1. передбачуване число операторів програми – 1800; 

2. коефіцієнт складності програми – 1,7; 

3. коефіцієнт корекції програми в ході її розробки – 0,07; 

4. годинна заробітна плата програміста– 70грн/год; 

5. коефіцієнт збільшення витрат праці в наслідок недостатнього 

опису задачі – 1,2; 

6. коефіцієнт кваліфікації програміста, обумовлений від стажу 

роботи з даної спеціальності – 1,0; 

7. вартість машино-години ЕОМ –17 грн/год. 

 

Нормування праці в процесі створення ПЗ істотно ускладнено в силу 

творчого характеру праці програміста. Тому трудомісткість розробки ПЗ може 

бути розрахована на основі системи моделей з різною точністю оцінки. 

Трудомісткість розробки ПЗ можна розрахувати за формулою: 

 

, людино-годин (4.1) 

 

де   to- витрати праці на підготовку й опис поставленої задачі (приймається 

70 людино-годин); 

tи - витрати праці на дослідження алгоритму рішення задачі; 

tа- витрати праці на розробку блок-схеми алгоритму; 

tп-витрати праці на програмування по готовій блок-схемі; 

tотл-витрати праці на налагодження програми на ЕОМ; 

tд - витрати праці на підготовку документації. 

дотлпаиo ttttttt +++++=
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Складові витрати праці визначаються через умовне число операторів у 

програмногму забезпеченні, яке розробляється. 

Умовне число операторів (підпрограм):  

 

, 

 

де  q - передбачуване число операторів (1800);  

C - коефіцієнт складності програми (1,7); 

p - коефіцієнт корекції програми в ході її розробки (0,07). 

Звідси умовне число операторів в програмі: 

 

Q = 1,7 · 1800· (1 + 0,07) = 3274,2 людино-годин, 

 

Витрати праці на вивчення опису задачі tи визначається з урахуванням 

уточнення опису і кваліфікації програміста: 

 

 , людино-годин, 

 

де   B - коефіцієнт збільшення витрат праці внаслідок недостатнього опису 

задачі; 

k - коефіцієнт кваліфікації програміста, обумовлений від стажу роботи з 

даної спеціальності.При стажі роботи від 2 до 3 років він складає 1,0. 

Приймемо збільшення витрат праці внаслідок недостатнього опису 

завдання не більше 50% (B = 1,2). З урахуванням коефіцієнта кваліфікації k = 1,0, 

отримуємо витрати праці на вивчення опису завдання: 

 

tu= (3274,2 · 1,2) / (80 · 1,0) = 49,11 людино-годин 

Витрати праці на розробку алгоритму рішення задачі визначаються за 

формулою: 

)1( pCqQ +××=

k
BQtu ×
×

=
)85..75(
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, людино-годин (4.2) 

 

де Q – умовне число операторів програми; 

k – коефіцієнт кваліфікації програміста. 

Підставивши відповідні значення в формулу (4.2), отримаємо: 

 

ta= 3274,2 / (22 · 1,0) = 148,8 людино-годин. 
 

Витрати на складання програми по готовій блок-схемі: 

 

 , людино-годин. 

 

tn = 4002 / (22 · 1,0) = 148,8 людино-годин. 

 

Витрати праці на налагодження програми на ЕОМ: 

- за умови автономного налагодження одного завдання: 

 

 , людино-годин. 

 

tотл = 3274,2 / (4 · 1,0) = 818,55 людино-годин. 

 

- за умови комплексного налагодження завдання: 

 

 , людино-годин. 

tkотл= 1,5 · 818,55 = 1227,8 людино-годин. 
 

Витрати праці на підготовку документації визначаються за формулою: 

k
Qta ×

=
)2520( !

k
Qtп ×

=
)2520( !

k
Qtотл ×

=
)5..4(

отл
k
отл tt ×= 5,1
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 , людино-годин, 

 

де tдр-трудомісткість підготовки матеріалів і рукопису: 

 

 , людино-годин, 

 

tдо - трудомісткість редагування, печатки й оформлення документації: 

 

 , людино-годин. 

 

Підставляючи відповідні значення, отримаємо: 

 

tдр = 3274,2 / (17 · 1,0) = 192,6 людино-годин. 

tдо = 0,75 · 192,6 = 144,45 людино-годин. 

tд = 192,6 + 144,45 = 337,05 людино-годин. 

 

Повертаючись до формули (4.1), отримаємо повну оцінку трудомісткості 

розробки програмного забезпечення: 

 

t = 70 + 49,11 + 148,8  + 148,8  + 818,55 + 337,05 = 1572, 31 людино-годин. 

 

 

 

 

 

 

додрд ttt +=

k
Qtдр ×

=
)20..15(

дрдо tt ×= 75,0
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4.2. Витрати на створення програмного забезпечення 

 

Витрати на створення ПЗ КПО включають витрати на заробітну плату 

виконавця програми ЗЗП і витрат машинного часу, необхідного на налагодження 

програми на ЕОМ: 

 

, грн. 

 

Заробітна плата виконавців визначається за формулою: 

 

, грн, 

 

де: t - загальна трудомісткість, людино-годин; 

СПР  - середня годинна заробітна плата програміста, грн/година 

З урахуванням того, що середня годинна зарплата програміста становить 60 

грн / год, отримуємо: 

 

ЗЗП = 1572, 31 · 70 = 110061,7 грн. 

 

Вартість машинного часу, необхідного для налагодження програми на ЕОМ, 

визначається за формулою: 

 

, грн, (4.3) 

 

де   tотл - трудомісткість налагодження програми на ЕОМ, год; 

Смч - вартість машино-години ЕОМ, грн/год (13 грн/год). 

Підставивши в формулу (4.3) відповідні значення, визначимо вартість 

необхідного для налагодження машинного часу: 

 

МВЗППО ЗЗК +=

ПРЗП СtЗ ×=

мчотлмв CtЗ ×=
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Змв= 818,55 · 17 = 13915,35 грн. 

 

Звідси витрати на створення програмного продукту: 

 

KПО = 110061,7 + 13915,35 = 123977,05 грн. 

 

Очікуваний період створення ПЗ: 

 

міс. 

 

де Bk- число виконавців (дорівнює 1); 

Fp - місячний фонд робочого часу (при 40 годинному робочому тижні 

Fp=176 годин). 

Звідси витрати на створення програмного продукту: 

 

T = 1572, 31 /( 1·176)  8,9 міс. 

 

4.3. Маркетингові дослідження 

 

 Розроблювана система ставить перед собою завдання зменшення порогу 

входження до сфери адитивного технологій для середньостатистичного 

користувача. Цей апаратно-програмний комплекс включає в себе як апаратне 

забезпечення у вигляді приладу для 3D друку – 3D принтеру, так й програмну 

складову, що забезпечує швидку, стабільну та надійну роботу, як комплексу в 

цілому так і його окремих елементів. 

 Така система ставить за мету спрощення щоденної взаємодії користувача 

з 3D принтерами. Проблема взаємодії є релевантною через те, що більшість 

сучасних систем для 3D друку розроблюється інженерами для інженерам, а тому 

мес.  , 
рk FB

tT
×

=

»
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середньостатистичний користувач повинен витратити багато власного часу та 

кошті, щоб налаштувати робочі процеси для взаємодії з 3D принтером. 

 Адже, 3D друк є багаторівневим складним процесом, що включає у себе 

багато комплексних кроків, таких, як: створення 3D моделі, підготовка та 

налаштування моделі до друку на конкретному 3D принтері, контроль за 

процесом друку, подальша обробка готового виробу та інші. 

 Розроблювана система ставить за мету вирішення цієї проблеми шляхом 

надання користувачу можливості проходження всіх етапів 3D друку в рамках 

однієї системи, всі компоненти якої пов’язані між собою та надають зручний та 

простий інтерфейс. 

 Програмна частина апаратно-програмного комплексу складається з: 

- системи для локального керування та взаємодії з 3D принтером; 

- системи для віддаленого керування та взаємодії з 3D принтером; 

- слайсеру – ПЗ, що дозволяє налаштувати та підготувати 3D моделі до 

друку на конкретному 3D принтері; 

- хмарного сховища – що дозволить користувачам зберігати 

оригінальні та підготовлені 3D моделі та ділитися ними з іншими. 

Унікальність цього продукту полягає у тому, що завдяки контролю 

повного циклу розробки програмної та апаратної частини системи є можливість 

забезпечити найкращу інтеграцію елементів системи між собою, що позитивно 

впливає  на загальний досвід користування, спрощує та прискорює роботу 

користувача в рамках системи. 

Наразі на ринку немає жодної системи, що надавала б повноцінну 

інтеграцію програмного та апаратного забезпечення. Адже, як було виявлено 

раніше, подібні системи розроблюються з прицілом на інженерів, що здатні 

самостійно скомпонувати систему, використовуючи окремі, не пов’язані між 

собою елементи, що унеможливлює повноцінну та безшовну інтеграцію. 

Через відсутність аналогів на рину не є можливим порівняння 

розроблюваного продукту. 
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Розповсюдження програмної частини системи вбачається доцільним 

забезпечити шляхом публікації її компонентів у вигляді WEB-додатків, що надає 

можливість покрити найбільший спектр потенційних користувачів, адже WEB 

відкриває для нас усі популярні платформи, такі, як Windows, OS X, Linux, iOS 

та Android. При цьому розроблення одного WEB-додатку є значно дешевшим у 

порівнянні з розробкою спеціального нативного додатку для кожної з платформ. 

Це дозволить значно прискорити початковий запуск продукту на ринку.  

На початку розвитку подібної платформи, гарною ідеєю є надання доступу 

до неї обмеженій кількості користувачів, наприклад, тільки власників апаратних 

приладів з екосистеми. 

 

4.4. Економічна ефективність 

  

 Економічний ефект від впровадження системи для 3D друку на 

виробництві, що потребує регулярного друку 3D прототипів різного роду 

деталей може дозволити підприємству: 

• заощадити на досить коштовному навчанні працівників для роботи на 3D 

принтерах; 

• спростити, поліпшити а пришвидшити рутинну роботу працівників, що 

взаємодіють з 3D принтерами; 

• підвищити швидкість друку прототипів, що у свою чергу допоможе 

прискорити налагодження серійного виробництва продукції. 

Таблиця 4.1 

Розрахунок чистих грошових надходжень від розробки ПЗ 

Показники, тис грн За роками Усього 

за 5 

років 

Середн

є за 5 

років 

0 1 2 3 4 5 

1. Інвестиції на ПЗ 124 - - - - - 124 24,8 
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Продовження таблиці 4.1 

2. Витрати до 

впровадження ПЗ 

- 320 170 320 170 320 1300 260 

- на навчання 

працівників 

- 150 60 150 60 150 570 114 

- на обслуговування 

3D принтерів 

- 90 30 90 30 90 330 66 

- на електроенергію - 15 15 15 15 15 75 15 

- на щорічну 

перевірку 

Держстандарту 

- 15 15 15 15 15 75 15 

- на оплату праці 

оператора 

- 50 50 50 50 50 250 50 

3. Витрати після 

впровадження ПЗ 

- 452,5 92,5 132,5 92,5 132,5 902,5 180,5 

- на придбання плат 

керування 

- 320 - - - - 320 64 

- на обслуговування 

3D принтерів 

- 70 30 70 30 70 270 54 

- на електроенергію - 12,5 12,5 12,5 12,5 12,5 62,5 12,5 

- на щорічну 

перевірку 

Держстандарту 

- 15 15 15 15 15 75 15 

- на оплату праці 

оператора 

- 35 35 35 35 35 175 35 

4. Економія - -132,5 77,5 187,5 77,5 187,5 397,5 79,5 

5. Амортизація - 60 35,5 - - - 95,5 19,1 

6. Чисті грошові 

надходження 

- -72,5 42 187,5 77,5 187,5 422 84,4 
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Продовження таблиці 4.1 

7. Коефіцієнт 

дисконтування 

- 0,907 0,815 0,724 0,68 0,61 - - 

Дисконтові грошові 

надходження 

- -65,8 32,2 135,8 52,7 114,4 269,3 53,9 

 

 Чиста поточна вартість доходів: 

  

NPU = 269,3 – 124  = 145,3  тис. грн > 0 

 Строк окупності: 

 

Т = 124 / 53,9  =  2,3 років 

 

 Індекс прибутковості: 

 

ІП = 269,3 / 124 = 2,2 

 

 Показник економічної ефективності NPU - чиста поточна вартість доходів 

за роки реалізації впровадження (3-5 років) складе 145,3 тис. грн тобто відповідає 

умовам ефективності, тому що NPU > 0. 

 Середній строк окупності капвкладень складе _ рік. 

 Індекс прибутковості за 5 років складе 2,2, тобто ІД > 1, проєкт варто 
прийняти. 
 Таким чином, показник ефективності свідчить про те, що дане 

впровадження є економічно вигідним.  
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CONCLUSIONS 

 

 The conducted research studied the idea of implementing a full-size ecosystem 

in the area of 3D printing. The root of the idea lies in the assumption, that this relatively 

new approach to building 3D printing systems is going to bring much better UX. This 

improvement might result in further popularization of 3D printing for wider layers of 

society and so, give a boost in development of additive technologies. 

 In order to prove this assumption, the following steps were taken: 

• we analyzed existing ecosystems outside the 3D printing area; 

• we analyzed existing solutions in 3D printing area; 

• we defined requirements for both hardware and software parts of the system; 

• we defined the most crucial hardware elements of the system; 

• we defined the most crucial software elements of the system; 

• we analyzed available options on hardware market; 

• we selected the most appropriate hardware elements for the system, using 

method of multicriteria weighted estimations; 

• we described a mathematical model for the firmware; 

• we developed the software part of the system; 

• we designed a 3D printing computer appliance from scratch. 

In general, any modern 3D printer consists of the following main parts: 

controller board, user interaction unit, motion controllers, extruder, heating platform 

and a touch screen. However, it is worth noticing, that in this study it was decided to 

concentrate on the biggest parts of a 3D printer. But there is still a lot of smaller pieces, 

which should be taken into consideration, when designing a 3D printing system.  

Motion controllers, extruder, heating platform and a touch screen are pretty 

much standardized on the market. But it is not that obvious, when it comes to the brains 

of the 3D printer – motherboard and user-interaction unit. To provide the most robust, 

reliable and efficient system it was decided to compare the available options for those 

two units, using method of multicriteria weighted estimations. 
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 For the motherboard we compared two most popular editions of Arduino board 

– Arduino Uno and Arduino Mega. Although, both of them are really close to each 

other, the analysis has shown, that Arduino Mega is slightly more preferrable, when 

building a reliable and robust system. 

 The two most popular options for user-interaction controller are Raspberry Pi 3 

and Raspberry Pi Zero. Here the method of multicriteria weighted estimations got 

further application and provided a strong analytical data. The data helped to decide in 

favor of Raspberry Pi 3, as Raspberry Pi Zero proved to be much less reliable and 

efficient, even though it is much more attractive when it comes to the price. 

 As the initial analysis shows, in order to satisfy the market’s needs, the software 

part of the system should provide not only the most crucial parts, but also some extra 

addons. 

 When it comes to the software part, the most crucial pieces are: firmware, local 

UI, remote UI and a proxy server to connect a particular 3D printer to a particular 

remote user. 

 To get a better understanding of how a 3D printing system should, a 

mathematical model for the firmware was created and applied to the developed system. 

The other crucial pieces of software were developed relaying on the most advanced 

technologies and solutions, available right now. Such as: 

• Marlin – for the robust and reliable firmware; 

• CuraEngine for the fast and precise slicing; 

• Auth0 for secure remote access; 

• Typescript – as the main programming language; 

• Angular – as frontend framework; 

• NodeJS – as server-side environment; 

• and a lot of other tools and technologies. 

Moreover, apart from the most crucial part, some additional elements were also 

defined and implemented. In order to improve user experience, decrease the entrance 

level to 3D printing and provide all required tools for daily work with a 3D printing 

system, some addons were introduced. Those are: 
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• Slicer – for preparation of the models to be printed on a particular printer; 

• Cloud storage – for keeping and sharing prepared and original models; 

However, it would not be a true ecosystem without some inner communication 

between different software and hardware parts. In order to cover this area, we 

introduced a special communication protocol, which allows all of the software parts to 

communicate and cover as much of user scenarios as possible. 

So, the result of this research is a design for a full-size 3D printing ecosystem, 

which includes: 3D printers with embedded software and different WEB-applications, 

which make it much easier to work within the 3D printing system. 

Furthermore, the most critical hardware decisions were made, using method of 

multicriteria weighted estimations.  
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APPENDIX А 

 

SOURCE CODE 

  
flicer-api 
 
app.js 
'use strict'; 
 
const port = 5080; 
 
const server = require('./lib/Server'); 
 
server.create({ 
 port 
}); 
 
server.start(); 
 
controllers/auth.js 
'use strict'; 
 
const auth = require('../lib/Authorization'); 
 
class AuthController { 
 
 /** 
  * Signs user in 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async signIn(req, res, next) { 
  try { 
   res.json(await auth.signIn(req.body)); 
  } catch (error) { 
   next(error); 
  } 
 } 
 
 /** 
  * Signs user up 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async signUp(req, res, next) { 
  try { 
   res.json(await auth.signUp(req.body)); 
  } catch (error) { 
   next(error); 
  } 
 } 
  
} 
 
module.exports = exports = new AuthController(); 
 
controllers/config-manager 
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'use strict'; 
 
const printerHelper = require('../helpers/db/PrinterHelper'); 
const profileHelper = require('../helpers/db/PrintProfileHelper'); 
 
const ConfigManager = require('../lib/ConfigManager'); 
 
class ConfigManagerController { 
 
 /** 
  * Compiles lists of possible configs 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async listConfigs(req, res, next) { 
  const { user } = req; 
 
    console.log(user); 
 
  try { 
   const printers = await user.getPrinters(); 
   const profiles = await user.getPrintProfiles(); 
 
   const printersList = printers.map(printer => ({  
    id: printer.id, 
    name: printer.name 
   })); 
 
   const profilesList = profiles.map(profile => ({ 
    id: profile.id, 
    name: profile.name 
   })); 
 
   return res.json({ 
    printers: printersList, 
    profiles: profilesList 
   }); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 /** 
  * Retrieves printer(s) record(s) from database 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async getConfigs(req, res, next) { 
  const { printerId, profileId } = req.body; 
  const { user } = req; 
 
  try { 
   const printer = await printerHelper.getUserPrinter(user, 
printerId); 
   const profile = await profileHelper.getUserPrintProfile(user, 
profileId); 
 
   const manager = new ConfigManager(printer.path); 
   const diff = Object.assign({}, printer.config, 
profile.config); 
 
   const allowed = manager.getAllowed(diff); 
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   printer.config = allowed.machine; 
   profile.config = allowed.print; 
 
   return res.json({ 
    printer, 
    profile 
   }); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 /** 
  * Updates configs 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async updateConfigs(req, res, next) { 
  const { printerId, profileId, printerConfig, profileConfig } = 
req.body; 
  const { user } = req; 
 
  try { 
   const printer = await printerHelper.getUserPrinter(user, 
printerId); 
   const profile = await profileHelper.getUserPrintProfile(user, 
profileId); 
 
   profile.config = profileConfig; 
   printer.config = printerConfig; 
 
   await printer.save(); 
   await profile.save(); 
 
   const manager = new ConfigManager(printer.path); 
   const diff = Object.assign({}, printerConfig, profileConfig); 
 
   const allowed = manager.getAllowed(diff); 
 
   printer.config = allowed.machine; 
   profile.config = allowed.print; 
 
   return res.json({ 
    printer, 
    profile 
   }); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 /** 
  * Recomputes configs 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 recomputeConfigs(req, res, next) { 
  const { printerConfig, profileConfig, path, dependency } = req.body; 
   
  const manager = new ConfigManager(path); 
  const diff = Object.assign({}, printerConfig, profileConfig); 
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  const allowed = manager.getAllowedDependants(dependency, diff); 
 
  res.json({ 
   printer: { 
    config: allowed.machine 
   }, 
   profile: { 
    config: allowed.print 
   } 
  }); 
 } 
 
} 
 
module.exports = exports = new ConfigManagerController(); 
 
controllers/mail.js 
'use strict'; 
 
const mailer = require('../lib/Mailer'); 
 
 
class MailController { 
 
 /** 
  * Sends message 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async send(req, res, next) { 
  const { message } = req.body; 
 
  try { 
   await mailer.send(message); 
   return res.sendStatus(200); 
  } catch (error) { 
   next(error); 
  } 
 } 
 
} 
 
module.exports = exports = new MailController(); 
 
controllers/slicer-process.js 
'use strict'; 
const fs = require('fs'); 
const path = require('path'); 
 
const { Slice } = require('../models').models; 
 
const printerHelper = require('../helpers/db/PrinterHelper'); 
const profileHelper = require('../helpers/db/PrintProfileHelper'); 
 
const sliceHelper = require('../helpers/db/SliceHelper'); 
const metricHelper = require('../helpers/db/MetricHelper'); 
const figureHelper = require('../helpers/db/FigureHelper'); 
const previewHelper = require('../helpers/db/PreviewHelper'); 
 
const pubSub = require('../lib/PubSub'); 
const storage = require('../lib/Storage'); 
const ConfigManager = require('../lib/ConfigManager'); 
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// Retrieve statuses 
const statusesPath = path.join(__dirname, '..', 'config', 'statuses.json'); 
const statuses = JSON.parse( 
 fs.readFileSync(statusesPath, 'utf8') 
).reduce((map, status) => { 
 map[status.name] = status.statusId; 
 return map; 
}, {}); 
 
class SliceProcessController { 
 
 constructor() { 
  this.extension = '.gcode'; 
 } 
 
 /** 
  * Retrieves slice's record 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async get(req, res, next) { 
  const { id } = req.params; 
  const { user } = req; 
 
  try { 
   const slice = await sliceHelper.getUserSlice(user, id); 
   let preview; 
 
   if (slice.statusId === statuses.completed) { 
    preview = await previewHelper.getSlicePreview(slice); 
   } 
    
   res.json({ 
    slice, 
    downloadURL: preview && await 
storage.getReadUrl(preview.name) 
   }); 
  } catch (error) { 
   next(error); 
  } 
 } 
 
 /** 
  * Initializes slice process 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async init(req, res, next) { 
  const { user } = req; 
  const { name, figures, figuresRenderingTime } = req.body; 
 
  try { 
   const slice = await user.createSlice({ 
    name, 
    statusId: statuses.uploading 
   }); 
 
   const parsedFigures = await this._parseFigure(figures, 
slice.id); 
   await this._createFiguresForSlice(slice, parsedFigures); 
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   const uploadURLs = parsedFigures.map(urls => urls.uploadURL); 
 
   const parsedName = name.replace(/.{32}/, ''); // Remove added 
uuid 
   const previewName = 
`${slice.id}/${parsedName}`.replace(/\..+$/, this.extension); // Replace 
extension 
 
   await slice.createPreview({ 
    name: previewName 
   }); 
 
   await slice.createMetric({ 
    figuresRenderingTime 
   }); 
 
   return res.json({ 
    slice, 
    uploadURLs 
   }); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 /** 
  * Sends request to start specified slice-process 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async start(req, res, next) { 
  const { id } = req.params; 
  const { user } = req; 
  const { printerId, profileId, figuresUploadingTime } = req.body; 
 
  try { 
   const slice = await sliceHelper.getUserSlice(user, id); 
   const printer = await printerHelper.getUserPrinter(user, 
printerId); 
   const profile = await profileHelper.getUserPrintProfile(user, 
profileId); 
 
   const figures = await figureHelper.getSliceFigures(slice); 
   const preview = await previewHelper.getSlicePreview(slice); 
 
   await slice.update({ 
    statusId: statuses.pending 
   }); 
 
   const manager = new ConfigManager(printer.path); 
   const diff = Object.assign({}, printer.config, 
profile.config); 
 
   const config = manager.computeRealDiff(diff); 
 
   const metric = await metricHelper.getSliceMetric(slice); 
 
   await metric.update({ 
    figuresUploadingTime, 
    slicePendingTimeStart: Date.now() 
   }); 
 
   pubSub.publish('pendingSlices', { 
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    preview, 
    figures, 
    config, 
    sliceId: slice.id, 
    configName: printer.path 
   }); 
 
   res.json(slice); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 // TODO: Discuss error handling while working with pubsub 
 /** 
  * Updates slice's record after slice-process has been started 
  * @param { object } process Object, which describes current state of 
slice-process 
  * @param { number } process.sliceId 
  * @param { number } process.figuresDownloadingTime 
  */ 
 async started(process) { 
  const { sliceId, figuresDownloadingTime } = process; 
 
  const slice = await Slice.findById(sliceId); 
  const metric = await metricHelper.getSliceMetric(slice); 
 
  await metric.update({ 
   figuresDownloadingTime, 
   slicePendingTimeEnd: Date.now(), 
   slicingTimeStart: Date.now() 
  }); 
 
  await slice.update({ 
   statusId: statuses.started 
  }); 
 } 
 
 /** 
  * Updates slice's during slice-process 
  * @param { object } process Object, which describes current state of 
slice-process 
  * @param { number } process.sliceId 
  * @param { number } process.progress 
  */ 
 async active(process) { 
  const slice = await Slice.findById(process.sliceId); 
  const { progress } = process; 
 
  await slice.update({ 
   progress, 
   statusId: statuses.active 
  }); 
 } 
 
 /** 
  * Updates slice's record affter slice-process has been completed 
  * @param { number } process.sliceId 
  * @param { number } process.size 
  * @param { number } process.previewUploadingTime 
  */ 
 async completed(process) { 
  const { sliceId, size, previewUploadingTime } = process; 
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  const slice = await Slice.findById(sliceId); 
  await slice.update({ 
   progress: null, 
   statusId: statuses.completed 
  }); 
 
  const metric = await metricHelper.getSliceMetric(slice); 
  await metric.update({ 
   previewUploadingTime, 
   slicingTimeEnd: Date.now() 
  }); 
 
  const preview = await previewHelper.getSlicePreview(slice); 
  await preview.update({ 
   size 
  }); 
 } 
 
 /** 
  * Updates slice's record if slice-process has failed 
  * @param { object } process Object, which describes current state of 
slice-process 
  * @param { number } process.sliceId 
  * @param { (string | object) } process.error Error, which lead to slice-
process' failure 
  */ 
 async failed(process) { 
  const slice = await Slice.findById(process.sliceId); 
  const { error } = process; 
 
  await slice.update({ 
   error, 
   statusId: statuses.failed 
  }); 
 } 
 
 /** 
  * Manually cancels slice-process 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async cancel(req, res, next) { 
  const { id } = req.params; 
  const { user } = req; 
   
  try { 
   const slice = await sliceHelper.getUserSlice(user, id); 
 
   if ( 
    slice.statusId === statuses.started 
    || slice.statusId === statuses.active 
   ) { 
    pubSub.publish('canceledSlices', { id }); 
   } 
 
   await slice.update({ 
    statusId: statuses.canceled 
   }); 
 
   res.json(slice); 
  } catch (error) { 
   return next(error); 
  } 
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 } 
 
 /** 
  * Marks slice as seen 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async seen(req, res, next) { 
  const { id } = req.params; 
  const { user, body } = req; 
 
  try { 
   const slice = await sliceHelper.getUserSlice(user, id); 
   const metric = await metricHelper.getSliceMetric(slice); 
 
   const { previewDownloadingTime, previewRenderingTime } = body; 
 
   await metric.update({ 
    previewDownloadingTime, 
    previewRenderingTime, 
    seen: true 
   }); 
 
   res.json(slice); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 /** 
  * Asynchronously parses given array of figures 
  * @ 
  * @param { object[] } figures 
  * @property { string } name 
  * @property { object } config 
  * @param { number } sliceId 
  * @returns { Promise<object[]> } Array of parsed figure, which can be 
used to create Figure recors 
  */ 
 _parseFigure(figures, sliceId) { 
  return Promise.all( 
   figures.map(async figure => { 
    const name = `${sliceId}/${figure.name}`; 
    const uploadURL = await storage.getWriteUrl(name); 
    return { 
     name, 
     uploadURL, 
     config: figure.config, 
     size: figure.size 
    }; 
   }) 
  ); 
 } 
 
 /** 
  * Creates Figures records from parsed figures, associated with given 
slice 
  * @param { Slice } slice 
  * @param { object[] } parsedFigures 
  */ 
 async _createFiguresForSlice(slice, parsedFigures) { 
  await Promise.all( 



 120 
   parsedFigures.map(async figure => await 
slice.createFigure(figure)) 
  ); 
 } 
 
 /** 
  * Merges given banch of configs into single one 
  * @param { ...Object } configs  
  * @returns { Object } 
  */ 
 _mergeConfigs(...configs) { 
  return Object.assign({}, ...configs); 
 }  
} 
module.exports = exports = new SliceProcessController(); 
 
controllers/slices.js 
'use strict'; 
 
const sliceHelper = require('../helpers/db/SliceHelper'); 
 
class SlicesController { 
 
 /** 
  * Retrieves slice(s) record(s) from database 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async get(req, res, next) { 
  const { id } = req.params; 
  const { user } = req; 
 
  try { 
   res.json(await sliceHelper.getUserSlice(user, id)); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 /** 
  * Updates specified slice record 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async update(req, res, next) { 
  const { id } = req.params; 
  const { user } = req; 
 
  const name = req.body.name || req.query.name; 
 
  try { 
   const slice = await sliceHelper.getUserSlice(user, id); 
 
   await slice.update({ 
    name 
   }); 
  } catch (error) { 
   return next(error); 
  } 
 
  res.sendStatus(201); 
 } 
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 /** 
  * Deletes specified slice record 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async delete(req, res, next) { 
  const { id } = req.params; 
  const { user } = req; 
 
  try { 
   const slice = await sliceHelper.getUserSlice(user, id); 
 
   await slice.destroy(); 
  } catch (error) { 
   return next(error); 
  } 
 
  res.sendStatus(204); 
 } 
  
} 
 
module.exports = exports = new SlicesController(); 
 
controllers/users.js 
'use strict'; 
 
const userHelper = require('../helpers/db/UserHelper'); 
 
class UsersController { 
 
 /** 
  * Retrieves user(s) record(s) from database 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async get(req, res, next) { 
  const { id } = req.params; 
 
  try { 
   if (id) { 
    return res.json(await userHelper.getUser(id)); 
   } 
 
   res.json(await userHelper.getUsers()); 
  } catch (error) { 
   return next(error); 
  } 
 } 
 
 // ToDo implement or remove 
 async create(req, res, next) { 
  res.sendStatus(500); 
 } 
 
 /** 
  * Updates specified user record 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
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 async update(req, res, next) { 
  const { id } = req.params; 
  const email = req.body.email || req.query.email; 
 
  try { 
   const user = await userHelper.getUser(id); 
 
   await user.update({ 
    email, 
   }); 
  } catch (error) { 
   return next(error); 
  } 
 
  res.sendStatus(201); 
 } 
 
 /** 
  * Deletes specified user record 
  * @param { IncomingMessage } req 
  * @param { ServerResponse } res 
  * @param { function } next 
  */ 
 async delete(req, res, next) { 
  const { id } = req.params; 
 
  try { 
   const user = await userHelper.getUser(id); 
   await user.destroy(); 
  } catch (error) { 
   return next(error); 
  } 
 
  res.sendStatus(204); 
 } 
 
} 
 
module.exports = exports = new UsersController(); 
 
helpers/ConfigHelper.js 
'use strict'; 
 
class ConfigHelper { 
 
 /** 
  * Recursevily looks up for field in settings 
  * @param { string } field 
  * @param { Object } config 
  */ 
 findField(field, settings) { 
  let result; 
 
  for (const category in settings) { 
   result = this.findInCategory(field, settings[category]); 
 
   if (result) { 
    return result; 
   } 
  } 
 } 
 
 /** 
  * Looks up for field in category 



 123 
  * @param { string } field 
  * @param { Object } category 
  */ 
 findInCategory(field, category) { 
  let result; 
 
  if (category.children && category.children[field]) { 
   return category.children[field]; 
  } 
 
  for (const child in category.children) { 
   if ( 
    typeof category.children[child] === 'object' 
    && category.children[child].children 
   ) { 
    result = this.findInCategory(field, 
category.children[child]); 
 
    if (result) { 
     return result; 
    } 
   } 
  } 
 } 
 
 /** 
  * Looks up for all leafs in settings 
  * @param { Object } settings 
  */ 
 findLeafs(settings) { 
  const leafs = []; 
 
  const fields = this.getFieldsList(settings); 
 
  for (const fieldName of fields) { 
   const field = this.findField(fieldName, settings); 
   if (!field.children && field.valueStatement) { 
    leafs.push(field); 
   } 
  } 
 
  return leafs; 
 } 
 
 /** 
  * Looks up for all leaf dependants of dependency 
  * @param { Object } dependency 
  * @param { Object } settings 
  */ 
 findLeafDependants(dependency, settings) { 
  if (!dependency.dependants) { 
   return []; 
  } 
 
  const depentantsFields = dependency.dependants.map( 
   dependant => this.findField(dependant, settings) 
  ); 
 
  const leafs = depentantsFields.filter(dependant => 
!dependant.children); 
  const dependencies = depentantsFields.filter(dependant => 
dependant.children); 
 
  for (const dependant of dependencies) { 
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   leafs.push(...this.findLeafDependants(dependant, settings)) 
  } 
 
  const filteredLeaves = leafs.filter((leaf, index, array) => 
   index === array.findIndex(l => ( 
    leaf.label === l.label 
   )) 
  ); 
 
  return filteredLeaves; 
 } 
 
 /** 
  * Looks up for all dependants of dependency 
  * @param { Object } dependency 
  * @param { Object } settings 
  */ 
 findAllDependants(dependency, settings) { 
  if (!dependency.dependants) { 
   return []; 
  } 
 
  const depentantsFields = dependency.dependants.map( 
   dependant => this.findField(dependant, settings) 
  ); 
 
  const dependants = [...depentantsFields]; 
  const dependencies = depentantsFields.filter( 
   dependant => dependant && (dependant.children || 
dependant.dependants) 
  ); 
 
  for (const dependant of dependencies) { 
   if ( 
    dependency.dependencies 
    && dependency.dependencies.includes(dependant.name) 
   ) { 
    continue; 
   } 
   dependants.push(...this.findAllDependants(dependant, 
settings)); 
  } 
 
  const filteredDependants = dependants.filter((dependant, index, 
array) => 
   dependant && index === array.findIndex(l => ( 
    dependant.label === l.label 
   )) 
  ); 
 
 
  return filteredDependants; 
 } 
 
 /** 
  * Recursevily compiles list of categories' fields 
  * @param { Object } settings 
  * @param { Object[] } target Target array 
  */ 
 categoryFieldsList(settings, target = []) { 
  for (const field in settings) { 
   target.push(field); 
 
   if (settings[field].children) { 
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    this.categoryFieldsList(settings[field].children, 
target); 
   } 
  } 
 } 
 
 /** 
  * Recursevily compiles list of settings' fields 
  * @param { Object } settings 
  */ 
 getFieldsList(settings) { 
  const fields = []; 
 
  for (const category in settings) { 
   this.categoryFieldsList(settings[category].children, fields); 
  } 
 
  return fields; 
 } 
 
 /** 
  * Checks if value includes any dependencies, based on fields' list 
  * @param { string } value 
  * @param { string[] } fieldsList 
  */ 
 valueIncludesDependencies(value, fieldsList) { 
  if (typeof value !== 'string') { 
   return false; 
  } 
 
  for (const field of fieldsList) { 
   const hasDependenciesRegExp = new 
RegExp(`(?:(?<!("|'))\\b${field}\\b|\\b${field}\\b(?!("|')))`); 
   const hasResolveOrValueDependenciesRegExp = 
/resolveOrValue\('(\w+(_\w+)+)'\)/; 
 
   if ( 
    hasDependenciesRegExp.test(value) 
    || hasResolveOrValueDependenciesRegExp.test(value) 
   ) { 
    return true; 
   } 
  } 
 
  return false; 
 } 
 
} 
 
module.exports = exports = new ConfigHelper(); 
 
helpers/db/FigureHelper.js 
'use strict'; 
 
class FigureHelper { 
 
 /** 
* Retrieves slice's figures 
* @param { Slice } 
*/ 
 async getSliceFigures(slice) { 
  try { 
   const figures = await slice.getFigures(); 
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   if (!figures || figures.length === 0) { 
    throw new Error('No figures found'); 
   } 
 
   return figures; 
  } catch (error) { 
   throw error; 
  } 
 } 
 
} 
 
module.exports = exports = new FigureHelper(); 
 
helpers/MetricHelper.js 
'use strict'; 
 
class MetricHelper { 
 
 /** 
* Retrieves slice's metric 
* @param { Slice } 
*/ 
 async getSliceMetric(slice) { 
  try { 
   const metric = await slice.getMetric(); 
 
   if (!metric) { 
    throw new Error('No metric found'); 
   } 
 
   return metric; 
  } catch (error) { 
   throw error; 
  } 
 } 
 
} 
module.exports = exports = new MetricHelper(); 
 
helpers/PreviewHelper.js 
'use strict'; 
class PreviewHelper { 
 /** 
* Retrieves slice's preview 
* @param { Slice } 
*/ 
 async getSlicePreview(slice) { 
  try { 
   const preview = await slice.getPreview(); 
 
   if (!preview) { 
    throw new Error('No preview found'); 
   } 
 
   return preview; 
  } catch (error) { 
   throw error; 
  } 
 } 
} 
module.exports = exports = new PreviewHelper(); 

…  
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APPENDIX C 

 

LIST OF FILES ON THE DISK 

 
File name Description 
Explanatory documents 
Diploma_Riabychev.doc Explanatory note to the Diploma Project. Word 

document. 
Diploma_Riabychev.pdf Explanatory note to the Diploma Project in PDF 

format 
Presentation 
Presentation_Riabychev.ppt Presentation of Diploma Project 

 


