MiHicTepcTBO OCBiTH | HAyKN YKpaiHu
HanionanbHuii TexHivuuii yHiBepcurTer
«/IninpoBcbKka mosiTexHika»

[HCTUTYT €NEKTPOCHEPTETUKHI
(iHCcTHTYT)

@PakynpTeT IHPOpPMAIITHUX TEXHOJOT1!
(dpakymbreT)

Kadenpa [IporpamHoro 3abe3neueHHst KOMIT IOTEPHUX CUCTEM
(moBHa Ha3Ba)

HOACHIOBAJIBHA 3AITMCKA
KBaJi(pikaniiiHoi podOTH CTyNeHs

mazicmpa
(Ha3Ba OCBITHBO-KBaTi(hiKaIIfHOTO PiBHS)

CTyJeHTa llanaceuxo I'annu Mukonaienu
(I1IB)
aKaJeMi4HoOI rpynu 12/M-19-1
(umcp)
creniajbHOCTI 121 Inocenepis npocpamnozo 3abe3nevenHs

(xon1 1 Ha3Ba CIEIaTBHOCTI)

HA TeMY: Mooeri, ancopummu ma npoepame 3abe3neqeHHs Ot WIAHY8aHHA UUIX)Y

0151 Hagieayii MoOOINbHUX POOOMIB 3 VHUKHEHHAM NepeuKoo

HAa OCHOBI Oepesa OKMAHMIe8

['"M. Ilanacetixo

Ouinka 3a mKaJ010
KepiBHnku IIpizBuine, ininiaan | peiitunr | iHcruryui | Iignmuc
0BOIO HHOI0

O3B
KBaTi(iKaIiiHO1
poboTu

creniaJbHuH Jlon. Cupotkina O.1.

€eKOHOMIYHHUI Hou. Kacesaenko JI.B.

\ Peuensenr \ | | \

| HopmoxonTtpouep | Jlon. Cuporkina O.1. | | |

JAninpo
2020

MiHicTepcTBO OCBiTH i HAYKU YKpaiHU
HanionanbHuii Texnivuuii yHiBepcurTer
«/IninpoBcbKka mosiTexHika»

3ATBEP/IKEHO:
3aBigyBau Kadeapu
[Iporpamuoro 3abe3nedeHHs! KOMIT FOTEPHUX CUCTEM

(moBHa Ha3Ba)

I.M. VY goBuk
(miammc) (mpi3BuILe, iHIIIaTH)
« » 20 20 Poky

3ABJIAHHA
HA BUKOHAHHA KBaJdidikauiiiHoi podoTn Maricrpa

crneniajabHOCTI 121 Inocenepis npocpamnozo 3abe3nevenHs
(k00 i Ha36a cneyianbHOCMi)

CTYAEHTY 12/M-19-1 Ilanaceuxo I'anni Muxonaisni
(rpyma) (mpi3BuiLe Ta iHILIAIN)
Tema kBasiikaniitnoi poooTu Mooei, ancopummiu ma npoepamte 3a0e3neHeHH.

O/l WIAHYB8AHHA UWUBSIXY QL HABI2AYTT MOOUTLHUX PODOMIB 3 YHUKHEHHIM NEPELUKOO

HA OCHOB8I Oepesa OKMAaHmMIi8

1 NIACTABU JIAA ITIPOBEJAEHHSA POBOTHU

Hakas pexropa HTY «/lninpoBchka momitexHika» Big 22.10.2020 p. Ne 888-c

2 META TA BUXIJIHI JAHI JIAA ITIPOBEJAEHHSA POBIT

O0’ekT gocaigKeHb — TPOIEC ONTHUMI3AIlli Ta IMOKPAIIEHHS TOYHOCTI PyXy Ta
YHUKHEHHS TIePEIIKO/ I HaBirallii MOOIJIbHUX pOOOTIB.

IIpeamer mociimKeHb — MOZEIi Ta METOIU BHUSBIIECHHs IIEPENIKO] Ta HaBiramii 3
METOI YHUKHEHHS BUSBJIEHUX HEPEIIKO]L.

Mera po6oTu — MiABUIICHHS €(DEKTUBHOCTI CUCTEMH PO3IMi3HABAHHSI MEPEIIKO]T
MOOUTBHUMH poOOTaMU TSI HaBITaIlll y CepeOBHIIll, BUKOPUCTOBYIOYHN TATUYUKH JITIS
3a0e3IeueHHs IOporu 0e3 3iTKHEeHb 3 00’ €KTaMu, SKi HEe 3HAXOIAThCS Ha OJHOMY
PiBHI 3 JJa3epaMHu.

3 OUIKYBAHI HAYKOBI PE3YJIbTATH

HaykoBa HOBH3HA TI0JISITa€ Y TOMY, IO YIOCKOHAJICHO METOJM CHCTEMH TUTAHYBaHHS
NUIAXY JUIsl HaBiraiii MoOITbHUX pOOOTIB Ha OCHOBI JiepeBa OKTAHTIB JUIS SIKICHOTO Ta
TOYHOTO NUISAXY BiJl MOYATKOBOI TOYKH JI0 33J]aHOT Y TIPOCTOPI.

3
IIpakTnyHa WiHHICTBH pE3yJbTATIB MOJSATa€ y TOMY, IO 3alpOINOHOBAaHA CUCTEMa

HaBiraii Ta 00X0/>KeHHS TIEPEIIKO/ I03BOJISIE MOMIYATH MEPEIIKOIM K1 3HAXOISITHCS HE Ha
OJIHOMY piBHI 3 pIBHEM JIa3epiB MOOUIBHOTO poOOTa.

4 ETAIIU BUKOHAHHA POBIT

Crpoku
. . . BUKOHAHHSA POOiT
HajimenyBaHH4 eTaniB pooiT
(moyaTok —
KiHeln b
AHani3 TeMHU Ta IIOCTaHOBKA 3a7a4l 12.09.2020-30.09.2020

[TobynoBa cuctemu posmizHaHHS mepemko] y TpusumipHomy | 01.10.2020-31.10.2020
npoctopi 3acobamu ROS, Octomap, teb_local_planner nmns
YAOCKOHAJIEHHs MJIaHyBaHHS LUIAXY JUIsl HaBiraumii MOOUTbHUX
pOOOTIB.

YnockoHaneHHsT aBTOMaTH30BaHOi cuctemu Ta ii TectyBanHs | 01.11.2020-07.12.2020
JUISL BUPIIICHHS 3a7a4l pO3Mi3HAHHS Ta O0XO/KEHHS TEPEIIKO/
MOO1TEHUM POOOTOM y MPOCTOPI.

3aB1aHHS BUIAB Cupomxina O.1.
(Trimmc) (mpi3BHIIE, 1HIIIATN)
3aB/IaHHs MPUITHAB 10 BUKOHAHHS Ianaceiixo I'.M.
(Trimmc) (mpi3BHIIE, 1HIIIATN)

Jara Bugaui 3aBmannas: 12.09.2020 p.

Tepwmin momganHs kBamidikariiaoi poootu 1o EK _ 10.12.2020

PE®EPAT

HoscuoBaabHa 3anucka: 121 crop., 47 puc., 3 tabnuui, 6 gomarka, 60
JOKEPEL.

O0'exT n0caiTKeHHs: TPOLEC ONTHUMI3ALIi Ta MOKPAIIEHHsS] TOYHOCTI pyXy Ta
YHUKHEHHS MEePEIIKo/1 sl HaBiraii MOOUTbHUX pOOOTIB.

IIpeamer pocJrizKeHHsI: MOJIEN Ta METOJIA BUSIBJICHHS NIEPEILIKO/] Ta HABIramii
3 METOI YHUKHEHHS BUSIBJICHUX TEPEITKO/I.

Mera maricrepcbkoi po00THM: TIJIBUIICHHS €(QEKTUBHOCTI CHUCTEMU
pPO3MI3HABAHHS MEPElIKol MOOUIbBHUMHM pPOOOTaMM JUJIsi HaBIrauii y ceperloBHUI,
BUKOPUCTOBYIOUM JIATUYMKH JIJIs1 3a0e3MeUeHHs JOpOTH 0e3 31TKHEeHb 3 00’ €KTaMu, SKi
HE 3HaXOJAThCSI HAa OJTHOMY PiBHI 3 Jla3epamH.

Metoau nociixkeHHsi. /[BUpIIMIEHHS MOCTABJICHUX 3a7ad BUKOPUCTAHI
METOIM: TMOIIYKY HUIAXiB, TOPOrOBOr0 3HAYEHHS, OOPOOKH XMapu TOYOK, reHeparii
JiepeBa OKTAaHTIB.

HaykoBa HOBH3HA mojsirae y TOMY, IO YAOCKOHAJICHO METOIU CHCTEMH
TUIaHYBaHHS MUIAXY JUIsS HaBiraiii MOO1IbHHUX pPOOOTIB HAa OCHOBI JiepeBa OKTAHTIB IS
SIKICHOTO Ta TOYHOTO IUISAXY BiJl I0YaTKOBOT TOYKH JI0 33JaHOI Y TIPOCTOPI.

IIpakTuyHa WiHHICTL pE3yNbTATIB TMOJATAE y TOMY, IO 3aMpPONOHOBAHA
cucTteMa Hapiraiii Ta 0O0XO/KEHHS IMEPEeIIKO JO03BOJISIE TIOMIYaTH TEPENIKOIN SIKi
3HAXOJATHCS HE HA OJJHOMY PiBHI 3 piBHEM J1a3epiB MOOUIBHOT'O poOOTa.

Cnucoxk kiawuyoBux ciaiB: ROS, nHapiramis, MoOuUTbHI poOOTH, YHUKHCHHS

MEPEIIKO/I, IEPEBO OKTAHTIB, Jla3ep, XMapa TOUOK.

ABSTRACT

Explanatory note: 121 pages, 47 figures, 3 tables, 6 applications, 60 sources.

Object of research: the process of optimizing and improving the accuracy of
movement and avoiding obstacles to the navigation of mobile robots.

Subject of research: models and methods of obstacle detection and navigation
avoiding detected obstacles.

Purpose of master’s thesis: increase the efficiency of the obstacle recognition
system by mobile robots for navigation in the environment, using sensors to ensure the
road without collisions with objects that are not on the same level with the lasers.

Research methods. Methods of path finding, thresholding, point cloud
processing, octree generation were used to perform the task.

Originality of research is determined by the improved methods of path
planning system for navigation of mobile robots based on the octant tree for a high-
quality and accurate path from the starting point to a given in space.

Practical value of the results is that the proposed system of navigation and
bypassing of obstacles allows you to notice obstacles that are not on the same level
with the level of lasers of the mobile robot.

In the Economics section we calculated the complexity of software
development, the cost of creating software and the duration of its development, as well
as marketing research of the market for the created software product.

Keywords: ROS, navigation, mobile robots, obstacle avoidance, octree, laser,

point cloud.

CONTENTS

LIST OF ACRONYMS ... oottt ra e 8
INTRODUCTION. . ..ottt sttt 9
SECTION 1 ANALYSIS OF MOBILE ROBOT NAVIGATION AND

LOCALIZATION L.ttt ettt 13
1.1. Mobile Robot Navigation...........cccccoviiiieiiiiei i 13
1.2. Concepts and Algorithms of Mobile Robot Navigation...................... 15
1.3. SEINSOIS ittt e e et e e e e et r e e e e e 19
1.4, SLAM ..ot e 22
1.5, POINECIOU.......oviiiiiee et 27
1.6, WOXEl oo 29
S © o1 =T PP U TSRO 32
1.8. Conclusions to the first SECHIONcccveiiiiiiiiiiie e 36

2.1, RODOT ..ot 39
2.2, LBSEIS ettt e e 41
2.3, RealSENSE CaMEIaA......ciiiiiiiie it 43
2.4, ROS ... 44
2.4.1. ROS Tools and SIMUIALOIS.........coivuieiiiiiiieeiiie e 50
2.4.2. RVIZ oottt 50
2.4.3. ROS GUI Development Tool (Rgt_reconfigure)cccvveeeiiiiienennnns 52
244, GAZEDO.......eiee i 53
2.4.5. TF PACKAGEovviiiiiiiiiii et 55
2.5, ROS Navigation Stackcccceoiiiiiiiiiiiic e 57
2.5.1. MoVve base Node........cccvviiiiiiiii e 58
2.5.2. Teb _local Planner ... 60
2.6. Point cloud to obstacles projection using octomapcccceeecvvvveeennne, 61

2.6.1. Point cloud filtering With PCLcooiiiiiiii e, 61

2.6.2. OCTOMIEP .etteiiiiiieeei ittt ettt e e e e e e e r e e e e e e e e e e snnneeeeeas 64
2.7. Projection to obStacClesccccviiiiiiiiiii 66
2.8. Conclusions to the second SECLION...........ceeiiiiiiiiriie e, 67
SECTION 3 RESULTS OF THE DEVELOPED SYSTEMcccceevvveeneen, 70
3.1. Configuration of the navigation stackcccccovviiiiieiiiiie e, 70
3.2. Projection to obstacles. Details.cccceeviiieiiin e 73
3.3, System setup for SIMUlationccccevviieeiiiii e 75
3.4, System setup fOr robotcoovvviiiii 77
3.5, RUNINSIMUIALION.......eoiiiiiiie e 79
3.6. RUNON Al FODOL ...t 81
3.7. Results of SOIULION tESTINGccvvveeiiiie e 83
3.8. Conclusions to the third SECTIONccceeviiiiiiiiiie e 86
PO3JIIJT 4 EKOHOMIUHMM POBIITvvivveeeeeeeeeeeeeeeeeeeee e, 88
4.1. BuzHaueHHS TPYJIOMICTKOCTI PO3POOKHU IIPOTrpaMHOI0 3a0€3MeUYeHHS 88
4.2. BuTpaTu Ha CTBOPEHHS MPOTPAMHOTO 320€3MEUCHHSvvvvvvrereeeeeensnnnnnnns 92

4.3.MapKeTUHTOBI IOCIIIPKEHHS PUHKY 30yTy po3p0o0JIeHOro MporpaMHOro

115010014734 OO PP PPPPPR PP 94
4.4.011iHKa €KOHOMIYHOT €(DEKTUBHOCT1 BIPOBAKEHHS MPOTPAMHOTO

T (0130 (51 (5] 1 £ (R TP PP PP PPPI 97
CONGCLUSIONS ... 99
REFERENCES. ... 101
APPENDIX A SOURCE CODEcooiiiiiiiieiiee e 107
JOJATOK B BIZIIVEK ..ottt 119
APPENDIX C NODES COMMUNICATIONcooiiiiiiiiiiiiiiiie i 120

APPENDIX D LIST OF FILESON THE DISKoooiiiiiiiieic e 121

LIST OF ACRONYMS

2D Two-Dimensional

3D Three-Dimensional

CPP Classical Path Planning

GPP Global Path Planner

GPS Global Positioning System

0S Operating System

PC Personal Computer

ROS Robot Operating System

RST Robotics System Toolbox

SLAM Simultaneous Localization and Mapping

TEB Timed Elastic Band

INTRODUCTION

The relevance of research. Robotics develops more and more every year. New
approaches are being created to solve the problems of motion, localization, and
automation of robots. Many models have made great strides in solving various
problems. A lot of technical complexes are created for military purposes: target
detection, its elimination. Robot firefighters are being created; rescue robots capable
of getting people out of the water, from the rubble of collapsed buildings. One of the
many robotics trends is the transition from remote-controlled systems, which require
constant human participation to perform all the robot’s actions, to autonomous systems
in which the operator only indicates the final and intermediate goals. This is convenient
for carrying out alien research, where a large signal delay does not allow remote
control.

Mobile robotic systems are used today in a wide variety of industries. The
broader the scope of their application, the more stringent the requirements for their
performance for specific tasks become. One of the most urgent such requirements
relates to the robot's autonomy and navigation capabilities.

With the development of such areas of science as the theory of automatic control
and artificial intelligence, a modern robot has learned not only to carry out the program
laid down for it but also, based on a variety of sensors and related systems of all kinds
of information, to independently make decisions and minimize errors when performing
tasks assigned to it.

The research is now progressing towards autonomous robots that will assist us
in our daily lives. One of the enabling technologies is navigation, and navigation is the
subject of this thesis.

Navigation remains the main problem of all currently existing mobile devices
moving independently. For successful navigation in space, the robot's on-board system
must be able to plan a path, as a strategy to find a path towards a goal location, correctly

interpret information about the world around it received from the sensors. Moreover,

10

the robot should control movement parameters, its own coordinates and be able to adapt
to environmental changes.

One of the most challenging aspects of autonomous outdoor mobile robot
navigation is reliability. That is, a mobile robot must be able to reach its destination
safely, every single time, not only avoiding collisions to obstacles and humans around
it but also successfully driving through difficult paths such as slopes, bumps, or
potholes.

The most crucial factor is to provide the robot with the necessary sensors or
subsystems to determine the presence, type, and distance of an obstacle. It is also
essential to form accurate and timely actions to change the trajectory of movement and
make other motor decisions.

The purpose of the research is to create an updated system for planning a
mobile robot's path by avoiding obstacles using the octree. The aim is to add sensors
to ensure the road of the path without collisions with objects that are not on the same
level as the lasers. The goal is to explore recent studies about the 2D obstacle avoidance
for a mobile robot. Develop an improved method for obstacle detection in a dynamic
environment, plan the route for a mobile robot with avoidance of detected obstacles.
The developed solution should take point cloud as input data. The algorithm is based
on processing point cloud data to an octree, building projection, and converting it to
obstacles.

Tasks of research. For the achievement of the set purpose in work, the following
tasks are formulated and solved:

1. Consider the basic principles of navigation.

2. Consider the existing sensors and choose the most suitable for this mobile
robot.

3. Consider the necessary ROS elements for navigation.

4. Use the method of reducing the resolution of the point cloud and cutting off
excess elements using PCL.

5. Set up a system of continuous generation of octree from a point cloud using

octomap, followed by the projection of occupied cells on the floor.

11

6. Develop a package to convert the resulting projection into polygons and then
send them to the topic of obstacles for teb_local_planner.

Object of research: Process of mobile robot navigation among 3D obstacles
using octrees.

Subject of research: Models and methods of obstacle detection and navigation
avoiding detected obstacles.

Research methods. Methods of path finding, thresholding, point cloud
processing, octree generation were used to perform the task.

Originality of research. The scientific novelty of the thesis results is determined
by the development of a new, improved path planning system for navigation of mobile
robots based on the octant tree for a high-quality and accurate path from the starting
point to a given in space.

After analyzing modern work in the field of mobile robot navigation and
avoiding obstacles in real-time, it was found that in contemporary control theory,
research in robotics, the most promising areas of development are the use of algorithms
based on data processing from sensors. Some research focus on the internal system of
localization of the robot on basis of ultrasound. One of the simplest means of movement
on the specified route is odometry, which is based on establishing the route of
movement of the robot by determining the movement of the robot wheels. The strong
disadvantage of this technique is the accumulation of error during movement, so it is
advisable to use it with other means of navigation, to correct this error.

Personal contribution of the author:

1. Scientific results of the work are obtained by the author independently.

2. Choice of research methods and implementation technologies.

3. Development of the theoretical part of the work, which explores and
systematizes knowledge of existing approaches of path planning for mobile robot
navigation.

4, Development of the new system for mobile robot navigation and obstacle
avoidance using octree.

5. Testing and evaluation of the results.

12

Structure and scope of work. The work consists of an introduction, four
sections and conclusions. It contains 121 pages, including 100 pages of text of the main
part with 47 figures, a list of used sources with 60 items on 6 pages, 4 appendices on

15 pages.

13

SECTION 1
ANALYSIS OF MOBILE ROBOT NAVIGATION AND LOCALIZATION

1.1. Mobile Robot Navigation

Mobile robotics is currently one of the fastest-growing areas of scientific
research. This solutions-oriented branch of industry, merging interdisciplinary sciences
and technologies such as Engineering, Computer Science, Cognitive Sciences,
Artificial Intelligence, and Mechanics. They have become more evident in commercial
and industrial conditions.

The mobile robots should have navigational skills to work harmoniously within
an integrated environment with humans. Humans expect that robots will be able to
operate and navigate in their environments without collisions or interference.

Modern robotics began its rapid development in the 1970s. At that time, the first
models appeared that effectively reproduced the essential functions of a person. Models
of the first generation were very popular and found wide application in the scientific
and industrial fields. Over time, adaptive robotics appeared - mobile robots on a new
generation platform. Improved modifications could build an optimal route of
movement, if necessary, make adjustments to the approved trajectory of movement.

A mobile robot moves to solve specific problems, receives data from external
sensors, and must continuously process information in order to control its movement.
All these processes take place continuously and are closely interconnected with each
other. The use of vision in mobile robotics has become widespread.

Mobile robots with an autonomous navigation system could navigate in space
due to mounted scanning sensors. Unique computer technology received a signal that
made it possible to make the right decision on the way along the route. Navigation
served as the coordinator of the movement of robotic equipment. Over time, more
advanced robot navigation has emerged using upgraded sensors, gyroscopes, satellite

navigation, lasers, and ultrasonic devices.

14

Thanks to their abilities, mobile robots can replace humans in many areas.
Applications include Surveillance, Planetary Exploration, Patrolling, Rescue
Operations, Exploration, Petrochemical Applications, Industrial Automation,
Construction, Entertainment, Museum Guides, Personal Services, Extreme
Environment Intervention, Transportation, Medical Services, etc., and much more
other industrial and non-industrial applications. Most of them are already available on
the market.

Mobile robots can move in various environments: in water, air, on the ground,
in space. Movement in each environment has its own characteristics associated with
their different physical properties.

A mobile robot's components are a controller (embedded microcontroller or a
computer), different sensors, which depend upon the robot's requirements, actuators,
and power systems. An actuator is a component that is responsible for moving and
controlling. They refer to the motors that move the robot can be wheeled or legged.
Usually, DC power supply is used instead of AC to power a mobile robot.

To control a mobile robot in the event of movement along a trajectory, a position
and orientation system in space is required. Currently widely used [2]: encoders,
interparticle systems, GPS, and rangefinders. The growth in embedded computing
solutions' productivity allows processing video data of the robot’s onboard vision
system in real-time [3] and using them to solve more and more complex problems, incl.
and for navigation.

The visual odometry method [3-6] is based on measuring the displacement of
crucial points in space [7], information about which is obtained from the analysis of
the sequence of stereo images of the technical vision system. Such a system can work
In a non-deterministic environment; it allows solving related tasks, such as, for
example, building a room map.

Several approaches can be used to classify robots - for example, by scope,
purpose, method of movement, etc. By the main application's scope, industrial robots,
research robots, robots used in training, and unique robots can be distinguished. The

most important classes of general-purpose robots are manipulation and mobile robots.

15

A manipulation robot is an automatic machine (stationary or mobile), consisting
of an executive device in the form of a manipulator with several degrees of mobility
and a program control device, which serves to perform motor and control functions in
the production process.

A mobile robot is an automatic machine that has a moving chassis with

automatically controlled drives.

1.2. Concepts and Algorithms of Mobile Robot Navigation

Robot navigation means the robot’s ability to determine its own position in its
frame of reference and then to plan a path towards some goal location. The mobile
robot requires a map of the environment and the ability to interpret that representation.

Navigation can be defined as the combination of the three fundamental
competencies:

1. Self-localization.

2. Path planning.

3. Map-building and map interpretation.

Talking about the navigation of mobile robots, there are three main types of
systems - global, local and personal. The global type defines the absolute coordinates
of the robot when moving over large areas and objects. Local navigation fixes
coordinate following the specified parameters. For this type of navigation, the zone
limits must already be known. Personal navigation implies positioning, considering
objects that are nearby. Typically, the presented modification of the mobile robot is
equipped with a special manipulator.

It is believed that the larger the device, the higher the importance of global
navigation for it and the lower the personal one.

Navigation systems can be passive and active. A passive navigation system
implies receiving information about one’s own coordinates and other characteristics of

its movement from external sources, while an active one is designed to determine the

16

location only on its own. As a rule, all global navigation schemes are passive, local
ones are both, and personal schemes are always active.

Navigation without a map (for example, the DistBug algorithm) is often used in
a constantly changing environment or when the calculated path only needs to be taken
once and therefore does not have to be optimal. If you have a map, you can use the
Dijkstra algorithm or the A * algorithm, which allows you to determine the shortest
path before the robot starts moving. Navigation without a map is carried out while the
robot is moving in direct interaction with its sensors. Map-enabled navigation
algorithms rely on a nodal distance graph, which must either be provided in advance
or built based on environmental analysis (for example, using a quadtree) [8].

Below will be presented and discussed various methods and algorithms of
navigation used to operate mobile robots.

The potential field method is an algorithm for global trajectory construction on
the map using virtual forces. This method requires knowing the start and endpoints of

the route and the positions of all obstacles and walls.

N AR I S M
<S> > > > < _>$5,
*Z\L\ -7 = V o« —}\'\L
a4 —7 €= —
s ’-’Q-N

Aty LN VY
—)ﬁi Zu\&\s “‘*:.\“\Vlr‘/
PR N
PA A AAAnA A A—> 2 271

Fig. 1.1. Potential field

Fig. 1.1 shows precisely how the force field is formed: repulsive forces emerge
from obstacles and walls, the preposition of which determines the direction of the

potential field from the starting point of the route to the final one.

17

The trajectory is built using virtual forces of attraction and repulsion. The
starting point, all obstacles, and boundary walls repel the robot, and the target point
attracts it. The magnitude of each force is inversely proportional to the distance to the
object. The robot simply moves in a force field.

The wandering point algorithm is a local trajectory planning algorithm. Its
implementation requires the use of a local distance sensor.

The algorithm is to try to reach the target route point in a straight line. When an
obstacle is detected, it is necessary to measure the angles of rotation to the right and
left, ensure the avoidance of the obstacle, and turn to a smaller angle. Next, you should
move along the obstacle's border until it stops interfering with the passage to the target
point.

Fig. 1.2 shows the successive positions (1 ... 6) of the robot when it moves from
the starting point to the target point. The target is not visible from the starting point;
therefore, the robot switches to the mode of avoiding obstacles along the contour and
moves to point 1, from which it can again move to the target without hindrance. At
point 2, the robot again encounters an obstacle and begins to go around it in the kennel.
Finally, he gets to point 6, from which he can reach the goal in a straight line, without
encountering obstacles in his path.

In real conditions, the robot moves not strictly along the found route points but
along an approximating curve.

The disadvantage of this method is that with specific placement of obstacles, the
robot can get stuck in its movement. In this case, he will endlessly bend around
obstacles and never reach the goal [9].

Bug family algorithms solve the problem of local traffic planning and guarantee
its convergence. If the trajectory exists, then it will be found, and if not, then the
algorithm will determine that the goal is unattainable.

The algorithms of the Bug family use as input the coordinates of the robot
(distance traveled), the coordinates of the target point, and the readings of a contact

sensor (for Bugl and Bug?2) or a rangefinder (for DistBug).

18

Goal point

Start point

Fig. 1.2. The wandering point algorithm

The essence of the algorithms of the Bug family is as follows:

Bug 1. Move straight to the target before hitting an obstacle (to the meeting
point). Bypass the contour's obstacle entirely, registering the shortest distance to the
target (at the vanishing point). Upon re-reaching, the meeting point, return to the
vanishing point and continue the execution of the algorithm [10].

Bug 2: Draw an imaginary line M from the starting point to the target point.
Move along M until it collides with an obstacle (to the meeting point). Follow the
object's boundary to the point of intersection with the line M, which is closest to the
target (vanishing point). Continue execution of the algorithm [10].

DistBug: Move straight to the target before hitting an obstacle (to the meeting
point). Follow the boundary of the obstacle, registering the shortest distance to the
target. If the target becomes visible or enough free space in its direction, continue the
algorithm from this point (vanishing point). If the robot returns to the previous meeting

point, then the goal is unattainable [11].

19

This algorithm is poorly implemented in practice since real conditions do not
provide the robot's required positioning accuracy and the readings of its rangefinder.
Almost all modifications of the DistBug algorithm are sensitive to the noise of sensor
data and errors in the robot's movement.

Currently, many algorithmic methods for localization, navigation, and mapping
have been developed, and most often, probabilistic methods that minimize uncertainty

are used to solve localization problems comprehensively.

1.3. Sensors

Mobile robots need information about the world around them so they can relate
to their environment. Therefore, they rely on sensory devices to convert external
stimuli into electrical signals. These signals are electrical data representing the state of
the surrounding world and must be interpreted by the robot to achieve its goal. There
is a wide range of sensors used to this end.

Sensors play one of the essential roles in robotics. With the help of various
sensors, the robot “feels” himself and the world around him. These are the senses -
eyes, ears, skin for robots.

A mobile robot is an “intelligent” self-propelled mechanism. For it to be able to
provide meaningful behavior and perform functionally complete work with the help of
its “intellectual” capabilities, it must be equipped with various sensory systems that
allow the robot to perceive the environment and navigate in it. As with humans and
most animals, the most important and significant of these systems in the robot's
movement is the visual sensor.

The robot moves blindly without environmental sensors. External sensors are
involved in:

— recognition of places and objects that have already been encountered;

— determining free space and planning movement in it in order to avoid
collisions with obstacles;

— interaction with objects, ice, and animals;

20

- creating a general idea of the environment around the robot.

Sensors play one of the most critical roles in robotics. With the help of various
sensors, the robot “feels” himself and the world around him. These are the senses -
eyes, ears, skin for robots.

A different amount of data with a specified frequency sends, depending on the
sensor's sort and its goal. However, an individual microprocessor has its own limit of
information that can be received every time.

When dealing with Robot Navigation, sensors are usually used for positioning
and obstacle avoidance. In terms of positioning, sensors can be divided into relative
and absolute. Relative positioning sensors include odometry and inertial navigation,
which are methods that measure a robot’s position concerning the robot’s starting point
and movement. In particular, absolute positioning sensors recognize structures in the
environment whose position is known, which allows the robot to estimate its own
position.

The camera can be represented as the eyes of the robot, and the images taken
from the camera are useful for recognizing the environment around the robot. For
example, object recognition using a camera image, facial recognition, a distance value
obtained from the difference between two different images using two cameras (stereo
camera), mono camera visual SLAM, color recognition using information obtained
from an image, and object tracking are very useful.

Map-based positioning is a technique in which robots use their sensors to create
a local map of the environment. This local map is compared to a known global map
stored in the robot’s memory. If the local map matches a part of the global map, the
robot will be able to estimate its position.

Laser-based distance sensors with 1D or 2D sensors do not transmit large data.
At the same time, the problem is more associated with the cameras. They address
enough data and expect excellent processing power, which is challenging for a
microprocessor.

There are several sensor packages offered by the sensor available on ROS.

Sensors are classified into 1D rangefinders (Infrared distance sensors for low-cost

21

robots), 2D range finders (LDS is frequently used in navigation as in the algorithm
presented in chapter 4), 3D Sensors (such as Intel’s RealSense, Microsoft’s Kinect are
needed for 3D measurements), Pose Estimation (GPS + IMU), Cameras (that are
commonly utilized for object and gesture recognition, face recognition and 3D SLAM),
Audio/Speech Recognition and many other sensors.

Laser Distance Sensors (LDS) consist of a distant sensor such as Light Detection
and Ranging (LIiDAR), Laser Range Finder (LRF), and Laser Scanner. LDS sensor
finds the distance to an object and uses a laser in origin. This type of sensor ensures
great performance and speed with data collection in real-time. LDS is frequently used
in all systems where distance evaluation is compulsory. Technology is widely applied
in robotics, where it is one of the fundamental sensors for distance recognition.

LDS usually includes a single laser source, a motor, and a reflective mirror. The
motor rotates the inner mirror while it is scanning using the laser. The range of the LDS
goes from 180° to 360°.

LIDAR is also known as Light Imaging Detection and Ranging. It is a
technology that detects objects on the surface, as well as their size and exact
disposition. The device emits laser pulses that move outwards in various directions
until the signals reach an object and then reflect and return to the receiver.

Modern laser devices can generate a scanner in several hundred thousand
seconds and use a system of movable mirrors or the scanner body itself. As a result of
such measurements or “scanning”, we obtain three-dimensional points in a short time,
with a large and complete described object.

The main result of laser scanning - be it ground, air, or mobile - is a cloud of
three-dimensional points describing the surveyed object's geometric parameters with
varying accuracy. The number of laser reflections obtained when photographing a
surveyed object is often hundreds of millions and even billions. The processing of such
data arrays and the formation based on final products for users in various fields of
activity is today the most laborious component of laser technology.

The invention of this technology has had a tremendous impact on the

development of the automotive industry. Self-driving and driverless cars use LIDAR

22

to scan surroundings and plan a car’s behavior in order to avoid collisions with

obstacles.

14. SLAM

One of the main tasks of control systems for autonomous robots is the navigation
task, and its subtask is the localization of the robot in space.

In automated navigation of mobile robots, simultaneous localization, and
mapping (SLAM) technology is a computational scheme for building or updating a
map of an unknown environment while simultaneously tracking an agent's location
within it.

Visual SLAM approaches are usually divided into two main branches:
smoothing approaches based on bundle adjustment and filtering approaches based on
probabilistic filters. The latter is divided into three main classes: dense, sparse, and
semantic approaches. Dense approaches are able to build dense maps of the
environment, which make the algorithms more robust but at the same time heavy in
terms of computational requirements; indeed, most of these approaches can work in
real-time only when dedicated hardware is used. Sparse approaches address the
problem of computational requirements by the map; obviously, this choice impacts the
robustness of the solution. These algorithms require less computational effort because
they try to allocate in memory only the most significant vital points representing the
map; for this reason, they are natural candidates for a real-time Visual SLAM
implementation. Semantic approaches extract higher-level semantic information from
the environment in order to build a more robust and compact map.

To date, there is already a large number of algorithms for the implementation of
SLAM technology with a known, at least approximate, solution. Such techniques can
include superior filtering — an advanced Kalman filter or particle filter — and static
data estimation. These SLAM algorithms are essentially geared towards the available
hardware resources and operational compliance with those resources' constraints and

associated computational efficiency.

23

According to the above scheme, the algorithms implementing the SLAM
technology use various computational schemes to solve the localization and mapping
problem based on data obtained from various sensors.

The primary (original) SLAM algorithms include Kalman filters, particle filters,
and estimates using various interval calculations. They provide an estimate of the above
probability function for the robot pose and the map parameters.

A popular technique in SLAM technology is an equation based on the use of
images from image sensors. The adjustment is performed to eliminate residuals due to
the presence of errors in excessively measured values. Moreover, it is performed to
determine the most probable values of unknowns close to these probable ones. During
the adjustment process, this is achieved by determining corrections to the measured
values (angles, directions, line lengths or elevations). Often the adjustment is
performed using the least-squares method to minimize residuals.

SLAM alignment allows poses and feature positions of landmarks to be jointly
estimated, increasing map accuracy, and is used in many new systems incorporating
SLAM technology.

New algorithms for SLAM technology are still an active area of research, which
is carried out according to various requirements and assumptions about the types of
maps, sensors, and processing models. Many of the modern systems that implement
SLAM technology are not based on a combination of different approaches.

In general, the SLAM algorithm can be described as a repeating sequence of
steps:

1. Scanning the surrounding area.

2. Determination of displacement based on comparison of the current frame
with the previous one.

3. Selection of mark features on the current frame.

4, Comparison of the marks of the current frame with the marks obtained for
the entire history of observations.

5. Updating information about the position of the robot for the entire history

of observations.

24

6. Checking for loops - does the robot pass through the same part of the
terrain repeatedly.

7. Alignment of the general map of the world (starting from the position of
the marks and the robot in the entire history of observations).

At each step of the algorithm, the robot has assumptions about the world's
structure and the history of the movement in it.

Standard SLAM methods will be described below.

lm

X2

X1 Uy i
2yt | ’
"
4\'/:‘1 m; Robot Landmark

' Estimated | - {> - ’
True {}

Fig. 1.3. SLAM concept diagram.

Basic SLAM will be called the initial versions and schemes of SLAM
algorithms. A popular method for solving the SLAM problem has been the extended
Kalman filter. At each step, the robot has a set of previously received landmarks and
received data. Based on the new and previous frames, it is possible to determine the
robot's displacement and predict the new position of the robot. In the same place, from
the new frame, you can select the robot's position relative to them. Based on the

difference between these two estimates of the positions of the robot, the

25

probabilities/weights for all landmarks are updated, and the poses - the trajectory of the
robot - is adjusted. A typical SLAM layout is shown in Fig. 1.3.

It shows the real trajectory and real positions of landmarks around the robot and
the same characteristics obtained as estimates from the available measurements of the
robot’s sensors. The goal of navigation algorithms is obviously to keep the data from
diverging too much.

Monocular SLAM has received much attention in the last years.

In this approach, the map and the camera pose are stored at stochastic variables,
and the system evolution is estimated by an incremental Extended Kalman Filter
(EKF). Inverse depth parametrization can be used to represent point features, which
permits the efficient and accurate representation of point features, which permits the
efficient and accurate representation of uncertainties.

MonoSLAM is an algorithm that uses data from a single monocular camera on
a robot. This is the difference between this method and the methods using laser
scanners. As in classical laser scanner-based SLAM approaches, it is assumed that the
robot’s pose is described as a stochastic variable with a Gaussian distribution, and the
environment map is not overly saturated. The environment is described by a limited set
of geometric features, i.e., has geometrically measurable characteristics. Features are
also described as Gaussian variables. The method builds a probabilistic 3D map of the
robot’s environment and estimates the position of the robot in it.

The system state determined by the robot determines the pose of the robot and is
plotted on a map represented at any time t = kt, where t — is the time since the previous
step; it is also specified as a stochastic variable with a Gaussian distribution.

Information regarding the movement of the camera at any time is encoded in the
vector x, built as the trajectory of the robot.

FastSLAM is an efficient SLAM algorithm. Using this filter is computationally
more efficient than using the classical Kalman filter. This method is based on the idea
of splitting a large-dimension filter into a set of low-dimension filters, which makes it
possible to reduce the computational complexity of the problem and accordingly speed

up the calculations. In the case of large K, the problem's dimension increases

26

proportionally, which complicates the application of traditional methods. Particle
filters are also useful for small dimensions but problematic multidimensional areas as
long as the number of particles is not increased. Practically direct implementation of
these methods allows you to process maps with several hundred landmarks efficiently,
but thousands of landmarks do not allow real-time processing.

The FastSLAM method is based on the fact that the individual measurements of
different landmarks' positions are independent of each other. Between the
measurements of different landmarks, a probabilistic dependence arises through the
parameters of the robot’s posture - errors in measuring other landmarks introduce errors
in the determined pose and through them, affect the errors in measuring other
landmarks. However, these estimates will be conditionally independent if we consider
the conditional distributions of estimates of the positions of landmarks relative to a
given distribution of the measured posture of the robot.

In addition, as an additional advantage of this method, it should be noted that it
IS more resistant to identification errors. Identification in SLAM tasks is understood as
the identification of landmarks between measurements, that these two observations at
different points in time refer to the same landmark. In the classical method, an
identification error can lead to ‘“catastrophic consequences”. In the case of the
FastSLAM method, instead of a single filter, A filters are used, tied to individual
particles, and therefore it is possible to update these filter banks in different ways based
on different hypotheses about identifying landmarks. In the future, particles with maps
based on incorrect identification attached to them will lose the accuracy of
identification measurements, lose the accuracy of measurements, and will be
eliminated by the particle filter, which will allow the method to ““straighten” and restore
accuracy after incorrect identification.

In a sense, visual SLAM summarizes the way monoSLAM works.

SLAM uses camera images to plan the robot’s position in a new environment.
This method works by tracking features in images between camera frames and
determining the robot’s pose and position of features in the world based on their

relative movement. This actually provides an additional odometer source that is useful

27

for locating the robot. Since camera sensors are generally less expensive than laser
sensors, this can be a useful alternative or addition to laser-based localization
techniques.

Processing information from cameras consists in finding prominent details on
them - landmarks and analyzing the displacement of these landmarks between different
frames taken by the camera. In general, the camera position is described by six
parameters, and matching three landmarks is required to determine all six. However,
the determination of two angles by the tilt sensor makes it possible to determine the
remaining parameters only by two landmarks. After the frame is normalized, the scale

and rotation adjustments determine the displacement along the horizontal axes.

1.5. Point cloud

A point cloud is the most accurate digital record of an object or space, stored as
a vast number of points covering the object’s surface. Technically, a point cloud is the
most accurate digital record of an object or space, stored as a considerable number of

points covering the object’s surface.

Fig. 1.4. Point cloud example

28

Points represent a three-dimensional shape or object. Each point has its own set
of X, Y, and Z coordinates. All the coordinates relating to such an image are included
in a concept called a point cloud. Point clouds represent all the coordinates that help
illustrate the external surface of a three-dimensional object. Point clouds are usually
created using 3D scanners or photogrammetry software that measures many points on
the outer surfaces of objects around them.

Although point clouds can be directly visualized and inspected, they are
generally not used directly in most 3D applications, and therefore tend to be converted

to a polygon mesh or voxels.

vertex 1

L, e
tpa Wt

Point Cloud Mesh (shaded)

Fig. 1.5. From Point Cloud to Mesh

It is essential to understand that a point cloud is a collection of separate, unrelated
points with a specific position and color. This makes it easy to edit, display, and filter
point clouds.

Using separate, unrelated points is key to the practical use of point clouds since
points are the easiest objects to process. The computer does not have to worry about
the scale, rotation, and relation of points to other objects; only position and color are

essential for the calculation.

29

Visible access to the scanned surfaces is a crucial factor in obtaining point cloud
data. Regardless of how (scanner or photo) the survey is carried out, it will not be able
to get points on surfaces that are not visible from the position chosen for data collection.
This means that, more often than not, covering the entire object requires obtaining data
from several different positions and then combining them.

The term ““density” is used to describe the resolution of the collected dataset,
which usually means the distance from the point to point. Less dense point clouds are
obviously caught much faster.

Most point cloud databases contain not only information about the position of
points but also a description of their visual properties, such as colors or reflectivity. All
this may or may not be included in the point cloud, which is an additional factor
affecting the speed of the survey and the processing of the obtained data.

Since a point cloud is a spatial dimension, it is possible to quickly measure
something without contacting an object.

— Informative - you are not limited by drawings and see everything in 3D
from all sides.

— Short production time - getting a point cloud faster than a 3D object model.

— Easy to use - you do not need expensive software.

— Laser scanning is a young technology that makes it possible to master a
new product that is actively used in the world.

— 3D data is always more informative than 2D drawings.

- Any measurements available - you can take measurements of any beam

on the ceiling, any inaccessible structural element using the cloud.
1.6. Voxel
The name voxel comes from “volumetric elements,” and it represents the

generalization in 3D of the pixels. Voxels represent the traditional way to store

volumetric data. They are organized in axis-aligned grids subdividing and structuring

30

space regularly. VVoxel representations offer a promising way to store volumetric data
in order to unify texture and geometrical representations while simplifying filtering.
The significant advantage of voxels is the richness of this representation and the very
regular structure, which makes it easy to manipulate. That makes voxels an excellent

candidate to address aliasing issues that are hard to deal with in triangulated models.

bt

Fig. 1.6. Converting polygonal graphics to voxels

Voxels are often used to visualize and analyze medical and scientific data (such
as GIS). Some 3D displays use voxels to describe their resolution.

In 3D computer graphics, a voxel is a value on a regular grid in three-
dimensional space. As with pixels in a 2D bitmap, voxels themselves usually do not
have their position (coordinates) explicitly encoded by their values. Instead, rendering
systems determine the position of a voxel-based on its position relative to other voxels
(that is, its position in the data structure that makes up a single volumetric image). The
word voxel is similar to the word “pixel”, where “vo” represents “volume” and “el”
represents “element”; similar formations with “el” for “element” include the words

“pixel” and “texel”.

31

Fig. 1.7. Converting pixels to voxels

A voxel is a single sample or data point on an evenly spaced 3D grid. This data
point can consist of a single piece of data, such as opacity, or multiple pieces of data,
such as color, in addition to opacity. The voxel represents only one point on this grid,
not a volume; the space between each voxel is not represented in the voxel dataset.
Depending on the type of data and the intended use of the dataset, this missing
information can be reconstructed and/or approximated, for example, using
interpolation.

If a fixed voxel shape is used throughout the model, it is much easier to work
with voxel anchor points, that is, with three coordinates of this point. But there is also
a simple form of notation - the indices of the elements in the model set, that is, integer
coordinates. The elements of the model set in this case are the state parameters
indicating whether the voxel belongs to the modeled object or its separate parts,
including their surfaces.

Voxels can contain multiple scalar values, mostly vector (tensor) data; in the
case of ultrasound scans with B-mode and Doppler data, the density and volumetric
flow rate are captured as separate data channels referring to the same voxel positions.

While voxels provide precision and depth to reality, they tend to be large datasets and

32

are difficult to manage, given the bandwidth of conventional computers. However, by
efficiently compressing and processing large data files, interactive rendering can be
enabled on consumer computers.

While voxels provide accuracy and depth to reality, they tend to be large datasets
and are difficult to manage, given the bandwidth of conventional computers. However,
by efficiently compressing and processing large data files, interactive rendering can be
enabled on consumer computers.

Voxels are commonly used to create 3D images in medicine and represent terrain
in games and simulations. VVoxel terrain is used in place of a heightmap because of its
ability to display ledges, caves, arches, and other 3D terrain features. These concave
features cannot be represented on the heightmap because only the top “layer” of data
Is represented, and everything below it remains filled (volume that would otherwise be
the interior of caves or the underside of arches or ledges).

Using voxels to construct 3D objects can be very beneficial in some situations.
The peculiarity of voxel graphics is that the density of detail is uniform over the entire
volume of the modeled object, which gives us a uniform data density. VVoxel processing
is more comfortable compared to polygon processing. Building a voxel representation
of the environment from a point cloud is much easier than building a polygon
representation. In the context of environmental recognition for a mobile robot, when

receiving a point cloud at the input, it is easy to create voxels for further processing.

1.7. Octree

An octree is a tree in which each vertex has eight children. Octal trees are most
often used to divide three-dimensional space by recursive partitioning into octants.
Octrees are three-dimensional counterparts to quadtrees. Octrees are often used in 3D
computer graphics and 3D game engines.

In the octant tree, each node divides the space into eight new octants. At a

regional point in the octree, a node retains an exact three-dimensional point that is the

33

“center” of the space division for that node. This point defines one of the corners of

each of the eight child spaces.

Level 0

Level 1

Fig. 1.8. Hierarchy of octants

Octrees are hierarchical tree structures that describe each region of 3D space as
nodes. When compared with the necessary voxel representation, octrees reduce storage
requirements for 3D objects. It also provides a convenient representation for storing
information about object interiors. Octree encoding procedure is an extension of the
quadtree encoding of 2D images.

The first node of the tree, the root, is a cube. Each node has either eight children
or no children. The eight children form a 2x2x2 regular subdivision of the parent node.
A node with children is called an internal node. A node without children is called a

leaf.

34

Figure 1.9. shows an octree surrounding a 3D model where the nodes that have

the bunny's surface inside them have been refined, and empty nodes have been left as

leaves.

frf’"" .
r 1 » e .
Uit ol

\ “ “‘\a“h l]ﬂgu‘,
" .. ; ul‘ﬂ.l“ll' = : _‘——;!
) -’ . - ¢ I Ju
.
I
4’ '/
?Jl /
|
>

Fig. 1.9. An Octree Surrounding a 3D Model

Octrees are used to represent solid objects. They are particularly useful in

applications that require cross-sectional views, for example, medical applications

Octrees are typically used when the interior of objects is important

Each node is designated as:
Black. If the cube is fully owned by the object

White. If the cube has no intersections with the object, that is, it belongs

to the background.

35

- Gray. If the cube is partially owned by an object. In this case, the node has

8 descendants (octants), which are 8 cubes of the same size.

" _ o

4
1
~_ L 0|1(2]3]|4[5]|6]|7
7 i il 2 Data Elements
3 in the Representative
\\// Octree Node

Region of a
Three-Dimensional
Space

Fig. 1.10. Data representation in memory

Octrees are based on a two-dimensional representation scheme called quadtree
encoding, which divides a square region of space into four equal areas until

homogeneous regions are found. These regions can be arranged in a tree.

Fig. 1.11. Building an Octree Around a Mesh Surface

Quadtree encodings provide considerable savings in storage when large color

areas exist in a region of space. An octree takes the same approach as quadtrees but

36

divides a cube region of 3D space into octants. Each region within an octree is referred
to as a volume element or voxel. The division is continued until homogeneous regions
are discovered.

In 3 dimensions, regions can be considered homogeneous in terms of color,
material type, density, or physical characteristics. VVoxels also have the unique
possibility of being empty.

Octrees cannot be considered k-trees because k-trees are split along the
dimension, and octrees are split around a point. Moreover, k-trees are always binary,
which is not valid for octrees.

Octrees are very generic data structures, widely used in computer science. They
are a convenient way of storing information on unparameterized meshes, and more
generally, in space.

Octrees can make the execution of queries faster and save on memory. Octrees
can assist with modeling in many areas of earth science (such as geographical terrain,
mineral deposits, and geological data), industrial modeling, robotics, pattern
recognition, computer vision, and even medical imaging. Specifically, octrees can be

used for spatial indexing, collision detection, and view frustum culling [3].

1.8. Conclusions to the first section

The first theoretical section is devoted to the analysis of mobile robots and
localization. The basic concepts and algorithms of navigation, existing sensors,
methods of data processing and storage were considered.

Talking about the navigation of mobile robots, there are three main types of
systems - global, local and personal. The global type defines the absolute coordinates
of the robot when moving over large areas and objects. Local navigation fixes
coordinate following the specified parameters. For this type of navigation, the zone
limits must already be known. Personal navigation implies positioning, considering
objects that are nearby. Typically, the presented modification of the mobile robot is

equipped with a special manipulator.

37

It is believed that the larger the device, the higher the importance of global
navigation for it and the lower the personal one.

A mobile robot is an “intelligent” self-propelled mechanism. For it to be able to
provide meaningful behavior and perform functionally complete work with the help of
its “intellectual” capabilities, it must be equipped with various sensory systems that
allow the robot to perceive the environment and navigate in it. As with humans and
most animals, the most important and significant of these systems in the robot's
movement is the visual sensor.

Point cloud is a collection of separate, unrelated points with a specific position
and color. This makes it easy to edit, display, and filter point clouds.

A voxel is a single sample or data point on an evenly spaced 3D grid. This data
point can consist of a single piece of data, such as opacity, or multiple pieces of data,
such as color, in addition to opacity. The voxel represents only one point on this grid,
not a volume; the space between each voxel is not represented in the voxel dataset.
Depending on the type of data and the intended use of the dataset, this missing
information can be reconstructed and/or approximated, for example, using
interpolation.

Octrees are hierarchical tree structures that describe each region of 3D space as
nodes. When compared with the necessary voxel representation, octrees reduce storage
requirements for 3D objects. It also provides a convenient representation for storing
information about object interiors. Octree encoding procedure is an extension of the

quadtree encoding of 2D images.

38

SECTION 2
DEVELOPMENT OF THE PATH PLANNING ALGORITHM

The main structure of this solution is shown in Fig. 2.1.

Where the first step is to obtain a cloud of raw points; since the cloud is too
dense, processing will be slow. There is also no need to use such a large number of
points. Therefore, using the PCL library, the resolution of row data has been reduced.

Moreover, using PCL, redundant objects have been removed, such as robot parts, floor,

and ceiling.
PCL (Point Cloud Library)
Downsampling » Cutting the floor Cutting the arm
Point cloud
Octomap

¢ . Projection to
. }'7 obstacles :

.

teb_local_planner

Projection on floor Voxel generation

Fig. 2.1. Octree navigation pipeline

After the above processing, the point cloud is sent to Octomap, where an octree
Is created from it, and an octree is projected onto the floor.

Further, using the developed software, the projection is converted into obstacles
suitable for sending to teb_local _planner. In this section, the above structure will be
described in more detail along with a description of the hardware and software

platform.

39

2.1. Robot

The research was carried out on the mobile robot “Leonart” of the RT Lions team
at Reutlingen University. The mobile robot was created to educate students, with
practical purposes, and for participation in RoboCup competitions.

The base of a mobile robot is the mobile platform MPO-700 from Neobotix. This
platform is presented in Fig. 2.2. It is an autonomous robot vehicle for a wide range of
applications. The robot starts after turning clockwise. Its four Omni-Drive-Modules
enable it to move exceptionally smoothly in any direction. This robot is even capable
of rotating freely while driving to its destination.

The robot has fully omnidirectional maneuverability, very steady movements,
high stability, and payload. Moreover, it is compact and has easily integrated drive
units. This makes the MPO-700 a high-performance alternative for applications that

require omnidirectional movements without the limitations of traditional kinematics.

Fig. 2.2. Neobotix MPO-700

Neobotix platform MPO-700 has an emergency stop button; when this button is

pressed, the robot is immediately set to an emergency stop. All drives are disconnected

40

from the power supply, and the fall-safe brakes are engaged. This state can be reset by
unlocking the emergency stop buttons and turning the key switch clockwise to position
Il for a few seconds.

LC-Display indicated the current state of the robot. It shows different indicators
such as status information, messages, battery charge level, temperature, uptime since
startup. LC-Display also presents information about the version, status, and serial
number.

The mobile robot “Leonart”, which is presented in Fig. 2.3 and Fig. 2.4, has three
computers. One of them is from Neobotics, the second one for the “Leonart” and the
third one is for the Sawyer robot from Rethink Robotics. The Sawyer from Rethink
Robotics is a high-performance collaborative robot that performs automation tasks
where traditional industrial robots reach their limits. Computers have Ubuntu system
and ROS Kinetic.

l.lu ‘\\,-w

v

Fig. 2.3. Mobile robot “Leonart” (first view)

41

Fig. 2.4. Mobile robot “Leonart” (second view)

All peripheral connections of the on-board computer are accessible at the front
of the platform. The battery connector is the connection between the buttery and the
middle robot. The charging connector provides direct, not fuse protected access to the
battery. The battery charger can be plugged in there. Charging contacts can be
connected to the battery via a high-power relay if the MPO-700 has been prepared to

use the automatic charging station.

2.2. Lasers

A laser is a device that emits light through a process of optical amplification
based on the stimulated emission of electromagnetic radiation. The term “laser”
originated as an acronym for “light amplification by stimulated emission of radiation”.

A laser differs from other sources of light in that it emits coherent light. Spatial
coherence allows a laser to be focused to a tight spot, enabling applications such as

laser cutting and lithography.

42

Fig. 2.5. Laser SICK S300

The mobile robot has S300 laser model from SICK. Measurement data from one
or two laser scanners can be used for localization, navigation, and collision avoidance.
The safety-approved laser scanner S300 can monitor user-defined safety fields around
the robot, which can be dynamically activated by application-specific control software.
As soon as an object is detected within the currently activated field, the robot is
immediately set to an emergency stop. This control software is responsible for the
correct activation of the safety fields according to the current condition.

The S300 Standard is a cost-effective solution for applications with freely
definable protective fields. The triple field mode allows one protective field and two
warning fields to be activated simultaneously.

As soon as a person or obstacle is detected within the currently active safety
field, the robot is immediately set to an emergency stop. A scanning angle of 270°
allows complete protection with only two scanners. The correct protective field of the
laser at any speed avoids unnecessary stops. The stop will be reset automatically after

the field has been cleared. No manual reset is required in this case.

43

2.3. Realsense Camera

Depth cameras are cameras that shoot video, in each pixel of which not a color
Is stored, but the distance to an object at that point. Such cameras have existed for more
than 20 years, but in recent years the speed of their development has increased many
times and we can already talk about a multi-vector revolution.

The depth of field of the imaged space is the range of distances in the image in
which objects are perceived as sharp. Depth of field varies with camera type, aperture
size, and focusing distance, although print size and viewing distance can alter our
perception of depth of field.

Computer stereo vision is the extraction of three-dimensional information from
digital images, such as those obtained with a CCD camera. By comparing scene
information from two viewpoints, you can extract 3D information by examining the
relative position of objects in the two panes.

The Time of Flight (ToF) is one method with which works the depth camera,
radiating Infrared Eays (IR) and measuring the distance by the time it takes to go back
to the sensor. The IR transmission unit and the setting unit are a pair, and the distance
measured by each pixel is read. This method represents the most expensive one due to
the sophisticated hardware needed.

A stereo camera, which is considered a Depth Camera, is the last and the most
popular method for depth estimation. Their idea is based on the operation mode on
which work the left and right eyes of the people. A stereo camera is a type of camera
with two or more lenses with a separate image sensor or film frame for each lens. This
allows the camera to simulate the binocular vision of a person and therefore enables it
to capture three-dimensional images, a process known as stereo photography. Stereo
cameras can be used to create stereo visual and 3D images for movies or long-range
Imaging.

The Intel RealSense Depth Camera D435 is used in the mobile robot “Leonart”.

This camera is shown on Fig. 2.6.

44

Fig. 2.6. Intel RealSense Depth Camera D435

The Intel RealSense Depth Camera D435 Series uses stereo vision to calculate
depth. They are fully calibrated and produce hardware-rectified pairs of images. This
camera performs all depth calculations at up to 90 FPS and offers sub-pixel accuracy
and a high fill-rate. It has the inertial measurement unit (IMU), which is used for the
detection of movements and rotations.

An IMU combines a variety of sensors with gyroscopes to detect both rotation
and movement in 3 axes, as well as pitch and roll. It allows refining depth awareness
in any situation where the camera moves. Thus, it is widely used for SLAM and

tracking allowing better point cloud alignment.

2.4. ROS

The Robot Operating System (ROS) — is a widely used robot software
development framework with distributed teamwork capabilities. The way of thinking
of ROS is to create software that works with different robots, with only minor changes
to the code. This system allows the parallel launch of several programs, as well as

support the exchange of information between them.

45

ROS was developed in 2007 at the Stanford Acrtificial Intelligence Laboratory
(SAIL) to support the Stanford Al Robot project. Since 2008, development has
continued mainly at the Willow Garage research institute, collaborating with over
twenty different institutes in a co-development model.

The atomic unit of the environment is a package, which must solve a particular
issue. According to the ideology, ROS packages can be improved by any developer,
and new packages can be added to the general knowledge base with a description of
instructions for use and ROS composite modules. In this way, unigue functions can be
created that can be used by various robots without much effort to transfer information.

ROS has standard operating system features such as hardware abstraction, low-
level device management, commonly used functionality, interposes message passing,
and library management. The ROS architecture is not based on a graph with a
centralized topology. Processing takes place in nodes that can receive or send data from
sensors, condition monitoring, and planning systems, drives, and so on. The library is
focused on Unix-like systems (works great under Ubuntu Linux, and Fedora and Mac
OS X are experimental).

A wide range of libraries and tools are provided by ROS to help software
developers to create inventive applications in a formed arrangement. ROS also supports
many different sensors and actuators used in robotics. New devices that are compatible
with this framework appear every day.

The opportunity to get useful fundamental highlights is the welfare of using
ROS. Different drivers, libraries, visualizers, packages, tools, and simulations are
provided to diminish the time and intricacy of development. Many research institutes
have started to develop their projects in ROS, adding support for their hardware and
sharing examples of their code. Several robot companies have begun adapting their
products for use with ROS.

ROS is a language-independent architecture that associates with various
programming languages (C, C++, Java, Python, and so forth). Such scripting languages
as Ruby or Python, handily contrasted with others and simplify the achievement of

numerous product errands.

46

There are relatively few robot frameworks out there that uphold the development
of broadly useful robot programs across numerous platforms. It makes it harder to
achieve even basic and trifling undertakings that may appear to be not difficult for
people. However, the Robot developer ought to explore and figure out numerous
varieties between instances of assignments and environments.

The *-ros-pkg package is a general repository for high-level library
development. Many of the features often associated with ROS, such as the navigation
libraries and the RViz renderer, are stored in this repository. These libraries provide a
powerful set of tools (various visualizers, simulators, debugging tools) to simplify your
work.

ROS supports parallel computing, has good integration with popular C ++
libraries such as OpenCV, Qt, Point Cloud Library, etc., and it can run on single-board
computers such as the Raspberry Pi or BeagleBone Black, as well as microcontroller
platforms such as Arduino. You can create your own Arduino or Raspberry Pi based
robot and use the Robot Operating System to control it.

ROS is free and open-source software, which in turn allows anyone to work with
existing packages and create their own, share and work with packages from other
developers. All these factors have played a significant role in the popularization of this
framework.

Three main levels of concepts in ROS are Filesystem level, Computation Graph,
and Community level.

Filesystem level concepts mainly cover ROS resources. The primary objective
of the ROS Filesystem is to unify the build process of a project while simultaneously

give enough adaptability and tooling to decentralize its conditions.

47

Filesystem
level

Metapackages

Packages

Package
manifest

Messages Services Code Others

T

Fig. 2.7. ROS Filesystem level

Resources from ROS Filesystem level concepts are packages, metapackages,
repositories, messages, and service types. Packages are the lowest level of software
organization and the central unit for organizing software in ROS. Each package
contains libraries, executables, scripts, etc. Each package has its own manifest, which
contains a brief description of the package, dependencies between packages, and
various meta information such as package version, license, etc. The package.xml file
is the manifest of the package. Metapackages are virtual packages; they do not contain
any source. The metapackage manifest might include packages inside it as runtime
dependencies and declare an export tag.

ROS messages of different types are sent from one ROS process to the other. A
custom message can be defined in the msg folder. ROS services implement these
request-response type of communications. They consist of two message types: One for
requesting data, and one for the response. These services are the gateway to event-
based ROS executions. The reply and request data types are defined in the srv folder

inside the package.

48

Nodes

e M
N /7

ROS
Computational
Graph Level

Parameter

Services Server

Topics Messages

Fig. 2.8. ROS Computational Graph level

The Computation Graph level consists of the following main concepts: ROS
Nodes, Master, Parameter server, Messages, Topics, Services, and Bags. Each concept
in the graph is contributed to this graph in different ways. The main element of the
ROS system is the node. This element corresponds to a set of executable files belonging
to one program. The ROS architecture is based on a directed graph: processing occurs
at its vertices - nodes that can receive or send data from sensors, actuators, condition
monitoring, and planning systems through message transmission channels, which are
the edges of the graph. This interaction between each other is done through topics
through specific messages. Each process can publish its own topics by sending
messages with data to them, as well as subscribe to other topics, subscribe to messages
from other processes. In turn, each topic supports only one type of transmitted
messages. Several nodes designed to perform one task can be combined into a package.

The ROS Master performs as a nameservice in the ROS Computation Graph and

stores topics and services registration information for ROS nodes. Nodes communicate

49

with the Master to report their registration data. As these nodes communicate with the
Master, they can receive information about other registered nodes and make
connections as appropriate. The Master will also make callbacks to these nodes when
this registration information changes, which allows nodes to dynamically create
connections as new nodes are run.

Nodes connect to other nodes directly. Nodes that subscribe to a topic will
request connections from nodes that publish that topic and will establish that

connection over an agreed upon connection protocol.

Distributions

ROS Blo
Answers g
ROS
Community
Level o
ROS Wiki Mﬂ!{”g

Bug ticket
System

Repositories

Fig. 2.9. ROS Community Level

The Community level consists of the next concepts: Distributions, Repositories,
The ROS Wiki, Bug ticket system, Mailing lists, ROS Answers, and Blog. These ROS
resources enable an opportunity for the community to exchange software and

knowledge.

50

2.4.1. ROS Tools and Simulators

A variety of tools augments ROS’s core functionality. Applying tools hugely
increases the capacity of systems, which are using ROS. They simplify and provide
solutions to common robotics development problems. Tools are in packages and
provide tasks and robot-agnostic tools which come with the core of most modern ROS
installations.

Catkin is a collection of CMake macros and associated code used to build
packages used in ROS. Catkin is the official ROS build system and the successor to
the original ROS build system, rosbuild.

Roslaunch is a tool used to launch multiple ROS nodes both locally and
remotely, as well as setting parameters on the ROS parameter server. Roslaunch
configuration files, which are written using XML, can easily automate a complex
startup and configuration process into a single command. Roslaunch scripts can include
other roslaunch scripts, launch nodes on specific machines, and even restart processes

that die during execution.

2.4.2. RViz

RViz is a ROS graphical interface that allows users to visualize in real-time on
a 3D scene all the components of a robotic system - coordinate systems, moving parts,
sensor readings, images from cameras, using plugins for many kinds of available
topics.

RViz is the primary visualizer in ROS and an incredibly useful tool for
debugging robotics. RViz is a tool for 3D visualization of data (messages) coming in
on ROS topics. By visualizing data, developers can evaluate how the robot “sees” its
environment and how it perceives itself in it - its position, orientation in space, and
location on the map. RViz assists in debugging ROS software components and is an
indispensable tool when working with a robot in both real environment and simulation.

The graphical interface of the software is shown in Fig. 2.10.

51

e Views

Type: | XYOrbit (rviz) v Zero

Current View XYOrbit (rviz)

Frame Rate ip Distance 0,01

a
Default Light v
v Global Status: Ok
@ Grid
#h, RobotModel
~ LaserScan
F2 Map
2 GlobalCostMap
+ P2 LocalCostMap
< / GlobalPath
LocalPath

<Fixed Frame>
17,9477

Focal Shape Size 0,05
Focal Shape Fixe.. &
Yaw 215138
Pitch 0,0997968
+ Focal Point 2.6283;-4.2334; 5.481

wll FootPrintPolygon
wl Polygon

R NORAQAKIRLEQOQK

= oo
5o

,,,,,,,,,,,,,,

Add

Fig. 2.10. RViz

When RViz starts for the first time, you will see an empty window. A display is
something that draws something in the 3D world and likely has some options available
in the displays list. An example is a point cloud, the robot state, etc. Each display gets
its own list of properties.

Each display gets its own status to help let you know if everything is OK or not.
The status can be one of 4: OK, Warning, Error, and Disabled. The status is indicated
in the display’s title by the background color. The Status category also expands to show
specific status information. This information is different for different displays, and the
messages should be self-explanatory.

A configuration contains:

- Displays + their properties.

— Tool properties.

— Camera type + settings for the initial viewpoint.

Different configurations of displays are often useful for different uses of the

visualizer. To this end, the visualizer lets you load and save different configurations.

52

The views panel also lets you create different named views, which are saved and
can be switched between. A view consists of a target frame, camera type and camera

pose. A view consists of:
- View controller type.

— View configuration (position, orientation, etc., Possibly different for each
view controller type).

— The Target Frame.

2.4.3. ROS GUI Development Tool (Rqgt_reconfigure)

@ @@ rqt_reconfigure__Param - rqt

[ZfDynamic Reconfigure DY -0
L i b
Filter key: = =) meve nase X
base_global_planner navfn/NavfnROS
Collapse all Expand all
; base_local_planner teb_local_planner/TebLocalPlannerROS
+ color -
cut_arm planner_frequency 0.0 100.0 0.0
cut_floor controller_frequency 0.0 100.0 120.0
downsampling
gazebo planner_patience 0.0 = 100.0 5.0
gazebo_gui controller_patience 0.0 100.0 |15.0
head_camera . .
Do max_planning_retries -1 0 1000 8
conservative_reset_dist 0.0 —) 50.0 3.0
TebLocalPlannerROS

5 global_costmap recovery_behavior_enabled

+ local_costmap clearing_rotation_allowed

octomap._server shutdown_costmaps
right_hand_camera oscillation_timeout 0.0 60.0 |10.0
+ robot .
oscillation_distance 0.0 < 10.0 (0.4
Refresh restore_defaults

(System message might be shown here when necessary)

Fig. 2.11. Rqt_reconfigure GUI

The qgt_reconfigure plugin provides a means to update parameters at runtime

without having to restart the node. It replaces former dynamic_reconfigure’s GUI and

53

provides the way to view and edit parameters that are accessible via
dynamic_reconfigure.

The next command is used to launch rqgt_reconfigure GUI: rosrun
rgt_reconfigure rgt_reconfigure. The user can select one or multiple nodes from the
left part to reconfigure them.

From the Rqt_reconfigure GUI it is possible to select one or multiple of the left-

hand nodes to reconfigure it.

2.4.4. Gazebo

Gazebo is an open-source dynamic 3D simulator that is being developed by the
Open-Source Robotic Foundation and has been quite used with ROS. The gazebo
allows you to accurately and efficiently model robots both in difficult indoor conditions
and outside.

Gazebo is a 3D simulator that provides robots, sensors, environment models for
3D simulation required for robot development and offers realistic simulation with its
physics engine. Gazebo is one of the most popular simulators for open-source robotics
in recent years and has been widely used in the field of robotics because of its high
performance and reliability.

Gazebo uses OGRE (Open-source Graphics Rendering Engines) for the 3D
Graphics, not only for the robot model but also for the light, that can be realistically
drawn on the screen.

Gazebo uses a distributed architecture with separate libraries for physics
simulation, rendering, user interface, communication, and sensor generation. The
simulator consists of a server gzserver, which deals with the calculation of physics,
collisions, and sensor simulation. Clients such as gzclient (for desktop) and gzweb (for
desktop) can connect to the server. They are the ones who render the models.

The communication library currently uses the open-source Google Protobuf for
the message serialization and boost::ASIO for the transport mechanism. It supports the

publish/subscribe communication paradigm. For example, a simulated world publishes

54

body pose updates, and sensor generation and GUI will consume these messages to
produce output.

A lot of sensors are already supported Laser range finder (LRF), 2D/3D camera,
depth camera, a contact sensor, force-torque sensor; noise can be considered as added
to the sensor data like in real environment.

Some robot models are already available in gazebo: PR2, Pioneer2 DX, iRobot
Create, and TurtleBot are already supported in the form of SDF, a Gazebo model file,
and users can add their own robots with an SDF file.

This mechanism allows for introspection of a running simulation and provides a

convenient mechanism to control aspects of Gazebo.

Value

1 Real Time Factor: Sim Time: Real Time: Jterations:

Fig. 2.12. Gazebo simulator

All this makes it possible to test complex robotic systems in virtual space much
faster and without the risk of inflicting damage on real expensive robots. Gazebo is
included in the complete ROS installation package, so nothing extra is needed.

Fig. 2.13. Mobile robot “Leonart” in Gazebo

Gazebo uses a number of environment variables to locate files and set up
communications between the server and clients. Default values that work for most
cases are compiled in. The server is the workhorse of Gazebo. It parses a world
description file given on the command line and then simulates the world using a physics
and sensor engine. Plugins specified on the command line are loaded first, then plugins
specified in the SDF files are loaded. Some plugins are loaded by the server, such as
plugins that affect physics properties, while the graphical client loads other plugins to

facilitate custom GUI generation.

2.4.5. TF package

The Transform Library TF consists of tf package, which is used within ROS
nodes. The tf library was designed to provide a standard way to keep track of coordinate
frames and transform data within an entire system such that individual component users
can be confident that the data is in the coordinate frame that they want without requiring

knowledge of all the coordinate frames in the system.

56

The tf library has two standard modules, a Broadcaster, and Listener. These two
modules are designed to integrate inside ROS, but generally useful outside of ROS, too
[13].

The tf package is used for the optimal interaction between the various
sensors/components of a robot. TF is a package that lets the user keep track of multiple
coordinate frames over time. TF maintains the relationship between coordinate frames
in a tree structure buffered in time and lets the user transform points, vectors, etc.,

between any two coordinate frames at any desired point in time.

heatiees” aameaptical
creciill

hea

160,30 20030
nggr;ﬁ?# T e

rign-10
camera_tam as - WER SR

Fig. 2.14. TF origins of mobile robot parts

In order to avoid errors in the context, a system always consists of a base
(Leonart: in the middle of the lower base). Thereupon, e.g., the camera attached to the
robot. The library now ensures that the camera is permanently in the correct

relationship to the robot as soon as the robot moves (in the simulation). This is

57

particularly important for path planning so that the object recognized by the camera is

transmitted with the correct relationship to the robot.

2.5. ROS Navigation Stack

Below the main components and links between navigation elements will be

"maove_base_simplefgoal” P i
geometry msgs/Pasestamped Mavigation Stack Setup
move_base "map"
¥ ¥ nav_msgs/GetMap M
amel global_planner - global_costmap
sensor transfarms i = internal & sensor topics SENs0or SoUrces
tfitfMessage nav_msgs/Path recovery_behawiors Senser_msgs/Laserscan
sensor_msgs/PointCloud
*,
A \
odometry source ~odam" local_planner - local_costmap
nav_msgs/Odometry

“emd_val" | geometry_msgs/wist

Y provided node
optional pravided node

base controller
platfarm specific node

Fig. 2.15. ROS Navigation Stack

AMCL is a probabilistic localization system for a robot moving in 2D. This
system implements the adaptive Monte Carlo localization approach (as described by
Dieter Fox [18]), which uses a particle filter to track a robot's pose against a known
map.

AMCL tries to match the laser scans to the map, thus detecting if there is any
drift occurring in the pose estimate based on the odometry (dead reckoning). This drift
Is then compensated by publishing a transform between the map frame and the Odom
frame such that at the end, the transform map->base_frame corresponds to the real pose
of the robot in the world.

Gmapping package contains a ROS wrapper for OpenSlam’s Gmapping. The
gmapping package provides laser-based SLAM, as a ROS node called slam_gmapping.

58

Using slam_gmapping, it is possible to create a 2-D occupancy grid map (like a

building floorplan) from the laser and pose data collected by a mobile robot.

2.5.1. Move_base node

This project uses the capabilities of ROS, which offers a solution to the problem
using the move_base package [15]. Further in the paper, the properties and organization
of these management packs are considered.

The move_base node provides a ROS interface for configuring, running, and
interacting with the navigation stack on a robot. A high-level view of the move_base
node and its interaction with other components is shown above. The blue vary based
on the robot platform, the gray are optional but are provided for all systems, and the
white nodes are required but also provided for all systems [15].

The components of this configuration will be discussed below.

Map (map_server). The map_server node feeds some RO map to the input; this
map will be used to build a global_costmap - a global obstacle map, according to which
the algorithm will then decide at which points to plot the route.

Odometry source. It is necessary that the tf module can get the transformation
from odom to base_link, where base_link is the coordinate system associated with the
robot, and odom is the coordinate system in which the user agent moves.

Mobile robot coordinates (amcl, sensor transforms). It is necessary that using
some algorithm (for example, the adaptive Monte Carlo method - amcl), which through
tf provides a group of sequential coordinate transformations: map — odom —
base_link.

Sensor data (sensor sources), which will be used to build local _costmap, which
will be used by the program to ensure the movement along the route.

For any global or local planner to be used by the move base package, they have
to ad- here to some interfaces defined in the nav core package. The global planner must

adhere to the nav core::BaseGlobalPlanner interface and the local planner to the nav

59

core::BaseLocalPlanner interface; also, they must be added as plugins to ROS in order
to work with the navigation stack.

Global _planner. There is an interface nav_core::BaseGlobalPlanner, which is
used by path planners. One such scheduler is navfn. It uses Dijkstra’s algorithm to
calculate the minimum path from the start point to the endpoint.

Local_planner. nav_core::BaseLocalPlanner provides the interface used by local
schedulers. base local _planner is one of the plugins that use this interface. This
package provides implementations of the TRA (Trajectory Rollout approach) and
DWA (Dynamic Window approach) methods for local robot navigation on the plane.
Taking a route and an obstacle map (costmap) as input, it outputs the output speed,

which is then transmitted to the robot controller.

move_base Default Recovery Behaviors

stuck — stuck stuck
/Cc-nservatlve\ 7 Clearlng \ /Aggressw\ " Clearmg
Reset / Rotatlon/ \\ Reset /- ™ Rotation

clear clear clear stuck
clear

Nawgatlng) / Aborted)
e AN

e - e I

Fig. 2.16. Robot behavior during recovery

When called, move _base will try to ensure that the user-specified target is
achieved within some user-specified margin of error. Ultimately, move base will
inform the user that the goal has been achieved or the goal is unattainable. If the robot
gets stuck, then the module goes into recovery mode. By default, move_base will do
the following to restore the robot’s movement:

1. Obstacles outside the user-defined area will be removed from the robot
map.

2. If possible, the robot will rotate in place to clear the space in front of it.

60

3. If this also fails, the robot will completely clear the area of the map in
which the robot can rotate.

4. After that, it will continue its rotation.

If none of the above helps, the goal will be considered unattainable, and its

implementation will be interrupted. You can configure the recovery mode yourself.

2.5.2. Teb _local planner

The Timed Elastic Band (TEB) is an online collision avoidance method for
online trajectory optimization. Timed Elastic Band local planner optimizes locally the
robot’s trajectory minimizing the trajectory execution time (time-optimal objective),
separation from obstacles, and compliance with kinodynamic constraints such as
satisfying maximum velocities and accelerations [16].

TEB local planner can sometimes get stuck in a locally optimal trajectory as it is
unable to transit across obstacles. A subset of admissible trajectories of distinctive
topologies is optimized in parallel. The local planner is able to switch to the current
globally optimal trajectory among the candidate set. Distinctive topologies are obtained
by utilizing the concept of homotopy/homology classes.

Teb_local_planner/obstacles is a topic used to avoid obstacles by a mobile robot
in this navigation system. This topic accepts polygons or points as input. The data
format is an array ObstacleMsg, which consists of:

— std_msgs/Header header - standard ROS message header;

— geometry_msgs/Polygon polygon - obstacle footprint (polygon descriptions).
A polygon consists of an array of points in space. It can also consist of one point, in
which case the obstacle will be the point;

— float64 radius - radius for circular / point obstacles;

— int64 id - IDs in order to provide (temporal) relationships between obstacles
among multiple messages;

— geometry_msgs/Quaternion orientation - individual orientation (centroid);

61

— geometry_msgs/TwistWithCovariance velocities - individual velocities

(centroid).

2.6. Point cloud to obstacles projection using octomap

The next step after retrieving the raw point cloud is filtering it with PCL. After,
the filtered point cloud should be processed the point cloud by octomap, which
provides us octrees. Octrees are cast to the floor; what is a projection. This projection

should be converted to obstacle format for teb_local_planner.

2.6.1. Point cloud filtering with PCL

The Point Cloud Library (PCL) is a standalone, large scale, open project for
2D/3D image and point cloud processing. PCL is released under the terms of the BSD
license and thus free for commercial and research use. The PCL is used as a package

for downsampling and clipping redundant points.

Fig. 2.17. Raw density of point cloud from the realsense camera

62

Because the density of the received data in the form of a point cloud is too high
(Fig. 2.17) for further processing, a downsample VoxelGrid filter was used, which
reduces the point cloud's density. VoxelGrid belongs to the PCL library. Configuration
of VoxelGrid filter is presented in Fig. 2.18.

filter field n
filter limit

filter limit)
filter limit negative: Fals
leaf size: 0.08

filter field na
filter limit m
filter limit max
filter limit ne

filter field name: z

filter limit min: 1.2

filter limit max: 1000000
filter limit negative: False

Fig. 2.19. Configuration of PassThrough filter

63

Fig. 2.20. Floor recognized as an obstacle

Another problem was the removal of information about unnecessary objects in
the camera’s field of view. These include the floor, ceiling, parts of the robot (such as
a manipulator). The PassThrough filter from the PCL library was used to solve this

problem. Its configuration is shown in Fig. 2.19.

heatigewa v Smmptical
S5Cree,

heaq
right torgige 1112 righbuas2
r‘lﬂ ; [ﬂ"}an I - /
HGOEu=> " GO K. SHMRC
right_ic [o

cFHR N s o fitieal_trame

X280 “SI03

A

Fig. 2.21. Arm recognized as an obstacle

64

In figure 2.20. the whole floor in the field of view of the camera is converted to
octree. If it had left this way, it would have recognized as an obstacle.
Fig. 2.21. represents the issue with the robot's arm recognition as obstacles.

Thus, the configuration of the PassThrough filter for arm and floor was applied.

2.6.2. Octomap

The next step is to process the filtered data using OctoMap. As a result, an octree
IS generated.

OctoMap provides converting point cloud data to occupancy grid octree. Then
these occupied octants(voxels) are projected to the floor, providing an image of the
occupied area. The configuration is presented in Fig. 2.22. Fig. 2.23 shows the resulting

octree.

p server node" name="octomap server

name="frame id" type="string" value="map"
name="sensor model/max range" value="5.0"

from="cloud in" to="/camera front/depth/points octomap navi

pointcloud max
pointcloud min z: -1080.0
sensor_model hit:

c: 100.0

sor model min: @.
sensor model miss: @.¢

Fig. 2.22. Octomap server configuration

65

Fig. 2.23. Octree produced by octomap

A top-down projection is created by the Octomap itself, and it is published to
/projected_map from the octree generated in the previous step. Fig. 2.24. shows

projection as big black pixels.

Fig. 2.24. Projection generated from octree

66

The OctoMap library implements a 3D occupancy grid mapping approach,
providing data structures and mapping algorithms in C++, particularly suited for
robotics. The map implementation is based on an octree and is designed to meet the
following requirements:

— Full 3D model. The map is able to model arbitrary environments without
prior assumptions about them. The representation models occupied areas as well as free
space. Unknown areas of the environment are implicitly encoded in the map. While the
distinction between free and occupied space is essential for safe robot navigation,
information about unknown areas is important, e.g., for autonomous exploration of an
environment.

— Updatable. It is possible to add new information or sensor readings at any
time. Modeling and updating are done in a probabilistic fashion. This accounts for
sensor noise or measurements which result from dynamic changes in the environment,
e.g., because of dynamic objects. Furthermore, multiple robots are able to contribute to
the same map, and a previously recorded map is extendable when new areas are
explored.

— Flexible. The extent of the map does not have to be known in advance.
Instead, the map is dynamically expanded as needed. The map is multi-resolution so
that, for instance, a high-level planner is able to use a coarse map, while a local planner
may operate using a fine resolution. This also allows for efficient visualizations that
scale from coarse overviews to detailed close-up views.

— Compact. The map is stored efficiently, both in memory and on disk. It is
possible to generate compressed files for later usage or convenient exchange between

robots, even under bandwidth constraints [17].

2.7. Projection to obstacles

But projection itself is not an obstacle for the navigation stack. The most

appropriate input with obstacles for the navigation stack is an obstacle topic

67

teb_local_planner subscribed on. It can consume obstacles as point obstacles or
polygons.

Firstly, direct conversion from occupied pixels to point obstacles were
developed. This solution does not provide needed path planning because
teb_local_planner tries to build the route through the obstacle between close points
where it is not enough space to go.

The better way is to build polygons around the occupied areas on the projection.

In this case, there no small space inside the occupied area, and the path is built
appropriately around the obstacle.

In this manner, the mobile robot will be able to recognize and to avoid the
obstacle, which was found on the way from the starting point to the goal. The mobile
robot will change the route, which was built, accordingly to the obstacle which was
found.

2.8. Conclusions to the second section

The second section is devoted to the development of path planning algorithms.
The section describes the robot on which the system was tested, the details of the
sensors and depth cameras used. Stages of realization of the new system, steps of data
processing are described. Attention is paid to the ROS system, simulators and
important and relevant implementations of these algorithms and navigation
approaches.

The research was carried out on the mobile robot “Leonart” of the RT Lions team
at Reutlingen University. The mobile robot was created to educate students, with
practical purposes, and for participation in RoboCup competitions.

The Intel RealSense Depth Camera D435 Series uses stereo vision to calculate
depth. They are fully calibrated and produce hardware-rectified pairs of images. This
camera performs all depth calculations at up to 90 FPS and offers sub-pixel accuracy
and a high fill-rate. It has the inertial measurement unit (IMU), which is used for the

detection of movements and rotations.

68

The mobile robot has S300 laser model from SICK. Measurement data from one
or two laser scanners can be used for localization, navigation, and collision avoidance.
The safety-approved laser scanner S300 can monitor user-defined safety fields around
the robot, which can be dynamically activated by application-specific control software.
As soon as an object is detected within the currently activated field, the robot is
immediately set to an emergency stop. This control software is responsible for the
correct activation of the safety fields according to the current condition.

The Robot Operating System (ROS) — is a widely used robot software
development framework with distributed teamwork capabilities. The way of thinking
of ROS is to create software that works with different robots, with only minor changes
to the code. This system allows the parallel launch of several programs, as well as
support the exchange of information between them.

RViz is the primary visualizer in ROS and an incredibly useful tool for
debugging robotics. RViz is a tool for 3D visualization of data (messages) coming in
on ROS topics. By visualizing data, developers can evaluate how the robot “sees” its
environment and how it perceives itself in it - its position, orientation in space, and
location on the map. RViz assists in debugging ROS software components and is an
indispensable tool when working with a robot in both real environment and simulation.

Gazebo is a 3D simulator that provides robots, sensors, environment models for
3D simulation required for robot development and offers realistic simulation with its
physics engine. Gazebo is one of the most popular simulators for open-source robotics
In recent years and has been widely used in the field of robotics.

TF maintains the relationship between coordinate frames in a tree structure
buffered in time and lets the user transform points, vectors, etc., between any two
coordinate frames at any desired point in time.

The move_base node provides a ROS interface for configuring, running, and
interacting with the navigation stack on a robot. A high-level view of the move_base
node and its interaction with other components is shown above.

The first step of the developed algorithm is to obtain a cloud of raw points. There

Is also no need to use such many points. Therefore, using the PCL library, the resolution

69

of row data has been reduced and redundant objects have been removed, such as robot
parts, floor, and ceiling. After the above processing, the point cloud is sent to Octomap,
where an octree is created from it, and an octree is projected onto the floor. Further,
using the developed software, the projection is converted into obstacles suitable for
sending to teb_local planner. In this section, the above structure will be described in

more detail along with a description of the hardware and software platform.

SECTION 3

RESULTS OF THE DEVELOPED SYSTEM

3.1. Configuration of the navigation stack

70

The navigation stack of the robot is consisting of amcl, gmapping, and

move_base packages. To set up the stack properly, we need to set configuration

parameters. The parameters are described below.

Table 3.1
AMCL parameters
Parameter Value
min_particles 100
max_particles 2000
kld_err 0.01
kld_z 0.99
update_min_d 0.1
update_min_a 0.1
resample_interval 2
transform_tolerance 0.2
initial_pose_x 0.0
initial_pose_y 0.0
initial_pose_a 0.0
initial_cov_xx 0.01
initial_cov_yy 0.01
initial_cov_aa 0.01
gui_publish_rate 2.0
save_pose rate 0.5
use_map_topic true

71

Continuation of Table 3.1

Parameter Value
first_map_only false
laser_min_range -1.0
laser_max_range -1.0
laser_max_beams 100
laser_likelihood _max_dist 2.0

laser_model _type

likelihood_field prob

do_beamskip true
odom_model_type omni-corrected
odom_alphal 0.1
odom_alpha3 0.1
odom_frame_id odom

base frame_id base_link
global_frame_id map
tf_broadcast true

Table 3.2
Gmapping parameters
Parameter Value
base_frame "base_link"
map_frame “map”
odom_frame “odom”
map_update_interval 2.0
maxUrange 10.0
sigma 0.05
kernelSize 1
Istep 0.05
astep 0.05

72

Continuation of Table 3.2

Parameter Value
iterations 5
ogain 3.0
minimumsScore 50.0
linearUpdate 0.5
angularUpdate 0.5
temporalUpdate -1.0
particles 50
delta 0.05
transform_publish_period 0.05
occ_thresh 0.25
maxRange 30
Table 3.3
Move_base parameters
Parameter Value
controller_frequency 20.0
planner_patience 5.0
controller_patience 15.0
conservative_reset_dist 3.0
recovery_behavior_enabled true
clearing_rotation_allowed true
shutdown_costmaps false
oscillation_distance 0.4
oscillation_timeout 10.0
planner_frequency 0.0
max_planning_retries 8

73

3.2. Projection to obstacles. Details.

In this part, projection_to obstacles package code will be presented and

described with details. In the very first step, OccupancyGrid is converted to the internal

structure OccupancyGridPositions (Fig. 3.1). The new values are computed

considering the origin of the projection, so that each pixel s positions appeared in world

space. Then non-border vertices are removed.

OccupancyGridPositions(39 occupancyGrid, 1 8 parent)

-
1

resoclution pccupancyGrid.info.resolution;
height cupanc .in it ;
width = occups '

index = 8;
for (i=8; i < height; ++1i)

e 13 id.data[index] ;
(j * ution) + tOrigin().getX
y (i * resolution) + pa
index++;

i:vector<Vertex> vertices;

p; i = cells.size(); ++1i)

[s[i].value == OccupiedvValue && GetOccupiedNeighboursNumber(i) == 5]}

ls[i].y;
ck(vertex);

Fig. 3.2. Keep only key vertices

74

Then we keep only key vertices (Fig. 3.2). Key points are responsible for the
shape of the group’s border. Removing no key will not affect the shape. So they are
redundant.

During the next step, we divide all vertices into independent islands when they

have no adjacent vertices (Fig. 3.3).

GroupIslands(1 - > *yertices)
::vectors :vector<Vertex>> islands;
B; 1 = vertices-»size():; ++1)

added = -
if (lislands.empty())
added = AddToExistingIsland(&islands, (*vertices)[i]);

if (ladded)

::vector<Vertex> newIsland;
ewIsland.push back((*vertices)[i]);
inds.push_back(newIsland);

islands;

Fig. 3.3. Island producing

When there are only key points, they can be circularly connected. An
appropriately connected array of vertices is basically a polygon (Fig. 3.4). This polygon

can be sent directly to teb_local_planner.

75

: :Polygon= polygons;
< islands.size(): ++i)

::Polygon polygon;

::Point32 point;
point.x = islands[i][f i
point.y islands[i][@

polygon.points.push back(point);
current = 0;
::vector<int> used;
used.push back(e);
while (polygon.points.size() < islands[i].size())
{
next = GetNearestVertex(islands[i], current, used);
if (next == -1)
break;

used.push back(next);
islands[i] [next];

Y Text)

p&lygﬂﬁ.puintﬁ.push_béﬁk{pﬂint];

current = next;

polygons.push back(polygon);

Fig. 3.4. Polygons producing

3.3. System setup for simulation

It is necessary to use Ubuntu 16.04 and install ROS Kinetic. You can follow
instructions from this link: http://wiki.ros.org/kinetic/Installation/Ubuntu.
Next step is packages installation. You can use these commands:
$ sudo apt install ros-kinetic-ddynamic-reconfigure
$ sudo apt install ros-kinetic-map-server
$ sudo apt install ros-kinetic-move-base

$ sudo apt install ros-kinetic-hardware-interface

http://wiki.ros.org/kinetic/Installation/Ubuntu

76

$ sudo apt install ros-kinetic-amcl
$ sudo apt install ros-kinetic-effort-controllers
$ sudo apt install ros-kinetic-gazebo-ros-control
$ sudo apt install ros-kinetic-sns-ik-lib
$ sudo apt install ros-kinetic-teb-local-planner
$ rosdep install teb_local_planner
Then you can download next packages. Firstly, open src folder in terminal and
use next commands:
$ cd ~/catkin_ws/src
$ git clone https://gitlab.com/rtlions/robots/neo_mpo_700.git
$ git clone -
b navi_octomap https://gitlab.com/rtlions/navigation/navigation_teb.git
$ git clone -b navi_octomap https://gitlab.com/rtlions/robot/rtl_leonart.git
$ git clone -b navi_octomap https://gitlab.com/rtlions/robot/rtl_simulation.git
$ git clone https://github.com/neobotix/neo_simulation.git
$ git
clone https://RudViacheslav@bitbucket.org/RudViacheslav/projection_to_obstacles.g
it
$ git clone https://github.com/RethinkRobotics/intera_sdk.git
$ git clone https://github.com/RethinkRobotics/intera_common.git
$ git clone -
b obstacle_avoidance https://github.com/ViacheslavRud/sawyer_robot.qgit
$ git clone -
b obstacle_avoidance https://github.com/ViacheslavRud/sawyer_simulator.git
$ git clone -
b obstacle_avoidance https://github.com/ViacheslavRud/sawyer_moveit.git
$ git clone -b obstacle_avoidance https://github.com/ViacheslavRud/realsense-

ros.git

https://gitlab.com/rtlions/robots/neo_mpo_700.git
https://gitlab.com/rtlions/navigation/navigation_teb.git
https://gitlab.com/rtlions/robot/rtl_leonart.git
https://gitlab.com/rtlions/robot/rtl_simulation.git
https://github.com/neobotix/neo_simulation.git
https://RudViacheslav@bitbucket.org/RudViacheslav/projection_to_obstacles.git
https://RudViacheslav@bitbucket.org/RudViacheslav/projection_to_obstacles.git
https://github.com/RethinkRobotics/intera_sdk.git
https://github.com/RethinkRobotics/intera_common.git
https://github.com/ViacheslavRud/sawyer_robot.git
https://github.com/ViacheslavRud/sawyer_simulator.git
https://github.com/ViacheslavRud/sawyer_moveit.git
https://github.com/ViacheslavRud/realsense-ros.git
https://github.com/ViacheslavRud/realsense-ros.git

77

If you have an error with realsense lib version, you can change in
file realsense-ros/ realsense2_camera next line find_package(realsense2 2.35.2) to
find_package(realsense2 2.34).

Put https://github.com/ipa320/cob_driver/tree/kinetic_dev/cob_scan_unifier int
o src folder as well.

Apply a fix in sawyer_simulator/sawyer_gazebo/launch/sawyer_world.launch:
remove “-z 0.93” in line 75:

Before fix:

<node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respaw
n="false" output="screen" args="-param robot_description -urdf -z 0.93 -
model sawyer $(arg initial_joint_states)" />

After fix:

<node name="urdf_spawner" pkg="gazebo_ros" type="spawn_model" respaw
n="false" output="screen" args="-param robot_description -urdf -
model sawyer $(arg initial_joint_states)" />

Then build:

cd {workspace}

catkin_make

3.4. System setup for robot

The setup process for the robot is similar to the setup for simulation but has some
differences.
It is necessary to use Ubuntu 16.04 and install ROS Kinetic. You can follow
instructions from this link: http://wiki.ros.org/kinetic/Installation/Ubuntu.
Next step is packages installation. You can use these commands:
$ sudo apt install ros-kinetic-ddynamic-reconfigure
$ sudo apt install ros-kinetic-map-server
$ sudo apt install ros-kinetic-move-base

$ sudo apt install ros-kinetic-hardware-interface

https://github.com/ipa320/cob_driver/tree/kinetic_dev/cob_scan_unifier
http://wiki.ros.org/kinetic/Installation/Ubuntu

78

$ sudo apt install ros-kinetic-amcl
$ sudo apt install ros-kinetic-effort-controllers
$ sudo apt install ros-kinetic-sns-ik-lib
$ sudo apt install ros-kinetic-teb-local-planner
$ rosdep install teb_local_planner
Then you can download next packages. Firstly, open src folder in terminal and
use next commands:
$ cd ~/catkin_ws/src
$ git clone https://gitlab.com/rtlions/robots/neo_mpo_700.git
$ git clone -
b navi_octomap https://gitlab.com/rtlions/navigation/navigation_teb.git
$ git clone -b navi_octomap https://gitlab.com/rtlions/robot/rtl_leonart.git
$ git clone -b navi_octomap https://gitlab.com/rtlions/robot/rtl_simulation.git
$ git clone https://github.com/neobotix/neo_simulation.git
$ git
clone https://RudViacheslav@bitbucket.org/RudViacheslav/projection_to_obstacles.g
it
$ git clone https://github.com/RethinkRobotics/intera_sdk.git
$ git clone https://github.com/RethinkRobotics/intera_common.git
$ git clone -
b obstacle_avoidance https://github.com/ViacheslavRud/sawyer_robot.git
$ git clone -
b obstacle_avoidance https://github.com/ViacheslavRud/sawyer_simulator.git
$ git clone -
b obstacle_avoidance https://github.com/ViacheslavRud/sawyer_moveit.git
$ git clone -b obstacle_avoidance https://github.com/ViacheslavRud/realsense-
ros.git
If you have an error with realsense lib version, you can change in
file realsense-ros/ realsense2_camera next line find_package(realsense2 2.35.2) to

find_package(realsense2 2.34).

https://gitlab.com/rtlions/robots/neo_mpo_700.git
https://gitlab.com/rtlions/navigation/navigation_teb.git
https://gitlab.com/rtlions/robot/rtl_leonart.git
https://gitlab.com/rtlions/robot/rtl_simulation.git
https://github.com/RethinkRobotics/intera_sdk.git
https://github.com/RethinkRobotics/intera_common.git
https://github.com/ViacheslavRud/sawyer_robot.git
https://github.com/ViacheslavRud/sawyer_simulator.git
https://github.com/ViacheslavRud/sawyer_moveit.git
https://github.com/ViacheslavRud/realsense-ros.git
https://github.com/ViacheslavRud/realsense-ros.git

79

Then build:
cd {workspace}

catkin_make

3.5. Run in simulation

It is important to have all the necessary modules and ROS installed on the
system.
1. Open a new terminal window.

2. Call roslaunch rtl_simulation simulation.launch (Fig. 3.5. and Fig. 3.6).

Fyiterat D MoveCamera [Jselect @b FocusCamers EoMeasurs 7 0Posefdtingte ~ 20NmGodl @ PblishPoit b =y &

YO C .

™ Fixed ;rm 3 map Type: | XYOrbit {rviz)) Zeto
Background Color W as; 48,48
Frame Rate
Default Light

» v Global Status: Ok

» @ Grid

* th, RobotModel

» A LaserScan

» P2 Map

» P! GlobalCostMap

» P2 LocalCostMap

» / GlobalPath

w
3

Near Clip Distance 0,01
Invert Z Axis 0
Target Frame <Fixed Frame>
Distance 10,2566
Focal Shape Size 0,05
Focal Shape Foxe.., 8
Yaw 129635
Pitch 0,739797
» Focal Point 0.55621;-0.23922,95...

» Z PoseArray
» P2 Map
» $° MarkerArray
v % PointCloud2
> v Status: Ok
Topic
unreliable
Selectable

mera_front/depth/point...

"
H
i
R7 CQUUNRRNNRRRRNNRRRN

Style
Size {m) 0,01
Alpha

Decay Time 0
Position Transformer xvz
Color Transformer RGBS
Queue Size 10

Save || Remove || Rename

(O 'ime’ ;
ROS Time: | 799.53 | ROS Elapsed: [19.05 | wall Time: | 1595508129.04 wiall Elapsed: 27.31 1 Experimental

_Reset | Lefe-Click: Rotate. Middle-Click: Move X/Y. Right-Click: Move Z Shift: More options. 28fps

Fig. 3.5. RViz screen after launch

3. Open a new terminal window.

4. Call rosrun projection_to_obstacles projection_to_obstacles (Fig. 3.7).

80

Fig. 3.6. Gazebo screen after launch

-

W0
-A -
: N
m Beee.. = Eea | D - 1

Fig. 3.7. Changes after projection_to_obstacles package execution

5. In case if you need to change parameters, you can use this command:
rosrun rqt_reconfigure rqt_reconfigure (Fig. 3.8).

81

Fig. 3.8. Rqt_reconfigure GUI screen

Required input data is a point cloud. It is a necessary input data, which should

be written into the needed topic.

3.6. Run on real robot

Start the robot:

Start Leonart (the upper black button on the backside of the robot)
Wait for 30s

Start Neobotix (turn and hold the key for 5 seconds)

Connect to Neobotix WiFi

Open Remina Remote Desktop

Log onto Leonart VNC through Remina Remote Desktop

Log onto Neobotix VNC and check if ROS Master has been set

© N O O Bk~ W N e

if not:
8.1. On leonart:

1. log onto leonart and verify that a roscore instance is running;

82

2. if not, start one (roscore) or execute ROS Start Bay 6 (lies on
desktop);
3. Load map via command execution: roslaunch rtl_leonart
navi.launch env_map:=/home/leonart/RTL/maps/hsrt/2019-06-09.2.yaml,
4. Turn on camera via command execution: roslaunch
rtl_camera front_d435 launch filters:=point cloud,
5. Run projection_to_obstacles package: rosrun
projection_to_obstacles projection_to_obstacles.
8.2. On neobotix:
1. Execute roslaunch neo_mpo_ 700 bringup.launch.
Check current SICK sensor emergency stop distance settings:
1. in leonarts rosenv (rosenv leonart), do rosparam list | grep neo;
2. Ineo_sick_field/field may or may not show up. if it doesnt, it hasnt been
set yet;
3. rosparam get /neo_sick_field/field/10 to get its current value (park, 10
(cm), nil means 0 cm).
Disable park mode:
1. tosee all available options: rosservice list | grep neo;
2. to set the emergency stop distance, simply call the corresponding service
e.g.: to set it to 10 cm, do rosservice call /neo_sick_field/10.
On the PC with system, on which setup for robot was done:
Run in terminal:
$ rosenv leonart
$ RViz
For appropriate visualization, it is better to open the dutchman_octomap.RViz
file there.
The next command is used when it is necessary to clean Octomap: rosservice
call /octomap_server/reset.
In case if you need to change parameters, you can use this command: rosrun

rqt_reconfigure rqt_reconfigure.

83

3.7. Results of solution testing

This section will demonstrate and analyze the result of the system before and
after the changes. Situations of the robot’s behavior will be considered when the
obstacle is a table (an object that is not completely at the level of the robot’s lasers) and
an object that is located below the level of the robot’s lasers.

The original navigation system of the mobile robot was based on obstacle
recognition using only lasers. The system, complemented by a depth camera, can detect
obstacles that are above and below the laser level. Thus, the main problem of the
“table” was solved. The new system retained all the properties of the previous one and
only improved it.

The original system, which relied only on laser scanners, saw objects only at the
laser level. In most cases, this was enough. However, some objects may have more
complex shapes. A typical example of such an object is a table. This problem is also
referred to as a table problem and is illustrated in Figure 3.9.

Also, the approach using only laser scanners does not allow the recognition of

objects below the lasers' level. As shown in Fig. 3.10 and Fig. 3.11.

CEARNAAQENERAREenE®

ES
-
=
3 lat Squares.
Size 1
Alpha
Posi s X,
olo R
Topic
sensor_msgs/PointCloud2 topic to subscribe to.
Add save Remove Rename

© Time

ROS Time: | 1167.52 ROS Elapsed: |387.04 Wall Time: | 1590764618.07 Wall Elapsed: |572.75 Experimen tal

L]

LS

/camera_front/depth/point...

ke

eset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click: Move Z. Shift: More options. 31fps

Fig. 3.9. Table legs detection

Fig. 3.10. The “table” problem

Fig. 3.11. The object below the level of lasers

85

As a result of applying the new system of path planning and obstacles detection,
the solution to the above problems was achieved.

The experiments were carried out both in simulation and in real space. Several
options for the movement of the robot were considered. If the robot encounters an
obstacle on its way in the form of an object, some parts of which are not completely
located at the level of the robot’s lasers, this object must be recognized by the robot,
and the robot must not crash into it. The second task was to find a way to avoid such
an object, if possible. Both options have been successfully tested in real-time on the
mobile robot Leonart. Moreover, experiments were carried out with the lasers turned
off in order to test the operation of the algorithm included in the package

projection_to_obstacles.

Fig. 3.12. Right path plan using projection_to_obstacles

86

Moreover, experiments were carried out with the lasers turned off in order to test
the operation of the algorithm included in projection _to obstacles. For an isolated
system check, in one of the tests, the lasers were turned off. Thus, it was verified that
the new local navigation system manages to avoid obstacles without relying on the data
received from the lasers.

The image shows that the optimal path has been chosen to avoid the obstacle.
The planned path of the robot’s movement is shown in blue and green arrows. Before
applying the new system, the robot would simply drive straight from the start point to
the endpoint. While now, the “table” object has been recognized, and moreover, the

robot has successfully avoided this obstacle.

3.8. Conclusions to the third section

The third section presents the developed system and its configuration. The
instruction of start of the developed product in simulation and on mobile work is given.
The results of system testing are also presented, which show the successful avoidance
of interference by a mobile robot.

Specific onfiguration parameters were chosen to set up the navigation stack
properly. The navigation stack of the robot is consisting of amcl, gmapping, and
move_base packages.

It has become possible to generate a pointcloud relative to the environment,
using a depth-sensing camera to calculate the distance to objects.

Because the density of the received data in the form of a pointcloud is too high
for further processing, a downsample VVoxelGrid filter was used, which reduces the
density of the point cloud. VoxelGrid belongs to the PCL library.

Another problem was the removal of information about unnecessary objects in
the camera's field of view. These include the floor, ceiling, parts of the robot (such as
a manipulator). The PassThrough filter from the PCL library was used to solve this

problem.

87

The next step is to process the filtered data using OctoMap. As a result, an octree
IS generated.

A top-down projection is created from the octree generated in the previous step.

The resulting projection must be processed and converted into polygonal
obstacles. Only then they will be marked by teb_local planner as obstacles.

The developed system was successfully implemented and tested both in the
Gazebo simulation and in the researche mobile robot. The path with obstacles will be

completed without collisions.

88

PO3/I1LJI 4
EKOHOMIYHHWH PO3ILT

[Ipu po3poO1i mporpaMHOro 3a0e3neueHHs BAXKJIMBUMU €TallaMy € BUBHAYEHHS
TPYAOMICTKOCTI po3poOku I3, po3paxyHOK BHTpaT Ha CTBOPEHHS MPOTPAMHOTO
MPOAYKTY 1 aHaJi3 PUHKY 30yTy PO3pOOJIEHOI0 MPOrpaMHOTo 3a0€3eUeHHs.

4.1. Bu3Ha4yeHHs TPYAOMICTKOCTI pO3p0OKH MPOrpamMHoOro 3ade3nedeHHst

IToyaTkoBi maui:

1) nepeadadyBane ynciio oneparopis nmporpamu — 1000;

2) Koe(iIieHT CKJIaIHOCTI porpamu — 1,6;

3) Koe(ilieHT KOpeKIii mporpaMu B xo/i ii po3po0ku — 0,4;

4) roJIMHHA 3apo0iTHA TUIaTa mporpamicra, rpu/rox - 70;

5) koe(irieHT 30UTBIIEHHS BUTpAT Mpalli BHACHIJIOK

HEJIOCTaTHLOTO OMUCY 3aaadi — 1,2;
6) koedimieHT kBamidikaiii mporpamicta, 0OYMOBICHHH Bij
CTaxy poOOTH 3 JaHOT crieliaJbHOCTI — 1,5;
7) BapTicTh MammuHoO-roguau EOM, rpna/rox - 15.
HopmyBannst mparii B mporeci ctBopeHHst [13 icTOTHO yCKIagHEHO B CHITY
TBOPUOTO XapakTepy mpaiii rnporpamicra. Tomy TpyaomicTkicTe po3pooku I13 moxe
OyTH po3paxoBaHa Ha OCHOBI CHCTEMH MOJIEJICH 3 PI3HOIO TOYHICTIO OIlIHKH.

TpynomicTkicTh po3pooku [13 MmoxxHa po3paxyBatu 3a GOpPMYIIOO:
4 :tu‘l‘ta+tn+tomﬂ+td’anHHo_r0HHH’ (3.1)

ne to- BUTpATH Ipalli Ha MATOTOBKY i ONUC MOCTaBIEHOI 3a/1a4l (MpUuiMaeThCs
50);

t, - BUTpaTu mpaii Ha JOCHIKEHHS aJIrOPUTMY PIIICHHS 3a7a4i;

89

ta - BUTpaTH mpati Ha po3poOKy OJIOK-CXEMU aITrOPUTMY;

t, - BUTpaTu mpaill Ha IpOrpaMyBaHHs 110 TOTOBINM OJOK-CXEMI;

tors - BUTpPATH Mpalll Ha HaJaropkeHHs nporpamMu Ha EOM;

t, - BUTpaTH mpari Ha MiIr0TOBKY JOKYMEHTAIII1.

YMOBHE UncIio onepaTopiB (MiAMIPOrpam):

Q=9 xC x (1+ p) , MOAUHO-TOAUH (3.2)

1e (- nependadyBaHe YMCIIO ONEPATOPIB,

C - KoedILIe€HT CKIAIHOCTI IPOTrpaMH,

P - KOedIIEHT KOPEeJIALii MporpaMu B X011 ii po3pOOKH.

Q nependauyBane yucio onepatopis (q = 1000).

C xoedimmieHT ckinagHocTi mnporpamu. KoedirieHT cKiIagHOCTI 3aBAaHHA 3
XapaKTepU3ye BiTHOCHY CKJIQJIHICTh IPOTPAaMH T10 BiTHOIIICHHIO JIO TaK 3BaHOI THITOBOI
3a/1ad4i, 110 peali3ye CTaHAapPTHI METOH PIllIEHHS, CKIAAHICTh SKOT MPUKUHSITA PIBHOIO
onuaMIl (BenmmunHa C JIeKUTHh B Mexax Bij 1,25 mgo 2). Jlnsg maHoro mporpaMHOro
IPOJYKTY, 3 YpaxyBaHHSM BEJIUKOI KIJTBKOCTI 1 PI3HOMAHITHOCTI 00pOOIIOBaHOI
iHpopMalii 1 CKIAQTHOCTI CKJIaJaHHSA 3BITIB, KOe(DIINIEHT CKIAAHOCTI 3aBIaHHS

Bi3bMEMO 1,6.

Q=q*C*(1+p), (3.2)

1e (- nepeadadyBaHe YUCIIO ONEPaTOPIB,;

C - xoedilie€HT CKIAAHOCTI TPOTPaMu;

P - KoediIieHT KOPEKIii MporpamMu B XO/I1 ii po3pOOKH.

C xoedimient ckmagHocTi mporpamu. KoedilieHT CKIagHOCTI 3aBAaHHS 3
XapaKTepu3ye BiAHOCHY CKJIAIHICTh IPOTPAMH IO BITHOIIICHHIO JI0 TaK 3BaHOI TUTIOBO1
3a/1ayi, M0 peaizye CTaHAAPTHI METOAH PIIICHHS, CKIAIHICTh SIKOT IPUIHSTA PIBHOIO
onuaMIl (BenmmumHa C JIGKATH B Mexax Bix 1,25 mo 2). Jns maHOro mporpamHoOro

MPOAYKTY, 3 ypaxyBaHHSIM BEJIMKOI KUIBKOCTI 1 PI3HOMaHITHOCTI 0OpOOIOBaHOT

90

iHopMallii 1 CKIAQTHOCTI CKJIaJaHHS 3BITIB, KOE(DIIIEHT CKJIAJAHOCTI 3aBJaHHSA
Bi3bMEMO 1,6.

P koedimienT xopekuii nporpamu B xoAl ii po3poOku. KoedimieHT kopekuii
MIPOrpaMH p - 30UIBIIEHHS 00CATY POOIT 332 paXyHOK BHECEHHS 3MiH J10 aJITOPUTMY a00
nporpamy 3a pe3yJbTaTaMd YTOUYHEHHS MOCTAaHOBOK. B pgaHOMy BUmIaaky mporpama
BHUMaraja YMCJICHHUX JOPOOOK. 3 ypaxXyBaHHSM I[bOTO Bi3bMEMO KOE(DILIEHT PIBHUN

0,4.
Q=1000%*1,6*(1+0,4)= 2240, MOAMHO-TOIHUH. (3.3)

Burtpatu npaii Ha BUBYEHHS OMUCY 3ajadi ty BU3HAYAETHCSA 3 YpaxyBaHHSIM

YTOYHEHHS OMHCY 1 KBaMi(ikalii mporpaMicra:

Qx*B

W75 85 Kk

JIIOIUHO-TOJIH, (3.4)

ne B - xoedimienT 301bI1IEeHHS BUTPAT Ipalll BHACTIIOK HEOCTATHHOTO OIHUCY
3a/1a4i;

K - xoedimient kBamidikailii mporpamicra, 0OyMOBJICHHI BiJ CTaKy poOOTH 3
JTAHOI CIIEI1aIbHOCTI.

B koedimienT 301IbIIIEHHS BUTpAT Ipalll BHACIIJIOK HEIOCTATHBOTO OIHCY
3aBaanHsa. KoedimieHT 301IbIICHHS BHTpAT Ipalli B 3aJeKHOCTI BiJ CKJIATHOCTI
3aBIaHHS TpuitMaeThes Bix 1,25 mo 1,5, BHACHIIOK HEAOCTATHBOTO OMHUCY PIIICHHS
3a1a4i npuiimemo B = 1,3.

K xoedimienT kBamidikailii mporpamicTa, SKUil BU3SHAYAETHCS Bl CTAXy POOOTH

3a J1aHoro cremanpHicTio. K= 1,5.

t | 2240%1,3 2912
U80%1,5 112,5

=24,27, MOoIUHO-TOAMH. (3.5)

Butpatu npaii Ha po3poOKy aaropuTMmy pilleHHs 3a1adi:

. Q
(20 ...25) xk’

JIIOJJUHO-TOAUH.

t

A= 22%15 =67,879, NHOJUHO-TOAUH.

Burtpatu Ha ckiagaHHs nporpaMu Mo roToBii OJIOK-CXeMi:

t JIIOUHO-TOAUH

" 20...25)%k’
o= 220 o8
n=53,15 04928, JIIOZJMHO-TOIMH.

Butparu npairi Ha HajaropkeHHs nporpamu Ha EOM:

-3a YMOBH aBTOHOMHOT'O HAJIAT'OJ?KCHHA OAHOT'O 3aBAAHHA:

t JIIOJUHO-TOJIVH,

o (4 5)%k’
22
torn = Cr 15 = 298,667, IIOAUHO-TOAWH,

-3a YMOBH KOMIIJICKCHOI'O HAJIarOJKCHHA 3aBAaHHA:

1:1ST.]'I:1 95*1:0'1‘_]]) H}OAHHO'FOAHH.

tk =1,5%298,667=448, TI0JMHO-TOAMH.

91

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

92

Butpatu npaiii Ha MiArOTOBKY TOKYMEHTALlIi:
ty= typT tho» JIFOMMHO-TOMIMH, (3.14)

1€ typ - TPYAOMICTKICTh HIATOTOBKY MaTepiaiiB 1 pyKOIHUCY.

t JIFOIUHO-TOIMH. (3.15)

P15 20%K

t =82,963, 101nHO-TOIMH, (3.16)

»T18%1 5

{10 - TPYZOMICTKICTh peiaryBaHHs, eYaTKu i 0OpMIICHHS JOKyMEHTAIIl1

tyo = 0,75 * t,, MoaMHO-rOAMH (3.17)
t10=0,75%82,963=62,222, 110 MHO-TOANH. (3.18)
t,=82,963+62,222=145,185, 110AMHO-TO/IUH. (3.19)

OTpuMyeMO TPYIOMICTKICTb PO3POOKH MPOTPAMHOTO 3a0€3MeUSHHS:

t=50+24,27+67,879+448 + 145,185=735,334, 1t0AUHO-TOIHH. (3.20)

4.2. BuTpaTu Ha CTBOPEHHSI MPOrPaMHOro 3ade3neveHHs

Butpatu na ctBopenns I13 Kmno BkmiodaroTh BUTpatu Ha 3apoOiTHY IuIaTy

BUKOHABIIS MTPOrpamMu 33/11 1 BUTPAT MAITMHHOTO Yacy, HEOOX1THOTO Ha HAJaTrOKEHHS

nporpamu Ha EOM

93
KH0:33H+3MB' FpH' (3 2 1)
3apo0iTHa IJ1aTa BUKOHABI[IB BU3HAYAETHCS 32 (OPMYJIIOIO:
3,,=t*C

up TPH, (3.22)

ne: t - 3arajibHa TPYAOMICTKICTb, JIFOAUHO-TOJIUH;

Cup - cepeqHs ToAUMHHA 3apo0iTHA IJ1aTa MPOrpamicTa, I'pH/ToIMHA

3,,=735,334*70=51473,38, rph. (3.23)

BapTiCTB MAalllMHHOI'O 4acy, H€O6Xi)1HOI‘O IJIA HAJIaropKCHHA IIporpaMu Ha

EOM:
3MB:t0TH*CM‘{’ rpH’ (3'24)
ne tors - TPYAOMICTKICTh HAJIAroKeHHs nporpamu Ha EOM, rog.
Cyu - BapTicTh MamuHo-TogquHEM EOM, TpH/TO.

BusnadeHni B Takuii crmocid BUTpaTH Ha CTBOPEHHSI TPOTrpaMHOT0 3a0e3eueHHs

€ YaCTUHOIO OJTHOPA30BUX KalliTaJbHUX BUTpAT Ha cTBOpeHHs ACVYII.

3,,=298,667*15=4480, rpH. (3.25)

K,,=51473,38+4480=55953,38, rpH. (3.26)

OuikyBanuii iepion crBopeHHs [13:

“BoF , MiC, (3.27)

94

ne Bk - 4nciio BUKOHABIIIB;

Fp - micsunuii ¢pona pobouoro yacy (mpu 40 rogMHHOMY pPOOOYOMY THKHI
Fo=176 ronun).

Bk =1

735,334
_ ’ - ic. 3.28
T 176 4,2, Mic ()

4.3. MapkeTHHIOBI J10CJiKEHHSI PUHKY 30yTYy po3p00.ieHOr0 MPOorpaMHoOro

NMPOAYKTY

VY npomy migpo3aiai Oyae mpoaHadi3oBaHO Ta JOCTIIKEHO PUHOK 30yTy Ta
MOTEHITIMHKUX TMOKYIIIIIB HOBOI CUCTEMH HaBirarlii MoO11bHOTO poboTa. MeTor Takoro
JOCIIJKEHHST € peaii3allis CTBOPEHOTO MPOTPaMHOTO MPOAYKTY MPOMHUCIOBUM
OIANPUEMCTBAM PI3HUX Tally3ed MPOMHUCIOBOCTI, TOPrOBUM IiANPUEMCTBAM,
MEJIMYHUM Ta HaBYAJIBHHUM 3aKjajaM, CleliaibHUM OpraHi3allisiM Ta yCTaHOBaM, SKi
3aIlikaBJieH] B 3aIy4Y€HHI MOOUTbHUX POOOTIB JJIsl IOKPAICHHS YMOB IIpalli.

Onniero 3 6araThOX TEHJCHINM B POOOTOTEXHII € MepeXiJ BiJ IUCTAHIIIHO
KEpOBaHUX CUCTEM, SIKi BUMAraroTh IOCTIHHOI y4acTi JIFOAWHU JIJI1 BAKOHAHHS BCIX M1
poboTa, 10 aBBTOHOMHHUX CHCTEM, B KHUX OTIEPATOP BKA3Ye€ JIMIIE KIHIIEB] Ta TPOMIKHI
I,

Hagiraris 3anmumiaeTbcsi TOJOBHOIO MPOOJEMOIO YCIX ICHYIOYMX MOOUTBHUX
MIPUCTPOIB, IO PYyXaIOThCs CaMOCTiHO. J[J1 ycminmHoi HaBiraiii y mpocTopi, cucreMa
poOoTa MOBMHHA BMITH IJIAHYBATH NUISAX, MPABHJIBHO 1HTEPIIPETYBATH 1H(POPMAIIIO
PO HABKOJMIIHIA CBIT, OTpUMaHy BiJ HaT4uKiB. bimbine Toro, poOOT MOBHUHEH
KOHTPOJIIOBATH TMapaMeTpu pyXy, BIAcCHI KOOPJAWHATH Ta MaTH MOKJIMBICTb
aJanTyBaTUCA JIO 3MiH HaBKOJUIITHEOTO CEPETOBHUIIA.

OnHuM 13 HAMCKIAAHIIIINX aCIIEKTIB aBTOHOMHOI HaBirarlii MoOUIBHIUX poOOTiB

Ha BIJIKPUTOMY TMOBITP1 € HaAiliHICTh. TOOTO MOOUIBHHMI pPOOOT MOBUHEH MAaTH

95

MOXJIMBICTh O€3MEYHO J0O0MpaTUCh 1O MICI MPU3HAYCHHS IIOopasy, HE JIUIIe
YHUKAIOUM 3ITKHEHb 13 MEPelIKOJaMH Ta JIIOJbMU HABKOJIO HBOTO, a i YCHIIIHO
MPOKKAIOYM CKIIaJIHI CTEKKH. MOO1JIbHI pOOOTH MOBUHHI OyTH OCHAILEHI PI3HUMHU
JaTYuKaMu, SIKi TiepeaBaTUMYTh JaHi MpO HaBKOJUIIHE cepenoBuiie. I[lpu
BUKOPUCTaHHI JIMILIE JIa3€pHUX CKaHEpiB I MOOUIBHUX pOOIT MpEeAMETH, IO
MEPEeBUIIYIOTh a00 HM)KY€ DPIBHS JIa3epiB, 3aJMILATHCA MEPELIKOAOI0 sl poboTa.
[lepemkonu Buie abo HIDKYE PIiBHS JIA3EpHOTO CKaHEpa HE PO3MI3HAIOTHCA. TakuM
YMHOM, MapupyT moOyaoBaHui HempaBWIbHO. OTXe, poOOT CTHKAEThCS 3
HEePEIIKOIaMHu.

PesynpraTom kBamiikamiiiHoi poOOTH € CTBOPEHHS HOBOi CHCTEMH
pO3MI3HABaHHS CEPEIOBHUIIA, KA BUKOPUCTOBYE JIaHI OTPUMaH1 3 KaMepu TJIMOUHU 1
00po0uroe iX. BukopucTaHHS Takoi CHUCTEMH JO3BOJISIE PO3IMi3HABATH Ta YHUKATH
NEPEIIKOIHU, sIKI He 00OB’SI3KOBO MOBHHHI 3HAXOJUTUCh HA OJHOMY PiBHI 3 piBHEM
Ja3zepiB poboTa.

Croroani po3pobka MOOUTPHUX POOOTIB € aKTyaJlbHHUM HAmNpsIMOM Y CBITI 1
aKTUBHO (PIHAHCYETHCSA Ta Mae€ JIyXKe MUPOKUN CerMeHT 30yTy B iHAyCTpii. Jlo Takux
HanpsIMiB BXOJIUTh MAalIMHOOYAYBaHHS, O Takoi ramay3i BXoauTh Onm3bko 30%
CBITOBHX MOCTaBOK. Po6oTH moTpiOHI Ui MoJepHi3allli iCHYyIOUUX IMANPUEMCTB 1
1HBECTHIIIN Y HOBI ITOTY>KHOCT1 Y BUPOOHHIITBI. TaK0oX BEJTMKHM HAIPSIMOM € CEpPBICHA
pobOTOTEXHIKA, KA MOIUIIETHCS HA MEPCOHANIbHY Ta npodeciiiny. o mepcoHanbHO1
3a3BHYai BITHOCATH POOOTIB IS JOMAIIHIX CIIPaB, pO3BaKAIBHUX POOOTIB, pOOOTIB-
ACUCTEHTIB ISl JIFOICH TOXWIIOTO BIKY YH JIIOJIEH 3 1HBaNIIHICTIO, TolIo. [Ipodeciiina
poOOTOTEXHIKA TOAUIAETHCA Ha MOJBOBY POOOTOTEXHIKY, MpodeciiiHe nmpubupaHHs,
JUTSI MOHITOPHMHTY Ta eKcIuTyaTarlii, OymiBHuIITBa. IcCHye MenmuyHa poOOTOTEXHIKa,
BO€HHA, PATYBaJbHA, CHJIOBA, MOOIJIbHA Ta IHIIIA.

OmauMu 3 HaWOLIBII TMOMITHUX BHUPOOHHWKIB TMPOMHUCIOBHX pPOOOTIB Ha
mikHapogHomy puHky € FANUC, Yaskawa, ABB, Kuka, Universal Robots (Mobile
Industrial Robots), NEOBOTIX, Denso Tomo. Ha moro mymKky, came komiasist Mobile
Indastrial Robots mo’ke cTaTH MOTEHIIWHMM MOKYMNIIEM HOBOi CHCTEMH, TaK SIK

OCHOBHUMHM MPOJAYKTAMH KOMIIaHIi € pOOOTH MJisl JIOTICTUKM Yy MPUMIIICHHSX.

96

KoMmaHisi akTUBHO 3aiiMaeThCsl MOKpAIEHHAM HaBiraimii MOOUIbBHHUX POOOTIB Ta iX
KEepyBaHHSIM.

Hampsmku, sxi no 2023 poky CkiIaayTh OCHOBY PHUHKY CEpBICHOL
POOOTOTEXHIKH:

- JOTICTUYHI CUCTEMHU (BKJIIOYAIOTh JIOTICTUKY BCEPEIMHI NPUMIILEHbD,
O€3MUIOTHI 1 MOBITPSH1 3aCO0U TOCTABKH 1032 MPUMIIIICHHSIMH);

- po6oTH 17151 00CITyTOBYBaHHS KITIEHTIB;

- MPOMHUCIIOBI €K30CKETIETH;

— po0OOTH JJIs1 TOMAIITHIX 3aBAaHb (IEPCOHAIBLHI TTOMIYHUKH).

OCHOBHUMMH CKJIQJHOIIAMHU TiJ Yac BMIPOBAKEHHS TAKOTO TUIY POOOTIB -
3aBUIICHI OYIKYBaHHS 3aMOBHUKIB 1 TepeO1IbIICHHS 3/1I0HOCTEH IITYYHOTO THTEICKTY.
Bapricth 00cnmyroByBaHHS 9acTo OOYMOBJICHA TPYIHOIAMH, IO BUHUKAIOTH TPH
poOOTI 3 KJIIEHTaMH, 1 MPUXOBAHUMHU BHUTPATAMHM, MOB'S3aHUMHU 3 HU3BKUM PIBHEM
00CIIyroByBaHHS pOOOTOTEXHIKH.

KpiM pHHKOBHX BHKJIMKIB Taly3b CTHKA€TbCA TAKOX 3 TEXHOJOTTYHUMHU
TPYJIHOIIAMHU. BUIbIIicTh UX MpoOeM 00yMOBJIEHO B3a€EMOIEI0 POOOTIB 1 JIFOJCH,
aBTOHOMHICTIO TI€pecyBaHb, MAIIMHHUM 30pOM 1 po3mizHaBaHHsAIM MoBH, II 1
MalTMHHAM HaBYaHHIM, 0OMEXEHHSIMHU, TIOB'I3aHUMHU 3 XMapHOI POOOTOTEXHIKOIO, a
TaKOX O€3MEeKOI0 1 CTaHAapTaMHU.

Jlo 3aBIaHp JIOTICTUYHUX CHUCTEM BXOJWTH YIIPaBIIHHS MOTOKOM TOBapiB, ix
nepeBe3eHHsAM, OOpOOJICHHSIM Ta YIAaKOBKOK. Bci JIOTICTUYHI CHCTEMH BHMAararoTh
MOOUTBHOCTI B 3aKpUTOMY YW Y BIAKpUTOMY TpocTopi. OCHOBHOIO TEpeBaror
pOOOTEXHIYHUX PIMICHb JJIA JIOTICTUKA € CKOPOYEHHsS TOTpeOu B py4UHIN mparii,
3MEHIIICHHS JIFOJICBKOTO (pakTopy, 6e3neka Ha poO0YoMy MICII 1 BETUKA TOYHICTh MPU
inBeHTapu3anii. CTBOpeHa cucTeMa € HaWOUIbIl aKTyadbHOIO caMe B MOAIOHHX
3aBmaHHsIX. PoOOTM JIsi JOCTaBKM B TPUMIIICHHS MOXYTh BUMAaraTd 3HAYHOI
1H(MPaACTPYKTYpH, HAPUKIIA]] YCTAHOBKU CUCTEMH BIIKPUTTS ABEpEH a00 eckaaaTopiB
JUTSI TIEPEMIIICHHS 3 TTIOBEpXy Ha moBepX. Lli iHBeCTHuIlli OKyIIsATHCS 3HAYHO MIBU/IIIIE,

K0 PpOOOT BUKOPUCTOBYEThCS 24 TOAWMHU IIOAHA. buibml TOro, BapTICTh

97

BIIPOBA/PKEHHSI POOOTIB B MPOMHUCIOBOCTI Maja€e, L0 Beae A0 IiJBUILCHHS
peHTabenbHOCTI POOOTIB 1 3HUKEHHS TOPOT'Y BXOJy B raily3b.

Po3pobky HOBOiI cucTemu Hapiraiii MOOUIBHOTO poOOTa MOKHA BIJHECTH IO
CKJIaJTHOI MPOTpaMHOi MPOIYKINi, sika MOTpeldye CIemialbHOro HalaromkeHHs. B
IbOMY BHUIAJKy HaWyacTille MporpaMHe 3a0e3MeyeHHs POo3pOONsIETbCS 32

3aMOBJICHHAM CIIOKHBaya.

4.4. OuiHka eKOHOMIYHOI e()eKTUBHOCTI BIPOBAIKEHHS IPOTPAMHOI0

320e3MmeYeHHs

Y upoMy po3aini Oyae MNpoBeNeHO aHalli3 e()EeKTUBHOCTI BIPOBAKCHHS
CTBOPEHOI HOBOT CHCTEMH HaBiraiii MOOLTIbHOTO poOOTa HA MiANPUEMCTBI.

3a manumu Barclays Research, cepenns co6iBapTiCTh poOIT, BUKOHYBaHHX
poboToM, cTaHOBHUTH € 6 Ha TOAMHY. 3a IETKUMHU JaHUMU, aHAJIOTIYHUIA TTOKa3HUK B
7IBa pa3u MeHIle - 0;1u3bko € 3 3a roguny. AHanoriya po6oTa, BAKOHYBaHa JIFOANHOIO,
OIIIHIOETHCS TO-PI3HOMY B Pi3HUX KpaiHax 1 perioHax: € 40 - B Himeuuuni, € 12 - B
CHIA, € 11 - B cximniii €Bpomi i € 9 - B Kurai.

UYepes HAsIBHICTH JIMIIIE yIOCKOHAJIEHOI CUCTEMH Ta BIJCYTHICTH MPOrPAMHOTO
3a0€3MeUeHHs], SIKe MOXHa BIPOBAJIUTH, HEMOXXIMBO PO3paxyBaTH EKOHOMIYHMIMA
edeKT, B AKOMy 00Cs31 HeOOXiaH1 1HBECTHIIIl, SKUH TEPMiH OKYITHOCTI 1 OYIKyEMHIA
IpUOYTOK.

Tomy po3riisigaeThCst TUIBKU COIIAIBHUMN €(eKT.

3a 10MOMOTrOI0 MPOBAIKEHHS YJJOCKOHAJICHOI CUCTEMH JI0 IJIAaHYBAHHS HUIAXY

MOOUTBHUM POOOTOM JIJIsi HABIraIlli MOXKe:

3amo0irTH BUHUKHEHHIO HEIIAaCHOTO BUITAJIKYy Ha IMiIIPUEMCTBI;
— 30UTbmUTH (HYHKITIOHAT Ta MOXKJIUBOCTI pyXy MOOUTBHOTO POo0OO0Ta;
— MIABUIIATH MPOTYKTUBHICTH TIPAIIi;
— CKOPOTHUTH KIJTBKICTh MPAIliBHUKIB.
MoskHa 3p0OUTH BUCHOBOK, 1110 BIPOBAHKEHHS HOBOi CUCTEMH ITOBUHHO MATH

MO3UTUBHUM EKOHOMIUYHHMM e(ekT ToMmy, 110 JaHa po3poOKa € akTyaldbHOIO Ta

98

HEOOXIJTHOIO JJIi UIMPOKOIO CEKTOPY POOOTOTEXHIKH SK HAmpsMy, 3 aKTyaJlbHUM
COLIIAJIBHUM €(PEKTOM.

BucHOBOK:

VY pe3ynbTaTi BUKOHAHHS KBali(ikaliiHOi poOOTH OyJIO0 CTBOPEHO HOBY
CUCTEMY JJIs TUTaHYBaHHS PyXy MOO1ILHOTO poOoTa. Y TaHOMY €KOHOMIYHOMY PO3AiIi
OyJI0 BU3HAUCHO TPYJOMICTKICTh Ha pO3pOOKY J0JATKY, IO CKianae 735.3 moa-ron,
IPOBEJCHO TMiIpaXxyHOK BapTOCTI pOOOTH IO CTBOPEHHIO OIMUCAHOI CUCTEMH, SKi
ckianu 55953,4 rpH. Ta po3paxoBaHO Yac Ha Woro cTBopeHHs — 4,7 mic. byno
NpOaHaTI30BaHO Ta JOCHIPKEHO PUHOK 30yTy Ta MOTEHI[IWHUX TMOKYIILIB HOBOI
CUCTEMHM HaBiraiii MoOuTbHOr0 poOota. BuzHaueHno, mo came kommadis Mobile
Indastrial Robots Moxe cTaTé TOTCHIIHHUM TOKYMIIEM HOBOI CHCTEMH, TaK SK
OCHOBHUMH TPOJYKTaMU KOMIIaHii € pOOOTH AJis JIOTICTUKM Yy NPUMIMICHHAX Ta
KOMIIaHI aKTUBHO 3aiiMa€eThCs MOKpAIICHHSM HaBiraiii MOOUTbHHUX POOOTIB Ta iX
kepyBaHHsM. CTBOpEHa cUCTEeMa € HalOIbII aKTyaIbHOIO JIJIsl IOTICTUYHUX 3aBIaHb,
7€ JIyXe BaXJMBE BIpaBHE MOOUIbHE TIEpEeMIIIEHHS po0OoTa Ta YHUKHEHHSA
PI3HOMAHITHMX MepelKoJ Ha NUIAXY. li BOPOBAaJKEHHS IOBMHHO TaKOX MAaTH

MO3UTUBHUMN COIIAILHUM €eKT.

99

CONCLUSIONS

The aim of the research is to create a real-time obstacle recognition and
avoidance system, using sensors to ensure the road of the path without collisions with
objects that are not on the same level as the lasers. The research was carried out on the

mobile robot “Leonart” of the RT Lions team at Reutlingen University.

During the work, all tasks of the research, given in the introduction were solved.
The mobile robot requires a map of the environment and the ability to interpret that
representation. The camera can be represented as the eyes of the robot, and the images
taken from the camera are useful for recognizing the environment around the robot.
For example, object recognition using a camera image, facial recognition, a distance
value obtained from the difference between two different images using two cameras
(stereo camera), mono camera visual SLAM, color recognition using information
obtained from an image, and object tracking are very useful. Laser SICK S300 is used
as the main environment scanner for navigation. The other type of sensor is a depth
camera. The depth camera is represented by the Intel Realsense D435 camera. Using a
dual camera rig provides a depth image that can be converted to point cloud. This
conversion is done by ROS Realsense camera node.

There two types of mobile robot navigation: 2D and 3D. 3D is applicable for
flying robots when the topic of this research is 2D navigation. The robot, the subject of
the research, only able to move with wheels in 2D space. Action's implementation is
provided in the move_base package. The move_base node provides a ROS interface
for configuring, running, and interacting with the navigation stack on a robot. The
given goal in the world needs to be reached with a mobile base. A global and local
planner are linked together by the move_base node to accomplish its global navigation
task. In the nav_core package nav_core::BaseGlobalPlanner interface is specified and
global planner is adhesive to it. The same situation with any local planner. Any local
planner adhering to the nav_core::BaseLocalPlanner interface from the nav_core

package. The node maintains two costmaps, from the global and local planners, which

100

are used to accomplish navigation tasks. Timed Elastic Band optimizes the robot's
trajectory with an execution time locally, separation from obstacles, and compliance
with kinodynamic constraints at runtime. The teb_local _planner package performs a
plugin to the base_local_planner of the 2D navigation stack.

As a result of the work, the existing system of recognition and avoidance of
obstacles was expanded. Prior to that, the system used only odometry and information
obtained from laser scanners, without obtaining data from other sources of
environmental information. It has become possible to generate a point cloud relative to
the environment, using a depth-sensing camera to calculate the distance to objects.
Because the density of the received data in the form of a point cloud is too high for
further processing, a downsample VVoxelGrid filter was used, which reduces the density
of the point cloud.

Another problem was the removal of information about unnecessary objects in
the camera’s field of view. These include the floor, ceiling, parts of the robot (such as
a manipulator). The PassThrough filter from the PCL library was used to solve this
problem. After this step, octomap was used and octree is generated. OctoMap provides
converting point cloud data to occupancy grid octree. Then these occupied
octants(voxels) are projected to the floor, providing an image of the occupied area. The
resulting projection must be processed and converted into polygonal obstacles. Only
then they will be marked by teb_local_planner as obstacles.

The developed system was successfully implemented and tested both in the
Gazebo simulation and in the research mobile robot. The path with obstacles will be

completed without collisions. The paper presents the obtained test results.

101

REFERENCES
1. Bbo6posckuit C. HaBuranust MmoomibHbIX poboToB (B 3 4.). Y. 1 // PC
Week/RE. — 2004. — No9. — C.52.
2. Munun A. A. HaBuraumss u ynpaBieHHe MOOWIBHBIM pOOOTOM,

OCHAaIICHHBIM JIa3€PHBIM JAJIbHOMCPOM: JUCCCPTAlHA KaHAUAaTa TCXHUYCCKUX HAYK
05.02.05/ A. A. Munun; Mocksa, 2008. — 182 c.

3. Siciliano B. Springer handbook of robotics / B.Siciliano, O.Khatib. —
Springer-Verlag Berlin, 2008. -P. 477-580.

4. Nister D. Visual odometry for ground vehicle applications / D. Nister,
O.Naroditsky, J.Bergen // J. of Field Robotics. — 2006. — VVol.23(1). -P. 3-20.

5. XuJ, Robust stereo visual odometry for autonomous rover / J.Xu, M.Shen,
W.Wang, L.Yang // 6" WSEAS Internat. Conf. on Signal, Speech and Image
Processing. — 2006.

6. Hirschmuller H. Fast, unconstrained Camera Motion Estimation from
stereo without Tracking and Robust Statistics / H.Hirschmuller // 7" Internat. Conf. on
Control, Automation, Robotics and Vision. — 2002. — T.2. — P.1099-1104.

7. Bota S. Camera Motion Estimation Using Monocular and Stereo-Vision /
S.Bota, S.Nedevschi // 4" Internat. Conf. on Intelligent Computer Communication and
Processing. — 2008. P.275-278.

8. Bpoiinnb T. BcrpanBaemsie pOOOTEXHUYECKHE CHUCTEMBI:
IIPOCKTUPOBAHUE M IIPUMEHECHHE MOOWMIIBHBIX POOOTOB CO BCTPOSCHHBIMU CHUCTEMaMH
ynpasinenus / T. bpoituns, mox pemakiueir B.E. ITaBmoBckoro. — M. — IbkeBck:
WxeBckuii HHCTUTYT KOMITBIOTEPHBIX HcclenoBanuii, 2012. — 520 c.

9. Puttkamer E. Autonome Mobile Roboter / E. Puttkamer, E. VVon. — Lecture
notes. Univ. Kaiserslautern, Fachbereich Informatik: 2000.

10. Lumelsky V. Dynamic Path Planning for a Mobile Automation with
Limited Information on the Environment / V. Lumelsky, A. Stepanov: IEEE
Transactions on Automatic Control. — Vol. 31. — 1986 — pp. 1058- 1063.

102

11. Kamon, I. Sensory-Based Motion Planning with Global Proofs / 1. Kamon,
E. Rivlin: IEEE Transactions on Robotics and Automation. — Vol. 13. — 6 Dec. — 1997.
— pp. 814-822

12. Bradski G. Learning OpenCV / G.Bradski, A.Kaehler // Newgen
Publishing and Data Services, 2008.

13. Quigley M., Conley K., B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA
Workshop on Open Source Software, 2009.

14. Matt Pharr, Randima Fernando, Gpu gems 2: programming techniques for
high-performance graphics and general-purpose computation / Addison-Wesley
Professional — 3. Marz 2005

15. Package move_base [Electronical resource]:
http://wiki.ros.org/move_base

16. C.Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram (2012)
“Trajectory modification considering dynamic constraints of autonomous robots”.
Proc. 7th German Conference on Robotics, Germany, Munich, pp 74-79.

17. OctoMap [Electronical resource]: http://octomap.github.io/

18. S. Thrun, W. Burgard, D. Fox “Probabilistic Robotics” (2005)

19. D. Fox, W. Burgard, and S. Thrun. "The dynamic window approach to
collision avoidance”. The Dynamic Window Approach to local control. Robotics &
Automation Magazine, IEEE, 1997, pp 23 — 33

20. Alonzo Kelly. "An Intelligent Predictive Controller for Autonomous
Vehicles". A previous system that takes a similar approach to control, tech. report
CMU-RI-TR-94-20, Robotics Institute, Carnegie Mellon University, May 1994

21. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard: Improving
Gridbased SLAM with Rao-Blackwellized Particle Filters by Adaptive Proposals and
Selective Resampling, In Proc. of the IEEE International Conference on Robotics and
Automation (ICRA), 2005

http://wiki.ros.org/move_base
http://octomap.github.io/

103

22. Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard: Improved 36
Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, IEEE
Transactions on Robotics, Volume 23, pages 34-46, 2007

23. Brian P. Gerkey and Kurt Konolige. "Planning and Control in
Unstructured Terrain ". Discussion of the Trajectory Rollout algorithm in use on the
LAGR robot. (2008)

24. http://wiki.ros.org/amcl

25. http://wiki.ros.org/robot_pose ekf

26. Sebastian Thrun and others. Stanley: The Robot that Won the DARPA
Grand Challenge. Journal of Field Robotics 23(9), 661-692 (2006)

27. Maryum F. Ahmed. Development of a stereo vision system for outdoor
mobile Robots. Abstract of Thesis Presented to the Graduate School of the University
of Florida in Partial Fulfillment of the Requirements for the Degree of Master of
Science. 2006. pp 78.

28. Kok Seng Chong , Lindsay Kleeman, Mobile Robot Map Building from
an Advanced Sonar Array and Accurate Odometry. 1996.

29. M. A. Martinez and J. L. Martinez. The dual-frequency sonar system of
the 35 mobile robot RAM-2. Journal Robotica Volume 22 Issue 3, June 2004. pp. 263
— 270

30. Lindsay Kleeman, Roman Kuc. Mobile Robot Sonar for Target
Localization and Classification. The International Journal of Robotics Research
(Impact Factor: 2.86). 01/1995; 14:295-318

31. Kiyoshi Okuda, Masamichi Miyake, Hiroyuki Takai, Keihachiro
Tachibana. Obstacle arrangement detection using multichannel ultrasonic sonar for
indoor mobile robots. Artificial Life and Robotics. September 2010, Volume 15, Issue
2, pp 229- 233.

32. Heale A., Kleeman L. Fast target classification using sonar. Intelligent
Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on
(Volume:3). 2001. 1446 - 1451 vol.3.

http://wiki.ros.org/amcl
http://wiki.ros.org/robot_pose_ekf

104

33. Teruko YATA, Akihisa OHYA, Shinichi YUTA. A Fast and Accurate
SonarRing Sensor for a Mobile Robot. Proceedings of the 1999 IEEE International
Conference on Robotics and Automation, May, 1999, pp. 630-636.

34. Antoni Burguera, Yolanda Gonzalez and Gabriel Oliver. Sonar Sensor
Models and Their Application to Mobile Robot Localization. Sensors (Basel). 2009;
9(12): 10217-10243.

35. Elfes A. A sonar-based mapping and navigation system. Robotics and
Automation. Proceedings. 1986 IEEE International Conference on (Volume:3). Apr
1986. pp. 1151 — 1156.

36. Bruno Siciliano, Oussama Khatib. Springer Handbook of Robotics.
SpringerVerlag Berlin Heidelberg. 2008. 1611 c.

37. S. Quinlan and O. Khatib, “Elastic bands: Connecting path planning and
control,” in Proc. IEEE International Conference on Robotics and Automation (ICRA),
1993, pp. 802-807.

38. C. Rasmussen, Y. Lu, and M. Kocamaz, “Appearance contrast for fast,
robust trail-following,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), October 2009, pp. 3505 — 3512.

39. T. Kuhnl, F. Kummert, and J. Fritsch, “Monocular road segmentation
using slow feature analysis,” in IEEE Intelligent Vehicles Symposium (IV), june 2011,
pp. 800 — 806.

40. P. Santana, N. Alves, L. Correia, and J. Barata, “Swarm-based visual
saliency for trail detection,” in Proc. IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), oct. 2010, pp. 759 —765.

41. H. Kong, J.-Y. Audibert, and J. Ponce, “General road detection from a
single image,” IEEE Transactions on Image Processing, vol. 19, no. 8, pp. 2211 — 2220,
August 2010.

42. 0. Miksik, “Rapid vanishing point estimation for general road detection,”
in Proc. IEEE International Conference on Robotics and Automation (ICRA), May
2012.

105

43. C.-K. Chang, C. Siagian, and L. Itti, “Mobile robot monocular vision
navigation based on road region and boundary estimation,” in Proc. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), Oct 2012, bb, pp.
1043-1050.

44. C. Siagian, C.-K. Chang, R. Voorhies, and L. Itti, “Beobot 2.0: Cluster
architecture for mobile robotics,” Journal of Field Robotics, vol. 28, no. 2, pp. 278—
302, March/April 2011.

45. G. Bradski, “Open source computer vision library,” 2001. [Online].
Available: http://opencv.willowgarage.com

46. Ronald C. Arkin. Intelligent Robotics and Autonomous Agents.
Nourbakhsh, 2004. — 3211.

47. Lumelsky V. Dynamic Path Planning for a Mobile Automation with
Limited Information on the Environment / V. Lumelsky, A. Stepanov: IEEE
Transactions on Automatic Control. — Vol. 31. — 1986 — pp. 1058- 1063.

48. Puttkamer E. Autonome Mobile Roboter / E. Puttkamer, E. Von. — Lecture
notes. Univ. Kaiserslautern, Fachbereich Informatik: 2000.

49. Borenstein J. Navigating Mobile Robots: Senfors and Techniques / J.
Borenstein, H. Everett, L. Feng. — Wellesley MA — AK Peters: 1998. — 225 p.

50. Koren Y. Potential Field Methods and Their Inherent Limitations for
Mobile Robot Navigation / Y. Koren, J. Borenstein // Proceedings of the IEEE
Conference on Robotics and Automation. — Sacramento CA, — 1991. — pp. 1398-1404.

51. Arbib M. Depth and Detours: An Essay on Visually Guided Behavior M.
Arbib, A. Hanson (Eds.), Vision, Brain and Cooperative Computation / M. Arbib, A.
Hanson. — Cambridge MA. — MIT Press. 1987.

52. Choset H. Principles of Robot Motion: Theoty, Algorithms, and
Implementations / H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.
Kavraki, S. Thrun. — Cambridge MA — MIT Press: 2005. — 603 p.

53. Siegward R Introduction to Autonomous Mobile Robots / R. Siegward, R.
Nourbakhsh - Cambridge MA: MIT Press 2004. — 321 p.

http://opencv.willowgarage.com/

106

54. Borenstein J Where am |. Sensors and methods for mobile robot
positioning / J/ Borenstein, H.R. Everett, L. Feng - Prepared by the University of
Michigan. 1996 - 282 p.

55. Cherroun L., Boumehraz M. Designing of Goal Seeking and Obstacle
Avoidance Behaviors for a Mobile Robot Using Fuzzy Techniques // Journal of
Automation and Systems Engineering (JASE). 2012. Vol. 6, Issue 4. P. 164-171.

56. Ersson T., Hu X. Path Planning and Navigation of Mobile Robots in
Unknown Environments // IEEE Journal of Robotics and Automation. 2010. Issue 6.
P. 212-228.

57. Ventorim B. G., Dal Poz W. R. Performance Evaluation of GPS and
GLONASS Systems, Combined and Individually, in Precise Point Positioning //
Boletim de Ciencias Geodesicas. 2016. Vol. 22, Issue 2. P. 265-281. doi:
https://doi.org/10.1590/s1982-21702016000200015

58. Kaemarungsi K., Krishnamurthy P. Modeling of indoor positioning
systems based on location fingerprinting // IEEE INFOCOM 2004. 2004. doi:
https://doi.org/10.1109/infcom.2004.1356988

59. Dhillon S. S., Chakrabarty K. Sensor placement for effective coverage and
surveillance in distributed sensor networks // 2003 IEEE Wireless Communications
and Networking, 2003. WCNC 2003. 2003. doi:
https://doi.org/10.1109/wcnc.2003.1200627

60. Rosmann C., Hoffmann F., Bertram T. Planning of multiple robot
trajectories in distinctive topologies // 2015 European Conference on Mobile Robots
(ECMR). 2015. pp. 1-6.

https://doi.org/10.1109/wcnc.2003.1200627

107

APPENDIX A

SOURCE CODE

Projection_to_obstacles.cpp

#include <ros/ros.h>

#include <nav msgs/OccupancyGrid.h>

#include <iostream>

#include "../include/projcection to obstacles/OccupancyGridPositions.h"
#include <tf/LinearMath/Transform.h>

#include <tf/transform broadcaster.h>

#include <costmap converter/ObstacleArrayMsg.h>

#include <geometry msgs/Polygon.h>

void ProjectionHanler (const nav_msgs::OccupancyGridConstPtr &msq);
void CostmapHanler (const nav_msgs::0OccupancyGridConstPtr &msg);
void GridToTF (OccupancyGridPositions *grid);

// Uncomment and uncomment usages for debug

tf::TransformBroadcaster *br;

ros::Publisher *obstaclePublisher;

std::vector<ros::Publisher *> polygonPublishers;

int main(int argc, char **argv)
{
ros::init (argc, argv, "projection to obstacles");
ros: :NodeHandle nodeHandle;
ros::Subscriber localCostmap_sub =
nodeHandle.subscribe ("/move base/local costmap/costmap", 1, &CostmapHanler);
ros::Subscriber projection sub = nodeHandle.subscribe ("projected map", 1,
&ProjectionHanler) ;
ros::Publisher pub = nodeHandle.advertise<costmap_ converter::ObstacleArrayMsg> (
"/move base/TebLocalPlannerROS/obstacles™, 1);

obstaclePublisher = &pub;

ros::Publisher ppubl =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/one", 1);
polygonPublishers.push back (&ppubl) ;
ros: :Publisher ppub2 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/two", 1);

polygonPublishers.push back (&ppub2) ;

ros: :Publisher ppub3 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/three", 1);

polygonPublishers.push back (&ppub3) ;
ros::Publisher ppub4 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/four", 1);

polygonPublishers.push back (&ppub4) ;
ros: :Publisher ppub5 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/five", 1);
polygonPublishers.push back (&ppubb) ;
ros: :Publisher ppub6 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/six", 1);
polygonPublishers.push back (&ppubb) ;

ros::Publisher ppub7 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/seven", 1);

polygonPublishers.push back (&ppub’) ;

ros::Publisher ppub8 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/eight", 1);

polygonPublishers.push back (&ppub8) ;
ros::Publisher ppub9 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/nine", 1);
polygonPublishers.push back (&ppub9) ;
ros::Publisher ppubl0 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/ten", 1);
polygonPublishers.push_back (&ppublO) ;
ros::Publisher ppubll =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/eleven", 1);

polygonPublishers.push_back (&ppubll) ;
ros::Publisher ppubl2 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/twelve", 1);

polygonPublishers.push _back (&ppubl2) ;
ros::Publisher ppubl3 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/thirteen”, 1);

polygonPublishers.push_back (&ppubl3) ;
ros::Publisher ppubl4d =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/fourteen", 1);

polygonPublishers.push_back (&ppubl4) ;
ros::Publisher ppubl5 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/fifteen", 1);

polygonPublishers.push back (&ppublb) ;
ros::Publisher ppubl6 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/sixteen", 1);

polygonPublishers.push _back (&ppubl6) ;

ros::Publisher ppubl7 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/seventeen",

polygonPublishers.push _back (&ppubl?7) ;
ros::Publisher ppubl8 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/eighteen", 1);

polygonPublishers.push _back (&ppubl8) ;
ros::Publisher ppubl9 =

nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/nineteen”,

108

109

polygonPublishers.push back (&ppubl9) ;
ros: :Publisher ppub20 =
nodeHandle.advertise<geometry msgs::PolygonStamped> ("projectedPolygon/twenty", 1);

polygonPublishers.push back (&ppub20) ;

tf::TransformBroadcaster brLocal;

br = new tf::TransformBroadcaster();
std::cout << "subscribed";
ros::spin();

return 0;

void ProjectionHanler (const nav_msgs::OccupancyGridConstPtr &msg)
{
// tf::Quaternion g;
tf::Transform projectionTransform;
projectionTransform.setOrigin(tf::Vector3 (msg->info.origin.position.x, msg-
>info.origin.position.y, 0.0));
OccupancyGridPositions *grid = new OccupancyGridPositions (*msg, projectionTransform);
// q.setRPY(0, 0, msg->theta);
// transform.setRotation(q);
// br->sendTransform(tf::StampedTransform(projectionTransform, ros::Time::now(),
"map", "projection"));
//GridToTF (grid) ;
costmap converter::ObstacleArrayMsgPtr obstacleArrayMsg (new
costmap converter::ObstacleArrayMsg()); //= grid->ToPointObstacles();

obstacleArrayMsg->header.frame id = "map";

std::vector<geometry msgs::Polygon> polygons = grid->ToPolygons (br);
for (int i = 0; i < polygons.size() && i1 < polygonPublishers.size(); ++1i)
{

costmap converter::0ObstacleMsg obstacle;

obstacle.header.frame id = "map";

geometry msgs::Polygon polygon;
for (int j = 0; j < polygons[i].points.size(); ++3)
{
obstacle.polygon.points.push back(polygons[i].points[]j]);
}
obstacleArrayMsg->obstacles.push back (obstacle);

geometry msgs::PolygonStamped polygonMsg;
polygonMsg.polygon = polygons[i];
polygonMsg.header.stamp = ros::Time::now();

polygonMsg.header.frame id = "map"

for (int j = 0; j < polygonMsg.polygon.points.size(); ++3)
{

tfScalar x = polygonMsg.polygon.points[j].x;
tfScalar y = polygonMsg.polygon.points[j].y;
tf::Transform transform;
transform.setOrigin(tf::Vector3(x, vy, 0));
std::stringstream ss;

Ss << "p" << i << " " o<< Gy

br->sendTransform(tf::StampedTransform(transform, ros::Time::now(),

map ss.str()));

}

polygonPublishers[i]->publish (polygonMsqg) ;
}

obstaclePublisher->publish (obstacleArrayMsgqg) ;

void CostmapHanler (const nav_msgs::OccupancyGridConstPtr &msg)
{
tf::Transform transform;
//transform.setRotation (tf::createlIdentityQuaternion());
transform.setOrigin(tf::Vector3 (msg->info.origin.position.x, msg-
>info.origin.position.y, 0.0));
transform.setIdentity();
// q.setRPY(0, 0, msg->theta);
// tf::Quaternion g;
// transform.setRotation(q);
//br->sendTransform (tf::StampedTransform(transform, ros::Time::now(), "map",

"local™));

int a = msg->info.height;

//std::vector<int8 t> b = msg->data;

void GridToTF (OccupancyGridPositions *grid)

{

for (int i = 0; i < grid->cells.size(); ++1i)

std::stringstream ss;
ss << 1 << std::endl;
tf::Transform transform;
transform.setOrigin(tf::Vector3 (grid->cells[i].x, grid->cells[i].y, 0.0));
// br->sendTransform(tf::StampedTransform(transform, ros::Time::now(), "map"
ss.str()));
}
}

Occupancygridpositions.h

#ifndef SRC OCCUPANCYGRIDPOSITIONS H

#define SRC OCCUPANCYGRIDPOSITIONS H

#include <nav _msgs/OccupancyGrid.h>

110

111

#include <costmap converter/ObstacleMsg.h>

#include <costmap converter/ObstacleArrayMsg.h>

#include <tf/LinearMath/Transform.h>

#include <costmap converter/costmap to polygons concave.h>
#include <libavutil/log.h>

#include <math.h>

#include <tf/transform broadcaster.h>

struct OccupancyGridCell
{
int8_t value;
double x;
double y;
bi

struct Vertex
{
double x;
double y;
bi

bool CompareVertexX (const Vertex &a, const Vertex &b)
{

return a.x < b.x;

bool CompareVertexY (const Vertex &a, const Vertex &b)
{

return a.y < b.y;

class OccupancyGridPositions

{

const int OccupiedValue = 100;

float resolution;
uint32_t height;
uint32_t width;

tf::TransformBroadcaster *br;

public:

//OccupancyGridPositions (nav_msgs::0OccupancyGrid occupancyGrid, tf::Transform
parent) ;

std::vector<OccupancyGridCell> cells;

OccupancyGridPositions (nav_msgs::0ccupancyGrid occupancyGrid, tf::Transform parent)

{

resolution = occupancyGrid.info.resolution;

112

height = occupancyGrid.info.height;

width = occupancyGrid.info.width;

int index = 0;
for (int i = 0; i < height; ++1i)
{
for (int j = 0; j < width; ++3)
{
OccupancyGridCell cell;

cell.value = occupancyGrid.data[index];

cell.x = (j * resolution) + parent.getOrigin().getX();
cell.y = (i * resolution) + parent.getOrigin().getY();
index++;

//boost::shared ptr<costmap converter::ObstacleArrayMsg> ToPolygons ()
std::vector<geometry msgs::Polygon> ToPolygons (tf::TransformBroadcaster *tfDebug)
{

br = tfDebug;

// take external vertices

std::vector<Vertex> vertices;

for (int i = 0; 1 < cells.size(); ++1)
{
if (cells[i].value == OccupiedValue && GetOccupiedNeighboursNumber (i)

<= 5)

Vertex vertex;
vertex.x = cells[i].x;
vertex.y = cells[i].y;

vertices.push back(vertex);

}

//VisualizeVertices (vertices, "");

// split to groups (islands)
std::vector<std::vector<Vertex>> islands = GroupIslands (&vertices);
for (int i = 0; i < islands.size(); ++1i)
{
std::stringstream ss;
ss << M"i" << i< MMy
std::string str = ss.str();
VisualizeVertices (islands[i], str):;
}
// keep only key points
// for (int 1 = 0; 1 < islands.size(); ++1i)
/7 A
// for (int j

0; 7 < islands[i].size(); ++3j) // vertices

//
//
//
//
//
//
//
//
//
//
//

{

int neighbours = GetNeighboursNumber (&vertices, Jj);
if (neighbours > 3)

{

islands[i].erase(islands[i].begin() + j);
j =0;

} else

{

}

}

}

// connect

std::vector<geometry msgs::Polygon> polygons;

for

{

(int 1 = 0; 1 < islands.size(); ++1)

geometry msgs::Polygon polygon;

geometry msgs::Point32 point;
point.x = islands[i][0].x;

point.y = islands[i][0].y;

polygon.points.push back(point);

int current = 0;

std::vector<int> used;

used.push_back (0) ;

while (polygon.points.size() < islands[i].size())

{

int next = GetNearestVertex(islands([i], current,
if (next == -1)
break;

used.push_back (next) ;

Vertex nextVertex = islands[i] [next];
point.x = nextVertex.x;
point.y = nextVertex.y;

polygon.points.push _back(point);

current = next;

polygons.push_back (polygon) ;

return polygons;

used) ;

boost::shared ptr<costmap converter::ObstacleArrayMsg> ToPointObstacles ()

{

113

114

costmap converter::0ObstacleArrayMsgPtr obstacleArrayMsg (new

costmap converter::0ObstacleArrayMsg());

for (int i = 0; i < cells.size(); ++1i)
{
if (cells[i].value == OccupiedValue)
{
costmap converter::0bstacleMsg obstacleMsg;
geometry msgs::Point32 point;
point.x = cells[i].x;
point.y = cells[i].y;
obstacleMsg.polygon.points.push back(point);
obstacleMsg.radius = resolution;
obstacleMsg.id = 1;
obstacleMsg.header.frame id = "map";
obstacleArrayMsg->header.frame id = "map";

obstacleArrayMsg->obstacles.push back (obstacleMsq) ;

}

return obstacleArrayMsg;

private:

void VisualizeVertices (std::vector<Vertex> vertices, std::string prefix)
{
for (int i = 0; i < vertices.size(); ++1i)
{
double x = vertices[i].x;
double y = vertices[i].y;
tf::Transform transform;
transform.setOrigin(tf::Vector3(x, vy, 0));
transform.setRotation (tf::Quaternion());
std::stringstream ss;
ss << prefix << i;
std::string str = ss.str();
br->sendTransform(tf::StampedTransform(transform, ros::Time::now(),
"map", str));

}

int GetNearestVertex (std::vector<Vertex> vertices, int current, std::vector<int>

used)

// find candidates
std::vector<Vertex> candidates;

Vertex ¢ = vertices[current];

for (int i = 0; i < vertices.size(); ++1)

{

int GetNeighboursNumber (std::vector<Vertex> *vertices,

{

Vertex v = vertices[i];

double distance = sgrt(fabs((c.x - v.x) * (c.x - V.X)

(c.y = v.y)))s
if (distance <= resolution + resolution / 2)
{
}

}

int indexClosest = -1;

double previousDistance = 10000000;
for (int i = 0; i < vertices.size(); ++1i)
{
if (i == current || std::count (used.begin(),

continue; // already used

Vertex v = vertices[i];
double distance = sqgrt(fabs((c.x - v.x) * (c.x - V.Xx)
(c.y = v.y)));

if (distance <= resolution + resolution / 100)

{

return i;

if (distance < previousDistance)

{
indexClosest = i;

previousDistance = distance;

return indexClosest;

int neighboursNumber = 0;
Vertex a = (*vertices) [vertex];
for (int j = 0; j < vertices->size(); ++j)
{
if (vertex != j)

{

if (AreNeighbours(a, (*vertices) [j]))

{

neighboursNumber++;

int vertex)

+

used.end (),

+

(c.y = v.y)
i) !'=0)
(c.y = v.y)

115

*

*

116

return neighboursNumber;

int GetOccupiedNeighboursNumber (int cellIndex)
{
double threshold = resolution / 2;
int neighboursNumber = 0;
OccupancyGridCell cell = cells[celllIndex];
for (int i = 0; i < cells.size(); ++1i)
{
if (celllIndex != 1)

if (fabs(cells[i].x - cell.x) < threshold + resolution
&& fabs(cells[i].y - cell.y) < threshold + resolution
&& cells[i].value == OccupiedValue)

{

neighboursNumber++;

}

return neighboursNumber;

bool AreNeighbours (Vertex a, Vertex b) const
{
return fabs(a.x - b.x) <= resolution * 2 + resolution / 4 &&

fabs(a.y - b.y) <= resolution * 2 + resolution / 4;

bool IsNeighbourFree (int i, OccupancyGridCell cell, double xOffset, double yOffset,
double threshold)
{

if (fabs(cells[i].x - cell.x - xOffset) < threshold

&& fabs(cells[i].y - cell.y - yOffset) < threshold

&& cells[i].value != OccupiedValue)

{

return true;
}

return false;

bool HasFreeNeighbour (OccupancyGridCell cell)
{
double threshold = resolution / 2;

int freeNeighbours = 0;

for (int i = 0; i < cells.size(); ++1)
{

// exclude given cell

if (fabs(cells[i].x - cell.x) < threshold + resolution

&& fabs(cells[i].y - cell.y) < threshold + resolution

&& cells[i].value != OccupiedValue)

freeNeighbours++;

/* // return true if any

117

if (IsNeighbourFree (i, cell, -resolution, resolution, threshold) || // left
top

//IsNeighbourFree (i, cell, 0, resolution, threshold) || // top

IsNeighbourFree (i, cell, resolution, resolution, threshold) || // right top

//IsNeighbourFree (i, cell, resolution, 0, threshold) || // right

IsNeighbourFree (i, cell, resolution, -resolution, threshold) || // right
bottom

//IsNeighbourFree (i, cell, 0, -resolution, threshold) || // bottom

IsNeighbourFree (i, cell, -resolution, resolution, threshold))// || // left
bottom

//IsNeighbourFree (i, cell, -resolution, 0, threshold)) // left

{

return true;

}*/

return freeNeighbours >= 5;

std::vector<std::vector<Vertex>>

GroupIslands (std::vector<Vertex> *vertices)

{

std::vector<std::vector<Vertex>> islands;

for (int i = 0; i < vertices->size(); ++1)
{
bool added = false;
if (!islands.empty())
added = AddToExistingIsland(&islands, (*vertices) [1i]);
// make a new island
if (ladded)
{
std::vector<Vertex> newlIsland;
newIsland.push back((*vertices) [i]);

islands.push back(newIsland) ;

return

islands;

bool HaveCloseVertices (const std::vector<std::vector<Vertex>> *islands, int i, int 7j)

{

bool have = false;
for (int k = 0; k < (*islands) [i].size(); ++k)
{
for (int 1 = 0; 1 < (*islands) [j].size(); ++1)

{
have = AreNeighbours ((*islands) [J][k], (*islands) [j]1[1]);

}

return have;

bool AddToExistingIsland(std::vector<std::vector<Vertex>> *islands, Vertex vertex)

{

return
}
bi

#endif

for (int j = 0; j < islands->size(); ++3)
{
for (int k = 0; k < (*islands) [j].size(); ++k) // vertices in island
{
// if any vertex is neighbour
if (AreNeighbours((*islands) [j][k], vertex))

{
(*islands) [Jj] .push_back (vertex);

return true;

false;

//SRC_OCCUPANCYGRIDPOSITIONS H

118

const

119

JIOIATOK B

BIII'VK

KePIBHMKA €KOHOMIYHOI'0 PO3AiLy
Ha KBajdidikauiiiny podoTy maricTpa
Ha Temy: «MopeJii, aJITOPUTMHU Ta POrpaMHe 3a0e3ne4eHHs AJIA
IVIAHYBAHHS HVIAXY
JJIS1 HaBiramii MOOLIbHMX POOOTIB 3 YHUKHEHHSM IEePeUIKO
HA OCHOBI iepeBa OKTAHTIB»
cryaenta rpynu 121m-19-1 I[Manaceiiko 'anaun MukosaiBHu

KepiBHMK eKOHOMIYHOTI0 pPO3Ai1y

noueHT kad. [IEI Ta ITY, k.e.H. JI. B. KacbsiHeHKo

120

APPENDIX C

NODES COMMUNICATION

n__ e aeuuyMer 3 e 0joouay RIS 7

%/

_ MR BOGILY0103 oY (B OSSO BT 7
~

_ oyl eIBIES0{03 "0y dap P UBYRAULY RIBWES 7

s_au.s.s._.vue-_a_i:..e_.ui?/

Uy IRwIED/

]

PropspRRd/ Pwe/

Wy 00ES PN

I

==

peq 00ES PIST

w

oqezety

I} smustiand saeis oq0y

L s e T ———"

—_H_gﬂtuuﬂiru.suﬁuﬁvnﬂgugslﬂg 7

:B.asv%ngigudzéiﬁsnﬂg: 7

(taroseumarsteummuesproymsumsioussua |

:uza..ng_ﬁz.g!:u.!z.sf-!ﬂ._ii 7

i
5
H

deunsos feqojbfeseq saouy

121

APPENDIX D
LIST OF FILES ON THE DISC
File name Description

Explanatory documents

ThesisPanaseikoHanna.doc Explanatory note to the diploma project. Word
document.

ThesisPanaseikoHanna.pdf Explanatory note to the diploma project in
PDF format

Program

Navigation.zip Archive. Contains program codes and a
program

Presentation

PresentationPanaseikoHanna.ppt | Presentation of the diploma project

