Kateryna Golovko I.I. Kurmeliov, research supervisor L.O. Tokar, language adviser SHEI «National Mining University», Dnipropetrovsk ## Chemical Composition of Coal Ash of "Progress" Mine ("TOREZANTRATSIT" SHC) SiO_2 , Fe_2O_3 and Al_2O_3 are prevailing oxides within coal ash. Total oxide content ($Fe_2O_3 + Al_2O_3 + CaO$) is 4.11 within h_8 seam coal, and 8.61 within h_7 one. Against aluminosilicate oxides to basic ones $SiO_2 + Al_2O_3/MgO + Fe_2O_3 + CaO$ (it is 1.35 on h_8 seam, and 3.74 on h_7 one) the ash is acidic. Ash calcium is 6.73 on h_8 seam, and 3.27 on h_7 seam. Chemical Composition of Ash in h₈ Seam | Fe ₂ O ₃ | Al ₂ O ₃ | SiO ₂ | CaO | MgO | SO ₃ | P ₂ O ₅ | SiO ₂ +Al ₂ O ₃ /
MgO+Fe ₂ O ₃ +CaO | Fe ₂ O ₃ +CaO+
Al ₂ O ₃ | | |--------------------------------|--------------------------------|------------------|-----|-----|-----------------|-------------------------------|---|--|--------| | | | | | | | | WigO+1 C2O3+C4O | В | в угле | | | | | | | | | | золе | | | 30,5 | 13,1 | 35,4 | 6,7 | 4,1 | 6,0 | 0,4 | 1,35 | 50,3 | 4,1 | Chemical Composition of Ash in h₇ Seam | Fe ₂ O ₃ | Al ₂ O ₃ | SiO ₂ | CaO | MgO | SO ₃ | P ₂ O ₅ | SiO ₂ +Al ₂ O ₃ /
MgO+Fe ₂ O ₃ +CaO | Fe ₂ O ₃ +CaO+
Al ₂ O ₃ | | |--------------------------------|--------------------------------|------------------|-----|-----|-----------------|-------------------------------|---|--|--------| | | | | | | | | | В | в угле | | | | | | | | | | золе | | | 17,2 | 22,9 | 45,6 | 6,7 | 4,1 | 6,0 | 0,4 | 1,35 | 50,3 | 4,1 | Ash-fusion temperature depends on its content. If percentage of silicon and aluminium oxides increases, and ferrum oxides decreases, then ash-fusion temperature rises. If percentage of ferrum oxides increases, then it drops. Ash-fusion temperature on seams is as follows: $h_8 - t_1 - 1027^{\circ}\text{C}$, $t_2 - 1129^{\circ}\text{C}$, $t_3 - 1195^{\circ}\text{C}$. The ash is fusible. For h_7 seam, figures are: $t_1 - 1012^{\circ}\text{C}$, $t_2 - 1208^{\circ}\text{C}$, $t_3 - 1307^{\circ}\text{C}$. The ash is medium-fusible. Coal ashes and slags of h_7 seam may be applied as active agents and inert fillers in cements and cement-based products (SO₃ and CaO are less than 5% and sulphide sulphur is not more than 1%). The ash may be used to manufacture lighted artificial fillers, fly ash aggregate, agloporite, and other fillers (Fe oxide content is more than 10%, CaO is less than 5%, and MgO is less than 5%). Coal ashes and slags of h_7 seam may be applied in the process of brick manufacture as MgO + CaO content is not more than 10%, and SO₃ is not more than 5%.