

Elena Koval

O. O. Boyko, research supervisor
O. V. Syanova, language adviser

SHEI “National Mining University”, Dnipropetrovsk

Lock Inference for Java

Atomicity is an important property for concurrent software, as it provides a

stronger guarantee against errors caused by unanticipated thread interactions than
race-freedom does. However, concurrency control in general is tricky to get right
because current techniques are too low-level and error-prone. With the introduction
of multicore processors, the problems are compounded. Consequently, a new
software abstraction is gaining popularity to take care of concurrency control and the
enforcing of atomicity properties, called atomic sections.

One possible implementation of their semantics is to acquire a global lock upon
entry to each atomic section, ensuring that they execute in mutual exclusion.
However, this cripples concurrency, as non-interfering atomic sections cannot run in
parallel. Transactional memory is another automated technique for providing
atomicity, but relies on the ability to rollback conflicting atomic sections and thus
places restrictions on the use of irreversible operations, such as I/O and system calls,
or serialises all sections that use such features. Therefore, from a language designer's
point of view, the challenge is to implement atomic sections without compromising
performance or expressivity.

This thesis explores the technique of lock inference, which infers a set of locks
for each atomic section, while attempting to balance the requirements of maximal
concurrency, minimal locking overhead and freedom from deadlock. We focus on
lock-inference techniques for tackling large Java programs that make use of mature
libraries. This improves upon existing work, which either ignores libraries, requires
library implementors to annotate which locks to take, or only considers accesses
performed up to one-level deep in library call chains. As a result, each of these prior
approaches may result in atomicity violations. This is a problem because even simple
uses of I/O in Java programs can involve large amounts of library code. Our approach
is the first to analyse library methods in full and thus able to soundly handle atomic
sections involving complicated real-world side effects, while still permitting atomic
sections to run concurrently in cases where their lock sets are disjoint.

To validate our claims, we have implemented our techniques in Lockguard, a
fully automatic tool that translates Java bytecode containing atomic sections to an
equivalent program that uses locks instead. We show that our techniques scale well
and despite protecting all library accesses, we obtain performance comparable to the
original locking policy of our benchmarks.

170

