ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ОБРАЗОВАНИЯ МЕХАНИЧЕСКИМ СПОСОБОМ КОМПЕНСАЦИОННЫХ ПОЛОСТЕЙ ДЛЯ ПРОХОДКИ ВОССТАЮЩИХ ВЫРАБОТОК ПРИ ПОДГОТОВКЕ БЛОКОВ К ОЧИСТНОЙ ВЫЕМКЕ

Л.А. Штанько, В.И. Чепурной, С.И. Ляш, С.И. Корнияшек, Научно-исследовательский горнорудный институт ГВУЗ «Криворожский национальный университет», Украина

Приведены результаты экспериментальных исследований образования для проходки восстающих выработок компенсационных полостей сформированных на основе расширения передовых скважин механическим способом.

Актуальность работы. В технологической цепи добычи железных руд подземным способом наиболее несовершенным звеном является подготовка блоков к очистной выемке. Проходка восстающих является одним из наиболее дорогостоящих и трудоемких видов горных работ при подготовке блоков. Разработка оптимальных способов и средств механизации технологических процессов проходки восстающих – современное и актуальное направление повышения эффективности технологии подготовки блоков к очистной выемке.

Изложение основного материала и результаты. Одним из основных, наиболее трудоемких и несовершенных производственных процессов при добыче железных руд подземным способом является подготовка блоков к очистной выемке. Удельный объем трудовых затрат на эти работы составляет 40-50% общих затрат на добычу руды.

Широкое развитие систем разработки, особенно мощных рудных тел, привело к появлению серии выработок малого сечения, составляющих основу конструктивного оформления систем. При этих системах для подготовки блоков к очистной выемке проходят восстающие выработки различного назначения. Трудоемкость и затраты средств на проходку восстающих достигают в отдельных случаях почти половины общей трудоемкости и затрат на подготовку блоков к очистной выемке [1,2].

В настоящее время в Криворожском бассейне при подготовке блоков к очистной выемке, вскрытии новых месторождений и горизонтов ежегодно проходят порядка 27 тыс.м восстающих выработок.

Восстающие выработки проходят по породам и рудам с коэффициентом крепости f от 3-6 до 16-18, преобладающий объем (72,8%) проходят в горном массиве с коэффициентом крепости f равном 5-9. В зависимости от назначения восстающие выработки проходят площадью поперечного сечения от 1,44 до 4,0 м², при этом преобладающая площадь составляет 2,25 м² (73%). Высота выработок изменяется от 10 до 80 м, при этом преобладают выработки высотой 10-40 м (62,3%). На долю нарезных выработок, задействованных в подготовке блоков к очистной выемке, приходится 90,5% от общего объема проходки. Подавляющее большинство выработок (96,7%) проходят буровзрывным способом. По характеру взрывного разрушения массива они разделяются на проходку с шпуровой отбойкой и с отбойкой зарядами глубоких скважин.

Проходка восстающих шпуровым способом осуществляется с устройством временных полков (78,9) и с применением самоходных комплексов (17,8%).

Применение самоходных комплексов экономически целесообразно при высоте восстающей выработки не менее 60-80 м.

В настоящее время на шахтах Кривбасса проходка восстающих секционным взрыванием глубоких скважин в силу ряда причин различного характера не находит широкого применения. Этот способ отличается от ранее рассмотренных, отсутствием человека в забое проводимой выработки, Л.И. Барон предложил именовать горные работы такого рода безлюдной проходкой. [3]

Высота взрываемой секции находится в пределах 1,5-2 м. Для проходки тупиковых восстающих этот способ не приемлем [3].

На шахтах бассейна 3,3% от общей протяженности восстающих выработок проходят машинным (комбайновым) способом. В 80-х годах XX столетия на шахтах бассейна работало 10 комбайнов типа КВ производимых на Украине. В настоящее время задействовано 2 комбайна типа Рино-400 производства фирмы «Сандвик» (Швеция)[4,5].

Установлено, что машинный способ является конкурентоспособным с буровзрывным только при проходке восстающих большой высоты (порядка 80 м) [4]. Потребность в таких восстающих в Кривбассе составляет 12-14% от общего объема проходки.

Исходя из изложенного, становится очевидным, что применение самоходных комплексов, освоение комбайнов для проходки восстающих не может в полной мере способствовать решению проблемы повышения эффективности подготовки блоков к очистной выемке.

Большая протяженность восстающих выработок, которые проходят на шахтах Кривбасса при подготовке блоков к очистной выемке, низкая скорость проходческих работ, определяют необходимость поиска новых технологических и технических решений при разрушении горных пород применительно к проходке восстающих.

Перспективным с точки зрения технологичности, снижения трудоемкости и стоимости проходческих работ является способ проведения восстающих выработок за один прием взрывания отбойкой скважинных зарядов на незаряжаемую скважину увеличенного диаметра (компенсационную полость). Суть данного способа заключается в том, что в пределах проектного контура проводимой выработки выбуривают комплект скважин на полную высоту выработки. При этом одну скважину расширяют. Она служит как компенсационная полость. Остальные же скважины комплекта заполняют ВВ и взрывают с замедлениями [6].

Для взрывного разрушения массива планомерно используется дополнительная плоскость обнажения - компенсационная полость, при этом в процессе отбойки в породе наряду с напряжениями сжатия возникают напряжения сдвига и растяжения (отрыва). В результате создания напряжения сдвига в сторону компенсационной полости отрыв частиц породы от массива происходит при меньшем усилии, а, следовательно, с меньшими затратами энергии.

При проходке восстающих выработок компенсационная полость в виде скважины большого диаметра может быть создана путем расширения передовой скважины диаметром 0,105-0,110 м.

Одним из основных критериев, позволяющих провести сравнительную оценку различных способов разрушения горных пород при образовании скважин большого диаметра, является относительный коэффициент энергоемкости, который изменяется в широких пределах в зависимости от способов воздействия на горную породу (табл.1) [7].

Из таблицы видно, что механический (ударный) способ разрушения горных пород является наиболее приемлемым для образования в подземных условиях скважин большого диаметра.

Анализ существующих способов и средств для образования компенсационных полостей показывает, что на отечественных и зарубежных горнорудных предприятиях для бурения скважин большого диаметра наибольшее распространение получил механический способ разрушения горных пород и метод расширения передовой скважины, т.е. бурение за два прохода. Расширение скважин производится буровыми снарядами выносного и погружного типа, а также шарошечными долотами, при этом предпочтение следует отдать устройствам с пневмоударным приводом рабочего органа, т.к. они относительно просты по конструкции, сравнительно дешевы и мобильны.

На основании изложенного, на шахтах Кривбасса выполнен комплекс экспериментальных исследований технологии образования компенсационных полостей в виде скважин большого диаметра, полученных путем механического расширения передовых скважин.

Для проведения экспериментальных работ были подобраны забои, проводимые по породам с различным коэффициентом крепости: от крепких монолитных кварцитов с f=16-18 до слабых гематито-мартитовых руд с f=4.

Опытные работы непосредственно в шахтных условиях проводились установкой для расширения скважин состоящей из бурового станка НКР-100М, пневмоударника с породоразрушающим инструментом в виде коринки расширителя.

Таблица 1 Относительный коэффициент энергоемкости различных способов разрушения горных пород

Способы разрушения	Относительный коэффициент энергоемкости
Термические: лазерный луч плазма электронный луч	450 120 8
Гидравлические: низкоскоростная струя воды непрерывная струя высокого давления пульсирующая струя высокого давления	85 45 1
Механические: ультразвук коническая шарошка мощный механический удар направленный удар средней мощности мощный высокоскоростной удар	1,5 0,7 0,5 0,2 0,07

Для широкого диапазона исследований был изготовлен ряд породоразрушающих инструментов. Каждый породоразрушающий инструмент представляет собой металлическую платформу, на которой с передней части закреплены буровые колонки КДП-40 по концентрическим окружностям, а в центре — направляющий пилот, с задней — хвостовик буровой колонки К-155, так как в качестве генератора ударных импульсов был принят прямой пневмоударник П-1-115 конструкции НИГРИ, ударным элементом в котором является поршень.

Техническая характеристика рабочего органа установки для расширения скважин следующая.

Энергия удара пневмоударника, Дж	250
Частота удара пневмоударника, Гц	15
Диаметр породоразрушающих инструментов, м	0,2; 0,3; 0,4; 0,5
Скорость вращения, рад/с	6,28

Согласно методике испытания проводились в два этапа. На первом этапе станком НКР-100М бурились вертикальные передовые скважины диаметром 0,105 м снизу вверх.

На втором этапе предварительно пробуренные передовые скважины диаметром 0,105 м расширялись механическим способом до диаметра 0,2; 0,3; 0,4; и 0,5 м. При этом определялась линейная скорость расширения передовых скважин.

Линейная скорость расширения передовых скважин определялась путем изменения длины расширенной скважины и времени расширения.

Энергоемкость расширения определялась по формуле:

$$W = \frac{N_m}{Y_{oo}}$$
, кДж/м³

где N_m - мощность механического рабочего органа, Дж/с, для станка НКР-100М с пневмоударником П-1-115 N_m =1·10⁵ Дж/с; Y_{oo} - объемная скорость разрушения, м³/с.

Объемная скорость расширения определялась по формуле:

$$Y_{o\delta} = \frac{\pi}{4} (\mathcal{I}^2 - d^2) \cdot Y_{\pi}, \, \text{m}^3/\text{c},$$

где \mathcal{J} - диаметр расширенной скважины, м; d - диаметр расширяемой скважины, d =0,105 м; Y_{π} - линейная скорость расширения, м/с.

Таким образом

$$W = \frac{N_m}{\pi \cdot Y_n (\mathcal{A}^2 - d^2)}, \, \kappa Дж/м^3$$

В процессе исследований были получены результаты, представленные в таблицах 2, 3, 4.

Таблица 2 Линейная скорость расширения

Коэффициент	Линейная скорость расширения, м/с			
крепости пород,	Диаметр расширенной скважины, м			
f	0,2	0,3	0,4	0,5
4-5	9,90	5,61	3,63	1,98
6-7	7,80	4,42	2,86	1,56
8-9	4,76	2,71	1,77	0,97
10-11	3,00	1,70	1,10	0,60
12-13	1,92	1,09	0,70	0,38
14-15	1,14	0,65	0,42	0,24
16-17	0,60	0,34	0,23	0,12

Таблица 3 Объемная скорость расширения

1			7		
Коэффициент	Объемная скорость расширения, м ³ /с				
крепости пород,		Диаметр расширенной скважины, м			
f	0,2	0,3	0,4	0,5	
4-5	0,185	0,224	0,386	0,396	
6-7	0,146	0,177	0,304	0,312	
8-9	0,090	0,109	0,187	0,192	
10-11	0,056	0,068	0,0125	0,128	
12-13	0,037	0,044	0,080	0,082	
14-15	0,021	0,029	0,048	0,051	
16-17	0,012	0,017	0,023	0,024	

Таблица 4 Энергоемкость расширения

Коэффициент	Энергоемкость расширения, м ³ /с				
крепости пород,		Диаметр расширенной скважины, м			
f	0,2	0,3	0,4	0,5	
4-5	22,571	15,047	11,285	10,032	
6-7	28,647	19,098	14,324	12,734	
8-9	46,552	31,034	23,276	20,691	
10-11	74,483	49,655	37,241	33,104	
12-13	116,380	77,586	58,189	51,725	
14-15	196,001	130,671	98,003	87,116	
16-17	372,415	248,275	186,205	165,527	

Результаты экспериментальных работ, приведенные в табл.2, показывают, что с увеличением диаметра расширенной скважины линейная скорость расширения уменьшается при неизменной крепости разрушаемой породы. Данные табл.2 также показывают, что с увеличением крепости разрушаемой породы для каждого диаметра расширения происходит уменьшение линейной скорости расширения.

Объемная скорость расширения имеет явно выраженный максимум в области диаметра расширенной скважины равным $0.5\,$ м (табл.3). Это значит, что для данного типа

пневмоударника и породоразрушающего инструмента оптимальным диаметром расширения является 0,5 м. Этот вывод подтверждается и минимальной энергоемкостью процесса расширения до диаметра 0,5 м (табл.4).

Экспериментальные исследования по расширению передовых скважин механическим способом показали, что пневмоударные устройства содержащие один ударный механизм с буровой коронкой – расширителем являются надежными, простыми и удобными в эксплуатации пород разрушающими инструментами образования механическим способом компенсационных полостей для проходки восстающих выработок при подготовке блоков к очистной выемке.

Выводы. Выполненные работы показали:

- 1. Подготовка блоков к очистной выемке является наиболее несовершенным звеном технологического процесса добычи железных руд подземным способом.
- 2. Проходка восстающих наиболее дорогостоящий и трудоемкий вид горных работ при подготовке блоков.
- 3. Восстающие выработки, задействованные в подготовке блоков, проходят буровзрывным способом с устройством временных полков и разрушением породного массива шпуровыми зарядами.
- 4. Проходка с использованием временных полков характеризуется низким уровнем безопасности, большой трудоемкостью всех технологических операций, невысокими месячными темпами проходки, плохими санитарно-гигиеническими условиями труда.
- 5. Применение самоходных комплексов, освоение комбайнов для проходки восстающих не может в полной мере способствовать решению проблемы повышения эффективности подготовки блоков к очистной выемке.
- 6. При проходке восстающих за один прием взрывания наиболее узким местом является образование компенсационной полости, которая может быть создана путем расширения передовой скважины диаметром 0,105-0,110 м.
- 7. Пневмоударные устройства, содержащие один ударный механизм с буровой коронкойявляются надежными, простыми расширителем И удобными В эксплуатации породоразрушающими инструментами механическим способом образования компенсационной полости при проходке восстающих выработок, задействованных в подготовке блоков к очистной выемке.

Дальнейшие исследования необходимо проводить в направлении повышения эффективности разрушения массива при образовании компенсационных полостей в крепких породах с коэффициентом крепости f=10-12 и более.

Список литературы

- 1. Чирков Ю.И., Черненко А.Р. Подземная разработка мощных железорудных месторождений. –М., Недра, 1985.-239 с.
- 2. Дубинин Н.Г., Трегубов Б.Г. Подготовка блоков к очистным работам. М., Недра, 1968, 149 с.
 - 3. Барон Л.И., Овчинников М.И. Механизация проходки восстающих. М., Недра, 1973.-192 с.
- 4. Соловьянов Л.Н. Промышленный опыт проходки восстающих машинным способом. Тр. НИГРИ, 1957, том 1, с.287-305.
- 5. Алексеев Г.М., Кунин И.К., Воюта Л.Ф. Перспективы развития техники и технологии проходки восстающих выработок. Горный журнал, 1979, №8, с.31-33.
- 6. Шнайдер М.Ф. Образование восстающих взрыванием скважинных зарядов. Горный журнал, №6,1982, с.36-37.
- 7. Миронов Е.И. Новые методы разрушения пород при скоростной проходке горных выработок в США //Горный журнал,1978-№3.-С.69-72