ВОЗМОЖНОСТЬ СУЩЕСТВОВАНИЯ ГАЗОГИДРАТОВ В УГОЛЬНЫХ ШАХТАХ

Екатерина Сергеевна Сай ассистент кафедры подземной разработки месторождений, Государственное ВУЗ «Национальный горный университет, Украина

Константин Николаевич Прокопенко студент Горного института, Государственное ВУЗ «Национальный горный университет, Украина

Образование угля невозможно без наличия органики, в основном растительного происхождения, которая в процессе метаморфизма формирует твердую угольную матрицу, содержащую в себе различные газообразные вещества. Обычно именно метан является основным газовым компонентом большинства угольных месторождений. Наряду с метаном в угле содержится сероводород, азот, этан, пропан и другие углеводороды, однако доля этих газов в общем количестве не превосходит нескольких процентов. Газ, который образуется в процессе метаморфизма угольного вещества, частично удаляется из пласта с потоками флюидов, частично остается внутри угольной матрицы. Свободный метан всегда находится в газообразном состоянии внутри открытых и закрытых пор, размеры которых больше или соизмеримы с длиной свободного пробега молекул.

Формы нахождения метана в угольных толщах и его количество являются предметом изучения достаточно длительное время. Актуальность приобрели исследования, изучающие форму связи газа с угольной матрицей, существу-

ющую в виде газовых гидратов – клатратных соединений включения, образующихся из молекул воды (естественной влажности угля) и метана. В пользу данного предположения также свидетельствует взрывной эффект Бриджмена, имеющий место при внезапных выбросах угля и газа в шахтах.

Установлено, что при высоких давлениях жидкость увеличивает свою вязкость до 100 раз, наряду с этим ее структура становится подобием кристаллогидратов. Исходя из данных фактов, можно предположить, что при наличии газообразной и жидкой фаз при тех же термобарических условиях возможно получить газогидратные соединения [1].

Выявлено, что при всестороннем воздействии давления кристаллогидраты стремятся вырваться в крайнюю зону, то есть основное давление сосредоточено в точках его приложения. Предполагается, что в непосредственной близости к забою выработки возможно существование газогидратов при наличии следующих условий: большие глубины разработки, наличие значительного газовыделения и достаточного водопритока. Проведем аналогию между эффектом Бриджмена и состоянием горного массива в процессе ведения горных работ. На некотором удалении от забоя выработки формируется зона максимального давления, что в свою очередь дает возможность для формирования газогидратов в сверхкатегорийных шахтах с обильным водопритоком [2].

В пользу нашего предположения свидетельствует еще и тот факт, что внезапные выбросы на шахтах сопровождаются понижением температуры среды при выбросе, а также высвобождением значительного количества газа метана и кинетической энергии. Такие же процессы наблюдаются при быстрой разгерметизации газогидратов, что в свою очередь дает право предположить об их существование в угольных шахтах.

Подробное изучение процессов образования газогидратов и их существования, закономерностей фазовых переходов и равновесного состояния гидратов метана при различных условиях является неотъемлемой частью исследований, посвященных как рассмотрению возможности добычи метана из угольных пластов в качестве дополнительного энергоресурса, так и установлению способов предотвращения внезапных выбросов угля и газа для повышения безопасности ведения горных работ.

Список литературы

- 1. Моссур, А.П. (2009). Влияние процессов гидратообразования на проявления горного давления в отрабатываемых угольных пластах. Школа підземної розробки, 622-626.
- 2. Бондаренко, В.И., Моссур, А.П. (2008). Физико-химические процессы гидратообразования в метанообильных угленосных отложениях и их выбросоопасность. Школа підземної розробки, 98-102.