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SELECTION OF AN APPROPRIATE NUMERICAL INTEGRATION METHOD  

FOR SOLVING THE OPTIMAL CONTROL PROBLEM OF AN INDUCTION  

MOTOR 
 

Анотація. У даній роботі описано застосування управління з прогнозуванням на основі градієнта в 

стратегії енергоефективного керування векторно-керованим асинхронним двигуном в перехідному ре-

жимі при зміні умов навантаження. Для моделювання асинхронного двигуна з орієнтацією по полю ро-

тора, використовується модель в просторі станів. Завдання оптимального управління визначається як 

мінімізація інтеграла втрат енергії з обмеженнями. З цією метою умови оптимальності першого по-

рядку визначаються на основі принципу максимуму Понтрягіна. Описано основний алгоритм вирішення 

задачі оптимального управління. Обговорюються алгоритмічні параметри управління з прогнозуванням 

для завдання чисельного інтегрування. Показано, що шляхом належного вибору методу чисельного інте-

грування можна отримати оптимальну траєкторію струму намагнічування з більш низькими піковими 

значеннями в порівнянні з іншими методами. 

Ключові слова: Векторне керування, асинхронні двигуни, управління з прогнозуванням на основі 

градієнта, оптимальний потік ротора, енергоефективність, інтегратори 

Аннотация. В настоящей работе описано применение управления с прогнозированием на основе 

градиента в стратегии энергоэффективного управления векторно-управляемым асинхронным двигате-

лем в переходном режиме при изменении условий нагрузки. Для моделирования асинхронного двигателя с 

ориентацией по полю ротора, используется модель в пространстве состояний. Задача оптимального 

управления определяется как минимизация интеграла потерь энергии с ограничениями. С этой целью 

условия оптимальности первого порядка определяются на основе принципа максимума Понтрягина. 

Описан основной алгоритм решения задачи оптимального управления. Обсуждаются алгоритмические 

настройки управления с прогнозированием для задачи численного интегрирования. Показано, что путем 

надлежащего выбора метода численного интегрирования можно получить оптимальную траекторию 

тока намагничивания с более низкими пиковыми значениями по сравнению с другими методами. 

Ключевые слова: Векторное управление, асинхронные двигатели, управление с прогнозированием на 

основе градиента, оптимальный поток ротора, энергоэффективность, интеграторы 

 

Abstract. The application of the gradient based model predictive control in an energy efficient control 

strategy of vector-controlled induction motor in transient behaviour when load conditions are changing is de-

scribed in the current paper. A state-space approach is employed for the modelling a rotor-flux-oriented induc-

tion motor. The optimal control problem is defined as the minimization of the time integral of the energy losses 

with constraints. To this end the first-order optimality conditions are determined based on Portryagin’s Maxi-

mum Principle. The basic algorithm to solve the optimal control problem is introduced. The algorithmic options 

of model predictive control concerning the numerical integrations are discussed. It is shown that by appropriate-

ly choosing the numerical integration method the field-generating current optimal trajectory with the lower 

spikes can be obtained compared to the other embedded methods.  

Index Terms: Field-oriented control, induction motors, gradient based model predictive control, optimal 

rotor flux, energy efficiency, integrators 

 

I. Introduction 

In the course of technological progress, the more acute becomes the problem of global energy conservation 

because of not only the increase in electricity consumption in industry and households, and the related need for 

the construction and commissioning of new energy capacities, but also limited world reserves of resources in na-

ture. Since it is not a secret for anyone that electric motors consume more than 50 % of the world's electric pow-

er, most of which are asynchronous motors, the main way to solve this problem is the introduction of regulated 

electric drive systems in all branches of the national economy, which are recognized in the world practice as one 

of the most effective energy-saving and resource-saving environmentally friendly technologies. 

Induction machines are the most frequently used type of asynchronous drives in many industrial applica-

tions due to their simple structure, robustness and low manufacturing cost. Along with the advances of power 

electronics, the task to operate the AC machine with any speed by means of separate control of magnetic flux 

and torque was solved with the introduction of the so-called field-oriented control about 40 years ago. Since 

then, field-oriented control is state-of-the-art nowadays for synchronous as well as for asynchronous machines. 
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One of the drawbacks is the fact that the power efficiency of an induction machine is lower than some other AC 

machine types, for example a permanent-magnet synchronous machine. Mainly because a field-generating cur-

rent in addition to torque-generating current is required. Combined with the low-cost stator design it leads to 

higher power losses. Moreover, in part-loaded operation mode with rated flux in many applications like fans, 

pumps or conveyors, the efficiency will drop even more due to over-excitation and redundant copper losses. All 

applications stated above have in common that the machine is operated over considerable time intervals in steady 

state at a given speed and a given torque. 

To bypass the issue of low efficiency in part-loaded mode of operation for listed types of applications a 

generous number of energy efficient control strategies have been developed [1-4]. The main idea of all these 

methods is to define the appropriate states of the machine either with the help of explicit calculation based on 

machine parameters or by online search algorithms or by a combination of both, so that the field-generating cur-

rent and thereby the field flux is set to an optimal level. It opens an option to obtain the same torque with lower 

stator current and magnetic flux, resulting in reduction of ohmic and iron losses in induction machines. But such 

techniques frequently attenuate the problem of slow torque response under reduced magnetic flux magnitude. 

And, of course, the loss minimization is not achieved during transients. 

Besides the above mentioned applications, there are servo motor applications. The servo motor is small and 

efficient, but serious to use in some applications like precise position control. They are extensively used in those 

applications where a particular task is to be done frequently in an exact manner. Currently in this domain the 

permanent-magnet synchronous machine is preferred choice, due to higher efficiency and lower moment of iner-

tia. However, they are quite expensive because of the rare-earth materials used to manufacture the permanent 

magnets in the rotor. Furthermore, in order to weaken the magnetic field some additional measures are required. 

Therefore, the efficiency growth of induction machines in dynamics would also raise its attractivity for servo 

motor applications. 

Nevertheless, only a comparatively small number of works addressed the minimizations of power losses for 

dynamic operation due to a changing motor torque. The first treatment of this problem [5] and [6] is purely of-

fline numerical investigation on a PC, based on full knowledge of the torque and speed trajectories [5], or motion 

control of the application [6]. It is shown that compared to the operation under constant magnetic flux linkage, a 

significant improvement of reduction of power losses can be achieved. However, the offline optimization is not 

feasible in most applications as well as obtained optimal trajectories are valid solely for one specific application. 

An analytic investigation of the problem during transients is presented in [7]. It is based on the calculus of varia-

tions. The conditions of optimality use these variations to minimize the total energy losses taking into account 

torque-tracking constrains. But for time-varying torque the given problem can not be exactly solved. So, for such 

a case, authors have presented a suboptimal solution by replacing constant torque by time-varying torque in or-

der to obtain solution for flux linkage based on the equation for the constant torque. An online implementable 

control scheme is proposed in [8]. It is shown in this paper that with a good approximation, it can be assumed 

that the optimal magnetic flux is an exponential function and that its time constant can be in this case obtained 

numerically. A simple solution is found using a parametrized prototype function and the parameters are evaluat-

ed by an online parameter optimization algorithm embedded in a predictive scheme where it is performed at eve-

ry sampling step. Despite heuristic approximation, the solution is sufficiently accurate. Another recent work 

where the optimal trajectory is computed online based on an online optimization is presented in [9]. The optimal 

rotor flux reference is determined from the steady state power losses online and the result both for static and dy-

namic mode of operation is evaluated. It is shown that in order to avoid high field-generating current levels dur-

ing flux transients, the flux linkage reference must be filtered. An appropriate choice of the filter time constant 

based on the first-order filter structure has been numerically investigated in [10] and determined as a fraction of 

the rotor time constant to give a user a simple design criterion. The synthesis of the filter can be pursued ever 

further using the methodology given in the recent paper [11]. 

This paper discusses another approach. In this context, we use method described in [12] with the purpose of 

improvement the efficiency of the induction machine in transient behaviour when load conditions are changing. 

This approach is appropriate for fast and high-dimensional nonlinear systems with control constraints and based 

on so-called model predictive control. 

To illustrate this solution first the essential model equations for the induction motor as well as the relation-

ships for the power losses will be given. Subsequently, in Section III the optimization problem is formulated and 

the algorithm for the solution according to [12] is described. Section IV discusses the selection of appropriate al-

gorithmic options and presents the results obtained.  

 

II. Background 

For the modelling of the induction motor, all variables are transformed from the three-phase system (abc) to 

an orthogonal amplitude invariant dq reference frame with a direct (d) and a quadrature (q) axis, so that the 

length of a pointer corresponds to amplitude of the associated sinusoidal signal. Consider Г-inverse equivalent 
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circuit given in Figure 1 with orientation of the rotor flux 2  along the d-axis of the synchronously rotating co-

ordinate system 0, 222  qd  , where L  – stator leakage inductance, L  – mutual inductance. 

   
Fig. 1. Γ-inverse equivalent circuit of induction machine 

 

An induction motor in this case is characterized by the following equations in state-space, rotating with the 

speed s : 
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Assume that the speed and current regulators of field-oriented control have high enough performance to en-

sure the control characteristic close to perfectly rigid, that is, the dynamics of the stator currents is significantly 

higher than the dynamics of the magnetic flux and speed. In other words, a stepwise change in the load on the 

motor shaft does not lead to a significant deviation of the speed from its reference. In such a case, the dynamics 

of the speed and current controllers can be disregarded. The reduced motor model can be rewritten as: 

 

 

(2) 

 

(3) 

 
 

The system of model equations in the form (2, 3) is the main mathematical object of the present study. The 

power losses to be considered in this paper are so-called copper losses that come from resistance of the stator 

winding and the rotor cage. Losses due to eddy currents and the magnetization of the plates in the stator and ro-

tor are not taken into account. It is made for the sake of simplification, but it does not constitute any limitations 

for the application of the method described in this paper. For the copper losses: 
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Now rewrite equation (4) taking in account the fact that the total values of the stator current and the rotor 

current in the rotating dq coordinate system are calculated by Pythagoras’ Theorem: 
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According to the equations of the magnetic system of the motor, in field oriented control we have 
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Now (6) and (7) can be substituted in (5) resulting in: 
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The equations (1) and (6) give the following relationship: 
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Thus, the expression for power losses in steady state mode: 
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III. Optimization problem 

This article takes its point of departure in the following considerations: 

Field-oriented control scheme is used to control induction machine with orientation of the rotor flux 2  

along the d-axis of the synchronously rotating coordinate system 0, 222  qd   at a specific rotational 

speed and a given torque. At a certain point in time, the torque setpoint is changed. What must be done is to ad-

just motor parameters in such a manner that the energy loss during transient process is as low as possible. It is 

assumed that the dynamics of current regulators can be neglected as stated above. This neglect is justified in so 

far as their time constants in practice lie in a range up to one millisecond. That is why in this paper for the sake 

of simplicity a decision was made to proceed with this move. But the time constant for the transient process after 

torque setpoint change is comparable to the rotor time constant 22 RLT   and thus around 50 ms. The rota-

tional speed reference is ramp-shaped which is customary in practice. A great emphasis will be placed on the 

field-generating current regulator. 

When vector control is used, the magnitude of the torque-generating current qI1  is determined by the 

torque on the motor shaft and magnetic flux linkage. Taking into account that in steady state the motor develops 

a torque equal to the load torque, from the equation for the output torque (3) the steady state value of qI1 can be 

written 
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After substitution of (11) in (8), the power loss VP  for a constant MM  depends only on the state variable 

2  and manipulated field-generating current dI1 . At time 0t  a torque setpoint change from 0MM  to 1MM  

occurs when motor operated in steady state. Thus, the optimal control problem consists in the minimization of 

the time integral of power losses, that is, the energy loss: 
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under the constraint (2) with boundary conditions 202 )0(    and 212 )(  T . According to the task descrip-

tion the motor operates in steady state before torque setpoint change and afterwards when transient process is 

finished. Therefore, in steady-state at a given motor torque the optimal rotor flux linkage values 20  and 21  

can be calculated by the following expression: 
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To find a solution of optimal control problem the Hamiltonian has to be defined: 

 

 

 


















d

d

p

M
dd

IR
L

R

I
L

R

L

R

Z

M
RRIRRIH

122
2

12
22

22
2

2
2

2

2

21
2
12121 3

2

3
)(

3

2
)(

2

3
,,











 (14) 

 

with the next first-order optimality conditions for the optimal trajectories that follow from Pontryagin’s Maxi-

mum Principle: 
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The solution of the optimization problem can be obtained from the differential equation system above. 

However, only a numerical solution is possible. For this purpose, the model-predictive method based on a pro-

jected gradient search algorithm GRAMPC from [12] is used in this article, the principles of which are briefly 

described below. 

GRAMPC is a software package that implements a model predictive control scheme for nonlinear systems 

by solving an optimal control problem with the prediction horizon 0PT . In order to maintain real-time feasi-

bility of the overall MPC algorithm as well as limit the computational time a fixed number of gradient iterations 

maxIN is used in each new MPC step kt and the current solution is used as new initialization (warmstart) to suc-

cessively refine the predicted MPC trajectories over the single MPC steps. The result is a time-discrete trajectory 

for the control variable. In the present task, this would be a sequence of setpoint values for field-generating cur-

rent dI1 . For the problem introduced in this paper, the basic algorithm to find a solution looks like as follows: 

• Initialization of input trajectory  tI d1  for  Pkk Tttt   and calculation of resulting value for  t2  

using expression (2). 

• Iterations to solve the optimization problem: 

1) The adjoint state   is calculated by backward time integration of (14). 

2) Taking into account the result of the previous step and expression (15), the search direction of 

the line search problem is defined for the iterative improvement of the solution. An improved trajectory 

 tI d1  is defined with a likewise calculated step size. Then a limitation of the control variable can be tak-

en into account using projection function. 

3) With the improved trajectory  tI d1  a new prediction for  t2  is carried out. 

4) Once the number of desired iterations is reached, the new control trajectory is calculated. 

 kd tI1  is used as a manipulated variable for the process in this algorithm. Then the method starts again 

for 1kt . Otherwise the next iteration starts with the second item. 

A detailed description of the gradient algorithm of GRAMPC, individual steps and the discussion of the 

background can be found in documentation [12] (see algorithm in Table 3.1). 

 

 

IV. The method application 

The algorithmic options of model predictive control concerning the numerical integrations in the basic pro-

cedure are in the foreground in this section. An algorithmic option named integrator specifies which integration 

scheme is used for the forward and backward integration of the system and adjoint dynamics. So far, the follow-

ing integration methods are implemented within GRAMPC: Euler method (Option value: euler), modified Euler 
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method (Option value: modeuler), Heun method (Option value: heun) and a Runge-Kutta method of 4th order 

(option value: ruku45). The first mentioned integrators use a fixed step size, whereas the Runge-Kutta method is 

a variable step size integrator. The solution of the ordinary differential equations, first of all, comes down to the 

choice of the order of the numerical integration method. The order of the numerical method is not related to the 

order of the differential equation. These methods are characterized by such attributes as the rate of convergence, 

convenience, quality of the result, and type of step size. 

In mathematics and computational science, the Euler method (also called forward Euler method) is a first-

order numerical procedure for solving ordinary differential equations with a given initial value. It is the most 

basic explicit method for numerical integration of ordinary differential equations and also efficient enough to 

yield fairly accurate approximations of the actual solutions. Explicit methods calculate the state of the system at 

a later time from the state of the system at the current time without the need to solve algebraic equations. For the 

forward method, first a step size or h  is chosen. The size of h  determines the accuracy of the approximate solu-

tions, meaning that as the step size decreases the error between the actual and the approximation reduces as well. 

This method produces a series of line segments, which thereby approximates the solution curve. Let 

,...2,1,0, kxk  be a sequence in time with 
 

 .1 hxx kk   (18) 

 

Let us denote ky  and kY  as the exact and the approximate solution at kxx  , respectively. To get 1kY  

from  kk Yx , , the differential equation is used. Since the slope of the solution to the equation  yxfyt ,  at the 

point  kk yx ,  is  kk yxf , , the Euler method determines the point  11,  kk Yx  assuming that it lies on the line 

through the point  kk Yx ,  with the slope  kk Yxf , . From this reasoning, the formula for the slope of a line looks 

like as follows 
 

  hYxfYY kkkk ,1  . (19) 

 

Thus, knowing a value of the function  yxfyt ,  at the initial point  00, yx  allows us with the help of 

the formula above find the approximate solution hfyy 001  . The Euler method is more accurate if the step 

size is smaller. Roughly speaking, the error is halved by halving the step size. However, it doubles the amount of 

computation.  

The next method that is to be described is still the same first-order method, however, in the middle of the 

step, a "primary" solution is found, and then its refinement occurs. This allows us to raise the order of the con-

vergence rate to two. It is called Modified Euler method is another popular method of numerical analysis for the 

integration of initial value problem. It solves ordinary differential equations by approximating in an interval with 

slope as an arithmetic average. This method is a simple improvement on Euler’s method in function evaluation 

per step. The calculation formula for the Euler method can be obtained using the expansion of the function  xy  

into Taylor series in a neighborhood of some point kx : 
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Then define the second derivative, approximating it to a finite difference: 
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Substituting this expression in (20) and discarding the terms of series beginning with the ones containing 
3h  
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Replacing in the last expression the derivatives and using the abbreviated notation, we obtain the calcula-

tion formula of the modified Euler method: 
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The relation (23) gives a solution for 1ky  in an implicit form, since 1ky  is present simultaneously in the 

left and right parts. It should be noted, that the use of implicit methods is justified by the fact that as a rule they 

are more stable than explicit ones. The modified Euler method provides the second order of accuracy. The error 

at each step is proportional to 3h . Increase in accuracy can be achieved due to additional computer time in the 

calculation of each step. 
A direct substitution of (19) into right-hand side of (23) gives the calculated ratio for Heun’s method. 

Heun’s method may refer to the improved or modified Euler’s method, or a similar two-stage Runge-Kutta 

method. According to Heun’s method, first the intermediate value 1
~

ky  to be calculated and then the final ap-

proximation 1ky  at the next integration point. 
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 (24) 

 

In the modified Euler’s method, to obtain a second derivative   22 dxxyd k  a finite-difference formula (21) 

is used, which includes the values of the first derivative  kxy  and  hxy k   at the initial and final points of the 

step. If we calculate the third derivative in a similar way, having pre-calculated the second derivative at two 
points of the step, then (20) can be used to construct the calculated formula of the third-order accuracy method. 

For this purpose, the definition of the first derivative  xy  at the additional intermediate point between kx  and 

hxk  . 

Similar reasoning allows us to derive calculation formulas for higher-order methods that provide a noticea-
ble reduction in the error of the solution. However, in practice, their implementation requires a significant in-
crease in the amount of computation using additional intermediate points at each step. 

There are other ways of constructing numerical methods with a high order of accuracy. One of them is used 
in the construction of the Runge-Kutta group of methods. It consists in approximating the solution of the differ-
ential equation by the sum 

 

        hkAxyhxhxy p
n nnkkk   1, , (25) 

 

where nA  - coefficient of expansion, nk  - sequence of functions. 

One of the most well-known version of the Runge-Kutta method corresponds to 4p . This is a fourth-

order accuracy method for which the error in the step is of order 5h . Its calculated formulas have the following 

form: 
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The Euler method and its modification considered above are essentially Runge-Kutta methods of the first 

and second order, respectively. Despite the increase in the volume of calculations, the fourth-order method has 
an advantage over the methods of the first and second orders, since it provides a small local error. The Runge-
Kutta method is a variable step size integrator and, consequently, the calculation time can be shortened. 

The figure below represents the result of solving the optimal control problem with the help of numerical in-
tegration methods described above.  

The curves presented are the optimal trajectories for the field-generating current  tI d1 .The given investiga-

tion is conducted using parameters of induction motor with rated power 370W. The main inductance is assumed 
to be constant. The test was performed for the case of load step change from 25% up to 100%. This simulation il-
lustrates the fact that for solving the energy efficiency optimization problem for induction motor torque steps, the 
most convenient choice is Euler’s integration method, due to  

1) better optimal trajectory with lower current spikes that lead to additional losses; 
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Fig. 2. Optimal control problem solution 

 

2) higher computational speed which is very important for the task of real-time implementation as the 

model predictive approach requires high computational expenses for microprocessor technologies. 

 

V. Conclusion 

This paper has shown how a control method with a predictive model can be used to optimize the energy ef-

ficiency of an induction motor in dynamic mode. So, firstly the expression of power losses when considering on-

ly copper losses in dynamic mode was obtained. Assuming that the optimal control problem and first-order op-

timality conditions were formulated, the predictive model parameter concerning the numerical integrations was 

considered and it was shown that the Euler’s integration method suits the best for solving the highlighted optimi-

zation problem.  

Various additional issues will be addressed in the future including optimal choice of algorithmic parameters 

like prediction horizon, the maximum number of iterations to improve the solution of the optimization problem 

and number of data points for the control trajectory. 
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