G.G. Diachenko, O.O. Aziukovskyi, Ph.D., Associate Professor
(State Higher Educational Institution "National Mining University", Dnipro, Ukraine)

CONTROL LAW OF MOTION CONTROL OF A DELTA ROBOT ADAPTED TO DIGITAL SYSTEMS WITH NOT HIGH PERFORMANCE

The delta robot is a parallel robot, which means there is more than one kinematic chain from the base to the actuator of the robot [1]. It has three translational and one rotational degree of freedom. The basic idea is the use of a parallelogram. These parallelograms restrict the movement of the final platform for precise displacements. Only translational movements of the platform and its maintenance parallel to the base plane are allowed [2].

Fig. 1 - Kinematics
Kinematics of Delta robot. In this section, a summary of kinematics calculations is given.
In the inverse kinematics, as shown in Fig. 1(b), the position of H_{i} is calculated as the intersection of (1) and (2). The length $H_{i} B_{i}^{\prime}$ is the length of the x-z plane projection of $H_{i} B_{i}$ and is calculated by (3). Then, each arm angle α_{i} is calculated by the position of H_{i}, as shown in (4).
$\left(X_{H_{i}}-X_{T_{i}}\right)^{2}+\left(Z_{H_{i}}-Z_{T_{i}}\right)^{2}=\left|T_{i} H_{i}\right|^{2},(1)$
$\left(X_{H_{i}}-X_{B_{i}^{\prime}}\right)^{2}+\left(Z_{H_{i}}-Z_{B_{i}^{\prime}}\right)^{2}=\left|H_{i} B_{i}^{\prime}\right|^{2}$,
$\left|H_{i} B_{i}^{\prime}\right|=\sqrt{\left|B_{i} H_{i}\right|^{2}-\left|B_{i} B_{i}^{\prime}\right|^{2}}$,
$\alpha_{i}=\arctan \left(Z_{H_{i}} / X_{H_{i}}-X_{T_{i}}\right)$.
Such algebraic simplicity is obtained from a good choice of the reference frame for the case when $i=1$. To keep this advantage and find the two remaining arm angles, the symmetry of deltas is used by means of the matrix (5), which rotates coordinates of the end-effector in the $X Y$-Cartesian plane counter-clockwise through an angle $\theta\left(\theta=120^{\circ}\right.$ to get α_{2} and $\theta=240^{\circ}$ to get $\left.\alpha_{3}\right)$ round Zaxis with the help of transformation (6.1a):
$R(-\theta)=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$,

$$
\begin{equation*}
\underset{i(\cdot), u(\cdot)}{R(-\theta):} B_{i} \rightarrow B_{i}^{\prime} . \tag{5}
\end{equation*}
$$

$i \in[1: 3],(6.1 \mathrm{~b}) u \in\left[u^{-}, u^{+}\right]$, (6.1c) $\psi(u)=\left\{\begin{array}{c}u^{-}: \mathrm{u}<u^{-} \\ u: u \in\left[u^{-}, u^{+}\right],(6.1 \mathrm{~d}) \\ u^{+}: \mathrm{u}>u^{+}\end{array}\right.$
with vertexes of bottom delta $B_{i} \in \mathbb{R}^{2}$ subject to box constraints (6.1b) and (6.1c) via (6.1d).
In the forward kinematics, as shown in Fig. 1(a), the point H_{i} is calculated based on reference for α_{i}. The end position B_{0} is calculated as the intersection of the three sphere equations centring in H_{i}^{\prime}. The equations are as follows:
$\left(x-x_{H_{1}^{\prime}}\right)^{2}+\left(y-y_{H_{1}^{\prime}}\right)^{2}+\left(z-z_{H_{1}^{\prime}}\right)^{2}-r_{b}^{2}=0$,
$\left(x-x_{H_{2}^{\prime}}\right)^{2}+\left(y-y_{H_{2}^{\prime}}\right)^{2}+\left(z-z_{H_{2}^{\prime}}\right)^{2}-r_{b}^{2}=0$,
$\left(x-x_{H_{3}^{\prime}}\right)^{2}+\left(y-y_{H_{3}^{\prime}}\right)^{2}+\left(z-z_{H_{3}^{\prime}}\right)^{2}-r_{b}^{2}=0$.

References:

[1] Diachenko, G. G., and Aziukovskyi, O. O. (2018). CONTROL LAWS OF ELECTRIC DRIVES AS A RESULT OF AN IN-DEPTH KINEMATIC ANALYSIS OF THE DELTA ROBOT. Scientific Bulletin of National Mining University, (1), 106-112.
[2] S. Stan, M. Manic, C. Szep and R. Balan (2011). Performance analysis of 3 DOF Delta parallel robot. 2011 4th International Conference on Human System Interactions, HSI 2011, Yokohama, 215220.

