

Рис. 4 Спектры входного и выходного сигналов модели скремблера с частотной инверсией.

Таким образом, в пределах полосы частот 300-3000 Гц разборчивость речи после двух преобразований составляет не менее 65%.

Список литературы

- 1. Петраков А. В. Утечка и защита информации в телефонных каналах: / А. В. Петраков, В. С. Лагутин. 2-е изд., испр. и доп. М.: Энергоатомиздат, 1997. 298 с.
- 2. Кардашев Г. А. Виртуальная электроника. Компьютерное моделирование аналоговых устройств. М., Горячая линия-Телеком, 2002, 264 с.

ИССЛЕДОВАНИЕ АЛГОРИТМОВ ФРАКТАЛЬНОГО СЖАТИЯ АУДИОДАННЫХ

И.М. Удовик, В.С. Долгишев

(Украина, Днепропетровск, ГВУЗ «Национальный горный университет»)

Развитие современных телекоммуникационных сетей характеризуется мультимедийного трафика. увеличением ДОЛИ Важной составляющей мультимедийного трафика является аудиоинформация, и в частности речевая информация. Проблема, связанная с большим объемом для их передачи и хранения, появилась при работе и на рабочих станциях, и на персональных компьютерах. Известно множество различных алгоритмов архивации аудиоданных, но они либо обеспечивают недостаточные коэффициенты сжатия, либо ведут к существенной потере данных, что в свою очередь связано с ухудшением потребительского качества информации. Таким образом, разработка новых подходов к сжатию аудиоданных представляется актуальной.

Метод фрактального сжатия звуковых сигналов был запрограммирован на языке C++ с применением объектно-ориентированного подхода. Программа работает с 8-ми битными одноканальными аудиоданными формата wav (Microsoft Waveform Audio). [1, 2]

Для оценки отклонения закодированного 8-битного одноканального звукового сигнала от исходного использовалось соотношение:

$$G(y,x) = \frac{\sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} (y_i - x_i)^2}}{\sqrt{N \cdot \sum_{i=1}^{N} (x_i)^2}}$$
(1)

Алгоритм оперирует с последовательностями одинакового размера. Размер последовательностей фиксирован от начала работы алгоритма до конца. Также, в целях сокращения числа сохраняемых в файл коэффициентов для ранговой последовательности, был зафиксирован масштабный коэффициент s со значением 0.75.

Преимущество данного алгоритма состоит в том, что при соответствующем выборе размеров обрабатываемых последовательностей обеспечивается равномерное качество кодирования всего сигнала. Недостатком алгоритма является малый коэффициент сжатия и большое время компрессии.

В качестве исследуемых сигналов, на разных стадиях, был взят следующий аудио сигнал:

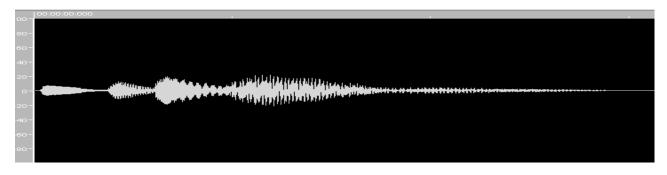


Рис. 1. Восстановленный сигнал при размере ранговой последовательности р=4.Коэффициент сжатия: 1.33.Среднеквадратичное отклонение (СКО): 0.188.

Рис. 2. Восстановленный сигнал при размере ранговой последовательности p=6. Коэффициент сжатия: 2. СКО: 0.238.

Сигнал: 8 бит, моно, с частотой дискретизации 22 222 Гц, 14 027 отсчетов. Характеризуется относительно малой разницей значений между двумя последовательно идущими отсчетами. Состав сигнала: стандартная мелодия из Windows.

Таким образом, из рисунков 1 и 2 следует, что с увеличением размера доменного (рангового) блока увеличивается коэффициент сжатия, снижается качество восстановленного сигнала и уменьшается время его сжатия. Кроме того, визуальный анализ осциллограмм и соответствующих им показателей искажения сигнала в цикле сжатие — декомпрессия (СКО), свидетельствуют об удовлетворительном качестве восстановленных сигналов при выбранных параметрах сжатия.

Список литературы

- 1. Fisher Y. «Fractal Image Compression: Theory and Applications», Springer-Verlag, New York, 1994.
- 2. G.E. Qien, Z. Baharav, S. Lepsqy, E. Karnin. A new improved collage theorem with appplications to multiresolution fractal image coding. In Proc. ICASSP, 1994.
- 3. Д.Ватолин, А.Ратушняк «Методы сжатия данных»: http://compression.graphicon.ru.

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ЭКВИВАЛЕНТНОГО ПРЕПЯТСТВИЯ В МОДЕЛИ РАСПРОСТРАНЕНИЯ РАДИОВОЛН БУЛЛИНГТОНА

О.М. Галушко, С.А.Мардаровский (Украина, Днепропетровск, ГВУЗ «Национальный горный университет»)

Исследования условий применения радиосвязи с подвижными объектами в городах показали, что даже на очень близких расстояниях между базовыми и абонентскими станциями препятствия в виде отдельных зданий или их групп создают затухание до 20 дБ.

Среди известных моделей распространения радиоволн число параметров, вводимых в расчеты наименьшим является для модели Буллингтона. В ней необходимо определить лишь высоту эквивалентного препятствия, находящегося между двумя реальными в группе, а затем использовать методику расчета параметров модели распространения радиоволн с одиночным клиновидным препятствием.

Используя изображение хода лучей в модели Буллингтона, можно осуществить ее совмещение с моделью распространения радиоволн с одиночным препятствием в виде клина – рис. 1

Определение параметров эквивалентного препятствия: его высоты - $h'_{\mathit{\PiP}}$ и координаты - l' (расстояния от второго препятствия) осуществлено с применением метода планирования эксперимента $\Pi\Phi \ni 2^3$.

В качестве факторов выбраны:

- отношение высот двух препятствий $X_1 = h_1 / h_2$;
- расстояние от базовой станции до второго препятствия $X_2 = d_1$;