ОБОСНОВАНИЕ ОПТИМАЛЬНЫХ СКОРОСТЕЙ ПРОВЕДЕНИЯ ВОССТАЮЩИХ ВЫРАБОТОК ПРИ ПОДГОТОВКЕ НА ШАХТАХ КРИВБАССА БЛОКОВ К ОЧИСТНОЙ ВЫЕМКЕ

Л.А. Штанько, С.И. Ляш, В.И. Чепурной, Научно-исследовательский горнорудный институт ГВУЗ «Криворожский национальный университет», Украина

Приведены оптимальные скорости проходки восстающих выработок, учитывающие практически все влияющие факторы технологического, горно-технического и организационного характера.

Постановка проблемы и ее связь с научными и практическими задачами. Обоснование оптимальных скоростей проходки восстающих выработок, дифференцированных по площади их поперечного сечения и высоте, крепости пород разрушаемого массива, применяемым технологиям и средствам механизации работ является современной и актуальной горнотехнической задачей при добыче железных руд подземным способом.

Анализ исследований и публикаций. Скорости проходки восстающих горных выработок являются одним из основных факторов, определяющих сроки подготовки железорудных блоков к очистной выемке. В связи с этим созданию и внедрению новых технологий и средств механизации технологических процессов, обеспечивающих повышение скоростей проходки, придается большое значение, как в отечественной, так и в зарубежной практике. Обоснованию оптимальных скоростей проходки восстающих выработок посвящены работы Барона Л.И., Глазунова В.Н., Козырева Н.Т., Кунца Г.О., а также других исследователей.

Нерешенные части проблемы, которым посвящена данная работа. Относительно низкие скорости проведения восстающих выработок при подготовке на шахтах Кривбасса блоков к очистной выработке обусловлены с одной стороны не рациональным использованием оборудования и организационными факторами, а с другой стороны — отсутствием обоснованных оптимальных скоростей проходки, дифференцированных по горно-техническим условиям, технологиям и средствам механизации работ.

Постановка задачи. Основной задачей данной работы является обоснование оптимальных скоростей проходки восстающих выработок дифференцированных по горнотехническим, горно-геологическим, техническим и технологическим условиям.

Изложение материала исследований и полученные результаты. Одним из основных, наиболее трудоемких и несовершенных производственных процессов при добыче железных руд подземным способом является подготовка блоков к очистной выемке. Удельный объем трудовых затрат на эти работы составляет 40-50 % общих затрат на добычу руды.

Широкое развитие систем разработки, особенно мощных рудных тел, привело к появлению серии выработок малого сечения, составляющих основу конструктивного оформления систем. При этих системах для подготовки блоков к очистной выемке проходят восстающие выработки различного назначения. Трудоемкость и затраты средств на проходку восстающих достигают в отдельных случаях почти половины общей трудоемкости и затрат на подготовку блоков к очистной выемке [1].

В настоящее время в Криворожском бассейне при подготовке блоков к очистной выемке, вскрытии новых месторождений и горизонтов ежегодно проходят порядка 27 тыс.м восстающих выработок.

Восстающие выработки проходят по породам и рудам с коэффициентом крепости f от 3-6 до 16-18, преобладающий объем (72,8%) проходят в горном массиве с коэффициентом крепости f равном 5-9.

В зависимости от назначения восстающие выработки проходят площадью поперечного сечения от 1,44 до 4,0 м^2 , при этом преобладающая площадь составляет 2,25 м^2 (73%). Высота выработок изменяется от 10 до 80 м, при этом преобладают выработки высотой 10-40 м (62,3%). На долю нарезных выработок, задействованных в подготовке блоков к очистной вы-

емке, приходится 90,5% от общего объема проходки восстающих выработок. Подавляющее большинство выработок (96,7%) проходят буровзрывным способом. По характеру взрывного разрушения массива они разделяются на проходку с шпуровой отбойкой и с отбойкой зарядами глубоких скважин.

Проходка восстающих шпуровым способом осуществляется с устройством временных полков (78,9%) и с применением самоходных комплексов (17,8%).

В настоящее время на шахтах Кривбасса проходка восстающих секционным взрыванием глубоких скважин в силу ряда причин различного характера не находит широкого применения. Этот способ отличается от ранее рассмотренных, отсутствием человека в забое проводимой выработки. Все работы по бурению и отбойке осуществляются из прилегающих к восстающему горизонтальных выработок.

Высота взрываемой секции находится в пределах 2-3 м. Для проходки тупиковых восстающих этот способ не приемлем [2].

На шахтах бассейна 3,3% от общей протяженности восстающих выработок проходят машинным (комбайновым) способом. В 80-х годах XX столетия на шахтах бассейна работало 10 комбайнов, из них 3-1 KB, и 7-2 KB. В настоящее время на проходке восстающих задействовано 2 комбайна типа Рино-400 производства фирмы «Сандвик» (Швеция) [3].

Продолжительность подготовки блоков к очистной выемке и сроки ввода блоков в эксплуатацию во многом зависят от скорости проходки восстающих выработок.

Средние скорости проходки восстающих на шахтах Кривбасса остаются до настоящего времени относительно низкими (25-30 м/мес), поэтому проходка восстающих занимает значительную часть в общей продолжительности подготовки блоков к очистным работам.

Низкие скорости проходки восстающих вызваны практически повсеместным применением мелкошпурового способа проходки с оборудованием выработок деревянными полками и лестничным ходом.

Большая протяженность восстающих выработок, которые проходят на шахтах Кривбасса при подготовке блоков к очистной выемке, низкая скорость проходческих работ, определяют необходимость поиска новых технологических и технических решений при разрушении горных пород применительно к проходке восстающих.

Перспективным с точки зрения технологичности, повышения скорости проходческих работ является комбинированный способ проведения восстающих выработок за один прием взрывания отбойкой скважинных зарядов на компенсационную полость [4].

Одним из основных путей реализации преимуществ новых технологий и резервов существующих технологий проходки восстающих выработок является определение областей рационального применения различных технологий, разработка и внедрение обоснованных оптимальных скоростей проходки восстающих выработок, дифференцированных по площади их поперечного сечения и высоте, крепости пород разрушаемого массива, применяемым технологиям м средствам механизации работ.

В основу методики обоснования оптимальных скоростей проходки восстающих выработок положен учет практически всех факторов, влияющих на продолжительность выполнения комплекса работ по проходке восстающих выработок, режима работы или продолжительность рабочего времени в течение месяца, затрат времени на проходку ниш (камер), выполнение основных, вспомогательных, подготовительно-заключительных операций, регламентированных перерывов и организационно-технических неполадок при выполнении всех технологических процессов.

Методика позволяет с достаточной для практических целей точностью определять скорости проходки восстающих выработок различными способами и средствами механизации в широком диапазоне горнотехнических и горно-геологических условий.

Расчет оптимальных скоростей проходки выполнен на основе результатов промышленных испытаний существующих и перспективных технологий проходки восстающих выработок, применения современных и перспективных буровых, погрузочных и транспортных машин и механизмов с учетом лучших достижений, на данном виде горнопроходческих работ на шахтах Кривбасса и в других железорудных регионах зарубежных стран [5].

При обосновании оптимальных скоростей проходки использовались следующие данные:

- типовые проекты организации рабочих мест для массовых профессий рабочих подземных горнопроходческих участков;
 - теоретические исследования и технические расчеты;
 - фотохронометражные наблюдения;
 - технические характеристики машин и механизмов;
- результаты анализа организации труда и мероприятия по ее совершенствованию с учетом достижения лучших передовых горнопроходческих бригад и участков.

Скорости проходки восстающих выработок обоснованы для нормальных (обычных) условий труда на полный рабочий день в три смены продолжительностью в 7,2 часа с двумя общими выходными днями. Скорости проходки выражены в м/мес.

Скорость проходки восстающих с устройством временных деревянных полков обоснована с учетом затрат времени на проходку подготовительной ниши под выработку при условии оборудования выработки рабочими и предохранительными полками, применения одного телескопного перфоратора для бурения шпуров и глубине отбиваемой заходки 1,5 м.

При обосновании скоростей проходки восстающих с применением самоходных полков учтены затраты времени на перемонтаж самоходного полка и секций монорельса, проходку монтажной камеры. Они определены из условий применения для бурения комплекта шпуров одного телескопного перфоратора и глубине отбиваемой заходки 1,5 м.

Для технологии проходки восстающих способом секционного взрывания скважин скорости проходки обоснованы с учетом затрат времени на проходку камер на верхнем и нижнем горизонтах, которая осуществляется параллельно. Время уборки горной массы не учтено, поскольку этот процесс совмещается с процессом восстановления скважин после взрывных работ. Уборка породы не обязательна после каждого цикла взрывания. Взрывание скважин осуществляется в конце смены. В связи с этим принято, что на восстановление и заряжание скважин задалживается полная смена.

Оптимальные скорости проходки восстающих взрыванием скважинных зарядов на компенсационную полость диаметром 500-650 мм, образованную буровзрывным или механическим способом обоснованы с учетом затрат времени на рассечки, образование компенсационной полости и уборки горной массы.

При обосновании оптимальных скоростей проходки восстающих комбайнами типа 1КВ-1 и 2КВ учтено время проходки монтажных камер и перемонтажа комбайнов. Они определены из условий, что для комбайна типа 2КВ камеры на верхнем и нижнем горизонтах проходят одновременно.

Оптимальные скорости проходки выработок в наиболее характерных для подземных рудников Кривбасса горно-геологических условиях приведены в таблице.

Приведем сравнение оптимальных скоростей проходки восстающих выработок площадью поперечного сечения $1,8-2,25\,\mathrm{m}^2$ в породах и рудах с коэффициентом крепости 4-7 при различных способах проходки.

- <u>1. Восстающие высотой 10 м.</u> Наименьшие скорости будут при проходке комбайновым способом. В сравнении с данным способом скорости проходки будут больше:
 - при проходке с применением самоходных комплексов в 1,4 раза;
 - при проходке секционным взрыванием скважин в 1,7 раза;
 - при проходке с устройством временных полков в 2,1 раза;
- при проходке взрыванием скважинных зарядов на компенсационную полость образованную буровзрывным способом в 2,4 раза;
- при проходке взрыванием скважинных зарядов на компенсационную полость образованную механическим способом в 2,6 раза.
- <u>2. Восстающие высотой 15-30 м.</u> Наименьшие оптимальные скорости будут при проходке комбайновым способом, а для других способов она повышается:
 - для проходки с применением самоходных комплексов в 1,16 раза;
 - для проходки секционным взрыванием скважин в 1,38 раза;

- для проходки с устройством временных полков – в 1,31 раза;

Таблица

Оптимальные скорости проходки восстающих выработок

	Высота	Коэффициент крепости пород		
Способ проходки восстаю-	выра-	11	•	
щей выработки	ботки,	2-7	8-13	14-18
	M			
1	2	3	4	5
Шпуровой с устройством	10	60-62	56-58	53-52
временных полков	20	60-61	52-54	45-47
	40	55-57	48-50	42-44
	60	50-52	44-46	39-42
	80	47-49	43-45	38-40
Шпуровой с применением	10	40-42	25-27	17-19
самоходных комплексов ти-	20	50-52	37-39	28-30
па КПВ	40	65-67	53-55	43-45
	60	68-70	61-63	55-58
	80	75-77	68-70	62-64
Секционное взрывание	10	48-50	38-40	30-32
скважинных зарядов	20	56-58	46-48	38-40
_	40	70-72	57-59	46-48
	60	68-70	60-62	53-55
	80	62-64	51-53	42-44
Комбайновый с применени-	10	28-30	25-27	22-24
ем комбайнов типа КВ	20	43-45	36-38	30-32
	40	65-67	53-55	43-45
	60	75-77	61-63	50-52
	80	85-87	70-72	58-60
Взрыванием скважинных	10	73-75	59-62	48-50
зарядов на компенсацион-	20	84-86	72-75	62-64
ную полость, образованную				
буровзрывным способом				
Взрыванием скважинных	10	70-72	58-60	48-50
зарядов на компенсацион-	20	78-80	65-67	54-56
ную полость, образованную	40	95-97	78-81	64-66
механическим или термоме-	60	110-112	83-85	63-65
ханическим способом	80	114-116	87-90	67-69

⁻ для проходки взрыванием скважинных зарядов на компенсационную полость образованную механическим способом – в 1,81 раза.

- при проходке с применением самоходных комплексов в 1,36 раза;
- при проходке секционным взрыванием скважин в 1,13 раза;
- при проходке комбайнами типа КВ в 1,25 раза;

При проходке восстающих выработок различной площадью поперечного сечения в породах с различными коэффициентами крепости, отмеченные выше соотношения изменяются как в меньшую, так и большую сторону, сохраняя, однако основные закономерности их изменения. Так, например, при f =2-4 и S = 4,0 м 2 и при f =10-12 и S = 3,2м 2 оптимальная ско-

<u>3. Восстающие высотой 35-80 м</u>. Наименьшие оптимальные скорости будут при проходке с применением временных полков, а для других способов проходки они будут больше:

⁻ при проходке взрыванием скважинных зарядов на компенсационную полость образованную механическим способом – в 1,83 раза.

рость проходки восстающих высотой 10-80 м взрыванием скважинных зарядов на компенсационную полость является наибольшей.

Таким образом, из существующих и разрабатываемых способов проходки восстающих выработок, которые могут применяться на шахтах Кривбасса при подготовке блоков к очистной выемке, наибольшую оптимальную скорость проходки сможет обеспечить способ в основе которого взрывание скважинных зарядов на компенсационную полость. Данная технология позволит повысить в среднем оптимальную скорость проходки восстающих в сравнении с мелкошпуровым способом с устройством временных полков – в 1,69 раза, самоходными комплексами – в 1,32 раза, секционным взрыванием скважин – в 1,42 раза, комбайновым – в 1,53 раза.

Выводы и направления дальнейших исследований.

Выполненные работы позволили:

- 1. Разработать основные положения расчета оптимальной продолжительности цикла и оптимальной скорости проходки восстающих выработок, учитывающие практически все влияющие факторы горно-технического и организационного характера.
- 2. Обосновать оптимальные скорости проходки восстающих выработок при применении технологий: комбайновой проходки, с устройством временных деревянных полков, с применением самоходных комплексов, секционного взрывания скважин, взрыванием скважинных зарядов на компенсационную полость.
- 3. Установить, что перспективным с точки зрения обеспечения наибольшей оптимальной скорости проходческих работ является способ проведения восстающих выработок взрыванием скважинных зарядов на компенсационную полость.

Дальнейшие исследования необходимо проводить в направлении повышения эффективности механического разрушения породного массива при образовании компенсационных полостей и бурения взрывных скважин.

Список литературы

- 1. Чирков Ю.И., Черненко А.Р. Подземная разработка мощных железорудных месторождений.-М., Недра, 1985.-239 с.
- 2. Барон Л.И., Овчинников М.И. Механизация проходки восстающих. М., Недра, 1973.-192 с.
- 3. Алексеев Г.М., Кунин И.К., Воюта Л.Ф. Перспективы развития техники и технологии проходки восстающих выработок. Горный журнал, 1979, №8, с.31-33.
- 4. Шнайдер М.Ф. Образование восстающих взрыванием скважинных зарядов. Горный журнал, №6, 1982, с. 36-37.
- 5. Баранов А.О. Расчет параметров технологических процессов подземной добычи руд. М.Недра, 1985, 224с.