
The Ministry of Education and Science of Ukraine

NATIONAL MINING UNIVERSITY

Information Technology Faculty

ARTIFICIAL INTELLIGENCE METHODS AND SYSTEMS

Tutorial

for students of

122 "Computer Science"

Dnipro

NMU

2017

2

The manual: ARTIFICIAL INTELLIGENCE METHODS AND SYSTEMS

for 122 specialty «Computer Science» / life .: I.M. Udovik, G.M. Korotenko, L.M.

Korotenko, V.A. Trusov, A.T. Kharj. – D.: State University «National Mining

University», 2017. – 100 p.

Authors: I.M .Udovik, G.M. Korotenko, L.M. Korotenko, V.A. Trusov, A.T. Kharj.

(The stamp was «Recommended by the Academic Council of the State University

of Social Sciences» as a textbook for bachelors and masters of specialty 122

«Computer Science». Protocol No. 11, June 26, 2017)

Responsible for producing Chair Computer system’s software

I.M. Udovik

3

Content

Introduction ...5

1. Goals and objectives of research on artificial intelligence7

2. Representation of knowledge in artificial intelligence systems10

2.1. Semantic Networks ...17

2.2. Frame Models ...22

2.3. Logical models of knowledge ...26

2.4. Production models ...27

3. Basics of propositional logic...31

3.1. Introduction to the logic of utterances ..31

3.2. Mathematical logic and its connection with logical thinking33

3.3. Propositional logic basics..34

3.3.1. Alphabet of propositional logic ...34

3.3.2. The rules for the formation of the language in the alphabet (the syntax of the

language) ...35

3.3.3. The Rules for assigning truth values to formulas (semantics of language)..36

3.3.4. The Rules of inference in the propositional calculus (stereotypes of

deductive reasoning)……………………………………………………………...38

3.3.5. Rules for the equivalent transformations of propositional calculus

formulas…………………………………………………………………………..41

3.3.6. Algorithms that effectively recognize the reliability of reasoning………...42

4. The logic of predicates...46

4.1 Introduction to the logic of predicates………………………………………..46

4.2. Alphabet of predicate logic ..47

4.3. Rules for the formation of the language in the alphabet (syntax)…………...47

4.4. Rules for assigning truth values to formulas (semantics of language)...........50

4.5. The rules of inference in predicate calculus ..52

4.6. Rules of the formulas’ equivalence transformations of the predicate

calculus……………………………………………………………………….….53

4.7. Features of the resolution method in proving theorems in predicate logic....55

4.8. Proof theory methods in predicate logic resolutions .…………….…...........59

4.9. Implementation of the resolution method in Prologue……………….….…..63

5. Fuzzy knowledge ..71

5.1. The Basic concepts of the theory of fuzzy sets ...71

5.2. Operations with fuzzy knowledge ..74

5.2.1. The method of "fuzzy logic" ...75

5.2.2. Certainty factor Method ..76

4

5.2.3. "Bayesian approach" (another name is the evaluation of competing

hypotheses)………………………………………………………………….….76

6. Inference control strategy ...79

6.1. Direct and reverse output ...83

6.2. The essence of the basic control strategies of the output…………….…….85

7. Agent technologies in distributed data analysis ..88

7.1. The concept of software agent, tasks, structure, properties88

7.2. Multi-agent systems ...92

7.3. Agent platforms ...93

7.4. Security in mobile agent systems ..94

Literature………………………………………………………………..............96

5

Introduction

At present, there is no single and universally recognized, accurate and

comprehensive definition of the advanced scientific direction called "artificial

intelligence" (AI), as, indeed, there is no universal definition of the human

intellect.

Wikipedia, defines the field of research and applications of AI, (English

artificial intelligence, AI), as follows.

Artificial intelligence is: 1) the science and technology of creating intelligent

machines, especially intelligent computer programs; 2) the property of intellectual

systems to perform creative functions, which are traditionally considered the

prerogative of man.

Among many points of view, artificial intelligence is dominated by three.

According to the first, researches in the field of AI are fundamental researches in

which frameworks models and methods of the decision of the problems

traditionally considered intellectual and not giving before formalization and

automation are developed. According to the second point of view, the new

direction is associated with new ideas for solving problems on computers,

developing fundamentally different programming technologies and creating new

computer architectures that reject classical architecture that goes back to the first

computer engineering. Finally, the third point of view, which seems to be the most

pragmatic, is that as a result of the work in the field of AI, many application

systems are created that solve problems for which previously created systems were

unsuitable.

The task of artificial intelligence as a science is the reconstruction with the

help of artificial devices (mainly laptops, tablets, smartphones, portable devices

such as watches, key chains, etc., as well as robotic devices: home robots,

unmanned vehicles, etc.) of reasonable actions and reasoning . Studying the

theoretical foundations of this science makes it possible to find the most expedient

ways of developing new information technologies and solving promising

intellectual problems.

In the discipline "Methods and systems of artificial intelligence" the

fundamentals of knowledge representation in modern computers, the methodology

of mathematical modeling and automation of logical and analytical thinking,

known artificial intelligence systems are studied. The manual for this course

consists of seven sections. The first section defines the main tasks of research in

the field of AI. The second section is devoted to the study of basic methods and

models of knowledge representation in computers. The third section outlines the

logic of propositions and methods for solving problems in this field of knowledge.

The fourth section deals with the fundamentals of predicate logic and gives

examples of solving problems using the method of resolutions. The fifth section is

devoted to the consideration of the stages.

The design of artificial intelligence systems and the development of expert

systems. In the sixth and seventh sections, the principles of constructing natural

6

language systems, speech communication systems and intelligent computer

graphics systems are set out.

The materials on the theory and practice of AI in the manual will help in

studying the course "Methods and systems of artificial intelligence" and will

ensure the consolidation of knowledge in the course of laboratory work.

7

1. Goals and objectives of research on artificial intelligence

In addition to the classical applications of computer technology related to

the implementation of engineering and economic calculations, the development of

automated control systems, the creation of information retrieval systems, etc., a

trend is currently actively developing, called "artificial intelligence" (AI). Any

problem for which the decision algorithm is unknown is a priori applied to the field

of artificial intelligence.

Currently, there are four main areas for research in the field of AI [1 - 6, 11]:

1) modeling of individual functions of creative processes;

2) external intellectualization of computers;

3) internal intellectualization of computers;

4) purposeful behavior of robots.

The first direction before others began to develop in AI; It was this term that

gave birth to this term: modeling on computers of certain functions of creative

processes (playing chess, checkers, dominoes, etc., automatic proof of theorems,

automatic synthesis of programs, analysis and synthesis of musical works,

automatic translation, pattern recognition, etc.).

The second direction is the fundamental and applied research aimed at

increasing the level of human interaction with computer systems and devices

within the framework of improving the functions of the interactive interface. The

intelligent interface brings to a new level the efficiency of the use of automated

control systems (ACS), computer-aided design (CAD), automated research

systems (ASNI) and operational management of production as a whole.

Industrial robots have become not only one of the driving forces of

automation, but also the most important means of implementing profound socio-

economic changes in the world of work. The development and production of

industrial robots with a high level of intelligence, multifunctionality and possessing

strikingly high precision, made it possible to raise labor productivity to an

unprecedented height. The number of industrial robots produced by Japanese firms

(FANUC, KAWASAKI, MOTOMAN, OTC DAIHEN, PANASONIC), Germany

(KUKA), USA (KC ROBOTICS, TRITON MANUFACTURING, KAMAN

CORPORATION), Sweden (ABB) and a number of other countries are estimated

at tens and hundreds of thousands (Figure 1.1).

Using knowledge accumulated in computers and databases on the

development of their domains of interest, specialists in many branches of science

have the opportunity, without going beyond the subject areas (sublanguages of the

natural language), to recognize and diagnose processes in complex systems, to

make optimal decisions, to formulate Plans of action, put forward hypotheses, and

also to reveal patterns in the results of observations. These opportunities are

realized by expert systems, which began to spread intensively in hard-to-formalize

branches of knowledge, for example, medicine, education, technical disciplines,

etc. (Figure 1.2).

8

Figure. 1.1. The robots of the Japanese company FANUC, intended for welding,

loading, sorting, transportation and other precision works

Figure 1.2. Example of expert system interface for selecting a DVD player

Third direction of using Artificial Intelligence solving problems of building

new generation computers, because for solving problems of creating AI

application, hardware as important as new method of symbol information

processing. As usual, in this systems uses information, which presented in

symbolic form: letters, words, signs, figures. It's makes difference between AI area

and other, where traditionally computers processing information in numeric form.

9

In AI systems, there is a choice between many possible solutions under

uncertainty, which requires fundamentally new architectural designs of computing

devices and software components to manage them.

So, for example, for the operating system iOS smartphones iPhone (Apple),

there's a personal assistant and the question-answer system, as well, Siri (Speech

Interpretation and Recognition Interface) where developed. This application uses

natural speech processing to answer questions and give recommendations. In

addition, Siri adapts to each user individually, studying his preferences for a long

time (Figure 1.3).

Figure 1.3. An example of the result of interaction between a smartphone user and

Siri - personal assistant

The fourth direction of AI applications is related to the creation of intelligent

robots for various areas of human activity. This scientific and technical problem

requires the development of both specialized computing facilities and a whole

complex of complex technical, mechanical, software and energy systems: sensors,

propellers, and so on. Like all AI systems, intelligent robots are focused on the use

of knowledge. For example, knowledge of the external environment comes to the

onboard computers of robots from numerous sensors (visual, acoustic, radar,

tactile, etc.) (Figure 1.4).

Artificial intelligence, as the basis of the new information technology,

multiplies the intellectual resources of society, because the interaction of the user

with computing devices in his professional language increases the level of the

user's intelligence and expands his capabilities in the formation of new elements of

logical inference.

10

Figure 1.4 - piano-robot (left) and robot - vacuum cleaner (right)

And if earlier computers were the basis of the data processing industry, now,

in connection with the active use of AI ideas and methods, it became legitimate to

talk about the creation on the basis of computer devices of the industry of robotics

and technologies for the design of intelligent systems.

Let’s indicate the main areas of application of artificial intelligence:

1. Using the deductive reasoning (otherwise called calculus) when

solving with the help of cybernetic systems of intellectual problems,

i.e. Problems that do not have a priori known solution algorithms;

2. Automated proof of theorems in axiomatic theories;

3. Recognition and understanding of speech and texts, visual images;

4. Understanding of the learning process and automated formation of

scenarios of interaction between trainee and instructor;

5. Automated design of integrated (intelligent) robots;

6. Solving extreme problems with fuzzy and incomplete target functions;

7. Designing of systems of interaction of the person and databases and

knowledge at their creation and operation;

8. Development of expert systems for different subject areas;

9. Designing decision-making systems for incorrect tasks and tasks with

fuzzy setting;

10. Automated designing of interactive graphic systems with structured

high-level graphic operands.

2. Representation of knowledge in artificial intelligence systems

At the heart of the development and using of computer technology are

traditionally such concepts as programs and data. In this case, the first are

designed to process the second. At the early stages of the development of this

industry, the programmer, as usual, developed the program by himself and entered

the necessary data into it.

Then there was a major change in their interaction - with the appearance of

databases of different structures (hierarchical, network, relational, object-oriented)

and database management systems (DBMS), the data was separated from the

11

programs. To solve this problem, the data description tools contained in

programming languages were used. Languages, such as FORTRAN and ALGOL,

contained means for describing relatively simple data structures in the memory of

electronic computers. More sophisticated means of describing hierarchical data

structures are embedded in the languages of COBOL, C, PASCAL. MODULE-2,

ADA, etc. In these languages, there are also tools for constructing data structures

by the user.

In parallel with the above processes, the concepts of data representation in

the external memory of computers developed which, with the improvement of the

components of the element base and the transition from lamps, diodes and triodes

to integrated microcircuits, were transformed into computers (Figure 2.1).

Figure 2.1. Computer BESM-6 (left) and a personal computer (right)

Another component that made it possible to finally separate the data from the

programs was a device called the magnetic disk.

The revolutionary nature of his appearance was explained by the fact that

after the computer was de-energized all the data present in it's memory was erased.

The magnetic disk provided storage of information even after the computer was

turned off. Moreover, a hard disk drive (HDD) can be extracted from one computer

and connected to another, where it can provide not only data, but also operating

systems and application programs written on it before (Figure 2.2).

At this stage, the fundamental concept of informatics was the notion of an

information array - a file that is a specially organized data structure, recognized by

the computer as a single unit, with a name and containing all the necessary

structured records of data about various objects with which the computer is

operating. The file can be interpreted as an information model of an object, such as

a program, document, spreadsheet, musical works, etc. (Figure. 2.3).

Thus, the data representation in the external memory of the computer passed

through three stages:

1. At the first stage, the methods of creating data records in files,

maintaining files and organizing access to them were completely

determined in the user's specific programs;

2. At the second stage, file management and organization of access to

them began to be performed by computer operating systems;

12

Figure 2.2 - Loading for the transferer of IBM's 5-megabyte hard drive, 1965

(USA) (left) and 10 terabyte Western Digital HDD, 2016 (right)

Figure. 2.3. The view in the file manager window of files related to the

organization's database

3. On the third, the files became elements of the created databases and

developed control systems for them (so-called DBMS - database

management systems). At the same time, it was possible to work

effectively with large databases (in particular, with integrated

databases containing heterogeneous data), processed for the benefit of

the whole enterprise, industry, etc., and intended for use in applied

tasks.

Thus, at the first stage of the development of data processing methods, the

creation, maintenance and organization of access to them, both at the logical and

physical levels, were entirely entrusted either to the developer or to the user of

13

each individual program. Working with data related to a specific program, much

less their use in other programs, was extremely time-consuming and inefficient.

The situation improved in the second stage, when part of the concerns for

processing data in the external memory of computers (mainly at the physical level)

was taken over by the operating system (OS).

However, work with integrated data became a reality only at the third stage

of the development of information systems (IS), when it became possible to

effectively organize databases with complex structure, and within the framework

of DBMS, powerful tools were developed for working with sets of various

information about the world around. It makes the existence of data sets

independent of application programs in which these data are created and used, and

also allowed technologically to separate different programs (creating, maintaining

and using data) from data systems that were justified and effective. There was an

opportunity effectively to connect programs for data processing with these data and

already to cause programs on the basis and proceeding from existing data, instead

of on the contrary, as was earlier. To ensure the operation of huge amounts of data,

accumulated and continuing to accumulate by organizations and research

institutions, Data processing centers (data centers, server farms, "cloud" data

centers, etc.) (Figure 2.4).

Figure 2.4. External (left) and internal view, with disk drives (right), one of

Google's data centers

Finally, the DBMS provided the means for creating in each software suite an

intermediate layer of software that separates the application software from the data

used, effectively implementing the search, placement and other operations on the

data, thereby freeing the application programmers from this activity. The

intermediate layer is partly composed of system DBMS programs, partially

completed by the user, the tools for which are provided by specialized data

description languages and data manipulation languages included in the DBMS.

These languages, such as SQL, supplement traditional programming languages

with the tools for organizing large data sets. To ensure the possibility of direct use

of these tools in applications in traditional languages, the data description language

14

and the data manipulation language are often designed as an extension of the

developed programming language - the so-called. "Including the language".

At the present time, we can talk about a new stage in the presentation of data

in the computer's memory - the creation of information and computer networks and

on their basis - distributed databases of shared use. This leads to both a reduction

in the cost of creating and introducing databases, and to improve the quality of

stored information, since it is possible to attract more qualified specialists to

maintain databases. At the same time, the availability of this information for users

is sharply increasing.

With the advent of AI systems, new concepts emerged - "knowledge" and

"knowledge base" (KB). In the theory of artificial intelligence, knowledge is a

collection of information about the world, the properties of objects, the laws of

processes and phenomena, as well as the rules for using them for decision-making.

The main difference between knowledge and data is their structuring and activity.

The emergence of new facts in the database or the establishment of new links

can become a source of changes in decision-making. There was a need to somehow

correlate the concepts "data and databases" that had become familiar with the

concepts of "knowledge and knowledge". Undoubtedly, the data and structure of

the database to some extent reflect knowledge of the subject area and its structure.

Nevertheless, there are specific features that distinguish knowledge from

data. As knowledge of specific characteristics due to their representation in

computers there are the following four characteristics:

 inner interpretability;

 structuring;

 connectivity;

 activity.

If you apply to data sets, some of the above characteristics, inherent

knowledge will be valid for them. For example, the first sign is an interpretability

- clearly visible in a relational database, where the column names are the attributes

of relations, which names are indicated in rows. Internal interpretability provides

the ability for install element of data related with its system of names. Name

System includes the individual's name, which is assigned to a given information

unit. The presence of "excess" name allows to system of an artificial intelligence to

know what is stored in its knowledge base, and, consequently, to be able to answer

on indistinct questions about the contents of the knowledge base.

The second feature is a structuring - can be considered as the property of

decomposition of complex objects into simpler and linking between simple objects,

which means using the relationship "part-whole", "class-subclass", "genus-

species", etc. Relationships of this kind are found in the hierarchical and network

databases. The same of the relation can be implemented in the relational (tabular)

databases.

The third feature of knowledge is a connectivity, for which is almost

impossible to find analogues in conventional databases. Our knowledge are

connected not only in the sense of structure. They reflect the regularities of

15

interaction of facts, processes, phenomena and cause-and-effect relationships

between them. It characterizes the possibility of establishing connectivity between

the information units a variety of relationships (clear, fuzzy, binary, composite,

etc.), which define the semantic and pragmatic of communications phenomena and

facts, as well as the relations that determine the meaning of the system as a whole.

As for the fourth feature – an activity, the situation is such that the use of

computers - new knowledge generated programs (i.e., programmatically) and data

are passive stored in memory. For human intrinsics a cognitive activity, in other

words, the knowledge of human are active. And this distinguishes knowledge from

data. For example, the discovery of contradictions in knowledge becomes a motive

for their overcomings and emergence new knowledge. The same stimulus of

activity is the incompleteness of knowledge, which is expressed in the need for

their replenishment. Thus, the main distinction knowledge from data is their

connectedness and activity, and the emergence in the base of new facts or

establishment new relationships can be a source of change in decision-making.

Knowledge that used to build AI systems that ensure its operation, stored,

modified and produced in it, can be defined in different ways. Currently

knowledge is using three definitions. Knowledge is a:

 result obtained knowledge;

 judgment system in principle and a unified organization, based on the

objective laws;

 formalized information referenced or used in the process of inference.

The process of solving problems of simple model AI system is shown in

Figure 2.5.

Figure 2.5. Link between knowledge and conclusion in solving of intellectual

problems.

As shown in Figure of the task setting, the knowledge is the information that

is referenced when are making different conclusions on the basis of the available

data by logical conclusions. If such actions are performed through the use of the

software, the knowledge is the obligatory information, presented in a certain form.

It is important that the setting and solution of any problem related with the

processing of data and knowledge re always associated with its "immersion" in the

relevant subject field.

A subject area is a part of the real world that is considered in the

predetermined (used developer) context. Usually, it is the set of all objects,

properties and relations between them are considered in scientific theory or in

Data

based
on facts

Intermediate

hypothesis
Concluding

hypothesis

Knowledge Knowledge

https://www.google.com/url?q=https%3A%2F%2Fru.wikipedia.org%2Fwiki%2F%25D0%2594%25D0%25B0%25D0%25BD%25D0%25BD%25D1%258B%25D0%25B5&sa=D&sntz=1&usg=AFQjCNFXqDpYRKj-4Z6TgiUs_A4PrZbnTg

16

industry of practice specialist’s activity. Mentally, the subject area is considered

that is composed of real or abstract objects called entities. For example, solving the

problem of scheduling the processing of parts on machine tools, we engage in the

subject area, on the one hand, such entities as specific machines, parts, intervals of

treatment, and on the other - the general concept of "machine", "detail ", machine

type ", etc. United totality of the subject area, its concepts and entities, as well as

tasks that are solved in this field, is determined by the concept of problem areas.

It should be understood that knowledge is regularities of subject area

(principles, communications, laws), obtained as a result of practice activity and

professional experience, enabling for professionals to formulate and solve

problems in this area.

It is also important to note that the solution of problems in some subject area

of knowledge, the latter is conveniently to divide into two large categories - facts

and heuristics
1
 .

The first category indicates generally a well-known circumstances in the

subject field, so knowledge of this category is sometimes called the text, referring

sufficient illumination of them in the literature or textbooks.

The second category of knowledge is based on their own professional

experience in the subject area (the so-called experts), accumulated as a result of

years of practice. In the so-called expert systems heuristic knowledge play a

decisive role in improving the efficiency of the systems. In other words, this

category includes such skills as "ways of concentration", "ways to remove useless

ideas," "ways of using the fuzzy information", and so on, that are can decided to

decide tasks with greater efficiency. However, due to lack of scientific validity and

the lack of comprehensive information to use such knowledge is necessary

cautiously.

Knowledge, in addition, can be divided into facts (factual knowledge) and

rules (knowledge for decision-making). Knowledge are implied by the facts of the

type "A is A", they are characteristic for the databases. Rules are implied a

knowledge of the kind "If A then B" under the rules. Besides them, there are the

so-called meta-knowledge (knowledge about knowledge). The concept of "meta-

knowledge" indicates to knowledge concerning ways of using knowledge, and

knowledge concerning the properties of knowledge. This concept is necessary for

manage of data knowledge, logical conclusion, identification, training, etc.

Data and data structures are not fully reflect features of subject areas.

Although, generally speaking, it is not always possible to carry out a clear

distinction between data and knowledge, however, there are differences between

the data and knowledge, and these differences have led to the emergence of special

formalisms in the form of models representation of knowledge in computers,

reflecting in a greater or lesser degree the basic features that characterize

knowledge.

1 Heuristics (lat."Heuristic" - from the "eureka!" - "I found it!") - other than an algorithmic method of solving

complex problems, which is based on informal rules of experienced professionals. The concept of heuristics in

solving of the tasks includes a list of methods, conjectures, methods aimed at reducing the amount of computational

work or obtaining result in cases where the mathematically sound methods are not available or useless.

17

The development of methods of describing of knowledge led to the creation

of a wide range of various models using a variety of theories and approaches. One

of the approaches to their classification might look like this [4] (Figure 2.6).

Figure. 2.6. Classification of the most common models of knowledge

Currently enough widely are used at least four kinds of models and therefore

knowledge representation languages [9,11,14]

1) models and languages of the semantic networks;

2) systems of frames;

3) logical models and languages;

4) production systems.

Let us consider these approaches to the description and presentation of

knowledge in computers.

2.1 Semantic
2
 networks

Under semantic network is defined an information model of the subject area

having the form of a directed graph whose vertices correspond to the object of the

subject area and the arcs (edges) define the relationships between them.

The objects can be concepts, events, properties and processes. The first

network models appeared in the 60s of the last century. Examples of its can be RX-

codes, syntagmatic chains, and, finally, the semantic networks. The basis of the

2 Semantics, in the narrow sense of the word is a meaningful (semantic) side of the language units, their meaning.

Each semantic unit has its own semantics: the most elementary one is the semantics of the morpheme, it is conscious

of the composition of the inclusive words (meaning "a person that is committed to someone": an atheist, an

antiglobalist). Semantics, in the broad sense of the word, is an analysis of the relationship between linguistic

expressions and the world, real or imaginary, and this relation too (Cf. Expression type semantics of the word) and

the totality of such relations (for example, we can talk about the semantics of some language). This relation is that

language expressions (words, phrases, sentences, texts) denote what is in the world - subjects, qualities (or

properties), actions, ways of performing actions, attitudes, situations and their sequences.

Knowledge
representation

models

Classical (symbolic):

imitate thinking and memory

structure of a person

“New” models

Let to get “good” results, but the

mechanism of work is not always

clear

Product rules and

algorithms of the

limited search

Semantic

networks
Logic Frames Criterial methods and

multidimensional

scaling

Aristotle's

logic

Logic of

J. Boole

Logic of

C. Osgood

Logic of

L. Zade

Stochastic

models

Neural network

and data analysis

18

best known model is the concept of semantic network formed labeled vertices and

arcs.

The top of the network are some entities (objects
3
 , events

4
 , processes

5
 , the

phenomenons), and an arc connecting them - relationships between these entities.

For this reason, the language of semantic networks sometimes called relational

language of relations. Imposing limitations on the description of vertices and arcs,

you can get different types of networks.

If the tops does not have its own internal structure, the corresponding

network called simple networks. If some vertices have its own structure, such

networks are called hierarchical networks. At the initial stage of development of

AI systems were used only simple networks. Currently, the majority of

applications, that using semantic networks, are hierarchical.

Relationships in the networks may be of different types that allowing to

sufficiently ensure in semantic network such indication knowledge as connectivity.

In general, this means that with help of the semantic network, you can display the

knowledge presented in texts in the natural language.

For example, consider the following sentence: [1] "Fisherman (a1) sat in a

boat (a2), swam across to the other side (a3) and took the basket (a4) with fish

(a5).These objects are related by the following relationships: “sat in” (r1), “swam

across” (r2), “took” (r3) and the “is” (r4). The network that is corresponding to

this text is shown in the Figure 2.7.

Figure 2.7. Representation of the objects (fisherman, boat, beach, basket, fish) and

events (sat, swam across, took, is) in the form of a semantic network (example 1)

3 Object is an subject or phenomenon, existing in reality. Something that has clearly defined boundaries. Tangible

entity has clearly defined behavior.
4 The event is something that takes place, occurs at an arbitrary point in space-time; significant incident, event or

other activity as a fact of public or private life; a subset of the experimental outcomes.
5 Standard «ISO 9000: 2000 Quality Management Systems" defines a process as a set of interrelated or interacting

activities that transform input data into outgoing.

Process (informatics) - performed program of the computer system.

Process (organization theory) - steady and purposeful set of interrelated activities, which in certain technologies are

transforming inputs into outputs for getting predetermined products, results or services that are representing a value

for the consumer.

19

Proceeding from the logic of real-world events and the accepted way of

describing all possible situations , it is possible to consider data as some other

relations that are obviously not present in the source text.

These additional relationships are shown in Fig. 7 in dotted lines.The

expanded variant of the text will be as follows: "The fisherman sat in the boat and

on the boat crossed over to the other shore. On the other side was a fish. The fish

was in the basket. The fisherman took a basket of fish . "

One important circumstance should be emphasized. As shown by studies

conducted on the example of Indo-European languages, there are no more than 200

different kinds of relations that are not reducible to each other. The combinations

of these basic relations make it possible to express all other relationships fixed in

texts in natural language. This circumstance underlies the formation of models of

so-called situational management . In addition, the presence of a finite set of basic

relations makes it possible to represent in any knowledge base any subject area

and, moreover, to automatically construct semantic networks based on any text.

For example, the knowledge of a man with the surname Ivanov, who owns a

Volga car of red color, can be displayed by the semantic network shown in Fig. 2.8.

Figure 2.8. Semantic network (example 2)

The network also contains vertices and arcs that are not mentioned in the

previous sentence and reflect relationships such as "part-whole", links like "it",

"belongs", "likes", etc.

The main difference between hierarchical semantic networks and simple

networks is the ability to divide the network into subnet spaces and establish

relationships not only between vertices, but also between spaces.All vertices and

arcs are elements of at least one space. Note that the concept of space is analogous

to the notion of brackets in mathematical notation. Different spaces existing in the

network can be ordered in the form of a tree of spaces, the vertices of which

correspond to spaces, and arcs to the "visibility" relationships.

Figure 2.9 shows an example of a tree of spaces, according to which, for

example, all the vertices and arcs lying in the ancestor spaces P4, P2 and P0 are

visible from the child P6, and the remaining spaces are "invisible".

Red

Volga

value

properties
о

Color

this is

like belongs

Ivanov Human

Car

for example

Engine

Kind of
transport

this is

has a part

20

P3

P0

P

1

P2

P4

P5

P6 P7

The "visibility" relation allows you to group spaces into ordered sets -

"perspectives". A perspective is usually used to restrict network entities that are

"visible" by some procedure that works with the network.

Figure 2.9. The space of states.

A particular case of semantic networks are scripts or homogeneous semantic

networks [8, 11].

In such networks, objects are connected by a single relation of strict or non-

strict order with different semantics.

If, for example, the objects-concepts are jobs (or individual operations), and

the only strict-order relation is the sequence relation, then we come to the well-

known network schedule of the complex of works with the so-called "French

view". Obviously, scenarios are a convenient means of drawing up plans. The

subject domain is the set of admissible states of its components. Presented through

the general concepts and relations between them, this set forms a knowledge base

(KB) - in the form of a so-called intensional semantic network. On the other hand,

depending on the situation, the domain components will have specific values,

properties, characteristics. All these specific domain data will be displayed in the

so-called extensional semantic network or database (DB) of the network structure.

The terms "intensional" and "extensional" are borrowed from semantics - the

science of sign systems.

Intensional – the definition or description of a concept through its

properties.Extensional - a set of concrete facts that correspond to this concept.

Using the example of a general semantic web, you can distinguish between a

database and a knowledge base (see Fig. 2.10). In general, the intensional is a set of

general concepts and relationships that characterize a multitude of objects, objects,

phenomena. Extensional calls specific characteristics of each element of this set of

concepts and relationships. For example, the concept of a "light car" with relations

"body", "engine" and "management" will be intensional with respect to a variety of

extensions - brands of cars ("Volvo", "Mercedes", "Zhiguli", "Ford", " Muscovite ")

with their specific characteristics. In turn, if, for example, the "intranet" is, for

21

example, "Zhiguli", the extensions may be their models (2101, 21301, 2303, 2309,

etc.) with specific characteristics. Thus, the concepts of intensional and extensional

are themselves relative.

Figure 2.10. Data and knowledge in the semantic model.

In computers, the semantic network is implemented as an intra-machine data

structure that is used to represent individual words and their semantics. For

example, [11], the semantic net "NOC is the smallest common multiple" (see

Figure 2.11) can be rewritten on the basis of the results of the structural analysis in

the form of a semantic network data structure, as shown in Fig. 2.12.

Figure 2.11. Semantic network "NOC is the least common multiple"

Here C1, C2, ..., C9 are nodes of the semantic network, which are pointers

of the list structure.

The abbreviations for some grammatical terms have the following meaning:

CURRENT - printing the corresponding semantics, with some active word

being written in the original form;

MODAL - time (estimate) and conjugation of the verb;

Control system

Knowledge base

KB - intensional

semantic network

DB - extensional

semantic network

НОК

Mean

Among

AGT

LOG

Number small

most

Multiple

OBJ

POST

amount
Measure

MODAL AUX

MOD

MOD

С1

С9

С3

С7

С6

С2

С8

С5

С4

22

MOD - modified words;

POST - with the help of the union shows the modified word;

AUX - auxiliary.

The positive side of the knowledge representation of semantic networks is

that it is a very simple and understandable way of describing based on the

relationship between elements (nodes and arcs). However, with the increase in the

size of the network, the time for finding solutions is significantly increased in

comparison with methods that do not have a strategy. In addition, they inherent the

problem of guaranteeing the suitability of output results, which also includes the

problem of property inheritance.

С9 ТОК MEAN C4 TOK MOST

 AGT C1 MOD ZERO

 LOG C3 C5 ТОК SMALL

 OBJ C6 MOD C4

 MODAL C7 C6 TOK NUMBER

C1 TOK НОК MOD C5

 MOD ZERO C7 PRES AMOUNT

C2 TOK MULTIPLE AUX C8

 TOK ZERO C8 TOK MEASURE

C3 TOK AMONG

 POST C2

 MOD ZERO

Figure2.12. Semantic network data structure

2.2. Frame Models

Semantic networks, in spite of their great opportunities, connected with the

wealth of available means, for displaying the relations between concepts and

objects, however, also have some drawbacks. The implementation of models with

arbitrary structure and different types of vertices requires a wide variety of

procedures for processing information, which complicates the software of

computers. This led to the emergence of a number of specific types of semantic

networks, such as: syntagmatic chains, scenarios, frames, and so on. Let's consider

in more detail frame representations.

A frame is a way of representing knowledge in artificial intelligence, which is

a scheme of actions in a real situation. Initially, the term "frame" was introduced

by Marvin Minsky in the 1970s [15] to indicate the structure of knowledge in

modeling the perception of spatial scenes. A frame is a model of an abstract image,

a minimal possible description of the essence of an object, phenomenon, event,

23

situation or process. There are sample frames, instance frames, frame-structures,

frame-roles, frame-scenarios, frame-situations. In this case, the system of

connected frames can form a semantic network.

A frame structure is understood as a way of using a scheme, a typical

sequence of actions, or a situational modification of a frame. The frame, among

other things, includes a certain knowledge by default, which is called a

presumption.

Usually it consists of a name and individual units, called slots, and, as a rule,

has a homogeneous structure (Figure 2.13).

FRAME NAME

First slot name: 1st slot value

Second slot name: 2nd slot value

....................................

Name of the Nth slot: value of the Nth slot

Fig. 2.13. Structure of the frame

Slots are some unfilled frame substructures, after filling with specific data, the

frame will represent one or another situation, phenomenon or object of the

domain. When the frame is specified, it and its slots are assigned specific names

and the slots are filled. As the values of the slots, the names of other frames can

act, which makes it possible to build a network of frames.

Formally, a frame is understood as a structural record of the following form:

[< f > , < V1 , g1 > , < V2 , g2 > , , < V3 , g3 > ,….., <Vn , g3 >] (2.1)

Here: f is the name of the frame, the pair <Vi, gi> is the i-th slot, where VI is

the name of the slot, and gI is its value. The value of a slot can be almost anything

(numbers or mathematical relationships, texts in natural language, programs, rules

of inference or references to other slots of a given frame or other frames, etc.).

Frames are often divided into two groups: frame-descriptions and role

frames. Let us consider a number of examples.

For example, a frame-description of knowledge about cargoes of several types

of fruit received on the base can be written as follows:

[<Fruit>, <grapes, Bulgarian 20 t>, <apples, Jonathan 10 t>, <cherry,

Vladimirskaya 200 kg>].

An example of a role frame can be a set of knowledge about the goods being

carried:

[<Transport], <what, rent 300 t>, <from where, Krivoy Rog>, <where,

Odessa>, <what, by rail>, <when, in December 2017>].
In the role frame, the names of the slots are interrogative words, the answers

to which are the values of slots. If in the examples in the general expression for the

frame remove all the values of the slots, leaving only the names, we get a design,

called protoframe (prototype frame). Frames with specific values are called

instance frames.Let's consider examples of these types of frames.

Example of protoframe:

24

[<Staff List>, <last name (value of slot 1)>, <year of birth (slot 2 value)>,

<specialty (value of slot 3)>, <experience (value of slot 4)>].

Example of an instance frame:

[<List of employees>, <surname (Popov-Sidorov-Ivanov-Petrov)>, <year

of birth (1965-1968-1987-1958)>, <specialty (locksmith-turner-plumber)>,

<experience (5 -21-32-23)>].

Frames have the property of nesting. In these cases, the slot name can be a

system of names for slots of a deeper level. The nesting property, the ability to

have, as slot values, links to other frames and to other slots of the same frame

provide framing languages with the satisfaction of the structuredness and

connectivity requirements of knowledge [11].

A frame slot can contain not only a specific value, but also the name of a

procedure that allows it to be computed from a given algorithm, as well as one or

more products (heuristics) by which this value is determined. A slot can contain

not one but several values. Sometimes this slot includes a component called a

facet, which specifies a range or a list of its possible values. The facet also

indicates the boundary values of the slot filler.

In addition to the specific value in the slot, procedures and rules can be stored

that are called when this value needs to be calculated. Among them are

procedures-demons and procedures-servants. The first are started automatically

when some condition is met, and the second ones are activated only on special

request. If, for example, the frame describing the person includes the slots

<BIRTHDAY> and <AGE>, and in the first of them there is a certain value, then

in the second slot there can be a name of the procedure-demon calculating age by

date of birth and current date and activating Every time the current date is changed.

Thus, taking into account the possibility of inheritance, the structure of the

frame data can look like this (see Figure 2.14).

The frame name is the identifier assigned to the frame. A frame must have a

unique name in the system. The frame consists of slots.

Slots in a frame can be any number. Some of them are determined by the

system itself for performing specific functions, and the rest are determined by the

user. These include the IS-A slot, which shows the frame-parent of the frame, the

slot of child frame pointer, which is a list of the pointers of these frames, the slot

for entering the user name, the date of the change, the text of the comment and

other slots. Each slot, in turn, is also represented by a specific data structure.

The slot name is the identifier assigned to the slot; The slot must have a

unique name in the frame. Some slots are called system slots and are used when

editing the knowledge base and controlling the output.

The indexes of inheritance concern only frame systems of the hierarchical

type, based on the relations "abstract - concrete". They show what information

about the attributes of slots in the top-level frame inherits slots with the same

names in frames of the lower level. Typical indexes of inheritance are shown in

Fig. 2.15.

25

Figure. 2.14. Structure of data placement in a frame

Figure 2.15. Basic indexes of inheritance

A pointer with the name O performs simultaneously the functions of pointers

with the names U and S. Although most systems allow for several variants of

indicating inheritance, there are many and such that only one option is allowed. In

this case, you can assume that you use the default pointer O. An example of using

pointers is shown in Fig. 2.16.

The arrows in the figures indicate the values returned after the call.

It should also be noted that the presence of framing names and slots names in

formed structures means that the values stored in frames have the character of

Slot 1

Slot 2

Slot n

Name

Name of frame

Value of
slot

Demon
attached procedure

Name of
slot

slot attributes pointer

(text, number, pointeretc.)

Way of getting value

 U (The first letter of the word Unique is unique) - each frame can

have different slots with different values;

 S- all slots must have the same values;

 R- the values of the lower-level frame slots should be within the

limits indicated by the values of the top-level slots;

 О- if there is no indication, the value of the upper-level frame slot

becomes the value of the lower-level frame slot, but in the case

of determining the new value of the lower-level frame slots, they

are indicated as slot values.

26

references and thus are internally interpreted. The possibility of placing orders for

calls to one or another procedure for execution (so-called demons) as slots allows

you to activate programs based on existing knowledge.

Figure 2.16. Indexes of inheritance (U, R, O) and answers to access to the

value of the slot.

Thus, the frame-based languages satisfy four basic characteristics of

knowledge - an interpreted, structured, connectivity and activity. Using frames in

fundamental sciences enables the formation of a more rigorous conceptual

apparatus and the integration of conventional models with frame formalisms. For

descriptive sciences, frames are one of the few ways of effective formalization for

the creation of a conceptual apparatus.

2.3. Logical models of knowledge.

Logical models of knowledge are the basis of human reasoning and

inferences, which, in turn, can be described by suitable logicalcalculations
6
. Such

calculus should be primarily attributed to Aristotle, as well as the application of the

propositional calculus and predicate, which is axiomatic, and is used as a logical

model of knowledge.

After more than 2000 years of unaltered state, the syllogistics of Aristotle

received development and important practical application in works on artificial

intelligence.

Logical calculations can be represented as formal systems in the form of a

four:

6Logical calculations are the theory of formal logical computations. This theory is also called mathematical or

formal logic. Historically, logical calculi were developed for the theoretical formalization of the process of proof in

various theories.

U –U – unique

30

30

20 weight
10-100

weight
Нуль

weight
 25

weight
10-40

weight
 32

weight
 32

Child Child

Child

Vanya Vanya

Answer on the question

Нуль

25

32 32

10-40

10-100 weight
 20

weight
 30

weight
10-100

Vanya

Human Human Human

U –R – setup border U –O – ignore

27

M = < T , P , A , B > (2.2)

Where: Tis the set of base elements of a different nature, for example, words

from some limited vocabulary, letters of some alphabet, details of the child's

constructor, included in some set, etc.It is important that for a set T there is some

way of determining whether or not an element x belongs to this set.The procedure

of a verification can be any, but for a finite number of steps it should give a

positive or negative answer to the question whether x is an element of a given set

T.We denote this procedure by P (Τ).

The set P is the set of syntactic rules on the basis of which the correctly

constructed formulas are constructed.For example, from the words of a limited

dictionary syntactically correct phrases (X1, X2, ..., XN) or from the details of the

child's constructor, new constructions (X1, X2, ..., XN) are assembled with the help

of nuts and bolts.The existence of a procedure P (Ρ) with the help of which in a

finite number of steps it is possible to get an answer to the question of whether any

of them, for example, the set Xk, is syntactically correct.

Ais a set of correctly constructed formulas (CCF), whose elements are called

axioms.As for other components of the formal system, there should be a procedure

P (A), with the help of which for any syntactically correct set it is possible to

obtain an answer to the question of its belonging to the set A.

The set B is the set of inference rules, which from the set A make it possible

to obtain new correctly constructed formulas– theorems. The recent rules can

again be applied to the latter from B.Thus is formed a plurality of output of the

formal system in aggregates.If there is some procedure P(B) by means of which it

is possible to determine for any syntactically correct collection whether it is output,

then the corresponding formal system is said to be solvable.This shows that it is the

inference rules that are the most complex part of the logical model.

For the knowledge entering into the knowledge base using the logical model,

we can assume that the set A form all the information units that are entered into the

knowledge base from the outside, and with the help of the derivation rules new

derived knowledge is derived from them. In other words, the formal system is the

generator of the generation of new knowledge, which form the set of knowledge

deduced in the given system knowledge. This property of logical models makes

them attractive for use in knowledge bases. It allows you to store in the database

only that knowledge that form a set of axioms A, and all other knowledge to obtain

from them according to the rules of inference.

Examples of a formal system are the propositional calculus and predicate

calculus, which are considered in the third and fourth sections.

2.4. Production models

The production model of knowledge– it is a model based on rules allowing

present knowledge in the form of sentences like "If (condition) then (action)."It is a

fragment of the semantic network and is based on temporary relationships between

the states of objects.

28

The production model has the disadvantage that when a sufficiently large

number (several hundred) of products is accumulated, they begin to contradict each

other due to the irreversibility of disjunctions. In this case, the developers begin to

complicate the system, including the modules of fuzzy inference or other means of

conflict resolution, - priority rules, depth rules, heuristic exclusion, return

mechanisms, etc.

Models of this type use some elements of the logical and network models

described above. From the logical models the idea of the rules of inference is

borrowed, which here are called products, and from network models - the

description of knowledge in the form of a semantic network. As a result of

applying the output rules to the fragments of the network description, the semantic

network is transformed by changing its fragments, building up the network and

excluding unnecessary fragments from it.Thus, in the production models,

procedural information is explicitly identified and described by other means than

the declarative information. Instead of logical inference, characteristic of logical

models, in the production models there is a conclusion on knowledge.

The products, on the one hand, are close to logical models, which allows

them to organize effective withdrawal procedures on them, and on the other hand,

allow more clearly reflect knowledge than classical logical models. They are no

strict limitations of logical calculations, which makes it possible to change the

interpretation of the elements of production.

In general, a product is an expression of the following type:

(i); Q; P; A  B; N (2.3).

Here i is the name of the product, with which the given product stands out

from the whole set of products.

A name can be a certain lexeme, reflecting the essence of this product (for

example, "buying a book", "locking code"), or the serial number of products in

their set stored in the system's memory.

Element Q characterizes the scope of products. Such spheres are easily

distinguished in the cognitive
7
structures of humans. Our knowledge is sort of "laid

out on the shelves". On one "shelf" are stored the knowledge of how to prepare

food, on the other - how to get to work, etc. Separation of knowledge into specific

areas allows you to save time on finding the right knowledge. The same division

into spheres of the database system of intellectual knowledge is appropriate and

when used for the representation of knowledge production models.

The main element of the product is its core: A  B.The interpretation of the

product core can be different and depends on what stands to the left and to the right

of the sequence sign . The usual reading of the product core looks like this: IF A,

then B. More complex kernel constructions allow on the right side an alternative

choice, for example, IF A, TO B1, OTHER B2.

8Cognitive - (Latin cognitio - perception, cognition) refers to cognition, to the functions of the brain that provide the

formation of concepts, operating them and obtaining output knowledge. In psychology, the term "cognition" means

the ability to acquire knowledge and its processing.

29

Sequence can be interpreted in the usual logical sense as a sign of logical

follow-up of element B from true A (if A is not a true expression, then nothing can

be said about B). Other interpretations of the product kernel are possible, for

example, A describes some condition necessary for performing action B.

The element Pis the condition for the applicability of the product

kernel. Usually r is a logical expression (typically a predicate). When P is true, the

product core is activated.If P is false, then the product kernel cannot be used. For

example, if the product: "the availability of money; If you want to buy a thing X,

then pay its cost to the cashier and give it to the seller ", the condition of the

kernel's applicability is false, i.e. If there is no money, then it is impossible to

apply the core of the product.

Element N describes the post-condition of the product. They are updated only

if the core of the product is realized. Post-conditions for products describe the

actions and procedures that must be performed after the kernel is implemented.

For example, after buying a certain item in the store, you need to reduce the

number of items of this type per unit in the inventory of goods available in this

store. Execution of the post-condition Ncannot occur immediately after the

realization of the product core.

If a certain set of products is stored in the system's memory, then they form a

system of products. In the production system, special procedures for product

management must be set up, with the help of which the products are actualized and

the choice for performing a particular product.

The basic structure of the production system consists of three main

components [11]. The first of these is the set of rules used as a knowledge base, so

it is also called rule base (Figure 2.17). The second component is working memory

(or memory for short-term storage), which stores the prerequisites for specific

tasks in the domain and the results of the conclusions derived from them. The third

component is a logical inference mechanism that uses rules according to the

contents of the working memory.

Figure 2.17.Structure of the production system

Logical inference

mechanism

(comparison)

Working memory

(patterns)
Base of

rules

Modification,

control

Search

30

In order to show how these elements, interact, let us consider a simple

example [8]. The data written to the working memory are samples in the form of a

set of symbols, for example, "intention - rest", "resting place - mountains", etc. The

rules written to the rules database reflect the contents of the working memory.

In the conventional part of the rules there are either single samples or several

conditions connected by the preposition "AND", and in the final part - samples

additionally registered in the working memory.

For example, the rules are as follows:

Rule 1. IF "intention is rest" AND

"Road bumpy" THAN "to use a jeep".

Rule 2. IF "resting place - mountains" THAN "road is bumpy".

After the samples "intention-rest" and "rest-place" are recorded in working

memory, the possibility of applying these rules is considered. Two approaches are

known for obtaining logical inference in the system - direct output and reverse

output.Consider the essence of these approaches.

With the direct output, work is done to extract the pre-recorded contents of

the working memory, apply the rules and supplement the data placed in the

working memory. First, the output mechanism matches the samples in the

conditional part with the samples stored in the working memory. If all the samples

are in the working memory, then the conditional part is considered true, otherwise

it is false. In this example, the pattern "intention-rest" exists in working memory,

and the sample "bumpy road" is absent, so the conditional part of rule 1 is

considered false. The conditional part of rule 2 is true. Since in this case there is

only one rule with a true conditional part, the output mechanism immediately

executes its final part and the sample "bumpy road" is entered into the working

memory. If you try to apply these rules again, you can only apply rule 1, since rule

2 has already been applied and dropped out of the number of candidates. By this

time, the contents of the working memory were supplemented with a new sample -

the result of applying rule 2, so the conditional part of rule 1 becomes true, and the

contents of working memory are replenished with a sample of its final part - "use a

jeep". As a result, there are no rules that can be applied, and the system stops.

Reverse conclusion is a way of deducing knowledge, in which, on the basis

of facts requiring confirmation, to act as a conclusion, the possibility of applying a

rule suitable for confirmation is explored. Let's say that the ultimate goal is to "use

a jeep," and first investigates the possibility of applying rule 1, which confirms this

fact. Since the pattern "intention - rest" from the conditional part of rule 1 has

already been entered in the working memory, then to achieve the goal it is enough

to confirm the fact that "the road is bumpy". However, if you take a sample of

"road bumpy" for a new goal, then a rule is needed to confirm this fact. Therefore,

the possibility of applying rule 2 is investigated. The conditional part of this rule at

the moment is true, therefore rule 2 can be changed immediately, working memory

will be supplemented with a sample of "bumpy road", and as a result of the

possibility of applying rule 1, the goal is "to use a jeep".

31

In the case of a reverse conclusion, the conditions for stopping the system are

obvious: either the original goal is reached or the rules that are applicable to the

achievement of the goal in the course of the withdrawal end. As for the direct

conclusion, then, as was mentioned above, the absence of applicable rules is also a

condition for stopping. However, the system also stops when a certain condition is

fulfilled, which is satisfied by the contents of the working memory, for example,

by checking the appearance of the sample "use a jeep". It is proved that for

backward conclusions there is a tendency to exclude from consideration rules that

do not directly relate to a given goal, which makes it possible to improve the

efficiency of the withdrawal.

Production systems are easy to use and due to the well preparedness of

development tools, a large number of systems based on this knowledge model have

been created. Production systems, unlike frames and other systems, do not have

such functions as, for example, the establishment of high-level relationships

between frames, but, on the other hand, thanks to this, the design of the system and

its creation are simplified. In the future, probably, not only purely production

systems will find use, but also combinations of them, for example, with frame

systems.

3. Basics of propositional logic.

3.1. Introduction to propositional logic

A statement is a sentence expressing a proposition. If the proposition (the

result of the argument), make up the content (the meaning) of a sentence is true,

and this statement saying that it is true

Reasoning is a chain of interconnected conclusions. Depending on the nature

of the relationship, reasoning can be either inductive or deductive. If the

relationship of reasoning is built on induction, then the argument is inductive.

Consider these concepts.

Induction is a method of reasoning from particular facts and positions to

general conclusions, that is, it is an inference made on the basis of concrete facts

and leading to a certain hypothesis, i.e. to the approval of generalizing

abstractions, typical for all together and each separately of the facts and providing

for a simultaneous discussion of the criteria for justifying the reliability of the

obtained hypothesis.

To understand the meaning of the induction use, let us consider an example

[13].

We construct graphs of two equations with two variables, for example:

x-2y + 4 = 0 and 2 x + y-5 = 0.

Convinced that the graphs of these equations in the Cartesian coordinate

system are straight lines, we can conclude by induction that the graphs of any

equation of the form ax + by + c = 0 in the same coordinate system will be a

straight line. This conclusion is correct. But in order to finally verify its reliability,

it is necessary either to sort through all possible x and y coordinates in combination

32

with all possible values of the coefficients, which is unrealistic, or to come up with

some more ingenious and effective method of proof. The search for effective

methods of proving the reliability of reasoning is an obligatory section in the

structure of the theory of any mathematical logic.

In deductive reasoning, which is otherwise called calculus, first, the

relationship of reasoning is based on deduction, secondly, the links of the chain of

reasoning are additionally connected by the relation of logical sequencing.

Deduction (conclusion) is a method of reasoning, in which the new position is

derived purely logical way from general positions to particular conclusions. The

beginning (premises) of deduction is a certain set of generalizing abstractions
8
, and the

end (conclusion) is the goal of reasoning, which is represented as a question-fact or a

question-abstraction of a minimal scale. Here are a few examples.

Example 1. All people are mortal. Socrates is a man. Therefore, Socrates is

mortal (conclusion).

Example 2. Every natural number whose sum of digits is divided by three is

itself divisible by three. The sum of the digits of the number 4635 is divided by

three. Consequently, the number 4635 is divided by three.

As in the case of inductive reasoning, here, also, in order to verify the validity

of the reasoning, it is necessary to verify, that is, prove that the sum of the digits of

the number 4635 is divided by three. This is a simple case of proof, however, it is

necessary in any deductive reasoning. In this example, there is no doubt about the

first premise, the truth of which is proved in number theory.

Example 3. The graph of an equation of the form ax + by + c = 0 in a

rectangular Cartesian coordinate system is a straight line. The graph of the

equation by + c = 0 is a straight line parallel to the x-axis. Therefore, the graph of

a straight line parallel to the y axis is the equation ax + c = 0.

The essence of the relation of logical implication is that the truth of the

conclusion follows only from the simultaneous truth of all and only all premises

with all possible variants of the replacement of abstractions by facts. The number

of parcels of N can be large (in any case, more than ten), and each of the premises

is a general abstraction, the truth of which can be clarified only after its

replacement by a concrete fact, the possible number (P) of which exceeds ten and

sometimes reaches hundreds of thousands. It is practically impossible to ascertain

the simultaneous truth of all premises with all possible variants of replacing parcels

with facts. It is proved that this problem has the computational complexity of the

NP-complete task
10

 [5]. In this connection, deductive reasoning is always

supplemented by formal so-called inference rules that allow one to simplify it step

by step by step-by-step application of it to the deduction itself without disturbing

the logical relation, ultimately leading to an obvious scheme, the truth of which can

not be established. These rules are called tools for analyzing the validity of

reasoning.

9Abstraction - the principle of ignoring minor aspects of the subject in order to highlight the principal. Abstract (in

abstraction) identifies the essential characteristics of an object that distinguish it from all other kinds of objects and

thus clearly defines its limits in terms of conceptual observer.

33

Human intellectual activity distinguishes between logical and analytical

thinking. Logical thinking is the possession of inductive and deductive reasoning.

Analytical thinking is the skill:

1) abstract the phenomena observed in the real world, processes, objects;

2) establish the cause-effect relationship between the objects, processes,

phenomena, their properties and characteristics reflected;

3) structuring complex processes for the purpose of their knowledge on the

basis of a systematic approach;

4) determine the criteria for comparing the reflected objects, processes, the

phenomena of their properties and characteristics;

5) to compare objects, processes, phenomena, their properties and

characteristics on the basis of given criteria;

6) to define and abstract the operating environment in which objects,

phenomena, processes;

7) quantify the quality of the functioning of processes, objects and systems of

objects;

8) mathematically simulate the reflected processes, phenomena, objects and

their systems.

Each of the functions of analytic thinking can be easily realized by logical

thinking, i.e. Logical thinking can be used as a model of analytical thinking.

By definition, artificial intelligence models logical and analytical thinking.

Logical thinking, in turn, models analytical thinking. Consequently, logical

thinking is a universal model of artificial intelligence.

3.2. Mathematical logic and its connection with logical thinking.

Mathematical logic is a functionally complete set of formal tools designed to

model and implement inductive and deductive reasoning [7,12]. These tools

include the following elements (see Figure 3.1):

1) formal languages of logic, intended for statement of intellectual problems

and knowledge representation (modeling) in axiomatic theories of any

subject areas;

2) mathematical structures for representing (modeling) knowledge systems,

equivalent transformations of knowledge systems, manipulating

knowledge and formulating new knowledge;

3) formal rules of inference and algorithms as a tool for substantiating the

reliability of reasoning, i.e. Proof of the truth of the conclusions in the

argument.

Several logical systems are known in the foundations of classical

mathematics, but one of them is justified as a foundation of mathematical logic:

first-order logic, which also has other names – the logic of predicates, the

predicate calculus. Therefore, for mastering the basics of artificial intelligence, it

is necessary to thoroughly study the theoretical foundations of the logic of

predicates, which are set forth in the next section of the manual.

34

Figure 3.1. Components of mathematical logic.

The main advantage of using predicate logic for representation of knowledge

is that a powerful output mechanism possessing well-understood mathematical

properties can be directly programmed. In addition, you need to know what other

logic systems complement the logic of predicates and in what situations you should

resort to their help. You should also know about graphical representations of

predicate logic – semantic networks and frame networks, in particular about their

advantages and disadvantages in comparison with the logic of predicates.

There are six aspects that uniquely and functionally fully define calculus as a

mathematical structure:

1) the alphabet of the calculus;

2) the rules of language formation in the alphabet – the syntax of the

language;

3) the rules for assigning truth values to formulas – the semantics of the

language;

4) rules of inference in calculus, i.e. Rules that determine the correct

(preserving the relation of logical sequence) transition from one theorem to

another, on the one hand, and formalizing certain standard methods of

reasoning – on the other;

5) rules for the equivalent transformation of formulas of the calculus;

6) algorithms that effectively recognize the reliability of reasoning.

Historically, the predicate calculus has grown from the logic of utterances,

which is an integral part of the logic of predicates. Therefore, at start, briefly

consider the logic of utterances in these aspects, and then proceed to the logic of

predicates.

3.3. Propositional logic basics

3.3.1. Alphabet of propositional logic.

Elements (symbols) of the alphabet are:

 utterances denoting lower case letters;

 five logical connectives (Table 3.1)

An utterance is a narrative (affirmative) sentence, about which it is possible to

say whether it is true or false (True or False, True or False).

Mathematical Logic

Formal languages of

logic
Mathematical structures

Formal rules of inference

and algorithms

35

Table 3.1.

Elements and symbols of propositional logic

Name of the

bundle

Designation Type Other designations

Negation  Unary ,  , not

Conjunction  Binary & , , and

Disjunction  Binary / , or

Implication  Binary  ,  , 

Equivalence  Binary  , 

Here some examples of statements [13]:

1. It's raining. This sentence is a statement, and it can be replaced

(identified), for example, by the letter q.

2. The road is wet. This is also a statement, and it can be identified by the

letter r.

In the future, the process of identifying (naming) a particular statement with a

particular lowercase letter will be denoted by the symbol

 (equally by definition).

3. p Snow white. H The president resigns.

4. e The earth spins.n The length of the circle is equal to its diameter.

It should be noted that in the statement the relationship (relationship) of the

reflected object with its properties or characteristics, or any actions of the object, or

the interrelation of two or more reflected objects is represented. This is important

for understanding the semantics of the term "predicate". For example:

5. k Side a, side band side care sides of an isosceles triangle T.

There are two agreements in the logic of the statement:

1) The conclusion about the truth (T) or falsity (F) of a particular utterance is

given by the subject modeling the real world, when setting and solving a

certain problem. The semantics (semantic meaning) of the reflected utterance

and the idea of its truthfulness is completely determined by the model of the

world of this subject. It is understandable that different subjects can have or

form different models of the real world.

2) The basis of the logic of utterances is deductive reasoning, therefore it has

another name – the "calculus of statements".

3.3.2. The Rules for the formation of the language in the alphabet (the syntax

of the language).

To describe the rules, we introduce the notion of a metacharacter. A

metacharacter is a designation that does not belong to the language, which allows

you to enter concepts and the properties of this language, as well as specify the

order in which must apply with the rules of the language.

36

So introduce four metacharacters to illustrate the given rules with examples:

1) x 2) y 3) (4)) (3.1) .

The metacharacters x and y will serve to denote formulas, and the brackets "("

and ")" indicate the order in which the rules are applied.

The rules for the formation of a language in the alphabet are as follows:

The basic rule: every utterance is a formula.The metacharacters x and y will

serve to denote formulas, and the brackets "(" and ")" indicate the order in which

the rules are applied.

The rules for the formation of a language in the alphabet are as follows:

The basis rule: every utterance is a formula.

The rule of the induction step: if x and y are formulas, then

x,)(),(),(),(yxyxyxyx  are also formulas.

Rule of restriction: formulas can be formed only by the rules 1 and 2.

There are no other rules.

How do the metacharacters of parentheses indicate the order in which the

rules are applied?

Let's consider an example.

 Suppose thatх (p /\ (q \/ r)).In constructing the formula x, the induction step

rule was applied twice: the first time when the formula(q \/r)was constructed from

the formulas q and r, and the second time when constructing the final formula from

the formulaspand (q \/ r).These rules for the formation of a language in the

alphabet are used to represent compound arbitrarily complex sentences.

 Formulas of language are divided into atoms or atomic formulas and

formulas (without epithets), to which all compound formulas refer, i.e. Formulas

formed with the help of connectives, and atoms are indivisible (initial) statements.

3.3.3. The rules for assigning truth values to formulas (semantics of language)

By definition, an atom can have only two values: either "true" (T) or "false"

(F). Each of these values is called a truth value. The rules for assigning truth values

to the formulas of five bundles are presented in Table. 3.2.

Table 3.2.

Truth table

x y x x  y x  y x  y x  y

T T F T T T T

T F F F T F F

F T T F T T F

F F T F F T T

We introduce a number of new concepts that will be needed in considering

the following aspects of the propositional calculus.

1) "interpret the formula" – assign to it one of the two values of the truth of T

or F.

37

2) "interpretation for a formula" is a set of truth values of all atoms entering

into a formula intended for simultaneous replacement of the atoms themselves in

this formula. A formula containing K of various propositions admits 2
k

interpretations.

Let us illustrate these two concepts by examples of the interpretation of some

formulas (Table 3.3).

Table 3.3.

Interpretation of some formulas

 x y z y  z x (yz) x y (x  y)z w w

TTT F T T T T F

T T F F F T F T F

T F T T T F T T F

T F F T T F T T F

F T T T T F T T F

F T F F T F T T F

F F T T T F T T F

F F F T T F T T F

The semantic elements of the table are as follows.

– first three columns of each line are one of the possible interpretations.

–"semantics of language" is a complete set of rules for interpreting formulas,

i.e. This is the whole table 3.2.

–"the general validity of the formula" is the truth of the formula for all its

possible interpretations; w in table. 3.3).

–"the inconsistency of the formula" (impracticability) is the falsity of the

formula for all its possible interpretations - w in table 3.3

–"equivalence of formulas" - the formulas x and y are equivalent when the

truth values x and y coincide with each common interpretation for x and y.

–"literal" is an atom or its negation; atom in mathematical logic is the

simplest case of the formula, i.e. a formula that can not be decomposed into

subformulas.

–"disjunction of formulas" is the formula X, formed from the initial formulas

F1, F2, ..., Fn with the help of a disjunctive (and only) bunch:

X = F1
 F2

 ,...Fn. (3.2)

–"conjunction of formulas" is a formula Y formed from the initial formulas

F1, F2, ..., Fn with the help of a conjunctive (and only) bunch:

Y = F1
 F2

 ,... Fn. (3.3)

– "disjunct" is the formula Z, formed from the source letters (and only the

letter) with the help of a disjunctive (and only) bundle:

38

Z = A1 A2A3 ,...An. (3.4)

 The equivalent of a disjunct is the set of letters it contains:

Z = A1A2 ,... Am {A1 , A2 ,..., Am} (3.5)

 –"R - literary disjunct" is a disjunct, in which R of letters.

–"single disjunct" is a disjunct with one letter.

–"empty disjunct" is a disjunct, in which there are no letters. Because It does

not contain letters that could be true for some interpretation, it is always false.

–"scope of logical connectives" - for non-skid recording this area is ordered

in descending order and corresponds to the sequence  ,  ,  ,  ,  .

–"disjunctive normal form" is a formula:

F= F1 F2 ,...Fn , где Fi – conjunction of letters.

–"conjunctive normal form" is a formula:

F=F1 F2 ,... Fn , где Fi – disjunction of letters.

–"satisfiable formula" -the formula is feasible if and only if there is at least

one interpretation for which this formula is true. This interpretation is called the

formula's model.

–"contrarian pair of formulas" is the set {A, A}

–"tautology" is a universally valid formula, true in all its interpretations.

Disjunction, which contains a contrarian's of pair, is a tautology.

–"conjunctive normal form (CNF)" in boolean logic is a normal form in

which the Boolean formula has the form of a conjunction of disjunctions of literals.

A conjunctive normal form is convenient for the automatic proof of theorems.

–"reduced CNF" is the CNF, from which tautologies and repetitions of

characters within the same disjunct have been removed.

3.3.4. The rules of inference in the propositional calculus (stereotypes of

deductive reasoning).

Stereotypes have been developed over many decades, and some for many

hundreds of years, and allow for the correct, i.e. Without disrupting the logical

sequence relationship, transitions from one theorem to another, with the aim of

bringing the structure of reasoning to the canonical form (to the reduced CNF).

The essence of the canonical form will be disclosed in subparagraph 3.3.5, and

now, before discussing the rules of inference, we introduce a number of new

concepts without which this discussion is impossible.

The notion of "relation of logical following".

Formula G is a logical consequence of the formulas F1, F2, ..., Fn if and only if

for every interpretation I, wherein (F1F2 ,... Fn.) – truthis also true.

FormulasF1, F2, ..., Fn called premises, and G - finding with respect to logical

inference.

Next stop on the concept of "necessary and sufficient conditions of logical

consequence (investigation)."

39

The formula G is a logical consequence if and only if F1, F2, ..., Fn, when the

formula ((F1F2 ,... Fn.)G) – is valid, or when formula (F1F2 ,...Fn G)

–) is contradictory

The concept of "theorem of deductive reasoning."

If a formula G is a logical consequence of the formulasF1, F2, ..., Fn, the

formula ((F1F2 ,... Fn) G) is called a theorem, and G is called the

conclusion of the theorem.

The concept of "evidence in deductive reasoning" (ie, calculus).

The proof is a reasoned justification of how the conclusion in the theorem

logically follows from its premises. The proof is presented in the form of an

ordered sequence (trace) of inferences, as a result of which the truth value of the

conclusion is established.

Now for the rules of inference in the propositional calculus.

To denote the logical sequence relationship, we introduce a new

metacharacter (horisontal bar)

We will use this metacharacter to separate the theorems-premises and

theorems-conclusions. Above the line we will write down a list of theorems-

premises, below the line – a theorem-conclusion. This form of writing theorems

will indicate that the conclusion theorem is a logical consequence of the premise

theorems.

Metacharacter;(semicolon) will be used as a separator in the list of theorems..

Metacharacter, (comma) will be used as a separator of the premises within the

theorem simulating a conjunctive bundle.

Metacharacter (rectangle) will be used to denote contradictory formulas.

Consider the following example of using the logical sequence relation:

If the barometer falls, then there will be bad weather;

The barometer falls

There will be bad weather

The list of inference rules is as follows:

1) D ; D 2)  3) D 4) D

 D D D D

5) D 6) D,; D,; D 7) D,

 D D D

 8) D ;D 9) D,  10) D;D

 D D D

11) D,,, D1  12) D

 D, ,, D1  D, 

Rules 1, 2 and 3, by exploiting the essence of conjunctive bundles simplify

the model of the theorem.

Regulations 4 and 5, exploiting the disjunctive nature of the bunch, allow

conclusion of the theorem in the introduction of new additional formulas.

Rule 6 forms a method of reasoning "analysis" of the two possible cases.

When performing chip Г valid Ф or X and  is true if the conditions Г and Ф, as

40

well as the conditions Г and X, then  is always true when the chip Г that is set by

considering two possible cases:

A) the conditions D and Φ are satisfied;

B) the conditions T and X are satisfied.

Rule 7 formalizes reception equivalent reformulation of the theorem, which

allows one of the assumptions of Theorem placed in confinement in the form of

parcels.

Rule 8 - inference rule (department), modus ponens, introduced more

Aristotle. It indicates how one can be released from the parcel in custody.

Rule 9 - formalizes' argument to the contrary. "Let condition D and Φ can

be made simultaneously. Coming to a contradiction, we conclude that the

satisfiability of Γ always implies the validity of Φ.

Rule 10 - the rule "there is a conflict."

Rule 11 - a permutation of the premises does not affect the validity of the

conclusion.

Rule 12 - adding an extra parcel, we do not violate the truth of the conclusion

of the theorem.

Conclusions: The rules of inference 1 - 12 are functionally complete set of

rules, applying that to the initial axioms and theorems are proved, we can finally

get the proof of the true value of the conclusion of Theorem - purpose. However,

the mandatory requirements of the construction of evidence by inference rules 1 -

12 are as follows:

1) The initial premises must be only axioms and proved theorems

2) Using inference rules 1 - 12 (and only These rules) can be build

Compositions Axioms and Proven theorems, aiming at The end get

Conclusion Theorem goals. These two Demands Are consistent Stereotype

Classical Deductive reasoning, sometimes Called straight deduction, that is.

e. Reasoning from True Abstract premises (axioms and Proven theorems)

to True Specific conclusion. Consider Examples Non-compliance Of the

requirements:

а) All metals are elements;

б) Bronze – metal

Bronze – is an element

The conclusion is wrong: bronze is not an element. Here, the law of identity is

violated, which prohibits in the process of this conclusion in the same concept to

invest different content. In the premises of a) and b) The used metal is not in the

same sense. The sending and) metal - is the chemical element, and in sending b) -

metal - a substance used in the household, workplace.

Bacon and Hobbeswere Egyptians

Bacon and Hobbes were idealists

Some idealists were Egyptians

The conclusion in the conclusion is correct, however, both premises are false:

Bacon and Hobbes were English and materialists (and not idealists).

41

Practice has shown that the method of proving theorems by direct deduction is

extremely inefficient for the following reason. The structure of the compositions at

the intermediate steps of the transformations is accidental due to the fact that there

are no criteria and control actions that would purposefully orient these

compositions to a given goal. Therefore, the possibility of leaving aside the goal is

not excluded, which is often the case in practice. This implies a global conclusion

about the ineffectiveness of direct deduction in the proof of theorems. In this

connection, rules 1-12 are most often used only to reduce the structure of the

theorem to the canonical form.

3.3.5. Rules for the equivalent transformations of propositional calculus

formulas.

Equivalent transformations of formulas are necessary in order to reduce the

structure of the objective theorem to the canonical form (CF).CF is a reduced

normal form with clauses instead of disjunctive formulas and with some other

principal features that will be considered later.

If there are formulas in the premises and in the conclusion that do not meet

the specified requirements, then they must be correctly replaced by equivalent

formulas. This allows you to define rules for equivalent transformations (Table

3.4), where two new metacharacters are used.

 (envelope) - for Designations Universally valid Formulas

=(equality) - to indicate equality of formulas.

Table 3.4.

Equivalent transformation rules

№

rules

The rules of equivalent transformations of formulas

Propositional calculus

1 FG=(F G)  (G F)

2 FG   FG

 3 а. FGGF; б. FGGF

4 a. (FG) HF(GH); б. (FG)HF(GH)

5 а. F(GH)(FG)(FH); б. F(GH)(FG)(FH)

6 a. F   F; б. FF

7 a.F; б. F 

8 a.F F; б.F F

9  ( F)F

10 a. (F G) F  G; б. (FG) F G

Example: Based on Table. 3.4 we obtain a disjunctive form for the formula

(PQ) R

42

(PQ) R (PQ)R (the rule 2)

(P (Q))R (the rule 10а)

(PQ) R (the rule 9).

There are no other rules for equivalent transformations.

3.3.6. Algorithms that effectively recognize the validity of reasoning.

We will not consider the more than a thousand-year history of searching for

effective algorithms for proving theorems, and do a comparative analysis of all

known algorithms. It suffices to mention only those algorithms that have found

wide practical application in artificial intelligence.

The best known algorithm called the resolution method (resolutive output).

He originated in 1930 (in the works of Erbran), development and formation was

received in 1965 (in the works of Robinson), has been widely used since the

beginning of the 1970s (in the works of group A. Colmrauer, who applied it on the

basis of Prologue for proving theorems) And is used to the present.

There are many options for applying the resolution method, but it has the

highest efficiency under the following conditions:

1) when the target theorem is transformed into the opposite theorem;

2) when the target theorem is represented in the structure of the reduced

conjunctive normal form (PCNF) with the following principal feature: clauses in

PCNF are Horn clauses.

The PCNF satisfying the second requirement is called the canonical form,

having the form:

(P1 P2...)(q1q2...) ...(r1r2...) (С1С2 ...), (3.6)

where, Pi, qj, rk – - letters parcels and Сt – letters conclusion (the concept of

"opposite theorem" and "Horn clause" will be discussed later);

3) when in the proof of the objective theorem a deductive reasoning called

reverse deduction is used, which differs radically from the direct (classical)

deduction (the reverse deduction will be discussed later);

4) when the contradictoriness of the canonical form of the objective theorem

is proved, using the advantage of the PCNF that it becomes contradictory if at least

one of its clauses is false. This gives the right to consider the set of its clauses as

equivalent to the CPNF, and the verification of the contradictory nature of the

CPNF is reduced to verifying the truth of each of the clauses..

А)SUMMARY resolution method (rule 1).

The application of the method of resolutions is based on the fundamental

method of deduction: the set of formulas of deductive reasoning is impossible if

and only if the lie (A) is a logical consequence of its (this set).

The same property can be formulated differently:

Formula C is a logical consequence of the finite set of formulas E if and only

if Е   С is not feasible. This property of deductive reasoning, which follows from

its definition, is widely known as the deduction principle.

43

In the formal representation it looks like this:

 { H1 , H2...,Hn} C { H1 , H2, ...,Hn,  C } F , (3.7)

Where the metacharacter – is the logical sequence relation.

Hi(i= 1, n) – posting a deductive reasoning, C - Finally, in the argument.

On the basis of this property, the impossibility of the set E of disjunctions of

the canonical form of the objective theorem of deductive reasoning can be verified,

generating logical consequences from E until we obtain an empty clause.

For generating logical consequences we use the following scheme of

reasoning. Let A, B and X be formulas.

Assume that the two formulas (AX) and (B X) – true. If the formula X - is

also true,  X - F, and then we can conclude that B - true.

Conversely, if X is false, then we can conclude that A is false. Thus, in both

cases (A B) - true.

Typically obtain {AX , BX} AB , which can also be written as:

{XA ,XB}AB. (3.8)

In the particular case where X is a statement, A and B are clauses, this rule is

called the rule of resolutions.

B) Summary of the conversion target to the opposite Theorem Theorem (rule

2).

In classical mathematics, the concept of "the opposite theorem" means that

the conclusion of the opposite theorem is a negation of the conclusion of the

original theorem, and the premises of the opposite theorem are a negation of the

premises of the original theorem. For example, A B - startes

theorem, A B - opposite theorem. Since the negation of a universally valid

formula is a contradictory formula, then it is necessary to prove the contradiction,

and not the general validity of the opposite formula.

Thus, if the original target theorem has the form:

(D1 D2  ...Dn) C, (3.9)

where Di - the Horn clause, C is the conclusion of the theorem, then,

transforming formula (1) according to rule 2, we obtain a new formula without

implication:

( (D1D2 ...Dn) C). (3.10)

Converting formula (2) into the opposite formula, we obtain the PCNF:

(D1 D2... DnC) (3.11)

PCNF (3) is contradictory if a disjunct Di or C - is false.

From this follows a simple rule for checking the formula (3.11) for the

contradictoriness: it is necessary to check each element of the set of disjuncts of

the formula for its falsity. The highest effectiveness of such verification is provided

by the method of resolutions.

Thus, the transformation of the objective theorem into the opposite theorem is

necessary to obtain a pure PCNF, which needs to prove its inconsistency.

C) Horn clause and their purpose.

Horn's disjuncts are clauses that contain no more than one positive letter.

44

Clause ( p   q   r  S) is equivalent to the implication (p q r)  S.

A universally significant implication is a proved theorem. Therefore, Horn's

clauses are used in the canonical form of goal theorems as the equivalents of

premises, which are proven theorems. These parcels - theorems are

called rules. The rules are widely used in the automatic proof of theorems.

Clause, which reduces to a single positive letters, is a certain fact, that A

conclusion that does not depend on any premises. Facts are also widely used in the

proof of theorems.

In addition to the proven properties of Horn disjuncts, we note two more of

their qualities. The first is that when submitting packages exclusively by Horn's

clauses, the method of resolutions necessarily completes the proof, which may not

happen in the case of the non-Chernovsky representation of the premises, when the

method may become obsessed.

The second is that the computational complexity of the proof of the desired

theorem by the resolution method is minimal and does not exceed n2, where n is

the number of characters in the canonical form with allowance for repetitions.

D) The essence of the reverse deduction.

The main drawback of direct deduction is that there are no criteria and control

actions in it that would direct the trace of the proof to a given goal and would not

allow the proof to move away from the goal. In reverse deduction, these

shortcomings are eliminated.

Instead of starting from parcels, reverse deduction begins with a conclusion-

goal and, applying the sending rules (proved theorems), replaces the current goals

with new ones until these new goals turn out to be literary facts. Thus, the

procedure of proof becomes the controlled goal of inference at each step of

inferences, which will not allow it to go astray from the true path. The path itself

turns into a critical one, i.e. In the shortest (examples are already in the predicate

calculus, section 4).

E) Rules for proving theorems by the method of resolutions.

The initial object for the proof is the complete set of disjunctions belonging to

the canonical form of the target theorem. Denote these sets by the symbol D. We

order D by some criteria, thereby making it a numbered list, which we denote by S.

We prove the contradictoriness of the list S according to the following

recursive scheme.

We take the target disjunct, standing in the head of the S list, and compare it

with all subsequent, after it, clauses. At each step of matching the pairs of clauses,

we watch the appearance of the contra-oriented letter pair {A, A}. If it does not

exist, then proceed to the next clause without performing any actions. If a pair of

characters appears in the matching pair of clauses, then by deleting it and

generating the resolvent r, we write it to the end of the list S and assign it a number

one more than the number of the last element in the original list S. The resolvent r

is appended to the list, provided that It is not a tautology and is not absorbed by

any clause of the S list. In these cases, it is simply ignored.

45

After the first headword of the list S is mapped to all subsequent clauses of

the initial list S, and the calculated resolvents are put in the tail of the list S, the

pair matching procedure is repeated now for the new clause. This new clause

becomes the second number of the clause from the now expanded Sp list.

Recursively, procedures are repeated for deleting the counter pairs, generating

resolutions, assigning resolvents to the tail of the list by analogy with the previous

cycle. But the first element in the list Sp does not participate in the comparison, and

those resolvents that were generated in the first cycle are involved in this

comparison. Recursion with subsequent head elements continues until the current

list turns into an empty clause or a set of disparate clauses. If an empty clause

appears, then the theorem is proved, otherwise the conclusion is false.

An empty clause is denoted by Λ and means a lie, or a formula that is

identically zero.

The effectiveness of the proof depends on the criteria for ordering the list S.

The criteria for ordering lists are as follows:

1) first in the list S written clauses of the conclusion in any order;

2) in the second order facts are recorded in any order;

3) in the third order, the rule-clauses are written, but in the order

corresponding to the order of the facts, i.e. If the first place is the fact a1, then the

rule, including the fact a1 in the rules sublist, should also be in the first place.

Let us consider examples of proofs of theorems by the resolution method.

Example 1.

Let us prove the validity of rule 6; Rules for the analysis of possible cases (see

§ 3.2.4). It is required to prove:

{ h, h (pq) , pc , qc}c

The set of clauses, the unavailability of which should be established, is as

follows:

{ h ,  h p  q ,  p  c,  q  c ,  c}

By the method of resolutions, an empty clause is obtained as follows:

1)  c - denial of the conclusion

2) h - hypothesis

3)  h p q - hypothesis

4)  p c - hypothesis

5)  q c is the hypothesis

6)  p is the resolvent for 1 and 4

7)  q is the resolvent for 1 and 5

8) p  q is the resolvent for 2 and 3

9) q is the resolvent for 6 and 8

10) p is the resolvent for 7 and 8

11) Λ is the resolvent for 7 and 9.

Example 2

Let us prove the impossibility of the set.

{ p  q , p  r ,  q   r ,  p }

46

1) p q

2) pr

3)  q   r

4)  p

5) p   r is the resolvent for 1 and 3

6) q is the resolution for 1 and 4

7) p  q is the resolvent for 2 and 3

8) r is the resolvent for 2 and 4

9) p is the resolvent for 2 and 5

10)  r is the resolvent for 3 and 6

11)  q is the resolvent for 3 and 8

12) Λ is the resolvent for 4 and 9.

4. The logic of predicates

4.1 Introduction to the logic of predicates

The predicate (Latin Praedicatuum - said) is the predicate of affirmation,

that is, that which is expressed (affirmed or denied) in the judgment of the subject.

For example, in the statement "the rocket reached the moon" predicate - "reached

the moon." In the logic of utterances, an atom is viewed as an indivisible whole,

whose structure and composition are not amenable to external analysis in the

process of reasoning. However, there are many thoughts that can not be considered

in a simple way. Let us give some examples.

Example 1. In the language of propositional logic, one can not express the

fact that from the sentence "at least one student has solved all the control tasks" it

follows the conclusion "at least one student has solved each control problem."

Each of these statements is a statement, the implication of which is not a tautology.

Example 2. Let cba ,, the lines in the plane,  be the parallelism symbol of

the lines, then the conclusion of az : c follows from the premises ax: b and

by : c . However, in the logic of statements the theorem zyx  is not a

universally valid formula.

Example 3. :P Everyone is mortal

 :R Confucius is a man

 :Q Confucius is mortal.

The conclusion of the theorem R seems obvious, however, in the logic of

statements the formula RQP )(is not a tautology.

Contradictions in the examples resulted from the lack of the possibility to

penetrate into the internal structure of each of the utterances, to see in this structure

the relationship between the objects in each of them and, most importantly, to

display this relationship in the form of a formula.

To eliminate these shortcomings, the logic of predicates is intended, which

is an extension of the logic of propositions, i.e. Together with the concepts of the

47

logic of propositions, it contains a number of other concepts that enhance logical

thinking.

In the logic of predicates, in addition to the symbols of the logic of the

utterance, symbols of reflected objects, symbols of properties and characteristics of

these objects, functional symbols, as well as symbols of relations between objects,

their characteristics and properties are additionally introduced. In addition,

generalizing and concretizing expressions "all" and "some" (the so-called

quantifiers) are also introduced, allowing quantitatively to characterize the

relationships of objects, properties, characteristics and relationships. Addition of

the logic of statements with the specified symbols allows you to explicitly define

and manage objects, relations, properties and characteristics of objects, i.e. To

exercise external interference in the internal structure of utterances.

4.2. Alphabet of predicate logic.

The symbols (elements) of the alphabet are the predicate logic.

1) Constants (individual symbols). Usually these are object names, property

names, characteristics, property values or characteristics;

2) Symbols of objective variables. Usually, these are small letters x, y, z,

possibly with indices. The subject variable implies the presence of a domain of its

definition, i.e. A finite set of values of a given variable;

3) Functional symbols. Usually, these are small letters f, q, h or meaningful

words from lowercase letters, for example, plus, minus, multiply, father, mother,

daughter;

4) Predicate symbols. Usually, these are capital letters P, Q, R, or

meaningful words from capital letters such as MORE, LESS, LOVE, CONTAINS,

DEATH, MAN.

5) Bundles of the propositional calculus (),,,, 

6) Quantifiers of generality  (for all) and existence (exists).

In the language of predicates, the language of utterances is also contained,

since the predicate becomes a statement after the replacement of its objective

variables by their concrete values.

4.3. Rules for the formation of the language in the alphabet (syntax)

The alphabet of the logic of predicates allows us to define new concepts

necessary for the language of this logic.

The concept of "attitude". In the logic of predicates, the predicate expresses

the mutual relationship of the reflected objects with their properties,

characteristics, actions, the interrelation of objects, processes, actions. The number

of these items in one respect is not limited. The ratio can be two-seater (i.e.,

between two items), triple, and generally n-local. A true saying is an attitude.

Formally, the most common double relation (binary) is considered as the set of

pairs of elements and is denoted by the vector <x, y>, where x is called the first

48

element, and y is the second element of the coordinate of the pair. The vector

representation of n - dimensional relations is also widespread.

The term "term" is any constant, an objective variable and a function.

The term "function" symbolizes an action that assigns one defined constant

to the list of constants. Every function has a certain number of arguments. If the

function symbol f has n-arguments, then f - is called an n-local function symbol. A

constant can be treated as a function symbol without arguments.

The designation of the function is f (t1, t2, ... tn), where ti are terms; For n = 0,

the function is simply denoted by f.

Examples:

1) plus (t1, t2, t3) is t1 + t2 + t3 = t

2) plus (plus (t1, t2, t3, t4), minus (t5, tt6), multiply (t1, ..., tn))

3) father (father (Ivan)), which defines Ivan's grandfather.

A predicate is a generalization of the concept "utterance", consisting of:

1) in abstracting the objects involved in the interrelations of this statement;

2) in ensuring the possibility of external management of the internal

interrelations of this utterance with the help of quantifier symbols.

Every predicate has a certain number of arguments. If the predicate symbol

P has n - arguments, then it is called an n - local predicate symbol.

The predicate notation is P (t1, ..., tn), where ti are terms; For n = 0 the

predicate is denoted by P instead of P ().

The predicate symbolizes an action that assigns one of the truth values of I

or A to the correspondence of the list of constants. This means that the predicate

(as a propositional form) after replacing the arguments in it - subject variables with

concrete constants - turns into a statement that can be either true (I), Or false (L). A

true predicate is called an attitude.

Just like in the utterance, the predicate expresses the interrelationships

between different objects: between the reflected object and its properties,

characteristics and actions, between pairs or a large number of objects, processes,

phenomena.

A predicative symbol, as a rule, represents a predicate in a narrative sentence

about which one can say whether it is true or false. But very often the predicate

symbol reflects the semantics of the relationship of the objects to be reflected.

Examples:

1) LOVES (Ivan, Maria)

2) LOVES (father (Ivan), Ivan)

3) MORE (x, 3), where хR is the set of natural numbers.

4) MORE (plus (x, 1), x)

5) CAPITAL (x, y)

Where x {Moscow, Kiev, Minsk},

Y {Russia, Ukraine, Belarus}

6) CONTAIN (x, y, v)

Where x {carbon, sulfur},

Y {steel, silicon},

49

V {set of real numbers}

7) DELIVERY (x, y, z, i, j, k, l, m),

Where x | what? | {List of accessories},

Y | to whom? | {List of recipients},

Z | who? | {List of suppliers},

I | where? | { List of sources},

J | where? | {List of receivers},

K | how many? | {List of parts},

L | for the price? | {List of prices}?

M | transportation costs? | {List of transportation unit costs}

8) PROPERTIES AND CHARACTERISTICS (z, x1, x2, x3, y1, y2, y3),

Where is the object to be reflected? {List of objects to be reflected},

X1 | color? | {List of colors},

X2 | smell? | {List of smells},

X3 | taste? | {List of flavors},

Y1 | geometric form? | {List of geometric forms},

Y2 | hardness? | {List of hardness indicators},

Y3 | specific gravity? | {List of weights}.

The term "atom" is a predicate represented in the form of the formula P (t1,

t2, ..., tn).

The syntax of the predicate logic language is determined recursively by the

following rules.

1) The atom has a formula.

2) If F and G are formulas, then (F), (F G), (F G), (F G) and (F G)

are formulas.

3) If F is a formula, and x is a subject variable of F, then (x) F and (x) F

are formulas.

4) formulas are generated only by the final application of rules 1-3.

The scope of the quantifier is the formula to which it is applied.

For example, the scope of the existence quantifier in the

formula ()() x y LESS (,)x y is the formula LESS (,)x y , and the scope of the

universal quantifier is the formula ()y LESS (,)x y .

In the formula ()(() ()) x Q x R x , the scope of the universal quantifier is a

formula (() ())Q x R x .

The occurrence of a variable in a formula is said to be connected if and only

if it coincides with the entry into the quantifier complex or, or is in the range of

action of such a complex.

The occurrence of a variable in a formula is free if and only if it is not

bound.

For example, in the formula () (,)x P x y the variable is connected, because

Both occurrences are connected. However, the variable is free, because The only

entry is free.

50

The variable in the formula can be free and bound, for example, a variable

and free, and is related in the formula () (,) () ()  x P x y y Q y .

The concept of "the semantics of the quantifier of universality ." The

quantifier of universality establishes the rule for interpreting the formula F to

which it is applied. For each concrete value of the variable x (which the

quantifier binds in the formula F) belonging to the domain of the variable x

definition, the formula F, as a function of x, can take either only true values, or

only false ones, but the combination of and is unacceptable throughout the domain

of definition.

The concept of "semantics of the quantifier of existence ."

The existence quantifier establishes the rule for interpreting the formula F

to which it is applied. At least for one particular value of the variable x (which

binds in the formula F) belonging to the domain of definition x, the formula F, as

a function of x, necessarily takes a true (or false) value.

An example of reasoning, written in the language of predicate logic.

1) each person is mortal.

2) Socrates is a person, therefore Socrates is mortal.

" x is a person" denoted by a PERSON ()x ,

" x is mortal," through MORTAL ()x .

The first assertion is represented by the formula:

 ()(x PERSON ()X MORTAL))(x .

The statement "Socrates is a man" is the formula of the PERSON (Socrates),

and the statement "Socrates is mortal" is the formula MORTEN (Socrates).

In general, the argument is represented by the formula:

()(x PERSON ()X MORTAL ())x PERSON(Socrates)

MORTAL(Socrates).

4.4. Rules for assigning truth values to formulas (semantics of language).

To determine the interpretation for the predicate logic formula, you must

specify:

• the general domain set D for all object variable, including in the formula;

• the values of constants;

• truth-values of predicates, including in the formula;

• the values of functions, including in the formula.

Regard to the above mentioned :

1) to each constant is assigned an element from D;

2) to each n-place functional symbol is assigned the displaying fromD
n
to D

(note that D
n
={(, ,) / , , }x x x D x Dn n1 1  

3) to each n-place predicate symbol is assigned the displaying D
n
 into the set

of {T,F}.

For each interpretation of the formula from the domain D, the formula can be equal

to the truth-value T or F according to the following rules:

http://www.multitran.ru/c/m.exe?t=1558645_1_2&s1=%EF%F0%E5%E4%EC%E5%F2%ED%E0%FF%20%EF%E5%F0%E5%EC%E5%ED%ED%E0%FF
http://www.multitran.ru/c/m.exe?t=4625260_1_2&s1=%EF%F0%E8%20%FD%F2%EE%EC

51

1) If the values of formulas G and H are specified, then the truth-values of

formulas G,((),(),(),()G H G H G H G H   ) are obtained according to

the table 2 of propositional logic.

2) ()x G obtains the meaning of T, if G obtains the value T for every x of

D; otherwise it gets the value of F.

3) ()x Ggets the value T, if G gets the value T if only for one x from D;

otherwise it obtains the value T.

4) A formula, containing free variables cannot obtain a truth-value. In

predicate logic the following convention operates: the formula either

doesn’t contain free variables, or free variables are considered as

constants.

Example: let’s estimate the formulas

а) ()((()) (, ())) x P f x Q x f a

b) ()(() (,)) x P x Q x a

c) ()()(() (,))  x y P x Q x y

In the next interpretation I:

)1(,1)2(,2)1(,1},2,1{ PffaD F, P()2  T, Q(,)11 T,

Q(,)12  T, Q(,)2 1  F, Q(,)2 2 T.

For formula а) : if x  1 , then

))1(,1()2())(,1())1(())(,()((fQPafQfPafxQxfP

)2,1()2(QP TT = T ;

If x  2 , then

)1,2()1())1(,2()2(())(,()((QPfQfPafxQxfP

FF = F.

Because of in the domain there is a member, namely x=1, such that
P f x Q x f a(() (, ()) is true, then a) is true in the interpretation of I.

For formula b):

if x  1, then
P x Q x a P Q() (,) () (,)   1 11 FTF;

if x=2, then
P x Q x a P Q() (,) () (,)   2 2 1 TFF.

i.e. in the domain D doesn’t exist such member, that P x Q x a() (,) is true,

that formula b) will be false in the interpretation of I.

For formula c):

if x  1 , then )1()(PxP F. Consequently,),()(yxQxP  = F

for 1y and for 2y . Because of x exists, namely 1x , such that

),()(()(yxQxPy  is false , then formula с) is false in interpretation of I , i.e.

this formula is contradicted be interpretation of I.

52

Let’s define a number of the most important concepts for predicate logic.

Consistent (satisfiable) formula - the formula G is satisfiable (consistent) if

and only if exists such interpretation of I, that G has value T in interpretation of I.

If the formula G is И in interpretation of I, then there is model of the formula G,

and I satisfies to the formula G.

Inconsistent formula is when there is no interpretation, which satisfies G.

Valid formula is when there is no interpretation I, which does not satisfy G.

Logical corollary – formula G is a logical consequence of formulas

nFFF ,......,, 21 if and only if for each interpretation of I,

if nFFF 21 is true, then G is also true in the interpretation of I.

Notice: in that amount of domains of object variables isn’t limited in

predicate logic, i.e. it can be an infinite number, so there is an infinite number of

interpretations of the formula. Consequently, in contrast to propositional logic,

there is no possibility to prove validity or inconsistency of formula by determining

its truth-values with all possible interpretations, even in the simplest cases. That’s

why the proof of theorems (truth of reasoning) in the logic of predicates is carried

out only by the method of resolutions, but it has its own special aspects.

4.5. The rules of inference in predicate calculus.

Predicate logic is a section of symbolic logic that studies reasoning and

other language contexts, by taking into account the internal structure of the simple

proposition statements included in them, while the language expressions are

interpreted functionally, i.e. as signs of some functions or as argument signs of

these functions [4,5].

Predicate logic, as a propositional logic, is based on the deductive argument.

Therefore, the inference rules of propositional logic, given in paragraph 3.3.4.,

equally work on predicate logic.

However, they are supplemented by the rules of introduction and reducing of

the quantifiers of universality and existence. Let E is the set of formulas.

The rules for introducing quantifiers are following:

For quantifier)()(

)(

xAxE

xAE




,

For quantifier)()(

)(

xAxE

xAE




.

The removal rules of quantifiers are next:

for quantifier )(

)()(

xAE

xAxE




,

for quantifier )(

)()(

xAE

xAxE





.

53

As well as in propositional logic, in predicate logic the inference rules are

applied rarely. The reasons are the same and therefore they are not repeated here.

Basically, the inference rules are used for equivalent transformations of the

analytical representation of the theorems with purpose to bring them to the

canonical form.

4.6. Rules of the formulas’ equivalence transformations of the predicate

calculus.

In first order logic (predicate logic) the conditions for the effective application

of the resolution method for proving theorems are the same as in the propositional

logic. We recall, that one of these conditions is representing of the theorems in

RCNF. Rules of the formulas’ equivalence transformations, introduced in the logic

of propositions are equivalent for first-order logic also. However, existence in the

formulas of universal and existential quantifiers makes it difficult to apply the

theorems to RCNF.

In this regard the set of rules allowing to exclude the specified quantifiers

from the formulas is additionally introduced. These rules are divided up into two

groups:

1) Rules of formation of prenex normal forms (PNF);

2) Rules of formation of the skolem standard forms (SSF).

Let’s consider these forms and rules of their formation.

The formula F is in the prenex normal form (PNF), if and only if it’s of the

form of :

),())....()((2211 MxQxQxQ nn where each ixQ ii),(1,n is or

)(ix), or)(ix , and)(M is formula, which doesn't contain quantifiers.

))....()((2211 nnxQxQxQ is called prefix, and)(M is called matrix of

formula F .

For instance, in the formula))(),(()()()(zRyxQzyx  the

prefix))()((zyx  precedes the matrix)).(),((zRyxQ 

 Let’s consider the rules of formulas’ equivalence transformations, which contain

quantifiers.

 Let F is a formula, containing free variable x. We will designate this formula

][xF . Let G is a formula, which doesn’t contain variable x. Let Q is a quantifier

 or quantifier . In this case the rules are following:

1a));][)((][)(GxFQxGxFQx 

1b));][)((][)(GxFQxGxFQx 

2a) )((])[)((xxPx  ]);[xF

2b) )((])[)((xxFx  ]);[xF

3a)]);[][)((][)(][)((xHxFxxHxxFx 

54

3b)]);[][)((][)(][)((xHxFxxHxxFx 

4a) (]);[][)()((][)(][) 2121 zHxFzQxQxHxQxFxQ 

4b) (]);[][)()((][)(][) 4343 zHxFzQxQxHxQxFxQ 

It is always possible to transform any formula to PNF by using the rules of

the formulas’ equivalence transformations of propositional logic and the specified

eight rules. Let’s consider an example:

Let’s reduce the formula)()()()(xQxxPx  to PNF. Using the

elimination rule of implication linking we will receive:

)()()()(xQxxPx )()()()((xQxxPx  .

According to the rule 2a we have:

)()()()((xQxxPx )((x )()())(xQxxP  .

Finally, using the rule 3b we will receive:

)((x )()())(xQxxP )((x ))()(xQxP  .

The formula on the right part of the last ratio is presented in the prenex

normal form (PNF).

The skolem standard form – is PNF, in the prefix of which, the existential

quantifiers  are missed, and matrix M is RCNF. From this definition becomes

apparent, that skolem formula manipulations directed to excluding of the

existential quantifiers from the prenex normal forms. Let’s consider these

transformation rules.

Suppose the formula F is in the prenex normal form,

),())....()((2211 MxQxQxQ nn where M is RCNF. Let’s assume, that rQ is a

existential quantifier in the prefix nrxQxQxQ nn 1,))....()((2211 .

If any universal quantifier doesn’t stand in the prefix to the left of rQ , then

we choose the new constant c , which is different from other constants included in

M , we replace all rx , which are taken place in M , with a constant c and

eliminate)(rr xQ from a prefix. If smss QQQ ,....,, 21 is a list of all universal

quantifiers, which are faced to the left of rQ , 11 s , then we choose new m-

placed function symbol f , which is different from other function symbols, replace

all rx in M with),(,....,21 smss xxxf and eliminate)(rr xQ from a prefix.

Then we apply this process to all existential quantifiers in the prefix; the last

of the received formulas is SSF, skolem standard form. Constants and functions

used for variable change of existential quantifier are called skolem constants and

functions. Let’s consider an example.

We obtain SSF for formula:

).,,,,,())()()()()((wvuzyxPwvuzyx 

Here to the left of)(x there are no universal quantifiers, to the left of

)(u there are)(y and)(z , and to the left of)(w there are)(y ,)(z and

)(v .

55

In this way, we replace variable x with constant a , variable u with binary

function),(zyf , variable w with triadic function),,(vzyg . By so doing, after

the specified replacements and elimination of existential quantifierswe receive the

following skolem standard form for the assumption formula written above:

)).,,(,),,(,,,())()((vzygvzyfzyaPvzy 

The considered rules of equivalence transformations make it possible to

provide any theorem of predicate logic in the skolem standard form. Because of the

prefix in this form contains only universal quantifiers, it means, for example, for

,)(Gx that the form receives the value of T, ifG is true for each of x from the

domain D (and otherwise it gets the value of F), then it gets a right to consider G

as a simple expression and a universal quantifier, connecting x , just to eliminate

from the prefix. Equally, this conclusion also applies to the universal quantifiers ,

connecting other variables. Therefore for the theorem proving in p connecting

other variables. That's why, for proving the theorems in predicate logic we can use

only matrixes, that there are in the RCNF.

In predicate logic the following theorem is also proved.

Let S is a set of disjuncts which represent the RCNF in the skolem standard

form of a formula (theorem). Then the formula F is contradictory if and only if the

set S is contradictory.

The mechanism of application of a resolution method, which was used for the

theorem proving in propositional logic, can be also applied in predicate logic.

However, in this case, three vital question arises:

1) how to find the complementary pairs for disjuncts, containing variables?

2) how to calculate the resolvent (resolution) of disjuncts, containing

variables?

3) how to make the most of the reverse deduction in order to improve the

efficiency of the resolution method?

4) Responses to these questions introduce particular specificity to the

algorithm of a resolution method.

4.7. Features of the resolution method in proving theorems in predicate logic.

John Alan Robinson's idea (1965) – of the author of a resolution method [4], –

is that in predicate logic it would possible to work, directly with the disjuncts,

containing variables without resort to preliminary replacement of variables by

constants from the domain D .

This idea is provided with usage of substitution operation and unification. In order

to define a main point of these operations, we will introduce several new concepts

and definitions.

The term “expression”. By the expression is meant term, a set of terms, a set of

atoms, literal, disjunct, a set of disjuncts. When in the expression there are no

varieties, it’s called ground expression: ground atom, ground literal, ground

disjunct, ground term, which indicates the absence of variables in them.

https://www.multitran.ru/c/m.exe?t=6048983_1_2&s1=%EF%EE%FD%F2%EE%EC%F3
https://www.multitran.ru/c/m.exe?t=1636187_1_2&s1=%EE%EF%E5%F0%E0%F6%E8%FF%20%EF%EE%E4%F1%F2%E0%ED%EE%E2%EA%E8
https://www.multitran.ru/c/m.exe?t=866235_1_2&s1=%EE%EF%E5%F0%E0%F6%E8%FF%20%F3%ED%E8%F4%E8%EA%E0%F6%E8%E8

56

The term “substitution”. Let’s preliminary, as an example, clarify what’s the

problem of searching of complementary pairs in predicate logic. Let’s consider the

following disjuncts.

)())((:

)()(:

2

1

xRxfPC

xQxPC





There isn’t any literal in disjunction 1C yet, that is contrary to the some kind

of literal in disjunct 2C . However, substituting to 1C the function)(xf instead of

variable x , we will get:

)).(())((:*
1 xfQxfPC 

Now the literal))((xfP in the
*
1C is contrary to literal))((xfP in the 2C .

Consequently, it’s possible to get a resolvent (resolution) from
*
1C and 2C :

).())((:3 xRxfQC 

Definition 1: substitution is a finite set of the form }/,......,/{ 11 nn vtvt ,

where each iv is a variable, each it is a term, which is different from iv , and all iv

- are different.

Definition 2: Let  }/,......,/{ 11 nn vtvt is substitution, and E is an

expression. Then E is the expression, derived from E be replacing

simultaneously of all instances of variable iv),1(ni  in expression E with the

term it . E , is called as example E.

For example, let }/,/)(,/{ zcybfxa and).,,(zyxPE  in such case

substitution gets).),(,(cbfaPE 

The term “composition of substitutions”. Let the substitutions

}/,...,/{ 11 nn xtxt and }./,...,/{ 11 mm yuyu are given. Then the composition

and  is the substitution of  , that is obtained from the set

of }/,...,/,/,...,/{ 1111 mmnn yuyuxtxt  by the elimination of all the members

jj xt / , for which jj xt  and of all members ii yu / such that

},...,,{ 21 ni xxxy 

Let’s consider the example of identifying the composition of

substitutions }/,/)({ yzxyf and }/,/,/{ zyybxa .

In this case, }/,/,/,/,/)({ zyybxayyxbf  . However, by the

definition, yy / must be eliminated; xa / and yb / also must be eliminated,

because x and y are contained among the varieties of substitution . As a result

we obtain }./,/)({ zyxxf 

 The term “unifier for a set of expressions”. Substitution  is called as a

unifier for a set of expressions },...,,{ 21 nEEE if and only if

57

 nEEE ...21 . It’s considered, that a set of expressions is unifiable, if

there is an unifier for it.

Unifier  for the set of expression },...,,{ 21 nEEE is called as the most

general unifier (MGU) if and only if for each unifier  for this set there is such

substitution  , that   . Let, for example, there is a set of expressions. in

this case }/)(,/,/{ uagyaxz is the most general unifier for W , and

}/)(,/,/,/{ uagzbyaxb is the most general unifier.

Let’s describe step-by-step the unification algorithm, which finds MGU, if the

set },...,,{ 21 kEEEE  is unifiable and reports about a failure, and if this is not

the case [7]:

1) to set up EEk k  ,0 and  k , where  is an empty

substitution , which not contains the members. Pass on to the step 2.

2) If kE

is not a singleton set, then go to step 3. Otherwise, put k  and

finish the work.

3) Each of the letters in kE

is treated as a string of characters and the first

subexpressions of letters, not being the same for all elements kE , i.e. a

so-called set of mismatches of the type },{ kk tx . If in this set kx –

variable, and kt –term, different from kx , then go to step 4. Otherwise,

end the work with the conclusion: E do not unify.

4) Let }/{1 kkkk xt  и }./{1 kkkk xtEE 

5) Install 1:  kk and go to step 2.

Consider the operation of the algorithm for finding LEU for the

set)))}.((,,()),(),(,({ ydfxaPxfzgyPE  Steps are as follows:

1)  0 и .0 EE 

2) Since 0E is not a singleton set, then go to step 3.

3) Multiple disagreements),,{ ay i.e. substitution }./{ ya

4)
)))}((,,()),(),(,({}/{

}./{}/{}/{

01

01

agfxaPxfzgaPyaEE

yayaya



  

5) Since the set 1E again not singleton, the set of discrepancies will

be },),({ xzg i.e. substitution }/)({ xzg .

6)
)))}.((),(,())),((),(,({}/)({

}./)(,/{}/)({

12

12

agfzgaPzgfzgaPxzgEE

xzgyaxzg



 

7) Wehave },{ az , i.e. }/{ za .

8)

)))}.((),(,({

)))}((),(,())),((),(,({}/{

}/,/)(,/{}/{

23

23

agfagaP

agfagaPagfagaPzaEE

zaxagyaza





 

https://www.multitran.ru/c/m.exe?t=1039529_1_2&s1=%ED%E0%E8%E1%EE%EB%E5%E5%20%EE%E1%F9%E8%E9%20%F3%ED%E8%F4%E8%EA%E0%F2%EE%F0
https://www.multitran.ru/c/m.exe?t=1039529_1_2&s1=%ED%E0%E8%E1%EE%EB%E5%E5%20%EE%E1%F9%E8%E9%20%F3%ED%E8%F4%E8%EA%E0%F2%EE%F0

58

Since as ingleton set received, then the desired most common

unifier }/,/)(,/{3 zaxagya .

It can be shown that the unification of algorithm always ends in step 2, if the

set E unifiable, and in step 3 –otherwise.

The notion of «splicing disjunct C ». If two or more characters (with the same

sign) disjunct C have the most common unifier , then C is called gluingC .

If C –single clause, then the gluing called a single gluing.

Example: Let)).(())(()(yfQyfPxPC 

Then the first and second letters have the most common

unifier }/)({ xyf . Consequently,))(())((yFQyfPC  is a gluing

ofC .

The concept of a «binary resolution». Let 1C and 2C - two disjunct (called

disjuncts-sentences), which have no common variables. Suppose also that 1l and

2l – two letters respectively in 1C and 2C . If 1l and  2l have the most common

unifier , then disjunct)()(2211  lClC  is called a binary resolution

1C and 2C , and letters 1l and 2l are called cut letters.

Example: Let)()(1 xQxPC  and).()(2 xRaPC  Since the

variable x is included in 1C and 2C , then we replace the variable x in 2C on y , i.e.

).()(2 yRaPC  Select)(1 xPl  and).(2 aPl  As)(2 aPl  , then 1l

and 2l have the most common unifier }/{ xa .

Consequently,

)}(),(({)})({)}(),(({)()(2211 yRaPaPaQaPlClC 

).()()}(),({)}({)}({)})({ yRaQyRaQyRaQaP 

In this way,)()(yRaQ  –binary resolution 1C and 2C , and)(xP and

)(aP – are cut letters.

The concept of «first-order resolution of logic» Resolver of disjunct-

sentence 1C and 2C is one of the following resolutions:

1) binary resolution 1C and 2C ;

2) binary resolution 1C and gluing ;2C

3) binary resolution 2C and gluing ;1C

4) binary resolution of gluing 1C and gluing .2C

Example: Let)()))(((1 bRagfPC  ,

).())(()(2 yQyfPxPC 

Then gluing of disjunct 2C is)())(('
22 yQyfPCC  and resolution

for 1C and
'
2C is)).(()(agQbRC 

59

4.8. Proof theory methods in predicate logic resolutions

There are no clear rules and recommendations, how to present in the form of

the formula of the logic of predicates this or that reasoning. All this is done

intuitively. In addition, intuition is in the proportion to the mastery in the proof

theorems by method of resolutions. Therefore, only through practice and skills can

you acquire the necessary intuition for modeling reasoning.

To some extent, the starting intuition can be obtained by reading the examples

given below, considered in various works [5,7,8,12,13]. In the first two examples,

detailed explanations are given, in the remaining ones, only as needed.

Example 1. Some patients like their doctors. No patient likes a witch doctor.

Consequently, no doctor is a witch doctor.

We introduce the following notation for predicate symbols: P –patient, D –

doctor, Z –witch doctor, L–likes.

Then the predicates listed below will denote:

)(xP — x is patient;

)(xD — x is doctor;

)(xZ — x is witch doctor;

),(yxL — x likes y .

The facts and conclusion given in the argument can be represented by the

following formulas:

Fact 1))).,()()(()()((:1 yxLyDyxPxF 

Fact 2))).,()()(()()((:2 yxLyZyxPxF 

Conclusion)).()()((: xZxDxG 

In accordance with the conditions for the effective proof of theorems by the

method of resolutions, we transform the facts 1F , 2F and denying the

conclusionG By the rules of equivalent transformations in the following disjuncts:









),()()2(

)()1(

yaLyD

aP

),()()()3(yxLyZxP  from 2F









)()5(

)()4(

bZ

bD

Performing the unification and gluing, we get:

),()6(baL resolver (2) и (4).

),()()7(yaLyZ  resolver (1) и (3).

from 1F

from G

Here is a rule of the existential

quantifier elimination and exclusion

rule implication ligament.

Here there is a rule 2аfrom

2.3.6.1 , The rule of exclusion of the

existence quantifier and the rule of

exclusion of the implication bundle.

60

),()8(baL resolver (5) и (7).

)9(resolver (6) и (8).

The theorem is proved.

Example 2. All people are animals. Therefore, the human head is the animal's

head.

Suppose we have the following predicates:

)(xL — x There is a person;

)(xA — x There is an animal;

),(yxG — x It is a head y .

It is necessary to prove the theorem:

))()()((yAyLy 

))),()()(()),()()()(((zxGzAzyxGyLyx 

The transformation of the numerator (the premise theorem) gives a clause:

).()()1(yAyL 

To obtain the remaining clauses, we transform the negation of the

denominator (theorem-conclusion) as follows:

))),()()(()),()()()(((zxGzAzyxGyLyx  

 ))),()()(()),()()()(((zxGzAzyxGyLyx

 ))),()()(()),()()()(((zxGzAzyxGyLyx

)),()(),()()()()((zxGzAyxGyLyyx

)),()(),()()()()((yxGzAyxGyLzyx  .

Thus,).()2(bL

).,()3(baG

).,()()4(zaGzA 
Applying the method of resolutions, we get:

)()5(bL from (1) and (2).

),()6(baG from (4) and (5).

)7(from (3) and (6).

The theorem is proved.

Example 3. Parcels: Customs officials search everyone who enters the

country, except for high-ranking officials. Some people who facilitate drug

tracking enter the country and are searched only by people who also facilitate the

transport of drugs. None of the dignitaries promoted the passage of drugs.

Conclusion: some of the customs officers facilitated the transport of drugs.

We introduce the following notation for predicates:

:)(xE x entered the country;

:)(xV x was a high-ranking official;

:),(yxS y searched x ;

61

:)(xC x was one of the custom’s representative;

:)(xP x facilitated the transport of drugs.

Parcels are represented by the following formulas:

,)))(),()(()()()((yCyxSyxVxEx 

,))(),()(()()()((yPyxSyxExPx 

,)()()((xVxPx 

And the conclusion of the theorem by the formula:

.)()()((xCxPx 
Converting parcels into clauses, we get:

.))(,()()()1(xfxSxVxE 

.))(()()()2(xfCxVxE 

.)()3(aP

.)()4(aE

.)(),()5(yPyaS 

.)()()6(xVxP 

Negation of the conclusion:

.)()()7(xCxP 

The proof by the resolution method is presented as follows:

)()8(aV from (3) and (6).

))(()()9(afCaV  from (2) and (4).

))(()10(afC from (8) and (9).

))(,()()11(afaSaV  from (1) and (4).

))(,()12(afaS from (8) and (11).

))(()13(afP from (12) and (5).

))(()14(afC from (7) and (13).

)15(from (10) and (14).

The conclusion is proved.

Example 4. There are students who love all teachers. None of the students

love ignorant people. Therefore, none of the teachers is ignorant.

Denote by:

)(xC — x there is a student;

)(xP — x there is a teacher;

)(xH — x there is an ignorant person;

),(yxL — x loves y .

On the language of predicate logic after reduction to standard form it is

written as follows:

))),()()(()()((yxLyPyxCx 

))),()()(()()((yxLyHyxCx 

))()()((yHyPy 

62

Converting two theorems-parcel of the numerator gives the following clauses:

)()1(aC .

).,()()2(yaLyP 

).,()()()3(yxLyHxC 

After transforming the negation of the conclusion from the denominator, we

get:

)),()()(()()()((yHyPyyHyPy  that gives clauses:

).()5(

).()4(

bH

bP

By unification and gluing, we get:

),()6(baL from (2) and (4).

),()()7(yaLyH  from (1) and (3).

),()8(baL from (5) and (7).

)9(from (6) and (8).

The theorem is proved.

Example 5.The problem of the monkey and banana.

The monkey wants to eat a banana, suspended from the ceiling of the room.

The growth of the monkey is not enough to reach the banana. However, it can walk

around the room, move a chair in the same room, climb onto a chair and get a

banana. Show the order of the monkey's actions, in which it will get a banana.

Here are predicates:

),,,(szyxP means that in the state of s the monkey is at the point - x, the

banana is at the point - y, and the chair is at the point – z;

)(sR means that in the state of s, the monkey can get a banana.

The functions, involved in the task description, are given as follows:

To walk),,(szy - is a condition that is obtained if firstly, the monkey was in

a state of s and moved from point x to point z;

To wear),,(szy - is a condition that is obtained if firstly, the monkey was in

a state s and moved from point y to point z, carrying a chair;

To climb)(s - is a condition, that is obtained if the monkey was in a state s

and climbed onto a chair.

We assume that initially the monkey was at the point a, the banana -at the

point b, the chair- at the point c and the monkey was in a state of 1s .

Thus, we have the following axioms:

,,,(),,,()1(zyzPszyxP  to go)).,,(szx
,,,(),,,()2(yyyPsxyxP  wear)).,,(syx

(),,,()3(RsbbbP  climb)).(s

).,,,()4(1scbaP

63

Here disjunction (1) means that in any state the monkey can go from point x

to point .z

Disjunction (2) means. What if the monkey is near a chair that stands at a

point x then it can move it to any point y .

Disjunct (3) means that if the chair and monkey are under a banana, then the

monkey can climb on a chair and get a banana.

Disjunction 4) describes the initial situation.

The conclusion of the theorem corresponds to a disjunct

)()5(sR answer)(s .

In this clause the predicate response requires setting the order of the monkey's

actions, corresponding to the state of the monkey with the banana.

Using clauses (1) - (5), we derive the following resolutions:

),,,()6(sbbbP answer (climb))(s from (5) and (3).

),,,()7(sxbxP answer (climb (wear)),,(sbx from (6) and (2).

),,,()8(szbxP answer (climb (wear ,,bz walk))))),,(szx from (7) and

(1).

)9(answer (climb (wear ,,(bc walk)))),,(1sca from (8) and (4).

Disjunct (9) gives the answer. It can be interpreted as performing the

following actions (starting with the innermost function in the clause (9) and

moving outward):

1. The monkey comes from the pointa to point .c

2. The monkey comes from the pointc to point ,b carrying a chair.

3. The monkey climbs into a chair.

After these actions, the monkey takes out a banana.

4.9. Implementation of the resolution method in Prologue

The highest degree of understanding of the algorithm for proving a theorem

can be achieved when the description of each step of the algorithm is illustrated by

the corresponding actions on a concrete example, the completeness of which

allows us to reflect all its features realized in some formal language. To such

languages is the declarative language Prolog [10].

Let us first consider the algorithm for the proof of theorems by the method of

resolutions using the example of the known problem of Socrates mortality [14].

As a machine implementation, we use one of the versions of Prologue [11, 15,

16], in which predicates can be written in Russian.

The text of the prologue program is as follows:

domains% Domain name

name=symbol

predicates% Predicate section

 mortal(name)

clauses% Section of facts and rules

 human(Socrat). %Fact about a man named Socrates

64

% Contract is a constant

mortal(X):— human(X). % The rule "every person is mortal"

The program writes a comment after the% sign to the end of the line. Pay

attention to the mandatory presence of a point at the end of each fact and rule.

Finally, about the rules in the prolog programs. Each rule consists of the head (the

left half of the rule) in which the predicate to be determined is placed, and the body

(the right half of the rule) in which the conditional part of the rule is placed.

The head and body rules in the program are related by the sign (-), which

determines the truth of the statement when the condition is met. This sign in the

program can be replaced by the English word if (if).

In the rules, the comma (,) matches the sign of the logical AND operation,

and the semicolon (;) is the OR sign. In the Prologue language, only Horn's

expressions are limited, and only the method of resolutions is applied to them.

Recall that the expression Horn looks like:

,...21 mn DDDD 

where iD - literals, Conclusion of the theorem

Using a bunch of implication , The theorem can be rewritten as follows:

,...21 mn DDDD 

That in the syntax of the system Prolog is written in the form:

.,....,,: 21 nm DDDD 

In the above Prolog program, only parcels (parcels-facts and parcels-rules) are

presented and so far there are no conclusions of the theorem. The conclusions of

the theorem are formulated by indicating a certain goal.

After entering the program in the prolog system, the latter can be asked

questions about the relationships described in the program. The question posed to

the system is for her the goal, for which the system uses the information of the

clauses section. Usually the system suggests entering the target from the keyboard

right after the invitation, for example, in the form? - (or Purpose:). In some prolog

systems this is an example of the so-called external goal.

The question of whether Socrates is mortal is introduced as the conclusion of

the theorem:

? - Mortal (Socrat).

The prolog-system will answer yes to this question.

In prolog systems with an internal goal in the program, it suffices to write

The goal is mortal (Socrates).

Consider how the system receives this response. If the conclusion of the

theorem can not use only the premisses-facts, then the algorithm is sent to the

premise-rules (Horn's clauses) and replaces the current goals with new ones until

these new goals turn out to be simple premises-facts. Since the fact is mortal

(Socrates) is absent, the first (and only) suitable rule is

65

Mortal (X): - human (X).

This rule implements the attitude of mortal. The predicative rule symbol is

comparable with the predicate symbol of the conclusion of the theorem.

Since the conclusion is mortal (acrit), the value of the variable X should be

assigned as follows:

X = contract

There was a unification of the predicate mortal (X) of the rule and mortal

(acrit) of the conclusion of the theorem. Then the original goal is mortal (Socrat)

replaced by the new goal man (Socrates), since this predicate is the resolvent of the

original conclusion of the theorem and the head of the rule after their unification.

 This goal is immediately achieved, since it occurs in the premise of the

theorem as a fact. This step completes the calculation, since a new resolvent is

obtained-an empty clause-gluing the negation of the conclusion of the theorem (as

required by the resolution method) and the current goal.

All steps to achieve the goal of death (Socrates) are presented in Figure 4.1 as

a tree of logical inference. The tree tops correspond to the goals or lists of goals

that you want to achieve.

The arcs between the vertices correspond to the use of alternative program

sentences that convert a target corresponding to one vertex to a target

corresponding to another vertex. The root (upper) goal is reached when there is a

path from the root of the tree (the top vertex) to the leaf marked with the "yes"

mark. The leaf is marked with a "yes" mark if it is a fact-parcel.

In the second example, we consider the problem of family relations [8, 9].

Figure 4.2 shows the relationship of parents and children in some family, and for

the reason that in the Prolog language the constants begin with a lowercase letter,

all the names in the figure are represented.

The fact that Tom is Bob's parent can be written on Prolog like this:

the parent (tom, bob).

Here we have chosen the parent as a relation (predicate), and the tom and the

bob are the arguments of this relation.

In the Prolog-program in the domains section, arguments of the parent

predicate and described below ancestor predicate are described as atoms of a

symbolic type (symbol).

66

Figure 4.1. Logical output tree

In the clauses section of the program, all available facts are written directly

on the tree of family relations. Here are two rules for determining the predicate

ancestor, the explanations of which will be given later.

Figure 4.2. Tree of the family relationships.

Prolog program text:

domains % Domain Name

name = symbol

predicates % Predicate section

parent (name, name)

ancestor (name, name)

clauses % Section of facts and rules

parent (pam, bob).

parent (tom, bob).

parent (tom, liz).

mortal(Socrat)

human(X)

 Human(Socrat)

By rule nb.1

(yes)

From the fact of man
(Socrates)

X=Socrat

pa
m

jim

tom

bob liz

enn
pat

67

parent (bob, enn).

parent (bob, pat).

parent (pat, jim).

ancestor (X, Z): - % Rule pr1: X - ancestor of the descendant Z

parent (X, Z).

ancestor (X, Z): - % Rule pr2: X - ancestor of the descendant Z

parent (X, Y),

ancestor (Y, Z).

If in the problem some relations can be defined in several ways, then there

will be several rules. So, in this program the ancestor relation is defined by two

rules. The first rule determines the immediate (immediate) ancestors, and the

second - the remote ones. Some X is the ancestor of some Z in the case when

between X and Z there is a chain of people related to each other by the parent-child

relationship, as shown in Fig. 4.3. In our example in Fig. 4.2 Tom is the closest

ancestor of Liz and the distant ancestor of Jim.

The first rule is easily constructed from Fig.4.3a:

For all X and Z

X is the ancestor of Z, if

X is the parent of Z,

Which corresponds to the recording program:

ancestor (X, Z): - parent (X, Z).

The second rule for the ancestor predicate is more complicated, since

building a chain of parent relations (see figure 4.3b) can cause some difficulties. If

the length of the chain is strictly fixed, then you can build a rule by writing in the

body through commas the entire sequence of relations, for example, like this:

Figure 4.3. Example of ancestor relationship:

(a) X is the nearest ancestor of Z; (b) X is a remote ancestor of Z;

(c) the recursive formulation of the ancestor relationship.

ancestor

X X X

Z

Z

…

parent parent

parent

parent

parent

parent

…

ancestor

ancestor

ancestor
(a)

(b) (c)

Z

68

ancestor (X, Z): - parent (X, Y1),

parent (Y1, Y2),

parent (Y2, Y3),

parent (Y3, Z).

This rule can be used only for a given chain and no more. There is, however,

a correct and elegant formulation of the ancestor relationship that will work for the

ancestors of an arbitrary remoteness. The key idea here is to determine the ancestor

relationship through itself. Such a definition is called recursive. Fig.4.3c illustrates

this idea.

For all X and Y,

X is the ancestor of Z, if

There exists a Y such that

(1) X is the parent of Y and

(2) Y is the ancestor of Z.

Prolog sentence, having the same meaning, is written like this:

ancestor (X, Z): -

parent (X, Y),

ancestor (Y, Z).

The question of whether Bob is a parent of the Pat should be introduced like

this:

? - parent (bob, pat).

Having found the corresponding fact in the program, the system will respond

Yes

For the question

? - the parent (liz, pat) the system will respond

No ,

Because the program nothing says about whether Liz is Pat's parent.

As already indicated, the goal for the program can be internal. Then it is indicated

in the goal section, which is written before (or after) the section clauses and

necessarily ends with a dot. For example, the last question for a system with an

internal purpose will be written in the program as follows:

goal

parent (liz, pat).

The system is able to answer even more interesting questions. For example,

"who is the parent of Liz?":

? - parent (X, liz).

The system will not simply answer "yes" or "no" to this question. She will

tell us what the value of X (previously unknown) should be, so that the above

statement is true, and also indicate the number of solutions. Therefore, we get the

answer:

69

X = tom 1 is resolved.

The question "who is Bob's children?" you can pass system in this form:

? —parent (Bob, X).

In this case, the response is received:

X = Ann

X = Pat 2 solved.

The program can set and more complex questions, such as Who is the parent

of the parent Jim? ". Because there is no type predicate roditel'_roditelja, the

question can be composed of two simple questions using a bundle, like so:

? —parent (X, Y), parent (Y, Jim).

The answer is: X = Bob

Y = Pat 1 resolved.

This is an example of a compound request.

Let's consider job of the algorithm theorems to be proved in the prologue,

for example, if you want to try to achieve the goal:

?—ancestor (Tom, Pat).

First, the algorithm tries to find a parcel in the theorem from which should

be immediately referred to the conclusion. Obviously, the only suitable

assumptions for this rules are rules of WP1 and WP2. These two rules implement

relevant ancestor. Predicate symbols these rules compatible with the predicate

symbol of the conclusion of the theorem. First, the algorithm tries sending rule

WP1, standing in the program first:

ancestor (X, Z):—parent (X, Z). % WP1

Since the conclusion of the–ancestor (Tom, Pat), the variables must be

attributed as follows:

X = Tom, Z = Pat

The unification took place {Tom /X, Pat/Y} predicates ancestor(X, Z) rules

of WP1 and ancestor (Tom, Pat) conclusion of the theorem. Then the original

purpose of ancestor (Tom, Pat) is replaced with a new order to parent (Tom, Pat),

because the predicate is rezol'ventoj the original conclusion of theorem and head

WP1 rules after their unification.

The assumptions of the theorem there is no rule predicate symbol which was

commensurate with the new goal of parent (Tom, Pat), so this goal proves to be

unsuccessful. This suggests that resolvent –empty disjunct(() (withdraw from

the source of a multitude of disjuncts cannot be the reasoning for this option. Now

the algorithm makes a return to the original purpose, i.e. to the conclusion of the

theorem to try the second alternative top-level target output ancestor (Tom, Pat).

Thus, try rule WP2

ancestor (X, Z):—

parent (X, Y),

ancestor (Y, Z).

As before, the variables have been attributed to the value X = Tom, Z = Pat.

At this point, the variable Y is not yet attributed to any value. The original purpose

of ancestor (Tom, Pat) is replaced by the two goals of a parent (Tom, Y) and the

70

ancestor of (Y, Pat), which are rezol'ventoj WP2 and original purpose–the

conclusion of the theorem, received after the unification of comparable predicates.

Having now two goals, achieve them algorithm is trying to, in the order in

which they are written. To achieve the first of these is easy, because it corresponds

to the fact of parcels. Having completed the unification of predicate parent (Tom,

Y) and predicate parent (Tom, Bob), which stands in the premises first, the

algorithm of variable Y assigns the value Bob. Thus the first goal and the second

turns to the purpose of ancestor (Bob, Pat).

To achieve this goal, once again the rule is applied WP1. Note that this

(second) application of rule WP1 has nothing to do with its first use. Therefore, the

algorithm uses a new set of variables rules whenever it applies. To specify this, we

rename the variables for the new WP1 rule its application as follows:

ancestor (X',Z’): —parent (X’,Z’).

The head of this rule matches the predicate symbol of current target

ancestor (Bob, Pat), so the unification {Bob/X’ Pat/Z’). The current target is

replaced with a view to the parent (Bob, Pat)-new resolvent. Such an objective is

achieved immediately, as occurs in the assumptions of the theorem as a fact. This

step completes the calculation, because new clause-empty resolvent is gluing the

negation of the conclusion of the theorem (as required by resolutions method) and

the current target.

All the steps to achieve the goal of ancestor (Tom, Pat) are presented in

Figure 4.4 as tree inference. As already pointed out, when considering Figure 4.1,

tops the tree correspond to the goals or purposes of lists that you want to achieve.

Figure 4.4. Tree inference in query ancestor (Tom, Pat).

ancestor (Tom, Pat)

parent (Tom, Pat) parent (Tom, Y)

ancestor (Y, Pat)

ancestor (Bob, Pat)

parent (Bob, Pat)

By the rule WP1 By the rule WP2

Y=Bob From the fact parent(Tom,Bob)

By the rule WP1

(yes)

(no)

71

5. Fuzzy knowledge

When attempting to formalize human knowledge researchers soon

encountered a problem which has curtailed the use of traditional mathematical

device to describe them. There is a whole class descriptions, operating quality

characteristics of objects (a lot, a little, strong, very strong, etc.). These

characteristics are usually blurred and cannot be uniquely interpreted, but contain

sensitive information (for example, "one of the possible signs of flu is high

temperature ").

In addition, the tasks performed by intelligent systems, often have to use

implicit knowledge, which cannot be interpreted as completely true or False

(Boolean true/false or 1/0). There are knowledge, the correctness of which is

expressed in some intermediate figure such as 0.4.

How, without destroying the property of fuzziness and imprecision, submit

such knowledge formally? To resolve such issues, American mathematician Lotfi

Zadeh proposed formal apparatus of fuzzy (fuzzy) algebra and fuzzy logic [17].

Later this area is widely [18, 19] and marked the beginning of one of the branches

of S under the name Soft Computing (soft computer).

L. Zadeh has introduced one of the major concepts in fuzzy logic-the

concept of a linguistic variable.

Linguistic variable (LV) is a variable whose value is determined by a set of

verbal (i.e. verbal) characteristics of some property. For example, the LP "growth"

is defined through a set of {dwarf, low, medium, high, very high}.

Fuzzy system based on product type rules, but as a premise and conclusion

rule used linguistic variables, thus avoiding the limitations inherent in the classic

produkcionnym rules.

5.1. The basic concepts of the theory of fuzzy sets

The exact values of the input variables are converted to the value of

linguistic variables through the application of certain provisions of the theory of

fuzzy sets, namely, using certain membership functions.

Values of linguistic variable defines as fuzzy sets (FS), which in turn

determine on a certain basis a basic set or a set of a numerical scale having a

dimension. Each LV value is defined as a fuzzy set (for example, FS "low

growth").

Specific definition of the degree of belonging is possible only when working

with experts. When discussing the issue of FS in a linguistic strategy, it is

interesting to estimate how much all FS is to some extent necessary for a

sufficiently accurate representation of the physical quantity. At the present time,

there is an opinion that for many applications, 3-7 FS per variable is sufficient. The

minimum value of the number of FS is completely justified. This definition

contains two extremes (minimum and maximum) and mean. For most applications,

72

this is quite enough. With regard to the number of FS, it is not limited and does not

depend on the applications and the required degree of description of the system.

The number 7 is due to the capacity of short-term human memory, in which,

according to modern ideas, up to seven pieces of information can be stored.

The fuzzy set is defined through some base scale B and against FS - μ (xi),

xi B, which takes values at the level [0 ... 1]. Thus, a fuzzy set B is a collection of

pairs of the form (xi, μ (xi)), where xi є B. Often there is such a record:

()

1

i

i

n
x

x

i

B






Where xi.- i-e value of the base scale.

The form of the membership function can be absolutely arbitrary. Now the notion

of the so-called basic membership functions has been formed (see Figure 5.1).

Figure 5.1. Standard membership functions

You can choose the basic rules for defining functions and give them some

kind of algorithm for formalizing tasks in terms of fuzzy logic.

Step 1. For each term taken in linguistic periodicals, it is necessary to find a

numerical value or a range of values that best describe the term. Since this value or

value is the "prototype" of our term, a single value of the membership function is

selected for them.

Step 2. After determining the indicators with a single identity, you need to

determine the value of the parameter with the membership "0" to this term. This

value can be selected as a value with membership "1" to another term from the

number defined earlier.

Step 3. After determining the extreme values, you need to determine the

intermediate values. For them, n- or h-functions are chosen from the number of

standard functions.

Step 4. For the exponents corresponding to the extreme values of the

parameter, the S- or Z-function accessories are selected.

Standard membership functions are easily applicable to most problems.

However, if you want to solve a specific problem, you can choose a more suitable

form.

 Z - function П - function Л - function S - function

73

Recognition that this particular value depends on the importance of FS. This

function should not be confused with a probability that is objective and subordinate

to other mathematical dependencies. For example, for a two-way fuzzy set, the

"high" LV for "car price" in conditional units can differ materially from their social

and financial situation.

"High_car_price_1" = {50000/1 + 25000 / 0,8 + 10,000 / 0,6 + 5000 / 0,4}.

"High_car_price_2" = {25000/1 + 10000 / 0,8 + 5000 / 0,7 + 3000 / 0,4}

Let's consider an example.

Let us face the task of interpreting the values of LV "age", such as "young"

age, "advanced" age or "transitional" age. We define "age" as LV (Fig. 5.2). Then

the "young," "advanced," "transitional" will be the values of this linguistic

variable. More fully, the basic set of LV values "age" is as follows:

B = {infant, child, young, young, mature, advanced, senile}.

Figure 5.2. The linguistic variable "age" and fuzzy sets that determine its

value

For LV "age" the basic scale is a numerical scale from 0 to 120, indicating

the number of lived years, namely the function determines how much we are

confident that this number of years can be attributed to this age category. In Fig.

5.3 reflects how the same values can scale can participate in the definition of

different FS.

Figure 5.3. Formation of fuzzy sets for the basic set of LV values "age"

For example, to determine the value of FS "infant age" can be as follows:

Infantile Age Old

Children's
Young

Advanced

Juvenile Mature

74

Figure 5.4 illustrates the estimate of FS by some average expert who

performs up to six months with a high degree of reliance on infants (μ = 1).

Children under four years of age are considered the same, but with a level of

confidence (0.5 <μ<0.9), and within 10 years the child can be considered an infant.

Thus, fuzzy sets allow to take into account subjective opinions of separate

individuals (experts) when defining concepts.

Figure 5.4 Chart of belonging function

to the fuzzy set "infantile age"

5. 2. Operations with fuzzy knowledge

After the identification of all NMs and their distribution functions, they

begin to develop a base of knowledge based on fuzzy rules. Most fuzzy systems

use production rules to describe the dependencies between linguistic variables. A

typical production rule consists of antecedent9 (part IF ...) and consequent (part

THEN ...). An antecedent may contain more than one parcel. In this case, LPs are

combined by logical connectives AND or OR.

There are many different ways for operations with fuzzy knowledge,

expressed by linguistic variables. These methods are basically heuristics. When

presenting knowledge, experts face the uncertainty problem of some

characteristics. Special methods are developed for the account of these

uncertainties:

9Antecedent (from Latin antecedens - preceding) - in the conditional statement "If A, then B" saying "A";

Saying "B" is called the consequent. For example, in the conditional statement "If it's day now, it's light", the

antecedent is the saying "Now is the day". Sometimes the term "A." is used in the broad sense to refer to a premise,

reason, cause, condition, etc.

 Infantile

75

5.2.1. The method of «fuzzy logic»

We will specify for the example rules of several operations (Zade's fuzzy

logic)

1) Two fuzzy sets A and B are equal if () (), .A i B i iu u u u  

2) A fuzzy set A contains in B (АВ),if () (), .A i B i iu u u u  

3) Addition of fuzzy sets А – A :

{ () 1 ()}, .i A i iA
A u u u U    

1) Integration of A and B- BA (operation OR) where the result is:

  



n

1i

iiBiA u/)u(),u(maxC

(5) Intersection A B C  (operation AND) where

 ))(),(min()(iBiAiC uuuC  

(6) Algebraic product:

 )u(*)u()u(CB*A iBiAiC 

.

It should be noted that the classical probabilistic approach is different in

defining the aggregation operation:

() 1() 2() 1()* 2()x x x x x      

The strengthening or weakening of linguistic concepts is achieved through

the introduction of special quantifiers. For example, if the term "senile age" A is

defined as:

 60 70 80 90
0.6 0.8 0.9 1

A    

then the notion of "very senile age" will be defined as

2

2() i

i

x
con A A


 

that is, "very senile age" equals:

 60 70 80 90
0.36 0.64 0.81 1

  

A=

76

5.2.2. Certainty factor Method

The "certainty factor" method was developed by one of the first author of

Shertliff. He introduced the notion of a certainty factor to measure the degree of

approximation to some conclusion h, be the result of the e-evidences at that time.

СF[h:e] = B[h:e] - MOD[h:e]

Where, CF - a certainty factor, B is a belief, h is a hypothesis, e is an

evidence, MOD is a measure of distrust.

The value of CF = [-1; 1], where

-1-absolute lie

+ 1 absolute truth

0-Absolute ignorance.

Again, that B and MOD-[0; 1] are not probabilistic characteristics, but the

opinion of the expert. For hypothesis h, with two evidences e1 and e2:

B [h:e1; e2] = B [h:e1] + B [h:e1] (1-B [h:e2])

The efficiency of the second evidence on hypothesis h, when setting the

evidence e1, results in the removal of the belief to a full certainty of the distance

dependent on e2. This formula has two properties:

1. Symmetrical as respects to e1 and e2.

2. As evidences accumulate, belief moves towards certainty.

Rules can be supplied with a divider ratio of 0-1 that indicates the reliability of

that rule.

The main drawback of the method is that it is very difficult to distinguish the

case of conflicting evidences from a case of inadequate information.

5.2.3. "Bayesian Approach" (another name is the evaluation of competing

hypotheses)

The probability of the implementation of some hypothesis H with certain

supporting evidences E is calculated on the basis of the priori probability of the

hypothesis without corroborating evidences and the probability of the evidences

being implemented, in the circumstances that the hypothesis is correct or incorrect

under the known Bayes formula.

Example: P (h) is a prior probability that the patient is suffering from

influenza. It is important to know that the patient is suffering from influenza. It is

known that he has a high fever. P (h:e) is the probability that if a patient has the

influenza, he has a high fever.

Bayes ' formula makes it possible to adjust the posterior conditional

probability of hypothesis H if evidence is available E .

)(

)&(
):(

EP

EHP
EHP 

77

With a simple transformation, this formula can be put in a more convenient

form:

)1(
):(

pppp

pp
EHP








 (1)

Here on the right are easily identifiable assumed prior probabilities:

):(),:(),(HнеEPpHEPpHPp   .

Another formula is required to operate the system, which recalculates the

conditional probability in the absence of evidence (the user's negative response),

because in some cases this may result in an increase in the conditional (posteriori)

probability of the hypothesis

)1(1

)1(
):(

pppp

pp
EнеHP










 (2)

It is assumed that the evidences is statistically independent, therefore when

considering the current evidence as prior probability, it is accepted as the priori

probability of the hypothesis.

Since the KB system of fuzzy logic is probabilistic, the user is given the

opportunity to determine the existence of the evidence e also with some

uncertainty by expressing its response q , for example in the ten-point system: -5

(firm NO), 0 (don't know), 5 (firm YES). It is assumed that the dependence of the

conditional probability of hypothesis on the magnitude q has piecewise

character(see fig. 5.5).

Figure 5.5. The dependence of the conditional probability of hypothesis on

the magnitude q

Here):(),:(EнеHPEHP are defined by formulas (1), (2), in which

)(HPptp  is the current prior probability of a hypothesis with reference to the

remaining evidences.

q

50-5

P(H:q)

P(H:неE)

P(H)

P(H:E)

78

According to this plot, after the user responds, the unknown conditional (new

current posterior) probability of the hypothesis is adjusted by the following

formulas

05,
5

)5(
)):()(():():(

50,
5

))():(()():(








q
q

EнеHPHPEнеHPqHP

q
q

HPEHPHPqHP

From a programmer's point of view, it is sometimes easier to use a

characteristic called a "chance".

Transformation of probability to "chance": O = P/(1-P)

For example, if the probability of recovery is P = 0.3, then the chance to be

healed O= 0.3/(1-0.3) = 0.43.

The opposite calculation: P = O/(1 + O).

In some systems, the so-called likelihood ratio is used: LR(h):

):(/):()(

):(/):()(

hePhePеLR

ehPehPhLR





For example, it is the probability of getting a positive result of the diagnostic

test from the patients to the probability of getting a positive test result from the

healthy people.

Then the chance after experiment:

O'(h)=O(h)*LR(h:e)

 Likelihood ratio LR>0 always, moreover the LR>1 is a testimonial of a

hypothesis, but LR<1 is against hypothesis.

The value of LR = 1 indicates that the evidences does not affect on the LR

hypothesis. Sometimes can be found LR = 0 or ∞. Then you must match the data to

avoid these values.

LR shows how much more likely the hypothesis becomes when evidences are

available than in the absence of evidences. If the evidences is unreliable, then:

LR’ = LR* WE + (1-WE)

Here, WE - the weight of the evidence is the probability that the evidence is

reliable.

Thus, the main benefits of the Bayesian approach are the following

opportunities:

1) multiple independent data sources can be combined

2) the formula is easily corrected for calculation after the evidence has been

shown.

For output on fuzzy sets the above special relations and operations are used

over them. One of the first uses of the FS theory was the use of certainty factors for

output recommendations of the medical expert system MYCIN [20].

This method uses several heuristic devices. It became an example of the

processing of fuzzy knowledge that had affected the development of successor

79

systems. Fuzzy expert systems, in addition to their main advantage — the best

adaptedness to the realities of the real world — have two advantages over

traditional ones. First of all, they are free from what is called <spinlocks>in the

building of conclusions. Secondly, the different bases of fuzzy rules can easily be

combined, which is rarely possible in common expert systems. At present time,

most of the tools for developing knowledge-based systems include elements of

working with FS, in addition, special software tools for implementing so-called

fuzzy output, for example the "shell" FuzzyCLIPS, have been developed.

In a broader sense, fuzzy control is a methodology for creating management

systems in which the mapping between real input and output parameters is

represented by fuzzy rules. Fuzzy control proved to be very successful in

commercial products such as automatic gearboxes, camcorders and electric razors.

Critics of this approach affirm that such applications have been successful because

they use small rules bases, logical conclusions do not form chains, and parameters

can be adjusted to improve system performance. Indeed, the fact that the rules of

operation of these systems are implemented by fuzzy operators may not be a key

factor in their success; the secret is to use a concise and intuitive way to set a

smoothly interpolated function with real values.

6. Inference control strategy

Among the known models of knowledge representation discussed in section

2, the production model has become most widespread. When using the production

model, the knowledge base of the artificial intelligence system consists of a set of

rules (product cores). The program that manages the search of rules is called the

output machine [1]. Let's take a closer look at the tasks and work of the production

output machine.

Any expert system of the production type must contain three main

components: rule base, working memory, and output mechanism [8].

The rule base (RB)-formalized by the rules of the products knowledge of a

specific subject area.

Working memory (WM) is an area of memory that stores a lot of facts

describing the current situation and all the attribute-value pairs that have been set

at a particular time. The contents of WM in the process of solving a task change

normally, increasing in volume as rules are applied. In other words, WM is a

dynamic part of the knowledge base, the contents of which depend on the

environment of the task to be solved. In the simplest ES, the facts stored in WM do

not change while the task is being solved, but there are systems where you can

modify and delete facts from WM. These are systems that work in a situation of

incomplete information.

The output mechanism performs two main functions:

• review of existing in working memory facts and rules from the RB, as well

as adding new facts to the WM;

80

• determination of the order of viewing and applying rules. The order can be

direct or reverse.

Direct order-from facts to conclusions. In expert systems with direct outputs

on known facts, a conclusion, which follows from these facts is sought. If this

conclusion is found, it is placed in the working memory. Direct outputs are often

used in diagnostic systems, and are called data-driven outputs.

The backward chaining order-from the conclusions to the facts. In the systems

with backward chaining, there is a hypothesis of the final judgment first, and then

the output mechanism tries to find facts in the working memory that could confirm

or refute the hypothesis. The process of finding the necessary facts may include a

fairly large number of steps, and new hypotheses (objectives) can be put forward.

Backward chaining are controlled by the goals.

In the vast majority of knowledge-based systems, the output mechanism is a

small program and consists of two components — one that implements the output

itself (output component), and the other manages the process (the control

component). The output component action is based on the application of the rule

called the modus ponens.

The rule of the modus ponens (used in the predicate logic and it is

essentially one of the methods of the output rules), from two expressions A, and

 displays the new expression B.

In other words, if it is known that the truly assertion A and expression "A"

brings (imply) expression "B" (i.e. there is "if A,then B") rule, then the expression

B is also true.

Let's look at an example. If the "barometer falls" statement is true, and there is

a rule "if the barometer falls, the rain is possible". Then the "rain possible"

statement is also true.

The rules are working when there are facts that satisfy their left side: if the

premise is true, then the conclusion must also be true.

Let's look at an example of the output of a solution in a logical model based

on an output rule, a modus ponens.

Statements are given:

 "Socrates is a human";

 "Human is a living creature";

 "All living creatures are mortal".

It is required to establish the assertion "Socrates is mortal".

Solution:

Step 1. Represent the statements in the predicate form:

81

Step 2. Based on the output rule (the modus ponens) and substitution

(Socrates/X) in the first predicate, we obtain the assertion:

"Socrates is a living creature."

Step 3. Based on the output rule (the modus ponens) and substitution

(Socrates/Y) in the third predicate, we obtain the assertion:

"Socrates - mortal"

The output component should function even if there is lack of information.

The resulting solution may not be accurate, but the system should not stop

due to the fact that any part of the input information is missing.

Therefore, the control component determines how the rules are applied and

performs four functions.

1. Correlation -the sample (antecedent) rules are mapped to the existing in WM

facts.

2. Conflict set resolution-selection of the one of several rules providing that

they can be applied simultaneously

3. Selection- if in a particular situation several rules can be applied at once,

then one of them is chosen, the one most suitable for the given criterion

(conflict resolution).

4. Rule triggering - if the rule sample when matching coincides with any facts

from the working memory, then the rule is triggered and it is marked in the

RB.

5. Manipulation-the working memory is modified by adding to the conclusion

the triggered rule. If the right side of the rule contains a reference to an

action, it is executed (as in the information security systems, for example).

Rule interpreter works cyclically. In each cycle, it looks through all the rules

to identify those whose premises coincide with the known facts from the working

memory. After the selection, the rule fires, its conclusion is stored in the working

memory, and then the cycle is repeated again.

Only one rule can work in a single cycle. If several rules are successfully

mapped to the facts, then the interpreter makes a choice according to a certain

criterion of the single rule that is triggered in this cycle. The cycle of the

interpreter's operation is schematically shown in fig. 6.1.

Information from working memory is matched sequentially with the premises of

the rules to identify successful matching. The totality of the selected rules is the so-

called conflict set. To resolve a conflict, the interpreter has the criteria by which it

selects a single rule, and then it fires. This is expressed in the recording of the facts

that form the conclusion of the rule, in working memory or in changing the

criterion for choosing conflicting rules. If the conclusion of a rule includes the

name of an action, it is executed. The work of the output machine depends only on

the state of the working memory and on the composition of the base knowledge.

82

Figure 6.1 The cycle of the output rule interpreter

In practice, the work history is usually taken into account, that is, the

behavior of the output mechanism in previous cycles. Information about the

behavior of the output mechanism is stored in the status memory (Figure 6.2).

Usually, the status memory contains a log of the system.

From the selected search method, that is, the output strategy, the order of

application and operation of the rules will depend. The selection procedure is

reduced to determining the direction of the search and the method of its

implementation. The procedures that implement the search are usually "wired up"

to the output mechanism, so in most intelligent systems, knowledge engineers do

not have access to them and, therefore, can not change anything in them at will.In

practice, the work history is usually taken into account, that is, the behavior of the

output mechanism in previous cycles. Information about the behavior of the output

mechanism is stored in the status memory (Figure 6.2). Usually, the status memory

contains a log of the system.

From the selected search method, that is, the output strategy, the order of

application and operation of the rules will depend. The selection procedure is

reduced to determining the direction of the search and the method of its

implementation. The procedures that implement the search are usually "wired up"

to the output mechanism, so in most intelligent systems, knowledge engineers do

not have access to them and, therefore, can not change anything in them at will.

When developing a management strategy for the conclusion, it is important

to identify two issues:

1. Which point in the state space should be taken as the starting point? From

the choice of this point depends on the method of implementing the search - in the

forward or reverse direction.

2. What methods can improve the search efficiency of the solution? These

methods are determined by the chosen strategy of enumeration - in depth, in width,

in subtasks or in some other way.

Comparsion Conflict
множество

Resolution
конфликта

Executingrule

Base
правил

Rule selection

criteria

Working
memory (DB)

Action

83

Figure 6.2. Schema of the rules interpreter

The state space is a graph whose vertices correspond to the situations

encountered in the problem ("problem situations"), and the solution of the problem

is to find the path in this graph.

6.1. Direct and reverse output

In the reverse order of the derivation, a hypothesis is first put forward, and

then the withdrawal mechanism goes back to facts, trying to find those that support

the hypothesis (Figure 6.3, left side).

Figure 6.3. Output strategy

84

If the hypothesis turns out to be correct, then the following hypothesis is

chosen, which details the first and is a sub-goal in relation to it. Further, facts are

found that confirm the truth of the subordinate hypothesis. Conclusion, in which

the search for evidence begins with a targeted statement. The conditions under

which the target statement is deducible are clarified. These conditions are taken for

new target statements and the search process continues. IN. (Conclusion Reverse)

ends when all the next conditions turn out to be axioms or the process conditions

terminates without leading to axioms. A derivation of this type is called a managed

goal, or a managed sequential. Reverse search is used in cases where goals are

known and there are relatively few of them.

In systems with direct derivation from known facts, a conclusion is found

which follows from these facts (see Figure 6.3, right-hand side). If this conclusion

can be found, it is stored in the working memory. The derivation leading from the

original axioms to the target expression. With C.D. (Conclusion Direct) because of

the ambiguous choice of the applicable axioms and the rules of inference, a

decision tree is formed and the process of finding the chain leading from the

original axioms to the target expression is exhaustive. The standard procedure used

to traverse the decision tree is the return-backtracking procedure. Direct output is

often called a data-driven output, or output controlled by antecedents.

There are systems in which the conclusion is based on a combination of the

above methods - the inverse and the limited direct. Such a combined method is

called cyclic.

Example 1:

There is a fragment of the knowledge base of the production system, which

has two rules:

R1. If "rest is in summer" and "person is active", then "go to the mountains".

R2. If "he loves the sun," then "rest in the summer."

Suppose the system received the facts - "an active person" and "love the

sun."

DIRECT OUTPUT - based on actual data, get a recommendation.

1st passage.

Step 1. We try R1, it does not work (there is not enough data for "rest in

summer"). Step 2. We try R2, it works, the fact "rest - in the summer" comes to the

base.

2nd passage.

Step 3. We try R1, it works, the goal "to go to the mountains" is activated,

which acts as the advice given by the expert system.

REVERSE CONCLUSION - confirm the selected target using the available

rules and data.

1st passage.

Step 1. The goal is to "go to the mountains": try R1 - there is no "rest in

summer", they become a new target and a rule is sought where the goal is on the

left.

85

Step 2. The goal of "rest in summer": rule R2 confirms the goal and activates

it.

2nd passage.

Step 3. We try R1, the desired goal is confirmed.

6.2. The essence of the basic control strategies of the output

In intelligent decision-making systems with a knowledge base of hundreds

of rules, it is desirable to use an output management strategy that minimizes the

time for finding a solution and thereby improves the efficiency of the output. The

number of such strategies are [1-4]:

1. depth search,

2. Search in width,

3. subdivision into subtasks,

4. alpha-beta algorithm,

5. strategy of simplicity / complexity,

6. LEX-strategy,

7. MEA-strategy.

Consider the simplest example of problems - to build a meaningful word

from a certain set of letters (Cyrillic letters – “к”, “о”, “т”). At each level, add the

letter (Figure 6.4).

Figure 6.4. Search strategies in width and depth

As the number of levels on the graph increases (here - the inclusion of other

letters in the set), an exponential growth of the number of nodes is observed, the

so-called combinatorial explosion. Therefore, the actual task is to choose an

appropriate search strategy. Consider them.

86

When searching in depth, the next sub-goal is chosen as the one that

corresponds to the next, more detailed level of the task description. The rules

selected in the list of applications based on data that were included in the working

memory relatively recently are located in this list earlier than the rules, in the

selection of which the older data is used. For example, the diagnostic system,

making known on the basis of known symptoms the presence of a certain disease,

will continue to request clarifying signs and symptoms of this disease until it fully

confirms or refutes the hypothesis put forward. On the graph this corresponds to

the construction of the descendants of the node, and then returns to the neighboring

evil at the same level of the graph.

The depth search algorithm can quickly find a solution, especially if it uses

heuristics to select the next branch (you need 4 steps to search for the Oct

combination). But this algorithm can never end if the state space is infinite.

When looking at the width, the rules selected in the list of orders based on

data that was included in the working memory for a relatively long time are located

in this list earlier than the rules, in the selection of which the more recent data was

used. For example, the diagnostic system will first analyze all the symptoms that

are on the same level of the state space, even if they are related to different

diseases, and only then go to the symptoms of the next level of detail. On the graph

this corresponds to the construction of all the neighbors of the node at the same

level, and then its descendants are built. A search algorithm in width searches for a

solution whose path to the graph is the shortest path, if it exists, that is, it finds the

shortest path between the initial state and the solution. Algorithms that have this

property are called solvable.

Subtargeting - involves allocating subtasks, the solution of which is seen as

the achievement of intermediate goals towards the ultimate goal. An example

confirming the effectiveness of the strategy of subdivision into subproblems is the

search for malfunctions in the computer - first the failed subsystem (power,

memory, etc.) is detected, which greatly narrows the search space. If you can

correctly understand the essence of the problem and optimally divide it into a

system of hierarchically connected goals-sub-goals, then you can achieve that the

path to its solution in the search space will be minimal.

Alpha-beta algorithm allows you to reduce the state space by removing

branches that are unpromising for successful searching. Therefore, only those

vertices that can be accessed as a result of the next step are viewed, after which

unpromising directions are excluded. The alpha-beta algorithm has found wide

application mainly in systems focused on various games, for example, in chess

programs.

The simplicity/complexity strategy is determined by the number of

verification operations that need to be performed when analyzing the conditions of

this rule. Preference is given to simpler or vice versa, more complex rules.

LEX-strategy assumes at first removal from the list of applications of all

rules which already were earlier used. The remaining rules with an equal convexity

value are then sorted by the "newness" of the data used. If it turns out that the two

87

rules use the same "freshness" data, then preference is given to the rule that

involves more data in the prerequisite analysis.

The MEA-strategy is in many respects similar to the previous one, but

when analyzing the novelty, only the first conditions in the premise of the rules are

taken into account. If it turns out that there were two candidates with equal

indicators in the list of applications, then the mechanism of the LEX-strategy is

used to choose between them. MEA is an abbreviation of one of the first methods

for solving artificial intelligence problems by constructing an inverse chain of

reasoning. Mean-Ends Analysis (means-analysis of the result).

In modern FIS, LEX and MEA strategies are used more often, and the LEX

has proved to be a good general strategy, while the MEA is an effective strategy

for solving more specific tasks such as planning.

In addition to those discussed above, the so-called heuristic search strategy

is also known, in which additional knowledge about the problem is connected to

the search algorithm. A simple form of heuristic search is "climbing a mountain."

Here, in the search process, some evaluation function is used, with the help of

which it is possible to roughly estimate how "good" the current state is. Here is the

algorithm:

1) Being at a given point in the state space, apply the rules for generating a

new set of possible solutions, for example, the set of moves of chess pieces

allowed in a given position.

2) If one of the new states is the solution to the problem, then stop the

process. Otherwise, go to the state that is characterized by the highest value of the

evaluation function and return to step 1.

To difficulties in the implementation of the algorithm of climbing, one can

include such.

- How to set an evaluation function?

- How to act when all possible moves are equally good or bad (when

climbing - "exit to the plateau")?

- And if there are local maxima, of which only descent is possible, that is,

"deterioration" of the state (take the queen and then lose)?

Another form of the heuristic method is "at first the best." It compares not

only those states in which a transition from the current one is possible, but all that

can be "gotten to" (look around as much as possible of the state space and be

ready, if necessary, go back to where we already were and go Another way). A

variation of this form is "the first best", at which the function f (n) = g (n) + h (n)

is minimized, where

g(n) is the distance on the graph from node n to the initial state of the search

space;

h(n) is the distance on the graph from node n to the final state of the search

space.

88

Conclusions on the management strategies of the conclusion:

1) The problem of any complexity, in principle, can be reduced to the

problem of search in the state space, if only it can be formalized in terms of the

initial state, the final state and the transition operations in the state space.

2) The search in the state space should be guided in a certain way by the

knowledge presented about a particular subject area.

The approach based on strategies for finding solutions in production ES is

known for a long time. Very popular in the early 90's, ES GURU (INTER-

EXPERT) also used similar mechanisms for managing search strategies. The

ability to change strategies in the course of solving problems in a programmatic

manner and accumulating experience, which strategies give the best results for

certain classes of tasks, allows us to obtain effective mechanisms for finding

solutions in SDR on the basis of products.

In concluding this lecture, it should be noted that there are various methods

for finding solutions in semantic networks, for example, the method of traversing

the semantic network is multiparasing. This method is original in that it allows you

to "parallel" several markers in parallel and, thus, parallelize the process of

searching information in a semantic network, which increases the speed of

searching. These methods are used, as a rule, when presenting the text in the form

of an object-oriented semantic network and are not considered here.

Frame-based search, Case-based Reasoning (CBR), plausible reasoning,

fuzzy search methods, and other methods for finding AI solutions are also not

considered here. They are recommended to be studied independently.

7.Agent technologies in distributed data analysis

7.1. The concept of software agent, tasks, structure, properties

One of the consequences of the development of the idea of organizing

distributed computing through the transfer of executable code has become an

increasing interest in so-called software agents and technologies for their use.

E. Tanenbaum proposed the following definition [1]. A software agent is an

autonomous process capable of responding to the execution environment and

causing changes in the execution environment, possibly in cooperation with users

or other agents. At the same time the agent is affected by himself from the

environment [21 – 23].

E. Tanenbaum also introduced the classification of agents, where the

following main types are distinguished.

Stationary and mobile agents. Mobile agents, in contrast to stationary agents,

are able to move from one node of the computing environment (VS) to another.

Cooperative and competing. Cooperative agent is able to unite with other

agents to solve a common problem. Competing agent is able to compete with other

agents in order to protect the interests of its owner (for example, trading agents on

the stock exchange).

89

Agents can be used to solve the following tasks:

– mobile computing: agent migration can be supported not only between

permanently connected nodes to the network, but also between mobile platforms

connected to the permanent network at certain periods of time and possibly

through low-speed channels. The client connects to the permanent network for a

short period of time from the mobile platform, sends the agent to executethe task

and disconnects. Then the client connects to another point on the network and

takes the agent's results. The second option is the server where the agent must

move, connects to the network, and then disconnects. In this case, the agent must

be able to move to such a temporarily connected server and return to the permanent

network.

– information management tasks;

– search for the information (a lot of information - one person is not able to

find the information he needs and analyze it – the use of the agent, who travels the

net for searchingthe information, best suited to the needs of the person). Search

agents contain information about various information sources (including the type

of information, the accessmethod to it, and such information source characteristics

as reliability and accuracy of data);

– selection (processing) of information. Of all the data that coming to the

client, select only those data that may be interestingfor the client. Used in

combination with searching agents (at first – search, then – selection);

–data monitoring. Notify the user of changes in various data sources in real

time (for example, the mobile agent moves to the compute node where the data

source is located, this is more effective than using a static agent sending requests to

the data source);

–universal access to data. Agents are intermediaries for working with

various data sources, and have mechanisms for interaction with each other (for

example, the agent creates several agents, each of those works with its data

source).

In 1996 S. Franklin and A. Grasser proposed the following general definition

of the agent:

Autonomous agent is a system that is inside the environment and is part of

it, perceives this environment (its signals) and affects the environment to execute

its own program of actions.

The following main components of an autonomous agent can be

distinguished (Figure 7.1):

1. Sensors: agent blocks that provide information about the environment and

other agents;

2. Actuators: blocks of the agent, providing an impact on the environment.

During work, a simple automation agent is guided by a standard set of

rules"If-then" (Figure 7.2)

90

An autonomous agent must have the following properties:

- reactivity;

- autonomy;

- purposefulness;

- communicativeness.

Different authors do not interpret these properties in the same way. We will

make an effort to explain them more detailed.

Figure 7.1. Autonomous agent.

Figure 7.2. The structure of an autonomous agent.

91

1. The property of reactivity means that the agent responds to changes in

the environment from time to time. The agent has sensors, through which he receives

information from the environment. The sensors can be very different. These can be

microphones that perceive acoustic signals and convert them to electrical, video

capture cards, computer keyboards or a common memory area into which the

environment puts data and from which the software agent takes data for calculations.

Not all changes in the environment become known (available) to the agent's sensors.

This is quite natural. After all human does not perceive sounds with a frequency

exceeding 30 kHz, radio waves, etc. So the environment is not completely observable

for the agent. Similarly the agent affects the environment through a variety of

executive mechanisms including shared memory. Of course the power of impact as

well as the power of perception is limited. An agent can translate an environment

from some state to some other, but not from any to any.

2. The property of autonomy means that the agent is self-governing, he

controls his actions by himself. The software agent on some server has the ability to

"self-launch". It does not require any special actions from the user to ensure its start

(just as we do "double-click" on a certain file icon).

3. The purposefulness property means that the agent has a specific goal and

his behavior (impact on the environment) is subordinated to this goal, and it is not a

simple response to signals from the environment. In other words, the agent is a control

system and not a managed object.

4. The property of communicativeness means that the agent communicates

with other agents (including people) using some language. This is not necessarily a

single language for all agents. It is enough when a pair of communicating agents has a

common language. Language can be complicated, like, for example, natural language.

But it can also be primitive: the exchange of numbers or short words. If the verbose

phrases of a complex language usually carry all the information in themselves, then

the words of a simple language assume a "silence": both sides of the dialogue "know"

what is being talked about (as in the well-known anecdote about numbered

anecdotes).

5. Autonomous agents possessing the learning property are singled out as a

separate category of intelligent agents. The learnability property means that the agent

can adjust his behavior based on previous experience. It is not just the accumulation

of environmental parameters in memory, i.e. using of historical data, but the

comparison of the history of their own actions with the history of their influence on

the environment, and the change their program of action in this regard.

6. One of the most important features of an agent is intelligence. The

intellectual agent has certain knowledge about himself and the environment, and he is

able to determine his behavior on the basis of this knowledge (Figure 7.3).

92

Figure 7.3. Structure of the intellectual agent.

Intellectual agents are the main field of interest of agent technology. An agent's

environment is also important: it can be a real world or a virtual one, which becomes

important due to the wide spread of the Internet.

It is required the ability to learn and even self-learning from agents [21, 22].

The ability to plan their actions divides agents into regulatory and planning.

Planning properties. If the ability to plan is not provided (the regulatory type), the

agent will constantly reassess the situation and renew its impact on the

environment. The planning agent can schedule several actions at different time

intervals. In this case the agent can simulate the development of the situation,

which makes it possible to respond more adequately to current situations. In this

case the agent must take into account not only its actions and reaction to them, but

also must preserve the models of objects and agents of the environment to predict

their possible actions and reactions.

7.2. Multiagent systems

The aggregate of several agents working together and therefore having the

property of sociability is called the multiagent system.

Multiagent systems can be used to solve problems that are difficult or

impossible to solve with a single agent or a monolithic system.

It is not necessary that all agents interact (communicate) with each other in a

multiagent system. In an extreme case there is no communication at all. Such

systems we will be called discrete multiagent systems. The second extreme case

that each agent communicates with everyone else. Such system is called a fully

connected multiagent system.

93

A multiagent system acting as a single agent should be characterized by

some common goal for all subagents and coordination of actions to achieve this

goal. Since there are other situations where agents are not so closely connected,

and such systems can be called agent societies. However the absence of a unified

goal does not deny the possible group behavior of agents. But it is rather episodic

than systematic.

An important difference of a multiagent system from a program or one agent

is that the software agents (at least some of them) that were included in the system

were not designed specifically for this system. Maybe it's reusable agents or agents

designed to solve more universal tasks. In these cases agents have their own goals

that do not coincide completely with the goals of the system (organization), but are

compatible with them. Nevertheless, they can be useful to each other to solve the

problems facing them and, therefore, from this point of view, the property of

communicativeness is very important for them.

From the organizational point of view, there are common goals of the whole

community, and these common goals are expressed primarily in roles (which

agents play) and the norms of interaction.

Researches in the field of decision support systems in recent years have

increasingly shifted from creating systems in the form of a traditional "toolbox" to

the paradigm of collaboration and the integration of independent applications. The

rapidly growing field of research of intelligent agents and multi-agent systems

offers the possibility of creating more efficient systems based on a unified

approach.

7.3. Agent platforms

The agent platform is a software shell that can create, interpret, launch,

move and destroy agents [22]. As "air" for the agent, the agent platform provides

him with an environment for execution. Just like the agent, the agent platform is

associated with the authority that determines the organization or person and the

system works on their behalf.

The agent system is uniquely identified by the name and address (Figure

7.4).

The platform includes at least one location and a connection interface - the

communication infrastructure (CI). The location provides an agent runtime

environment on the computer. It can contain several agents at the same time. CI

implements a communication service, a name service and a security service.

Several agent systems can be located on one machine. The type of agent

system describes the aggregate of agent parameters. For example, if the type of

agent system is "aglets", it means that the agent system is created by IBM, supports

the Java language as the agent implementation language, and uses Java Object

Serialization to turn agents into serial form. The network region administrator

determines communication services for intraregional and interregional interactions

(Figure 7.5).

94

Figure 7.4 The agent system

Figure 7.5. Relations between agent systems.

The communication infrastructure provides transport communication

services (for example, TCP / IP), a name service and a security service for agent

systems.

Currently, there are several dozen MAC. Many of them (Gypsy, JADE,

Ajanta, JATLite etc.) have been developed in universities to study this technology.

95

Some systems (such as ASDK, Xelopes, JAFMAS, etc.) exist at the library level,

providing to the programmer only base classes for implementing the main

components: agents, platforms, mechanisms of interaction and security. On their

basis, independent systems are developed, for example, MagNet, E-Commercia.

Recently, commercial systems have appeared, such as Gossib of Tryllian company,

Bee-gent and Plangeny of Toshiba Corporation. Unfortunately, the documentation

for them is not available.

7.4. Security in mobile agent systems

Agent distributed computing systems have found a certain niche in the field

of military communications, but principle of their workhampertheir widespread

distribution: it is unlikely that a sensible administrator of the computer network

will allow users to travel to autonomous intelligent, self-learning software systems

that can migrate and be executed on any computing node. In this regard, there are a

number of serious problems related to the security of agent platforms.

On the one hand, agents can carry personal information to ensure their own

work. For example, an agent in an e-commerce system may contain a credit card

number and a user's passport data in order to make transactions on his behalf.

Accordingly, it is necessary that the environment provide an agent-safe execution

environment.

On the other hand, a third-party agent may attempt to attack the underlying

environment and retrieve data or acquire other resources. In this case, the agent

platform should be sufficiently well protected and be able to confront such attacks.

Distinguish the following possible security problems in the operation of

agent platforms:

1. Agent attacks Host: Agent can steal or modify host data.

2. The host attacks the Agent: The host can steal or modify the Agent's data,

change its status or code

3. A malicious agent attacks another agent;

4. Attack by other elements.

The attack variant "Agent attacks the Host" is a standard attack where code

obtained from an unreliable source tries to gain full access to the system or to

interfere with the normal performance of tasks by increasing its enforcement

powers. In this case, traditional security measures help with the attack, such as:

access level control; sanders; authentication; cryptography.

Also, there are agent-specific security methods, for example, the analysis of

the agent's traffic history. In this case, the platform can learn about the history of

the movement of the agent from the log and draw a conclusion about its quality on

the basis of information on which platforms he visited before.

96

The attack option "Host attacks agent" is more complicated in providing

security. In such situations traditional facilities do not work, because host must

have complete information about the agent code for its execution. In this case, the

following tools can be used:

1) Mobile cryptography: functions and data of the agent are encrypted in

such way that the host cannot understand how the functions work and extract the

code. The disadvantage of this method is that we need to search for an encryption

scheme for arbitrary functions, as well as we need to transfer the cropping key.

2) Safe movement: migration only to certain (trusted) hosts.

3) Use of fictitious data: in database, the system analyzing the work of

agents, a fictitious data set is stored, which do not change during the normal

operation of the agent.

4) Use of trusted hardware: these can be smart cards, integrated circuits, etc.

Thus, the basic idea of using agent technology in the field of data analysis is

to encapsulate in the agent a cycle of extracting knowledge from the data. In this

case, the agent acts as an analyst. To solve the problems of data mining, various

types of mobile agents that use various analysis algorithms are implemented and

successfully applied.

97

Literature

Basic

1. Базы знаний интеллектуальных систем / Т.А. Гаврилова, В.Ф.

Хорошевский — СПб: Питер, 2000. – 384 с.

2. Джексон П. Введение в экспертные системы / Питер Джексон; Пер. с

англ. и ред. В.Т. Тертышного . – 3-е изд. – М. : Вильямс, 2001 . – 622 с.

3. Попов Э.В. Экспертные системы: Решение неформализованных задач

в диалоге с ЭВМ. – М.: Наука, 1987. – 288 с.

4. Смолин Д.В. Введение в искусственный интеллект: конспект лекций.

– 2-е изд., перераб. – М.: ФИЗМАТЛИТ, 2007. – 264 с.

5. Нильсон Н. Принципы искусственного интеллекта.– М.: Радио и

связь, 1985. – 376 с.

6. Вагин В.Н. Дедукция и обобщение в системах принятия решений. –

М.: Наука, 1988. – 384 с.

7. Поспелов Д.А. Структурное управление: теория и практика. – М.:

Наука, 1986. – 288 с.

8. Уэно Х. и др. Представление и использование знаний. Пер. с япон./

Под ред. Х.Уэно, М. Исидзука. – М.: Мир, 1989. – 220 с.

9. Доорс Дж. и др. Пролог – язык программирования будущего. Пер с

англ. ; Предисловие А.Н. Волкова. – М.: Финансы и статистика, 1990. – 144 с.

10. Ин Ц., Соломон Д. Использование Турбо-Пролога. – М.: Мир, 1993. –

 608 с.

11. Марселлус Д. Программирование экспертных систем на Турбо

Прологе. – М.: Финансы и статистика, 1994. – 256 с.

12. Лорьер Ж.Л. Системы искусственного интеллекта. Пер. с франц. –

М.: Мир, 1991. – 568 с.

13. Люгер Дж. Ф. Искусственный интеллект: стратегии и методы

решения сложных проблем = Artificial Intelligence: Structures and Strategies for

Complex Problem Solving / Под ред. Н. Н. Куссуль. – 4-е изд. – М.: Вильямс,

2005. – 864 с.

14. Искусственный интеллект. Кн.2. Модели и методы: Справ. / Под ред.

Д.А. Поспелова. – М.: Радио и связь, 1990. – 304 с.

15. Методические указания к изучению курса «Основы искусственного

интеллекта» для студентов всех форм обучения специальности 22.03

98

«Системы автоматизации проектирования» / Сост. А.И. Кондратенко. – К.:

КПИ, 1992. – 60 с.

16. Братко И. Алгоритмы искусственного интеллекта на языке Prolog –

М.: Издательский дом «Вильямс», 2004. – 640 с.

17. Заде Л. Понятие лингвистической переменной и его применение к

принятию приближенных решений. – М.: Мир, 1976. – 166 с.

18. Тэрано, Т., Асаи, К., Сугэно, М. Прикладные нёчеткие системы. - М.:

Мир, 1993. – 368 с.

19. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети,

генетические алгоритмы и нечеткие системы: Пер. с польского

И. Д. Рудинского. – М.: Горячая линия – Телеком, 2004. – 452 с.

20. Рассел С., Норвиг П. Искусственный интеллект: современный подход

= Artificial Intelligence: a Modern Approach / Пер. с англ. и ред. К. А.

Птицына. – 2-е изд. – М.: Вильямс, 2006. – 1408 с.

21. Радченко И.А. Интеллектуальные мультиагентные системы: учебное

пособие.– СПб: Балт. гос. техн. ун-т, 2006. – 88 с.

22. Ahmed S., Karsiti M.N. (eds.) Multiagent Systems. InTech, 2009, – 434 p.

23. Alkhateeb F., Al Maghayreh E., Abu Doush I. (eds.) Multi-Agent Systems

- Modeling, Interactions, Simulations and Case Studies. InTech, 2011, – 512 p.

Additional

24. Осуга С. Обработка знаний – М.: Мир, 1989. – 293 с.

25. Приобретение знаний / Под ред. Осуги С., Саэки Ю. – М.: Мир, 1990.

– 304 с.

26. Трусов В.А. Теоретические основы систем искусственного

интеллекта (конспект лекций по учебной дисциплине «Искусственный

интеллект» для студентов специальностей 7.080401 и 7.080403. – Д.: НГА

Украины, 1999. –126 с.

27. Макаров И.М., Лохин В.М., Манько С.В., Романов М.П.

Искусственный интеллект и интеллектуальные системы управления. – М.:

Наука, 2006. – 336 c.

28. Шиханович Ю. А. Логические и математические исчисления. – М.:

Научный мир, 2011. – 256 c.

29. Дубровский Д.И. Искусственный интеллект: междисциплинарный

подход. – М.: ИИнтеЛЛ, 2006. – 446 с.

99

30. Девятков В. В. Системы искусственного интеллекта / Гл. ред. И. Б.

Фёдоров. – М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. – 352 с.

31. Новак В., Перфильева И., Мочкрож И. Математические принципы

нечёткой логики = Mathematical Principles of Fuzzy Logic. – М.: Физматлит,

2006. – 352 с.

32. Рутковский Лешек. Искусственные нейронные сети. Теория и

практика. – М.: Горячая линия - Телеком, 2010. – 520 с.

33. Усков А. А., Кузьмин А. В. Интеллектуальные технологии

управления. Искусственные нейронные сети и нечеткая логика. – М.: Горячая

Линия – Телеком, 2004. – 143 с.

34. Круглов В. В. Дли М. И. Голунов Р.Ю. Нечёткая логика и

искусственные нейронные сети. – М.: Физматлит, 2001. – 221с.

35. Дьяконов В.П., Круглов В.В. MATLAB. Математические пакеты

расширения. Специальный справочник. – СПб.: Питер, 2001. – 480с (имеются

главы по нечёткой логике и нейронным сетям).

36. Дьяконов В. П., Абраменкова И. В., Круглов В. В. MATLAB 5 с

пакетами расширений. Под редакцией проф. В. П. Дьяконова. – М.: Нолидж,

2001. – 880с (имеются главы по нечёткой логике и нейронным сетям).

37. Дьяконов В. П., Круглов В. В. MATLAB 6.5 SP1/7/7 SP1/7

SP2+Simulink 5/6. Инструменты искусственного интеллекта и

биоинформатики. – М.: СОЛОН-Пресс, 2006. – 456с.

38. Штовба С. Д. Проектирование нечетких систем средствами

MATLAB. – М.: Горячая линия — Телеком.- 2007. – 288 c.

39. Uziel Sandler, Lev Tsitolovsky Neural Cell Behavior and Fuzzy Logic.

Springer, 2008. – 478 с.

40. Искусственный интеллект: Применение в интегрированных

производственных системах. Пер. с англ./ Под ред. Э. Кьюсиака. – М.:

Машиностроение, 1991. – 544с

41. Братко И. Программирование на языке Пролог для искусственного

интеллекта. – М.: Мир, 1990. – 560 с.

42. Гаврилов А.В. Системы искусственного интеллекта: Учеб. пособие: в

2-х ч. – Новосибирск: Изд-во НГТУ, 2001. – Ч.1. – 67 с.

43. Адаменко А.Н., Кучуков А.М. Логическое программирование и

Visual Prolog. – СПб.: БХВ–Петербург, 2003. – 992 с.

44. Котов Ю.В. Как рисует машина. – М : Наука, 1988. – 224 с.

100

45. Роджерс Д., Адамс Дж. Математические основы машинной графики.

– М.: Мир, 2001. – 604 с.

46. Кейтер Дж. Компьютеры- синтезаторы речи. –М.: Мир, 1985. – 237 с.

47. Частиков А. П., Гаврилова Т.А., Белов Д.Л. Разработка экспертных

систем. Среда CLIPS. – СПб.: БХВ–Петербург, 2003. – 608 с.

101

Authors:

Udovik I.M., Korotenko G.M., Korotenko L.M., Trusov V.A., Kharj A.T.

Methods and systems of artificial intelligence

Tutorial

for students of

122 "Computer Science and Information Technologies"

(Discipline 12 Information Technologies)

Editorial and publishing complex

Signed in print _____.Format 30x42 / 4.

Offset paper. Ryzohrafiya.Md. printing.f. .

Obl.-view. sh .Circulation approx. Zam. №.

State Higher Educational Institution

"National Mining University"

49005, Dnipro, pr. D. Javornycjkyj, 19

