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ABSTRACT

Purpose. To develop models of contact brake shoe-drum interaction of a mine hoisting machine while braking,
taking into account final bending stiffness of a beam and the effect of friction forces on the distribution of a contact
pressure in it to make recommendations as for the rational design of a brake beam.

Methods. Laws of contact force distribution, forces within a vertical post, and braking moment arising in the braking
process have been formulated with the help of exclusion method and Euler’s method.

Findings. Areas to apply the hypotheses on absolute stiffness of a beam and the non-effect of friction forces on the
distribution of contact pressure in it while calculating force of brakes of mine hoisting machines have been analyzed.
Physical and mathematical models of contact interaction between a brake beam of a mine hoisting machine and a
drum in the braking process have been developed.

Originality. For the first time, physical model of a brake lining in the form of a group of elastic non-interacting
bodies of Winkler foundation has been developed. The bodies resist compression and transfer through themselves
distributed friction forces arising between brake drum and brake shoe; the friction forces are meant for limiting bal-
ance state in accordance with Coulomb’s law; physical model of a brake beam in the shape of uniform-section circu-
lar bar mounted on a vertical post and interacting with a brake drum through brake lining loaded with distributed
normal and tangential load modeling contact brake shoe-drum interaction, and a vertical post has been modeled as a
movable pivot point located in the medial part of the circular bar. For the first time, mathematical model to determine
both tangential and normal forces acting on a brake beam has been formulated.

Practical implications. The developed recommendations concerning the use of different models of the braking process
make it possible to generate the most rational model for force calculation of a brake beam using finite-element method.

Keywords: physical and mathematical models of beam and lining, mine hoisting machine shoe brake, Euler’s method,
Coulomb’s law

1. INTRODUCTION

1.1. The problem definition

In the context of mining industry, hoisting machine is
considered to be the most important link while mineral
mining. Occurrence of emergency situations in the pro-
cess of hoisting machine operations results not only in
substantial material losses; they are also often dangerous
for human life. Thus, braking system of hoisting equip-
ment is the basic protective means against emergency
situations (Zabolotny, Zhupiev, & Molodchenko, 2015;
Zabolotnyi, Panchenko, & Zhupiev, 2017).
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Decrease in contact pressure of shoe brakes is the
topical technical problem as well as the determination of
the required forces applied in brake beams and in vertical
post, and calculation of the braking moment being devel-
oped (Cummings, 2009; Cummings, McCabe, Guelde, &
Gosselin, 2009).

Analysis of the recent research demonstrated in pub-
lications of such well-known scientists as B.L. Davydov,
Z M. Fedorova, N.S. Karpyshev, A.J. Day, Y.M. Huang,
J.S. Shyr, M. Tirovits, T.P. Newcomb, P.J. Harding,
Z. Barecki, and S.F. Scieszka shows that the authors used
pointwise calculations applying finite-element methods
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and other numerical approaches as well as not evaluated
effect of basic parameters of shoe beam on the lining-
brake rim contact interaction. As a rule, a method of cal-
culation of braking mechanisms applied in mine hoisting
machines (MHMs) is used as analytical model (Barkand
& Helfrich, 1988; Nosko, 2017). The method, described
in the papers by B.L. Davydov (1959), Z.M. Fedorova
(1961), N.S. Karpyshev (1968), relies upon the hypothe-
sis of absolute stiffness of a brake rim and a brake beam
when friction forces do not effect the distribution of
contact pressure.

Specifically, A.J.Day performed calculations con-
cerning a specific case with the help of finite-element
method representing a brake beam as a sequence of beams
of various designs (Day, Harding, & Newcomb, 1979).

Y.M. Huang applied finite-element method without
the analysis of basic parameters effecting on contact
interaction (Huang & Shyr, 2002).

Z. Barecki and S.F. Scieszka considered the operation
of a moving brake whereas MHMs are equipped with
brakes with progressive motion of shoes (Barecki &
Scieszka, 1989).

1.2. Determination of earlier unsolved issues
being a part of a general problem

To some extent, calculation results concerning stress-
strain state within MHM brake differ to compare with
those described in scientific sources. For instance, nature
of contact pressure values distribution along a brake
beam is not sinusoidal with peak values relating to the
shoe center; on the contrary, it has distinct boundary
effect. In this context, topical scientific problem arises.
The problem is to identify the factors effecting contact
pressure distribution as well as to evaluate possibilities of
applying the hypothesis of absolute beam stiffness and
non-effect of friction forces on the distribution of contact
pressure within it.

1.3. Objective of the research

The objective is to develop a model of contact interac-
tion between a shoe brake of a mine hoisting machine and
a drum in the braking process taking into consideration
finite value of beam bending stiffness and effect of fric-
tion forces upon contact pressure distribution as well as
further use of the model while developing recommenda-
tions for the selection of rational design of a brake beam.

2. MAIN PART

Novokramatorsk machine-building enterprise is one
of the largest European industrial and research complex-
es. Up till now, the enterprise produces drum mine hoist-
ing machines; their majority is equipped with shoe
brakes. A number of well-known researchers were en-
gaged in the design of such brake mechanisms for
MHMs. However, many important problems connected
with interaction between brake beam, lining, and brake
rim were not solved due to limited capacities of compu-
ting facilities used at the time.

Mathematical model by B.L. Davydov concerning the
calculation of distributed twisting and normal forces
acting on a brake beam of a shoe brake of MHM relies
upon following assumptions: distribution of normal in-
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ternal forces, arising within a brake beam, does not de-
pend on lining-drum friction and on binding stiffness of
the beam (Davydov, 1959).

Author of the assumptions did not substantiate them;
thus, the calculation results may contain essential errors
while determining design loads of the shoe brake which
may result in emergency situations.

The paper has developed mathematical model of con-
tact interaction between shoe brake and a drum of MHM
where friction forces as well as bending stiffness of a
beam were taken into consideration.

Brake shoe (Fig. 1) consists of a brake beam / and
brake linings 2 mounted on a vertical beam (post) 3.

=

AN

Figure 1. Fragment of a shoe brake of MHM

To solve the set problem, physical model of a brake
lining in the form of a group of elastic non-interacting
bodies of Winkler foundation was applied. The bodies
resist compression and transfer through themselves dis-
tributed friction forces arising between a brake drum and
a brake shoe; the friction forces are meant for limiting
balance state in accordance with Coulomb’s law (Fig. 2).

Two forces, arising within horizontal connection
rods, and a force arising within a vertical post act on a
brake beam mounted on the vertical post and interacting
with the brake drum through a brake lining. Moreover,
brake beam-brake rim interaction is modeled with the
help of distributed normal load ¢ and a tangent p result-
ing in braking moment M. It is assumed that the drum
rotates clockwise.

The brake beam is represented as physical model in
the form of a circular bar of uniform section on which
inner part both contact pressure and distributed friction
force act. Vertical post is modeled as a movable flapping
hinge located in the central part of the circular bar.

In this case, brake beam is protected against vertical
movements within the movable flapping hinge. Such a
structure provokes origination of a wave of internal forc-
es; thus, it is impossible to explain the balance with the
help of one differential equation.
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Figure 2. Calculation model of a brake beam of MHM

Write down the equations describing a balance of two
elementary shares of the bar; specify them by following
indices (i = 0) and (i = 1) respectively:

). 0,(p)=0: (=0,
@

do;(p) _ Ti(p)-q;(@)R=0; (i=0,1);
do
M, ()

—L2 40, (p)R=0; (i=0,1),
do

(1

where:

T(p) — axial force;

Oi(p) — shear force;

Mi(p) — bending moment;

@ — running angular coordinate;

R — radius of neutral line of brake beam.

It is possible to write down the equation to calculate
distributed normal forces corresponding to a model of
elastic foundation as follows:

q:(@)=rw;(9); (i=0,1),

where:

wi(p) — beam deflection;

E, — elasticity module of the lining material;

H, — the lining thickness;

Br— the width of braking field;

K — cross-sectional stiffness of the lining being deter-
mined as follows:

2

Br 3)

xKk=F,
H

The equation describing distributed friction force ac-
cording to Coulomb’s law is:

pilp)= fiw;(p); (i=0.1). 4)

Formulate Hook’s law to determine deflection mo-
ment, that is:

Mi(co):—%%ff’); (i=0.1), 5)

40

where:
E — elasticity module of the beam material;
I — inertia moment of the beam cross-section;
6; — the beam rotation angle.
Consider following kinetic dependence:
0:0) 4 242 (=0,

o (6)

and inextensibility condition of the bar central line, that is:

()= 22 (o)
@
Apply elimination method to solve the system of
equation (1).
Substituting (2) — (6) expressions into equations (1),
obtain following result:

EI dSWi((P)+d3Wi((P) KR
R’ dgos dgo3

(7

dw;(p) "

do

@®)

+ﬂ(d3wi(¢)+ dw;(p)

| Lkl ) fo)-o

After expression (7) was substituted into equation (8),
a differential equation to describe axial deformation of
6™ order was obtained, i.e.:

d°v,(p) 49 d*v;(p) N
d(06 d¢)4

2
(l+ﬂ)d Vi£¢)+f/ftdvi(¢) =0, (9)
do do

where:

A —relative stiffness being equal to the ratio between
cross-sectional stiffness of the lining and bending stiff-
ness of the beam which can be determined with the help
of the equation:

1o EnBrR*

10
H y El (10)

Euler’s method should be applied to solve differential
equation (9).

Characteristic equation describing a state of both
parts of the bar is as follows:
n[ns +2n3+(l+/”t)n+fﬂ}=0. (11)

Represent the roots of the characteristic equation in a
vector form, i.e.:

0
r
oy +i
w01t (12)
o —if
0!2+i,62
oy i

In this context, one root is a zero one, another root is
a real one, and four others are complex roots. Newton’s
method is proposed to determine numerical values of
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the roots. Analytical values of the model roots without
the consideration of friction are selected as zero-order
approximation, i.e.:

0
0
oy +1i
n =120 o (13)
oy —ify
- +ify
—ay—ify
where:
o :\/O.S(—1+«/1+A i; Bo :1/0.5il+\/1+/1 ) (14)

Such initial approximation is used for » parameter:

_J
1+4°

(15)

Taking into account vector form of the characteristic
equation roots, we will determine tangential motions
with the help of following ratio:

LT ap
vi(@)=Si0+Se” + % [e 12(8,,2 42 cos(B0)+
Jj=0

+8;2)43 Sin(ﬂjfp))]; (i=0,1)

where undefined S;; coefficients can be defined taking
into consideration boundary conditions given below.

Zero value of bending moments at the ends of the
brake beam are (p =—y and ¢ = y), i.e.:

My(=y)=0; M(y)=0. (17)

Equality of shear forces and axial forces corresponding
to force projections within horizontal connection rods is:

» (16)

0(~7)= " cos(): Q1(y)=~ cos(y): (19)

To(=7)=3sin(y): Ti ()= Ssin(y). (19)

Zero value of axial motions within a central point of
the brake beams is:

v(0)=0; v(0)=0. (20)

Continuity of radial motions, rotation angles, bending
moments, and shear forces within the abovementioned
point are:

wo(0)=w;(0); 6,(0)=6,(0);
Mo(0)=M1(0); 0y(0)=0(0).

As it has already been mentioned, continuity condi-
tion for axial forces within the point is not met.

Uniting the solutions to determined parameters of
each part of the brake beam, compile an expression de-
scribing axial motions, i.e.:

) (p):{v()(rp),wo

V1(¢),¢ZO .

e2y)
(22)

(23)

41

The same expressions may also be used to describe
radial deflections of the beam, i.e.:

_ {WO (p)o<0

: 24
wi (@)@ >0 @4

In this context, the following is applicable for each
part of the beam:

Wi ((P)= Si,lrer(p + i |:eaj(p(si,2+2(_ﬂj Sin(ﬂj(/’)Jr

J
+ta; cos(ﬂj(p))+ Si2j+3 (ﬂj cos(ﬂj¢)+
ta; sin(ﬂj(p))]; (i=0,1)

The expression determining rotation angles of the
beam is:

9(¢) _ {00 ((P), p<0

6, (0).9=0"

In this context:

. (25)

(26)

o.

1

1
(¢)= E[Si,o + 80" (1) +

+ io(eaj(p(si,uz(COS(,Bj¢X51,j +1)+
=

+ Sin(ﬂjf/’)(— 2N ))+ Si2j+3 (Cos(ﬂj(/’x52,j )+

+ Sin(/Bj¢X51,j +1)))]§ (=0.1)
g=la P8P 625 =20,8;.

It is possible to represent bending moments originat-
ing within the beam as follows:

u :{Mo(rp),(p<0.
Mi(p).9=0

In this context:

27

5 (28)

(29)

M;(p)= _%[Si,lerwr(l+r2)+

+ io[eaj(o(si,z j+2 (Cos(ﬂj¢)(55, j)+Sin(ﬂj¢)(56, j )+:G0)
=

+8i2/43 (Cos(ﬂj(/’)(— 56,j)+ Sin(ﬂj¢x55,j )))H’(l =0,1)

03 = (0’_1)3 —3a; (ﬂj P: 04, = (ﬁj)3 —3(0’_;')25_;';

. G1)
0s,j =03,j +€j3 O j =04 ; = P,
Shear forces are:
O(@)o<0
0lp)= { 0 : (32)
0i(p).p=0

In this context:
olo)=ELls 22
R

+ i0|:eaj¢(si,2j+2 (cos(ﬂjqo)(é'7,j)+ sin(ﬂj(p)((;&j ))+ .(33)

j=

+8i2/43 (Cos(ﬂj¢)(— 03, )"’ sin(ﬂjf/))(r%,j )))]] (i=0,1)
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57,j:55,jaj+§6,jﬁj;68,j:56,jaj_55,jﬂj' (34)
Axial forces are:
Tolp)o <0

T :{ 0((/’)(0 , (35)
Ti(p)o=0

where:
T:(p)=S; le”{ﬂﬁ (1 +r2 )+ er} +
5 R3
1
+ 2

) 0[eaj¢(5i,zj+z (Cos(ﬂj(l’)(59,j)+Sin(ﬁj¢)(510,j ))+ > (36)
j=

+8i2j43 (Cos(ﬂj(ﬁ)(— b0, )+ Sin(ﬁj(/’X§9, j MG =0.1)

EI
59,1- =kR0{] +F(§7’jaj +§8,]ﬁ])7

B 37)

Distributed normal forces in the beam correspond to
following expression:

qlp)= ok (38)
Br
Equations (23), (24), (26), (29), (32), (35) are math-
ematical model to identify tangential and normal forces
acting on the brake beam; the model involves values of
the parameters of friction forces and bending stiffness
of the beam.
Use of the equations describing distributed normal
forces within the beam helps formulate the expression to
determine braking moment, i.e.:

Y
My = fBrR* [qlp)dp .
-y

(39)
Hence, forces within horizontal connection rods are:

N, = B, R Tq(p)eoslp)do

(40)
-7
Forces within a vertical post are:
}/ .
N, =BrR [q(p)sin(p)dg . (41

i

As an example, consider force calculation of shoe
brake MHM CR-4x3/0.7 having following parameters:

—radius of neutral line of a brake beam
R =2260 mm;

— width of braking field is Br = 400 mm,;

— half of contact arc is y = 50°;

— thickness of brake beam is H = 400 mm;

— thickness of brake lining is Hy = 80 mm;

—elasticity module of a beam material
E=2.1-10" Pa;

— elasticity module of a lining material is Ex = 3-10° Pa;

— friction coefficient between a lining and a drum is
f=0;03.

Assume that force within horizontal connection rod
used in calculations according to B.L. Davydov model
applicable to the machine is 699 kN (Davydov, 1959).

is

is
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Figures 3 — 6 represent graphic interpretation of the
calculation results. Red line is a curve of the calculation
results according to the model where friction effect on
the distribution of contact pressures was not involved;
blue line is a curve of the calculation results involving
friction; and green line is a graph of results obtained with
the help of a model by B.L. Davydov.

As it is obvious, distribution of radial deflections
when friction is not taken into consideration (Fig. 3) is
a symmetric function. Consideration of friction shows
that the share of the brake beam moving forward is
slower than that moving back. Calculations involving
the model by B.L. Davydov (with the assumption of
absolute stiffness of brake beam and noneffect of fric-
tion forces) give qualitatively incorrect result reflected
within the graph by means of maximum in the central
part and with no boundary effect. Error in the process of
maximum motion determination and, hence, contact
forces is 148.7%.

Aw(o),
mm

1
} b
0.5 0 0.5 o,rad

Figure 3. Graph of distribution of radial deflections along a
brake beam

A function of bending moments distribution devel-
oped without consideration of friction is also symmetric
(Fig. 4); in this context, the curve has two similar mini-
mums —1.1-10° N'm and one extremum corresponding to
the beam center and being equal to —7.1-10* N-m.

A M(p), Nxm |
0 0.5 0,12

+-2x10°

+-3x10°

Figure 4. Graph of distribution of bending moments along a
brake beam
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Use of the model involving friction means that con-
trary to the above considered graphs, absolute values of a
bending moment within the beam share moving forward
exceeds the moment value within the beam share moving
back. Calculation involving the model by B.L. Davydov
gives three times overstated values of bending moments.

Results of shear force distribution not involving fric-
tion are antisymmetric function with zero value in a point
corresponding to the beam centre (Fig. 5). If friction is
involved, then the graph of shear force has a break corre-
sponding to the beam centre. In this context, the force
value is 39.5 kN. Calculation with the use of the model
by B.L.Davydov produces monotonically decreasing
function which curve passes through 0.

4 0(p).
N
2x105¢
L ~\‘s
_____ 4 0.5% o, rad
\\
\
\
\}
‘\
2x1054+ \

Figure 5. Graph of distribution of shear forces along a brake
beam

Without consideration of friction, distribution of axial
force looks like a symmetric function relative to other
parameters (Fig. 6). Axial forces calculated for both
models coincide at the ends of the beam. In the central
part, a curve of distribution function involving friction
has a break corresponding to 383 kN; it is equal to a
force within a vertical post. Calculation involving the
model by B.L. Davydov gives 39% understated step in
value of axial force being equal to 275 kN; in this con-
text, minimal of them decreases by 34%.

7(9).A

—_—

12
g
]
]
]
1
[
ol
—
[=]
1
Il
L]

} >
-0.5 0 0.5 ¢, rad

Figure 6. Graph of distribution of axial forces along a brake
beam
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Following formula is used to calculate braking moment:

¥
My = fR* [xw(p)dg.
-y

(42)

Value of the parameter with the use of frictionless
model is 7.72:10° N'm; if friction is involved, it is
7.87-10° N-m; if model by B.L. Davydov is applied, the
value is 6.98-10° N-m. Deviation of the braking mo-
ment value towards its decrease with the use of simpli-
fied model is 1.94%; in terms of the model by
B.L. Davydov, it is 11.3%.

Following formula is applied to determine forces
within a vertical post with the use of the complete model:

F, = R [ ) cos(p) +sin(p)ld .
-y

(43)

Like in previous case of the models use, the parame-
ter is: 2.75-10° N, 3.48-10° N, and 2.75-10° N respective-
ly. Error of the force determination with the use of two
models (i.e. simplified model and the model by
B.L. Davydov) is 26.5%.

The obtained results help analysts and designers se-
lect the most appropriate model of contact interaction in
the process of braking to provide its rational design by
means of finite-element method.

CONCLUSIONS

1. For the first time, physical model of a brake lining
in the form a group of elastic non-interacting bodies of
Winkler foundation was developed. The bodies resist
compression and transfer through themselves the distrib-
uted friction forces arising between a brake drum and a
brake shoe; the friction forces are meant for limiting
balance state in accordance with Coulomb’s law.

2. For the first time, physical model of a brake beam
in the shape of uniform-section circular bar has been
developed. The bar is mounted on a vertical post; its
interacts with brake drum through brake lining loaded
with the distributed normal and tangential load modeling
contact brake shoe-drum interaction, and a vertical post
has been modeled as a movable pivot point located in the
central part of a circular bar.

3. For the first time, mathematical model to determine
both tangential and normal forces acting on a brake beam
has been formulated. The model involves six balance
equations of elementary sections of a bar mounted on the
elastic basis and experiencing the action of distributed
friction forces calculated according to Coulomb’s law;
equations describing Hook’s law as for a bending mo-
ment; a condition of the bar’s central line inelasticity;
twelve boundary conditions according to which values of
shear and longitudinal force, bending moment within the
bar ends, continuity of all motions and forces except
longitudinal one (equal to zero) within the area of mova-
ble pivot point mounting.

4. Exclusion method and Euler’s method were applied
to calculate both tangential and normal forces acting on a
brake beam; the forces are used to determine braking
moment as well as forces in connection rods and a post.
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5. Analysis of a shoe brake of machine CR-4x3/0.7
was applied to prove that distribution of normal force
acting on a brake beam calculated according to
B.L. Davydov method as well as the approach developed
by the authors has following principal difference: in case
one it is in the form of sinusoid; in case two described by
the paper it is a parabola with the distinct boundary ef-
fect. In this context, a value of a maximum contact pres-
sure calculated according to B.L. Davydov model has
appeared to be 2.5 times understated.

6. Minimum value of longitudinal force calculated
according to B.L. Davydov model is 34% lower; values
of bending moment are three times higher; and forces in
a vertical post are 26.5% less to compare with the re-
search results.
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Meta. Po3poOka Mozeni KOHTaKTHOI B3a€MOii KOJOAKOBOTO rajibMa LIaxXTHOI IiJHOMHOI MamMHu 3 OapabaHoM
TIPH TATBMYBaHHI 3 ypaXyBaHHAM KiHIIEBOI 3THHAIBHOT KOPCTKOCTI OAJKH Ta BILTUBY CHJI TEPTS Ha PO3MOIIN KOHTAKT-
HOTO THUCKY 33]UIsI CTBOPEHHS pEKOMEHIAIIN 10 IPOEKTYBAHHS PaIliOHATBHOT KOHCTPYKIIii ralbMiBHOI OaJIKH.

Metoauka. 3a 10NOMOrol MeToxy BUKIIOUEHHS 1 MeTony Eifnepa chopMynboBaHO 3aKOHHM PO3IOALTY KOHTAKTHO-
IO 3yCHJUIA, 3yCHIIIS Y BEPTUKAIBHIHM CTIHII Ta TaIbMiBHOTO MOMEHTY, KOTPi MalOTh MicIle Y IPOIIeCci TaTbMyBaHHS.

Pe3yabTaTu. Jl0CcikeHO MOKIMBOCTI 3aCTOCYBaHHS B CHIIOBOMY PO3PaxyHKY TaJIbM MIAXTHUX MiAHOMHHUX MalluH
rinoTe3 m010 adCOMIOTHOI KOPCTKOCTI OAJIKK Ta BiJICYTHOCTI BIUTUBY CHJI TEPTS Ha PO3IMOJIII KOHTAKTHOTO THCKY. Po3-
poOiieHi (i3uyHAa i MaTEMAaTHYHA MOJICIII KOHTAKTHOT B3aEMOIii raJIbMiBHOI OaJIKM MIAXTHOT MiIHOMHOI MallMHu 3 Oapa-
0aHOM y MpPOIIECi raIbMyBaHHSI.

HayxoBa HoBH3HA. Briepire po3po0GneHa ¢izndHa MOJeNb TAIBMIBHOT HAKIIAAKH y BUTJISI MAacUBY NPYXKHUX Til
THUITy BiHKJIEPOBCKOi OCHOBH, SIKi IIPAIIOIOTh HA CTUCK 1 MEepelaloTh yepe3 ceOe po3IojisieHe JOTHYHE HABAaHTAKEHHS
(cnnm TepTs), M0 BUHMKAE MK TaJIbMIBHUM 0apabaHOM i1 TajbMiBHOIO KOJIOAKOIO, pO3paxOBaHe Ha IPaHMYHHUN CTaH
piBHOBaru BiAMOBiAHO 10 3akoHY KyioHa; ¢i3udHa MOIENb ralbMiBHOI OaKH Y BUTIISAL KPYyTOBOTO Opyca IMOCTIHHOTO
mepepily, KUl BCTAHOBJICHUI Ha BEPTUKAJBHINA CTIHI Ta B3aeMoJi€ 3 TalbMiBHUM OapabaHOM depe3 TajbMiBHY Ha-
KJIaJKy, HABaHTAXXEHY PO3IOIUICHUM HOPMAIBGHHUM 1 JOTHYHUM HABaHTKCHHSIM, IO MOJICIIIOE KOHTAKTHY B3a€MOJIIIO
ragpMiBHOI KOJIOAKH 1 OapabaHa, a BepTHKaJIbHA CTiiKa 3MOJAEThOBAaHA AK PYXJIMBHUII HIapHIp, pO3TAIOBaHUH Mocepe-
IMHI KpyroBoro Opyca. Brepiue copmysiboBaHa MaTeMaTHYHA MOJEIb BU3HAYEHHS JOTHYHHUX i HOPMaJIbHUX 3yCHIIb,
IO JiFOTh HA TaJbMIBHY OaKy.

IpakTHyna 3HauuMicTh. Po3po0iieHi pexoMeHaanii 1010 BUKOPUCTAHHS Pi3HUX MOJIEJIeH MPOIeCy rajibMyBaHHS
JIO3BOJISIIOTH CTBOPUTH HAMOUIBII palioHaIbHy MOJEINb JUIS CHIOBOIO PO3PaxyHKY TaJlbMIBHOT OajKK METOJOM KiHIle-
BHX CJIEMEHTIB.

Knrouosi crosea: gisuuna ma mamemamuuna mooeni OAnKU I HAKIAOKU, WAXMHA NIOUOMHA MAWUHA, KOJIOOKOGe
eanomo, memoo Einepa, 3axon Kynoua
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ABSTRACT (IN RUSSIAN)

Hean. PazpaboTka MOIeNI KOHTAKTHOTO B3aUMOJAEHCTBUS KOJIOAOYHOIO TOPMO3a IIAXTHOW MOJbEMHOM MaIlIuHbBI C
6apabaHOM NPU TOPMOXKEHUH C YYETOM KOHEYHOU M3TMOHOW KECTKOCTH OaJKH M BIMSHHS CHJI TPEHMS Ha pachpenee-
HUE B HEW KOHTAKTHOTO JABJICHHs JUIS CO3AAHUS PEKOMEHJAlUMN K MPOSKTUPOBAHUIO PALMOHANBHOM KOHCTPYKLMU
TOPMO3HO# OaJKH.

MeTtonuka. C MoMOIIBIO METO/Ia MCKITIOUeHHS U MeToza Jiiiepa copMyIHMpOBaHbl 3aKOHBI PACIIpe/ieNieHHsT KOHTaKT-
HOTO yCHJIHSI, yCWIIAS B BEPTUKAIGHON CTOHKE 1 TOPMO3HOTO MOMEHTA, KOTOPBIE BO3HUKAIOT B ITPOIECCE TOPMOXKESHUS.

PesyabTathl. VcciieqoBaHbl TpaHUIB! IPAMEHEHUS B CHJIIOBOM pacdeTe TOPMO30B IIAXTHHIX MOABEMHBIX MAITHH
TUIIOTE3 00 a0COTOTHOM JKECTKOCTH OalIK¥ M HEBIUSHUH CHII TPEHHUS Ha paclipelieieHrue B Helf KOHTaKTHOTO JaBIICHHS.
Paspaboranbl ¢u3nueckas ¥ MaTeMaTHYECKash MOJACIM KOHTAKTHOTO B3aWMOICHCTBHS TOPMO3HON OallKy IMaXTHOW
MOJbEMHO MalMHBI ¢ 6apabaHOM B MPOLIECCE TOPMOIKEHUSI.

Hayunasi HoBu3Ha. BriepBbie pa3paborana (usnueckas MOJeNIb TOPMO3HOH HAKJIaJKH B BHJIE MAacCHUBa YHPYTHX
TEJl THIA BUHKJIEPOBCKOTO OCHOBAHUS, KOTOPbIE padOTalOT Ha CKaThe M TepelaloT Yepes cedst pacrpeeleHHYI0 Kaca-
TEJNIbHYI0 HArpy3Ky (CHJIbI TPCHUs), BOSHUKAIOIIYIO MEXKIy TOPMO3HBIM 0apabaHOM M TOPMO3HOM KOJIOJIKOH, paccyw-
TaHHYIO Ha MPEAEIbHOE COCTOSIHUE PAaBHOBECHUSI B COOTBETCTBUM C 3akoHOM KyJsioHa; (usndeckas Moellb TOPMO3HOU
Oaiky B BUJIE KPYroBOro Opyca MOCTOSIHHOTO CEYEHHs1, KOTOPBIH YCTaHOBJIEH Ha BEPTUKAIBHOW CTONKE U B3aUMOJIEUCTBY-
€T C TOPMO3HbIM OapabaHOM Yepe3 TOPMO3HYIO HaKIaJKy, Harpy>KEHHYIO Paclpeie/IeHHOH HOpMaJIbHOW M KacaTelbHOU
Harpy3KoH, MOJIEJMPYIOIIEeH KOHTAKTHOE B3aMMOJEHCTBHE TOPMO3HOW KOJOIKM M OapabaHa, a BepTHUKaJIbHAs CTOMKa
CMOJICIMPOBaHA KaK TOJBIKHBIN IIApHUP, PACIIOIIOKEHHBIN ITOCepeHe KpyroBoro opyca. Briepsrie copmynmmpoBana
MaTeMaTH9ecKasi MOJIelb OTIPEIeNICHNs KacaTeIbHBIX M HOPMAJIBbHBIX YCHIINH, JEHCTBYONINX HA TOPMO3HYIO OaNKy.

IIpakTHyeckasi 3HaYMMOCTh. PazpaboTaHHbIE PEKOMEHIAINH K MCIIOIB30BAaHUIO PA3HBIX MOAEJEH Iporecca Top-
MOJKEHHSI MTO3BOJISIOT CO3/1aTh Hanboiee parroHAIbHYI0 MaTEMaTHYECKYI0 MOAEIH IS CHIIOBOTO pacyeTa TOPMO3HOU
0aKy METOIOM KOHEYHBIX JJIEMEHTOB.

Knrwouesvle cnosa: usuueckas u mamemamudeckas Mooeay 6AIKU U HAKIAOKU, WAXMHAS NOObEMHAS MAUUNA,
KOJLOOOUHbI MOPMO3, Memoo Diinepa, 3akon Kynona
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