УДК 622.772

И.К. МЛАДЕЦКИЙ, П.И. ПИЛОВ д-ра техн. наук, И.В. АХМЕТШИНА

(Украина, Днепропетровск, Национальный горный университет),

Э.М. ПАЙВА

(Ангола, Предприятие "Катока")

ИССЛЕДОВАНИЕ ВЛИЯНИЯ РАЗМЕРА ЧАСТИЦ УТЯЖЕЛИТЕЛЯ НА ПОКАЗАТЕЛИ РАЗДЕЛЕНИЯ В ГИДРОЦИКЛОНАХ

Обогатительное предприятие "Катока" (Ангола) применяет тяжелосредное выделение крупных кимберлитовых образований (тяжелосредная установка – TCУ). Установка хорошо себя зарекомендовала и ее применение совершенствуется. Одно из направлений такого совершенствования, является повышение рентабельности. Это связано со снижением потерь утяжелителя при его регенерации и стабилизацией режимных параметров при разделении в гидроциклонах. Утяжелителем является ферросилиций крупностью 100% Кл. -0,05 мм. Средняя крупность $\overline{d}_{y} = 0,03$ мм. Это магнитожесткий ферромагнетик, а поскольку еще из частиц малого размера, то после регенерации в барабанных магнитных сепараторах, он имеет значительную остаточную намагниченность. Плотность ферросилиция – $\delta_{v} \approx 7 \kappa z / \partial M^{3}$.

Одним из главных физических параметров, который способствует разделению в тяжелосредных гидроциклонах, является вязкость суспензии μ_c . Этот параметр для разделяемого материала крупностью $\overline{d}_{y} < d$ зависит от крупности утяжелителя и объемной его концентрации C_V :

$$\mu_{c} = \mu \frac{1}{1 - \sqrt[3]{(1 + \lambda S)c_{v}/k_{v}}},\tag{1}$$

где: k_y — предельная объемная концентрация суспензии, когда промежутки свободной дисперсионной среды между частицами становятся равными нулю, т.е. при некоторой критической концентрации, при которой $1-\sqrt[3]{(1+\lambda S)c_{_{VKK}}/k_{_y}}=0$; λS — параметр крупности несущей среды; S — удельная поверхность частиц утяжелителя; λ — толщина неподвижного пограничного слоя несущей среды вокруг частицы (чем больше λS , тем крупнее частицы); μ — коэффициент динамической вязкости несущей среды (воды).

Данная зависимость носит характер, который близок к параболическому и для различной крупности утяжелителя показана на рис. 1. Как следует из рис.1 достижение определенного значения вязкости суспензии наступает тем быстрее, чем меньше крупность частиц утяжелителя. А это значит, что чем меньше концентрация утяжелителя, тем лучше будет идти разделение в тяжелосредных

Збагачення корисних копалин, 2013. – Вип. 53(94)

гидроциклонах. Отсюда также следует, что необходимо добиваться минимального значения C_V при заданной крупности утяжелителя.

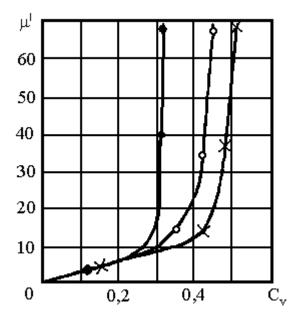


Рис. 1. Зависимость относительной вязкости магнетитовой суспензии μ' от объемной концентрации твердой фазы c_{ν} при значениях λS : 1-0.8; 2-0.35; 3-0.19.

Регенерация утяжелителя приводит к намагничиванию частиц за счет чего, по выходе из магнитного поля, частицы объединены во флокулы, размер которых $d_{\phi} > \overline{d}_{y}$. В результате чего умньшается значение μ_{c} и показатели разделения ухудшаются. Кроме того, при регенерации теряется некоторая часть утяжелителя и это способствует снижению C_{V} , что опять направлено на уменьшение μ_{c} . Таким образом, в процессе работы ТСУ необходимо контролировать \overline{d}_{y} и C_{V} .

Рассмотрим степень влияния изменения \overline{d}_y на показатели разделения. Исследование будем проводить численное с помощью моделей, близким к детерминированным, с тем, чтобы можно было бы зафиксировать малые изменения [1]. Модель доведена до технологического расчета показателей разделения в гидроциклонах. Для применения к иным типам гидроциклонов и режимным параметрам требуется некоторая подстройка двух параметров. Расчет построен по классической схеме. Известны входные функции раскрытия тяжелой фракции и распределения по крупности. С помощью математической модели определяются разделительные числа (сепарационная характеристика) для заданной крупности и плотности частиц. Вычисляют количество частиц этой фракции и крупности перешедших в слив и пески. После перебора всех фракций и крупностей получают технологические показатели разделения в гидроциклоне. На рис. 2a, б показаны графики изменения вероятностей извлечения частиц ценного минера-

ла в крупный продукт (пески) для двух значений показателя крупности частиц утяжелителя (λS). Особенно заметно влияние крупности утяжелителя на извлечение крупных частиц ценного минерала. Откуда следует, что увеличение крупности частиц суспензии ухудшает показатели разделения.

Рис. 2. Зависимости вероятностей извлечения ценного минерала в пески от плотности суспензии

Збагачення корисних копалин, 2013. – Вип. 53(94)

Гравітаційна сепарація

Для количественного определения Известно, что объемные и массовые соотношения в твердой и жидкой фазах в пульпе выражают очевидным равенством

$$V_{\Pi}\delta_{\Pi} = V_{T}\delta_{T} + V_{B}\delta_{B}.$$

Так как объемное содержание твердого представляет отношение $c_V = \frac{V_T}{V_{II}}$,

а массовое содержание твердого $c_P = \frac{P_T}{P_{\varPi}}$, то можно получить два соотношения для определения плотности пульпы

$$\delta_{\varPi} = c_V (\delta_T - \delta_B) + \delta_B$$
 и $\delta_{\varPi} = \frac{\delta_B \delta_T}{\delta_T - c_P (\delta_T - \delta_B)}$,

на основании которых, находим соотношение между содержаниями массовым и объемным:

$$c_P = \frac{c_V \delta_T}{\delta_B + c_V (\delta_T - \delta_B)} \,, \; c_V = \frac{c_P \delta_B}{\delta_T - c_P (\delta_T - \delta_B)} \,.$$

Поскольку обычно готовят консистенцию пульпы по массовому содержанию твердого.

Фактор крупности частиц утяжелителя зависит от средней крупности частиц в соответствии с данными, приведенными в табл. 1.

Таблица 1
Зависимость среднего размера частии от фактора крупности частии

зависимость среднего размера настиц от фактора круппости настиц										
Фактор крупно- сти частиц λS	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
Размер частиц, мм	0,2	0,125	0,09	0,07	0,063	0,058	0,052	0,05	0,046	0,043

Преобразовав выражение (1) для определения необходимого объемного содержания твердого, в зависимости от крупности и требуемой вязкости, получаем выражение

$$c_V = \frac{(1 - \frac{\mu}{\mu_c})^3 k_y}{1 + \lambda S}.$$

Исследование по принятой математической модели дали возможность определить зависимость извлечения частиц ценного минерала в тяжелосредном гидроциклоне от изменения фактора крупности утяжелителя. Результаты ис-

следования приведены на рис. 3.

Далее определим, в каком соответствии должны находиться величины, характеризующие вязкость суспензии

Таблица 2

Расчетные значения параметров, определяющих вязкость суспензии										
λS фактор крупности	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
c_V объемная концентр.	0,21	0,19	0,175	0,165	0,15	0,143	0,135	0,128	0,12	0,115
δ_{Π} , кг/дм ³ плотность суспензии	2,1	2,09	1,962	1,9	1,82	1,79	1,74	1,7	1,67	1,632
V_T , м 3 требуемый объем твердого	6,3	5,7	5,25	4,95	4,5	4,3	4,05	3,84	3,6	3,45
P_T , т.масса твердого	40,95	37,05	34,13	32,17	29,25	27,75	26,3	24,85	23,4	22,4
Размер час- тиц, мм	0,2	0,125	0,09	0,07	0,063	0,058	0,052	0,05	0,046	0,043

Анализируя показатели табл. 2 (две последние строки) можно сделать вывод, что малейшее увеличение крупности частиц суспензии (на 3 мкм) приводит к тому, что требуется увеличить объем утяжелителя более 1 т.

Рис. 3. Зависимость извлечения тяжелой фракции частиц ценного минерала от изменения крупности частиц утяжелителя

Увеличение размера частиц происходит под действием остаточной намагниченности [2]. И малые изменения намагниченности приводит к существенному увеличению крупности флоккул, поэтому операция размагничивания при-

Збагачення корисних копалин, 2013. – Вип. 53(94)

Гравітаційна сепарація

обретает первостепенное значение в случае применения тяжелосредного обогащения полезных ископаемых

Список литературы

- 1 Пилов П.И. Научные основы сепарации и водопотребления при обогащении руд: Дисс. . . . д-ра техн. наук. Д.: НГАУ, 1996.
- 2. Младецкий И.К., Пайва Э.М. Размер частиц магнитного утяжелителя после выхода из магнитного поля // Збагачення корисних копалин: Наук.-техн. зб. -2012. Вип. 48(89). С. 77-82.

© Младецкий И.К., Пилов П.И., Ахметшина И.В., Пайва Э.М., 2013

Надійшла до редколегії 15.04.2013 р. Рекомендовано до публікації д.т.н. П.І. Піловим