УДК 622.7

А.С. КИРНАРСКИЙ, д-р техн. наук (Германия, фирма "Инжиниринг Доберсек ГмбХ")

СОКРАЩЕНИЕ ЭНЕРГОЕМКОСТИ ВОДНО-ШЛАМОВОГО КОМПЛЕКСА В УСЛОВИЯХ ССГПО

Существующий водно-шламовый комплекс Соколовско-Сарбайского горно-обогатительного производственного объединения (ССГПО) построен по принципу принудительной подачи всего объема хвостовой пульпы в хвосто-хранилище (рис. 1), где имеет место естественное ее осветление без применения полимерных флокулянтов с последующим возвратом оборотной воды на обогатительное производство. Количество перекачиваемой по четырем пульпо-проводам пульпы — на уровне 45,3 тыс. м³/час. Содержание твердой фазы колеблется в пределах 3-5%. Удаление хвостохранилища от обогатительной фабрики достигает 15 км. Такой объем жидких отходов обогащения железной руды, сильная их разжиженность и значительная отдаленность ОФ от хвостохранилища приводит к значительным затратам электроэнергии, исчисляемые цифрой 396,8 млн кВт-часов в год.

Рис. 1. Хвостохранилище Соколовско-Сарбайского горно-обогатительного производственного объединения (ССГПО)

В таких условиях оправдывает себя сгустительное отделение, но при условии самотечной подачи хвостовой пульпы в радиальные сгустители диаметром 50 м, расположенных в непосредственной близости от ОФ. К сожалению, хвостовые лотки проложены так глубоко, что возможна только принудительная подача суспензии на сгустительные установки, а это делает процесс сгущения нерентабельным. Исходя из сложившихся реалий, представляет интерес сокращения сбросов хвостовой суспензии за счет организации частичного внутри-

фабричного водооборота в условиях ССГПО, что и стало предметом настоящей работы.

В настоящее время по каждой из 16 секций обогатительной фабрики ССГПО ежечасно в хвостовые лотки поступает 2830,98 м³/час хвостовой суспензии, при этом после первой стадии измельчения, гидроклассификации объем отходов обогащения равен 422,98 м³/час, второй стадии — 1363,2 м³/час и третьей стадии — 1044,8 м³/час. Наиболее разжижены хвосты третьей стадии, содержание твердой фазы в которых не превышает 0,8%, а самые плотные суспензии получают после первой стадии обработки железной руды, для которых содержание твердого достигает 14,73%. На второй стадии жидкие хвосты отличаются умеренным разбавлением на уровне 4%.

Гранулометрический состав отходов обогащения, представленный в таблице 1, показывает, что наиболее высокую дисперсность имеют отходы после ММС четвертой стадии и слив дешламаторов перед тонким грохочением на ситах "Derrick", в которых содержание класса минус 0,071 мм составляет соответственно 84,2 и 98,5%, в то время как в хвостах первой стадии ММС такого класса всего 44,7%.

Таблица 1 Гранулометрический состав продуктов обогащения в условиях Соколовско-Сарбайского железорудного горно-обогатительного комбината

Соколовско сароанского железорудного горно обогатительного комоината									
Продуктите	Массовый выход классов крупностью, мм								
Продукты обогащения	>2,0	1,0-2,0	0,5-1,0	0,2-0,5	0,1-0,2	0,071- 0,1	0,045- 0,071	<0,045	<0,071
Хвосты I стадии ММС	0,55	9,35	10,85	13,00	16,15	5,40	6,65	38,05	44,70
Хвосты II стадии ММС	1,00	1,30	3,00	9,30	24,80	9,40	9,80	41,40	51,20
Хвосты III стадии ММС	0,00	0,00	1,00	1,90	13,50	8,70	11,90	63,00	74,90
Слив дешламато- ров	0,00	0,00	0,00	0,00	0,20	1,30	14,40	84,10	98,50
Хвосты IV стадии ММС	0,00	0,00	0,00	0,00	3,60	12,20	19,40	64,80	84,20
Питание фильтра- ции	0,00	0,00	0,00	0,00	0,60	3,50	13,50	82,40	95,90
Технологические хвосты	0,00	0,30	1,30	3,80	13,90	7,50	10,70	62,50	73,20

В отличие от существующей водно-шламовой схемы, в которой весь объем хвостовой пульпы перекачивается на осветление в хвостохранилище, в предлагаемой схеме часть хвостовой пульпы объемом 1044,8 м³/час, включающий слив дешламаторов на третьей стадии измельчения и классификации, а также хвосты мокрой магнитной сепарации четвертой стадии подвергаются осветлению в гидроциклонах с получением слива с содержанием твердого менее 920 мг/л, возвращаемого в оборот, и сгущенных до 9% по твердому отходов, сбрасываемых вместе с общим потоком хвостовой пульпы в хвостохранилище.

Идея малого водооборотота наиболее полно разработана в работе [1]. Для реализации данного технологического решения необходимо внедрить установку, состоящую из шламового насоса типа WARMAN 10/8FFY-М и двенадцати гидроциклонов типа 250CVX, работающих в автоматическом режиме. Давление на входе в гидроциклоны составляет 1,81 бар. Размер песковой насадки порядка 35 мм, что исключает забивание гидроциклона и обеспечивает нужное уплотнение суспензии. Мощность приводного электродвигателя 160 кВт. Частота вращения рабочего колеса указанного центробежного насоса 915 об/мин.

Расчетный баланс продуктов осветления хвостовой пульпы в автоматизированной гидроциклонной установке "ContiClass $^{\text{®}}$ ", представлен в таблице 2.

Баланс продуктов осветления хвостовой пульпы в гидроциклонах

Таблица 2

Показатели	Питание	Слив	Сгущенный	
	Timiumo	СЛИВ	продукт	
Производительность, т/ч	7,41	0,90	6,51	
Объем пульпы, м ³ /час	1044,8	975,2	69,6	
Содержание твердого, %	0,706	0,09	9,00	

Осветленную в гидроциклонах пульпу предпочтительнее направлять на первую стадию измельчения и частично на первую стадию гидроклассификации, при этом накопление шламов в системе исключается за счет вывода хвостов ММС первой и третьей стадии из оборота и их глубокого осветления в наружном гидроотвале.

Альтернативно, осветленную воду после гидроциклонирования подают в бак оборотной воды, где имеет место смешивание слива хвостохранилища с содержанием твердого 41 мг/л и слива гидроциклонов с содержанием твердого 920 мг/л, в результате чего в оборот поступает вода, загрязнение которой равно 324 мг/л, что допустимо по технологическим соображениям на стадии мокрой магнитной сепарации [2]. На гидроуплотнение такую воду подавать нельзя, поэтому для этой цели можно воспользоваться баком свежей воды. Схематически рекомендуемая водно-шламовая схема с указанием малого внутрифабричного водооборота представлена на рис. 2.

В результате такого инновационного изменения в системе оборотного водоснабжения можно рассчитывать на сокращение водосброса за пределы фабрики на уровне 975 м³/час, что при общем объеме воды в системе 2809,72 означает 35%-ное снижение наружного водоснабжения комбината. Годовая экономия электроэнергии при этом составляет 128,47 млн кВт·часов, что при стоимости 1 кВт·часа на уровне 0,04 Евро приводит к снижению годовых эксплуатационных затрат по статье "электроэнергия" по шламовому хозяйству ОФ на уровне 5,14 млн Евро. С учетом затрат электроэнергии при эксплуатации гидроциклонных установок для сгущения и осветления шламовой пульпы, равной 20,63 млн кВт·часов, получаем дополнительный рост эксплуатационных расходов в сумме 0,825 млн Евро.

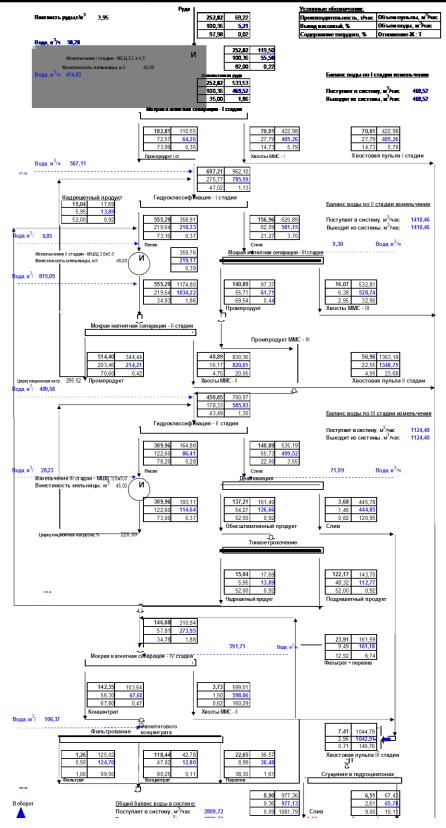


Рис. 2. Рекомендуемая водно-шламовая схема для условий Соколовско-Сарбайского ГОКа **Збагачення корисних копалин, 2013.** — **Вип. 52(93)**

Отсюда срок окупаемость данной технологии будет в пределах 1,5-2 лет в зависимости от дополнительных затрат на изготовление конструкций гидроциклонных установок, обустройство фундаментов под насосы, монтаж, таможенные пошлины и другие дополнительные расходы.

Важно отметить также, что в предлагаемой водно-шламовой схеме в хвостохранилище направляется хвостовая пульпа с содержанием твердого на уровне 6-7%, что является оптимальной величиной для сгущения таких шламов с применением полимерных флокулянтов типа Магнафлок 338. В перспективе этот аспект необходимо учитывать при расширении производства и строительстве сгустительного отделения.

Выводы

- 1. Сгущение хвостов мокрой магнитной сепарации четвертой стадии в гидроциклонной установке позволяет получать посекционно осветленный слив при содержании твердого не более 1 г/л, который может направляться в оборотный цикл обогатительной фабрики.
- 2. Организация частичного внутрифабричного водооборота позволяет сократить на 35% перекачку воды в хвостохранилище, что обеспечивает снижение расхода электроэнергии по комбинату на 128,47 млн кВт-часов/год.
- 3. Окупаемость такой технологии не превышает двух лет с учетом капитальных и эксплуатационных затрат на гидроциклонные установки.

Список литературы

- 1. Пилов П.И. Научные основы сепарации и водопотребления при обогащении руд: Дис. . . . д-ра техн. наук. Днепропетровск: ДГАУ, 1993. 450 с.
- 2. Вовк Н.Е. Оборотное водоснабжение и подготовка хвостов к складированию. М.: Недра, 1977.-150 с.

© Кирнарский А.С., 2013

Надійшла до редколегії 12.02.2013 р. Рекомендовано до публікації д.т.н. П.І. Піловим