УДК 622.7:631.851

Т.А. ОЛЕЙНИК, д-р техн. наук, Л.В. СКЛЯР, канд. техн. наук (Украина, Кривой Рог, Криворожский национальный университет)

ИЗУЧЕНИЕ ЗАКОНОМЕРНОСТЕЙ ИЗМЕНЕНИЯ СВОЙСТВ ПОВЕРХНОСТИ ТВЕРДЫХ ФАЗ ФОСФОРИТОВЫХ РУД ПРИ ОБРАБОТКЕ СЕРНОЙ КИСЛОТОЙ

Химическое обогащение основано на селективном выщелачивании фосфорсодержащих компонентов из руды кислотами (3-6% соляная и 2% серная) с получением фосфатов [1-4]. Химическая переработка фосфатного сырья производится с помощью минеральных кислот: серной, азотной фосфорной и соляной, а также термическими методами. Все способы химической переработки можно разделить на две группы:

- прямая термическая обработка сырья с получением готовых продуктов:
 фосфорных удобрений и фосфатов, используемых для технических целей обесфторенного фосфата, плавленных магниевых фосфатов, щелочных термофосфатов;
- разложение сырья кислотами с выделением промежуточных фосфорсодержащих продуктов, используемых для дальнейшего получения товарной продукции. Обработкой фосфатного сырья серной кислотой получают простой суперфосфат, фосфорной кислотой – двойной суперфосфат.

При химическом обогащении большое влияние на показатели процесса оказывают карбонаты, которые отрицательно влияют на вскрытие вторичного фосфатного сырья и приводят к снижению эффективности их переработки на удобрения. Необходимость вывода карбонатов из фосфатного сырья, при производстве удобрений, обуславливается избыточном пенообразованием в связи с тем, что во время обработки кислотой выделяется двуокись углерода.

Применение химического обогащения позволяет разработать безотходную технологию обогащения фосфатного сырья и открывает перспективы использования в промышленности бедного фосфатного сырья с получением богатых концентратов магниево-фосфорных удобрений длительного действия.

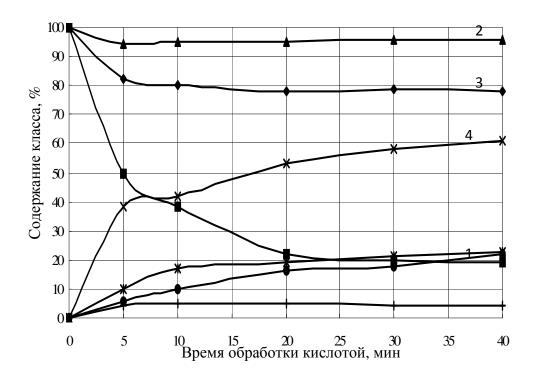
Взаимодействие фосфатных руд с кислотами сопровождается изменением минерального состава сырья и его дисперсности в результате растворения карбонатов и образования новых фаз. Гранулометрический состав не остается постоянным, разрыхляется поверхность частиц, образуются канальцы и поры, а также материал механически измельчается при ударе о лопасти мешалки и стенки реактора. Это приводит к изменению поверхностных свойств фосфатного сырья. Поэтому нами были проведены исследования по изучению зависимостей гранулометрического состава и удельной поверхности руд от продолжительности процесса и скорости перемешивания.

Спеціальні та комбіновані методи

В качестве исходного материала использовали концентрат флотации из руд Выжевского участка Волынской области, Ново-Амвросиевского участка и Южно-Осыковского месторождения. Химический и гранулометрический составы исходных концентратов приведены в таблице.

Гранулометрический состав концентратов, поступающих на химическое обогащение, %

Месторождения	Класс крупно- сти, мм	Выход	Химический состав			
			P_2O_5	MgO	CaO	CO_2
Волынской области	0,5-0,25	5,0	18,8	3,0	28,4	2,9
	0,25-0,16	54,3	20,6	3,9	30,1	3,4
	0,16-0,074	32,7	23,2	3,3	29,1	2,66
	-0,074	8,0	22,7	3,72	24,0	2,99
	Итого	100,0	21,5	3,66	29,2	3,1
Южно-Осыковское	0,5-0,25	8,8	17,8	1,75	30,74	2,85
	0,25-0,16	15,6	18,9	1,80	30,22	2,94
	0,16-0,074	58,9	19,8	1,85	31,31	3,0
	-0,074	16,7	19,3	1,65	32,51	2,54
	Итого	100,0	19,4	1,8	31,29	2,8
Ново-	0,5-0,25	13,9	14,5	8,2	32,0	18,5
Амвросиевский	0,25-0,16	17,9	14,6	8,9	33,3	18,8
участок	0,16-0,074	62,8	13,7	8,95	34,06	18,9
	-0,074	5,4	13,5	6,69	32,79	12,36
	Итого	100,0	14,0	9,0	33,57	18,5


При выщелачивании концентрата флотации гранулометрический состав изменяется в результате действия химических факторов, а при продолжительности 30 мин отмечается механическое разрушение частиц. На рис. приведена зависимость гранулометрического состава концентрата флотации Волынской области от времени обработки серной кислотой.

Установлено, что при обработке материала в течении 3-5 мин дисперсность материала изменяется в пределах $\pm 3\%$. С увеличением длительности процесса до 10-30 мин изменение размера частиц не превышает $\pm 3\%$. При длительности обработки материала до 60 мин происходит изменение фракционного состава: содержание класса -0,074 мм возрастает на 8,5%, достигая 16,5% в результате уменьшения содержания крупных классов.

При обработке серной кислотой отдельных классов в течение 5-40 мин наиболее значительно выщелачивается класс крупности +0,25 мм: за 5 мин – на 50%, за 20 мин – на 75%. Выщелачивание более мелких классов незначительное: класс -0,25+0,16 мм измельчается на 10%, за 10 мин – на 25%, за 40 мин – на 27 %; класс 0,074-0,16мм за 40 мин измельчается на 16%. Убыль крупных классов объясняется соотношением твердости доломита и франколита по шкале Мооса.

После выщелачивания удельная поверхность более крупных классов осталась неизменной, а удельная поверхность фракции -0.074 мм возросла от 9750 до 23150 м²/кг, что по-видимому можно объяснить увеличением пористости ча-

стиц вследствие выщелачивания доломита и выделением в твердую фазу кристаллов гипса, имеющих размеры $(40-160)\times(5-15)\cdot10^{-3}$ мм и истиранием частиц о поверхность мешалки. Содержание гипса в химическом концентрате 7-10%. В результате разрушения доломитовых перемычек увеличивается доля класса -0,074 мм: при продолжительности взаимодействия 5 мин до 36%, через 20 мин – 50%.

Зависимость изменения гранулометрического состава обезмагненного концентрата Волынской области от продолжительности обработки серной кислотой: 1 - +0.25 мм; 2 - -0.25 + 0.16 мм; 3 - -0.16 + 0.074 мм; 4 - -0.074 мм

При определении зависимости удельной поверхности частиц от продолжительности обработки серной кислотой приведена установлено, что удельная поверхность увеличивается для класса крупности -0.074 мм в 2.2 раза, для +0.25 и -0.16+0.074 мм — в 1.9 раза, -0.25+0.16 мм — в 1.4 раза. Удельная поверхность частиц фосфоритовой руды увеличивается на 40-50% при времени обработки 5-10 мин, когда карбонаты интенсивно разлагаются. При превалировании механических факторов разрушения, удельная поверхность увеличивается только на 20-30%. Максимальный размер кристаллов гипса $(100-300)\times(20-40)$ 10^{-3} мм при продолжительности процесса 30 мин уменьшается до $(100-300)\times(20-40)$ 10^{-3} мм при более длительной обработке.

Установлена зависимость изменения доли класса крупности концентрата флотации при обработке серной кислотой от частоты вращения мешалки. Так, для концентратов Южно-Осыковского участка доля исходного класса +0.25 мм уменьшается с увеличением частоты вращения мешалки. С увеличением от 1 до $3 \, \text{c}^{-1}$ в 1.3 раза через 5 мин и в 1.7 раза через 30 мин.

Спеціальні та комбіновані методи

При обработке руды Южно-Осыковкого месторождения класс +0,25 мм измельчается на 5-6% через 20 мин. С уменьшением продолжительности контакта доля этого класса сокращается на 5,3%. В первые 20 мин доля класса минус 0,074 мм возрастает до 74,2 %. За такое же время обработки, содержание класса 0,08-0,16 мм уменьшается в 2 раза: от 14 до 7% и с увеличением времени значительно не изменяется. Наибольшее изменение гранулометрического состава приходится на время 5-10 мин, когда происходит значительная декарбонизация.

В ходе исследований с помощью оптической и электронной микроскопии найден средний размер условного мономинерального зерна франколита, который составил для флотоконцентрата Волынской области 120 мкм, для флотоконцентрата Ново-Амвросиевкого участка 80 мкм, для Южно-Осыковского месторождения 90 мкм.

Таким образом, в ходе проведенных исследований установлены основные параметры процесса химического выщелачивания фосфоритовых концентратов, полученных из различных месторождений Украины, серной кислотой.

Список литературы

- 1. Беляков В.А., Румянцев А.Ю. Исследование гранулометрического состава фосфорита Каратау при обработке его серной кислотой в процессе флотационно-химического обогащения; В кн.: Кислотные методы переработки фосфатного сырья в фосфорную кислоту и минеральные удобрения. Л.: ЛТИ им. Ленсовета, 1982. С. 3-8.
- 2. Влияние условий на гидратность сульфата кальция, выделяющегося при сернокислотном разложении природных фосфатов / А.Ю. Михайлов, Р.Ю. Зинюк, Б.Д. Гуллер и др.; В кн.: Технология минеральных удобрений. Л.: ЛТИ им. Ленсовета, 1986. С. 43-51.
- 3. Технико-экономическая оценка производства суперфосфата из разных видов фосфатного сырья / Ю.А. Забелешенский, Т.И. Завертяева, В.Ф. Кармышов и др. // Инф. бюл. по химической промышленности. 1976. № 31(58). С. 46-57.
- 4. Треущенко Н.Н., Беляков В.А., Позин М.Е. Взаимодействие компонентов фосфатного сырья со слабыми растворами серной кислоты // ЖПХ. 1987. № 8. С. 1681-1685.

© Олейник Т.А., Скляр Л.В., 2012

Надійшла до редколегії 06.02.2012 р. Рекомендовано до публікації д.т.н. Г.В. Губіним