А.Д. ПОЛУЛЯХ, д-р техн. наук (Украина, Днепропетровск, ГП "Укрнииуглеобогащение"), В.И. ЧМИЛЕВ, канд. техн. наук (Украина, Макеевка, ОАО ЦОФ "Пролетарская")

ПРИМЕНЕНИЕ ГИДРАВЛИЧЕСКОЙ ОТСАДКИ С ГОРИЗОНТАЛЬНО-СТАЦИОНАРНЫМ ПРИДОННЫМ СЛОЕМ ЕСТЕСТВЕННОЙ ПОСТЕЛИ ДЛЯ ОБОГАЩЕНИЯ МЕЛКОГО МАШИННОГО КЛАССА РЯДОВОГО УГЛЯ

Как известно, в настоящее время существует несколько гипотез, объясняющих физические явления, благодаря которым происходит разделение зернистых материалов по плотности в отсадочных машинах [1, 2]. Однако при любой гипотезе основным фактором разделения минеральных зерен является порозность (разрыхленность) постели.

В соответствии с энергетической теорией процесса разделения зернистых сред по плотности [3, 4] разрыхление постели вызывается превращением кинетической энергии поднимающейся жидкости в эквивалентное, направленное вверх статическое давление, при этом сопротивление постели струе восходящего потока зависит от гранулометрического состава материала, определяющего порозность и площади сечения каналов. При определении перепада давлений в постели при ее разрыхлении Э.Э. Рафалес-Ламарка учитывает не только массу твердой фазы, но и силу инерции жидкости и твердого [5].

$$\Delta P_{g} = hg \left[m\delta + (1-m)\delta_{T} + m\frac{\delta}{g} \cdot \frac{du}{dt} + (1-m)\frac{\delta_{T}}{g} \cdot \frac{dw}{dt} \right], \Pi a, \tag{1}$$

где h – высота постели, м; m – порозность постели; $\delta, \delta_{_{\mathrm{T}}}$ – плотность жидкости и твердого, кг/м 3 ; u, w – скорость жидкости и твердого, м/с.

Прибавляя и вычитая δhg в правой части уравнения (1) получим превышение общего давления над статическим равным

$$\Delta P_{g} - \delta h g = h g \left[(1 - m) (\delta_{T} - \delta) + m \frac{\delta}{g} \cdot \frac{du}{dt} + (1 - m) \frac{\delta_{T}}{g} \cdot \frac{dw}{dt} \right]. \tag{2}$$

Только при установившемся движении, когда $\frac{du}{dt} = 0$ и $\frac{dw}{dt} = 0$ превышение давления над статическим определяется масса твердой фазы, т.е.

$$\Delta P_{g} - \delta h g = h(1 - m)(\delta_{T} - \delta)g, \text{ \Pia.}$$
(3)

Збагачення корисних копалин, 2010 – Вип. 41(82) – 42(83)

Представив выражение (3) в виде

$$\frac{\Delta P_g}{\delta h g} = 1 + \left(\frac{\delta_{_{\rm T}} - \delta}{\delta}\right) \left(1 - \frac{H}{P_u^{0.14}}\right),\tag{4}$$

где $P_{\!\scriptscriptstyle u} = \! \frac{d_{\scriptscriptstyle c}}{d_{\scriptscriptstyle 3}} -$ гранпараметр исходного материала, $d_{\scriptscriptstyle c}$ и $d_{\scriptscriptstyle 3}$ – средневзвешенный

диаметр частиц, соответственно, скелета и заполнителя, выход которых равен 68,5 и 31,5%, мм.

Принимая $\delta_{_{\rm T}} = 1500~{\rm кг/m}^3$, получим, что перепад общего давления над статическим растет до значения гранпараметра равного 10. При дальнейшем увеличении неоднородности материала превышение давления над статическим остается практически постоянным (табл. 1). Это означает, что при $P_u = 10~{\rm каналы}$ в постели закупориваются и постель будет подниматься как единое целое. H – порозность монофракции [7]. Таким образом, гранпараметр исходного материала, поступающего на обогащение в гидравлические отсадочные машины, должен быть менее $P_u < 10$. При этом порозность придонного слоя должна приближаться к порозности монослоя, а материал придонного слоя должен быть максимальной плотности. Особенно это актуально при обогащении мелкого рядового угля крупностью менее 13 мм.

Таблица 1 Впияние гранпараметра на превышение давления над статическим

Влияние граннараметра на превышение давления над стати теским										
Показатели		Численные значения								
P_{u}	1	5	10	15	20					
$rac{\Delta P_g}{\delta hg}$	1,27	1,32	1,34	1,342	1,35					

Для реализации полученных научных результатов разработана новая технология гидравлической отсадки мелкого угля путем подготовки машинного класса с гранпараметром менее 10 и создания в гидравлических отсадочных машинах горизонтально-стационарного придонного слоя естественной постели и промежуточного слоя с оптимальной структурой.

Как известно, в породном отделении отсадочная постель обычно состоит из концентратного и породного слоев и распложенного между ними промежуточного слоя смеси концентратных, промпродуктовых и породных фракций. В промпродуктовом отделении имеется три основных слоя — концентратный, промпродуктовый и породный, между которыми расположены промежуточные слои из смеси концентратных и промежуточных фракций, промпродуктовых и породных фракций.

По мере передвижения постели к разгрузке высота основных слоев увеличивается, а промежуточных – уменьшается.

Збагачення корисних копалин, 2010. – Вип. 41(82) – 42(83)

Поскольку постель необходимо разрыхлять до самых верхних слоев, то чем толще отсадочная постель, тем должно быть меньшим число пульсаций и большим время действия восходящего потока, чтобы избежать поднятия постели сплошной массой и, чтобы каждая частица отсадочной постели получила возможность совершать относительные перемещения, соответствующие ее плотности.

Это требование является основным, а его выполнение составляет главную задачу регулирования процесса отсадки.

Качество же продуктов разделения и особенно содержание в породе некондиционных фракций зависит, в основном, от проницаемости промежуточных слоев. При этом толщина промежуточных слоев не связана с величиной содержания промпродуктовых фракций в исходном рядовом угле, а определяется режимом отсадки.

На рис. 1 приведены данные по структуре постели породного отделения отсадочной машины, из которых следует, что наименьшую порозность (а значить и наименьшую проницаемость) имеют именно промежуточные слои: от 0,355 до 0,388 с плотностью твердого от 1450 до 1700 кг/м³ (на рис. 1 заштрихованная площадь). Следовательно, порозность частиц в промежуточных слоях меньше, чем в выше- и нижележащих слоях.

Можно предположить, что промежуточный слой постели является как бы барьером, проницаемость которого определяет плотность частиц проникающих в породную зону и определяет плотность разделения. Высота этого слоя должна быть оптимальной, так как ее увеличение приводит к росту засорения концентрата промпродуктовыми и породными фракциями, а ее уменьшение – к повышению содержания в породе промпропродуктовых и концентратных фракций. То есть промежуточный слой должен быть проходим для породных частиц и не проходим для концентратных.

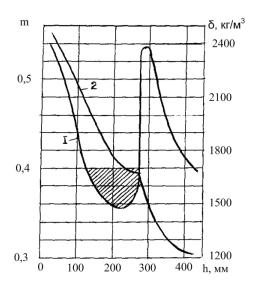


Рис. 1. Изменения по высоте постели порозности (1) и плотности твердого (2)

Збагачення корисних копалин, 2010 – Вип. 41(82) – 42(83)

На рис. 2 приведена усредненная зависимость эффективности обогащения мелкого машинного класса в гидравлических отсадочных машинах E_{pm} от соотношения h_{np}/h_{noct} , где h_{np} и h_{noct} — высота соответственно промежуточного слоя и постели. Из зависимости следует, что оптимальное соотношение h_{np}/h_{noct} составляет 15...25%. Анализ рационального состава промежуточного слоя показывает (табл. 2), что чем больше в нем содержится промпродуктовых фракций, тем выше эффективность расслоения.

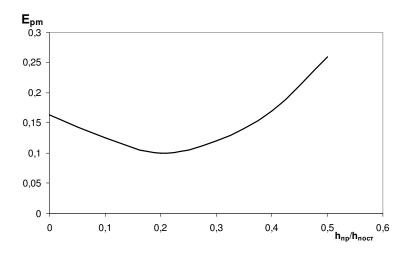


Рис. 2. Усредненная зависимость $E_{pm} = f (h_{np}/h_{noct.})$

Таблица 2 Фракционный состав промежутонного слоя в породном отледения

Фракционный состав промежуточного слоя в породном отделении										
	Опыт 1		Опыт 2		Опыт 3		Опыт 4			
Плотность, кг/м ³	выход, %	30ль- ность, %	выход, %	30ль- ность, %	выход, %	30ль- ность, %	выход, %	30ль- ность, %		
-1500	54,8	7,2	44,8	6,8	32,6	7,0	22,6	7,4		
1500-1800	11,1	35,7	24,8	38,6	42,2	32,4	58,1	30,7		
+1800	34,1	78,6	30,4	77,4	25,2	80,3	19,3	81,1		
Итого	100,0	34,7	100,0	36,1	100,0	36,2	100,0	35,2		
E_{pm}	0,26		0,20		0,	16	0,13			

В случае незначительного содержания в питании отсадочных машин промежуточных фракций, необходимо осуществлять частично или полностью возврат материала, содержащегося в элеваторе промпродуктового отделения, в загрузку отсадочных машин.

Для создания придонного слоя постели с максимальной порозностью и плотностью материала ГП "Укрнииуглеобогащение" разработало устройство для создания горизотально-стационарного придонного слоя естественной постели.

Устройство представляет собой комплект сварных рамок жестко установленных на решете отсадочной машины. Рама состоит из сваренных между собой гребенок и поперечных боковин. Для повышения жесткости конструкции в середине рамы приварена дополнительная перемычка. В гребенках с шагом Збагачення корисних копалин, 2010. – Вип. 41(82) – 42(83)

50 мм нарезаны пазы, в которые вставляются поперечные пластины (рифли), образуя вместе с боковинами ячейки для формирования горизонтальностационарного придонного слоя естественной постели отсадочной машины.

Устройство устанавливается на решете отсадочной машины и жестко крепится с помощью брусков, клиньев и уголков, приваренных к боковинам отсадочной машины.

Данная система крепления позволяет при необходимости регулировать шаг между поперечными пластинами и их высоту.

С целью определения структуры горизонтально-стационарного придонного слоя, выполнены исследования по динамике изменения гранулометрического и фракционного составов материала, находящегося в межрифлевом пространстве, по длине II породного отделения отсадочной машины. При этом высота и шаг рифлей составляли, соответственно, 100 и 200 мм.

Результаты исследований приведены в табл. 3 и 4.

Анализ гранулометрического состава материала, находящегося в придонном слое между рифлями (табл. 3) показал, что по длине отделения отсадочной машины между рифлями происходит накопление классов +13 и 6-13 мм и уменьшение содержания классов 3-6 и 0-3 мм. Так при обогащении углей шахты Им. Гагарина содержание класса +13 мм увеличилось на 10,5% с 56,7 до 67,2%; содержание класса 6-13 мм увеличилось на 5,7% с 18,3 до 24,0%; содержание класса 3-6 мм уменьшилось на 3,8% с 9,6 до 5,8%; содержание класса 0-3 мм уменьшилось на 12,6% с 15,4 до 2,8%. При этом зольность всех классов возрастает, а зольность придонного слоя в конце отделения на 11,8% больше чем в начале. Аналогичная картина наблюдается и при обогащении шихты шахт "Щеглова"+"Кирова"+"Чайкино".

Таблица 3
Гранулометрический состав придонного слоя постели II породного отделения
(материала, нахолящегося между рифлями)

(митериали, пиходищегоси между рифлими)									
Класс,	Расстояние от начала отделения, м								
MM	L = 0.2 M		L = 0.8 M		L = 1	,4 м	L = 2.0 M		
MIM	γ, %	A^d , %	γ, %	A^d , %	γ, %	A^d , %	γ, %	A^d , %	
Шахта Им. Гагарина (21.03.07 г.)									
+13	56,7	66,8	64,2	71,7	66,5	75,3	67,2	79,8	
6-13	18,3	68,9	19,3	74,9	21,8	81,2	24,0	82,6	
3-6	9,6	72,4	8,2	78,4	6,8	84,3	5,8	86,3	
0-3	15,4	76,3	8,3	82,6	4,9	89,1	2,8	92,1	
Итого	100,0	69,2	10,0	73,8	100,0	77,9	100,0	81,0	
Шахты: "Щеглова" + "Кирова" + "Чайкино" (11.04.07 г.)									
+13	52,5	73,1	53,2	77,0	56,3	79,2	60,2	80,8	
6-13	17,5	76,6	19,8	78,8	21,4	82,7	22,2	83,2	
3-6	11,5	79,8	10,3	81,3	9,2	83,4	8,4	85,6	
0-3	18,5	81,2	16,7	82,4	13,1	87,5	9,2	91,3	
Итого	100,0	76,0	100,0	78,7	100,0	81,4	100,0	82,7	

Из анализа данных табл. 4 следует, что при обогащении углей шахты Им. Гагарина, содержание породных фракций в придонном слое отсадочных машин

возросло на 8,6% (с 89,6 до 98,2%), а их зольность на 8,1% (с 74,8 до 82,9%).

При обогащении шихты рядовых углей шахт "Щеглова" + "Кирова" + "Чайкино" наблюдается более постоянное содержание и качество породной фракции придонного слоя. Содержание фракций +1800 кг/м³ возросло на 3,7% (с 93,6 до 97,3%), а их зольность на 3,8% (с 79,8 до 83,6%).

Таблица 4
Фракционный состав придонного слоя постели II породного отделения (материала, находящегося между рифлями)

(материала, палодищегоси между рифимии)									
Плотность, кг/м ³	Расстояние от начала отделения, м								
	L = 0.2 M		L = 0.8 M		L = 1,4 м		L = 2.0 M		
KI/M	γ, %	A^d , %	γ, %	A^d , %	γ, %	A^d , %	γ, %	A^d , %	
Шахта Им. Гагарина (21.03.07 г.)									
-1800	10,4	15,6	6,3	20,2	4,6	23,7	1,8	25,9	
+1800	89,6	74,8	93,7	78,9	95,4	81,7	98,2	82,9	
Итого	100,0	68,6	10,0	75,2	100,0	79,0	100,0	81,9	
Шахты: "Щеглова" + "Кирова" + "Чайкино" (11.04.07 г.)									
-1800	6,4	22,6	4,3	24,0	3,7	26,6	2,7	28,5	
+1800	93,6	79,8	95,7	80,6	96,3	82,8	97,3	83,6	
Итого	100,0	76,1	100,0	78,2	100,0	80,7	100,0	82,1	

Из вышеизложенного можно сделать вывод, что при длительной работе фабрики на одном и том же сырье, структура придонного слоя становится постоянной и соответствует по крупности классам +6 мм породной фракции $+1800 \text{ кг/м}^2$.

Промышленные испытания устройства приведены на ЦОФ "Пролетарская", где была осуществлена модернизация отсадочной машины ОМ-18, установленной на отм.+23 м на I секции фабрики. Устройство установлено во II породном и промпродуктовом отделениях отсадочной машины. Регулирование параметров устройства при испытаниях отсадочной машины осуществлялась только во II породном отделении. Установленные на решете отсадочной машины поперечные рифли удерживают в придонном слое постели крупные породные частицы, увеличивают продолжительность их разделения на кондиционную и некондиционную фракции, способствуют созданию слоя постели с частицами приблизительно одной крупности, что увеличивает проницаемость придонного слоя постели. Установка рифлей способствует также тому, что крупные частицы породы придонного слоя остаются в межрифлевом пространстве в количестве, достаточном для его полного заполнения.

В отсадочной машине создается однородный по крупности породный придонный слой постели с высокой проницаемостью, что влияет не только на снижение гидравлического сопротивления восходящим потокам подрешетной воды, но и увеличивает скорость разгрузки мелких породных частиц через решето в подрешетный продукт при нисходящем потоке воды. Это не позволяет им подняться до верхних слоев потока и засорять концентратные и промпродуктовые фракции. При этом в нижних слоях постели происходит минимизация содержания концентратных фракций, и тем самым, снижаются потери горючей массы с отходами отсадки.

Результаты работы модернизированной отсадочной машины приведены в табл. 5.

Из табл. 5 следует, что наименьшая зольность концентрата 4,6% достигается при высоте рифлей $h = 100\,$ мм и $B = 200\,$ мм. Это на 5,2% меньше, чем при работе отсадочной машины до модернизации. Причем зольность отходов находится на уровне 83,0%. Максимальная зольность отходов (84,4%) достигается при $h = 100\,$ мм и $B = 150\,$ мм.

Таблица 5 Результаты промышленных испытаний модернизированной отсадочной машины OM-18

			овия	отсадоч	лнои ма Плот						
$N_{\overline{0}}$	Дата	ОПЕ	ыта	-1500 1500-1800				800	Ито	ОГО	
опыта дата	h,	В,			d		γ , A^d ,		γ , A^d ,		
		MM	MM	γ, %	%	γ, %	%,	γ, %	% · ·	γ, %	%
			l	l	Концен	нтрат		Ш			
1	07.02	0	0	88,3	6,2	10,0	31,7	1,7	70,1	100,0	9,8
2	22.06	0	0	90,6	6,8	8,2	32,4	1,2	69,5	100,0	9,7
3	25.06	0	0	90,2	6,6	7,9	33,7	1,9	68,4	100,0	9,9
Сред	нее	0	0	89,7	6,5	8,7	32,5	1,6	69,3	100,0	9,8
1	07.02	100	150	94,7	5,3	2,7	27,1	2,6	63,8	100,0	7,4
2	07.02	100	150	96,0	5,6	2,1	26,2	1,9	67,3	100,0	7,2
3	07.02	100	150	95,3	5,8	2,4	25,0	2,3	69,5	100,0	7,7
4	22.06	100	150	92,0	4,7	5,1	24,9	2,9	55,9	100,0	7,2
5	22.06	100	150	92,1	5,0	4,7	29,7	3,2	56,7	100,0	7,8
6	22.06	100	150	91,3	4,4	5,6	26,1	3,1	54,8	100,0	7,2
7	25.06	100	150	94,8	5,4	3,6	24,6	1,6	55,3	100,0	6,9
8	25.06	100	150	95,4	5,9	2,6	23,8	2,0	53,4	100,0	7,3
9	25.06	100	150	96,5	5,7	2,0	24,8	1,5	52,9	100,0	6,8
Сред	нее	100	150	95,0	5,7	2,7	25,1	2,3	57,2	100,0	7,4
	1		1	1	Отхо		<u> </u>				
1	07.02	0	0	2,0	10,1	4,5	32,4	93,5	81,4	100,0	77,8
2	22.06	0	0	1,8	9,8	4,0	35,4	94,2	82,8	100,0	79,6
3	25.06	0	0	1,6	8,7	3,8	31,7	94,6	82,0	100,0	79,9
Сред	нее	0	0	1,8	9,6	4,1	33,2	94,1	82,4	100,0	79,1
1	07.02	100	150	1,0	8,0	2,5	28,7	96,7	84,3	100,0	82,3
2	07.02	100	150	0,8	9,1	2,8	31,2	96,4	84,8	100,0	82,7
3	07.02	100	150	0,9	8,8	2,4	27,2	96,7	85,9	100,0	83,8
4	22.06	100	150	1,2	9,6	3,0	31,2	95,8	83,9	100,0	81,4
5	22.06	100	150	1,0	9,0	2,2	30,6	96,8	85,2	100,0	83,2
6	22.06	100	150	1,1	9,3	2,6	29,8	96,3	84,7	100,0	82,4
7	25.06	100	150	1,0	8,4	2,8	30,7	96,2	85,8	100,0	83,5
8	25.06	100	150	0,7	9,6	2,1	33,3	97,2	85,2	100,0	83,6
9	25.06	100	150	0,8	9,1	2,3	32,4	96,9	85,0	100,0	83,2
Сред	нее	100	150	0,9	9,4	2,5	30,8	96,6	84,9	100,0	82,9

Наименьшее засорение концентрата от 0,5 до 1,0% приходится на высоту рифлей 100-150 мм, что на 1,2 и 0,7% меньше чем при обогащении без рифлей. Самое малое засорение отходов фракциями менее 1800 кг/м³ (2...3%) наблюдается при высоте рифлей 100 мм, что на 2,5% меньше, чем при работе отсадочной машины без рифлей. Надо отметить, чем больше высота рифлей, тем засорение отходов выше. С увеличением шага рифлей засорение концентрата растет при h = 200 мм, снижается при h = 150 мм и имеет перегиб для h = 100 мм. Данные промышленных исследований показывает, что наилучшие показатели разделения достигаются при h = 100 мм и B = 150 мм.

Анализ качественно-количественных показателей работы технологической операции "Обогащение мелкого машинного класса" в условиях ЦОФ "Пролетарская" свидетельствует, что модернизация отсадочной машины ОМ-18 позволила снизить содержание фракций менее 1800 кг/м^3 в отходах мелкой отсадки на 2.5% (с 5.9 до 3.4%), при этом зольность отходов отсадки увеличилась на 3.8% (с 79.1 до 82.9%).

Вывод

Применение устройства для формирования горизонтально-стационарного придонного слоя естественной постели на гидравлических отсадочных машинах мелкого зерна приводит к снижению потерь горючей массы с отходами производства.

Список литературы

- 1. **Самылин Н.А., Золотко А.А., Починок В.В.** Отсадка. М.: Недра, 1976. 320 с.
- 2. **Mayer F.W.** Eine new Erklärung des Setzvorganges und ibre Folge für die zwechmä ßige Gestaltung des Setz bubdiagramms // Glukauf. -1951. $-N_0$ 87. -P. 21-48.
- 3. **Полулях А.Д., Чмилев В.И., Ищенко О.В., Полулях Д.А.** Энергетическая интерпретация гравитационных разделительных процессов зернистых сред при обогащении полезных ископаемых / Монография. Луганск: изд-во СНУ им. В. Даля. 2006. 144 с.
- 4. **Полулях А.Д., Чмилев В.И., Бевзенко Б.Ф., Томилин В.Б.** О роли внешней энергии в энергетической модели гидравлической отсадки В.Ф. Майера / Труды XV Конгресса углеобогатителей. Пекин: Изд-во КНТУ, 2006. Т.1. С. 289-293.
- 5. **Рафалес-Ламарка** Э.Э. К вопросу определения давления под постелью отсадочной машины / В кн. Труды Укрнииуглеобогащение. М.: Недра, 1965. Т. 5. С. 16-19.

© Полулях А.Д., Чмилев В.И., 2010

Надійшла до редколегії 16.04.2010 р. Рекомендовано до публікації д.т.н. І.К. Младецьким