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ABSTRACT

Purpose. The purpose of this paper is to develop the models for predicting the uniaxial compressive strength (UCS)
of cemented hydraulic backfill (CHB), a widely used technique for filling underground voids created by mining
operations as it provides the high strength required for safe and economical working environment and allows the use
of waste rock from mining operations as well as tailings from mineral processing plants as ingredients.

Methods. In this study, different modelling techniques such as conventional linear, nonlinear multiple regression and
one of the evolving soft computing methods, adaptive neuro fuzzy inference system (ANFIS), were used for the
prediction of UCS, the main criterion used to design backfill recipe.

Findings. Statistical performance indices used to evaluate the efficiency of the developed models indicated that the
ANFIS model can effectively be implemented for designing CHB with desired UCS. As proved by the performance
indicators ANFIS model gives more compatible results with the expert opinion and current literature than conven-
tional modelling techniques.

Originality. In order to construct the models a very large database, containing more than 1600 UCS test results, was
used. In addition to widely used conventional regression based modelling techniques, one of the evolving soft com-
puting methods, ANFIS was employed. Numerical examples showing the implementation of constructed models
were provided.

Practical implementation. As proved by the statistical performance indicators, the developed models can be used
for a reliable prediction of the UCS of CHB. However, more accurate results can be achieved by expanding the data-
base and by constructing improved models using the algorithm presented in this paper.

Keywords: cemented hydraulic backfill, adaptive neuro fuzzy inference system, multiple regression model, under-
ground mining

1. INTRODUCTION

Waste rock and tailings from a mineral processing
plant are the main waste streams of mining operations.
Due to environmental and safety concerns, there is an
increasing interest in using these waste rock and tailings
as ingredients of backfill to fill the underground voids
created by mining operations rather than storing them on
surface. Cemented hydraulic backfill is composed of
crushed waste rock, tailings, water and cement. As it
allows the use of primary waste streams, CHB has been
increasingly accepted as a component of underground
mining operations.

During underground mining operations, CHB is
placed into previously extracted stopes to provide a stable

working platform to work on, to support mined regions, to
enhance pillar recovery and to reduce dilution. UCS is a
primary parameter used for designing CHB. The factors
affecting short and long term strength of backfill can be
divided into two main groups, extrinsic and intrinsic fac-
tors. Extrinsic factors are mostly related to in situ condi-
tions such as underground temperature and humidity
conditions, drainage conditions, stope geometry, ground
water conditions: such factors can be considered as un-
controllable parameters. Intrinsic factors, however, are
related to physical, chemical and mineralogical properties
of the main components of backfill materials and mixing
properties. Unlike extrinsic factors, intrinsic factors can
be controlled to obtain backfill with the desired laboratory
strength. Density (D), cement dosage (CD), coarse and
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fine aggregates ratio (ATR), and curing time (CT) are
widely known intrinsic factors controlling UCS (Belem &
Benzaazoua, 2007). Density (or solid content) is a key
factor controlling not only the flowability but also the
resulting UCS of backfill (Choudhary & Kumar, 2013).
The adjustment of the density is considered the most
practical way of increasing the UCS. There is also a
strong positive correlation between the cement dosage
and strength of backfill (Belem, Benzaazoua, & Bussiere,
2000; Choudhary & Kumar, 2013). On the other hand, it
is known that the cement cost is the main component of
overall backfill cost. The combined grading of coarse
aggregate, crushed waste rock, fine aggregate, and pro-
cessing plant tailings is represented by the aggregate
tailings ratio (ATR). High tailings addition decreases the
ratio and the UCS because the surface area of the particles
requiring cement coating and binding is increased
(Clark, 1988; Wang & Villaescusa, 2000). Regarding the
curing time (CT), when fly ash or furnace slag are used
as cement replacement material, the UCS may continue
to increase even after 28 days (Elchalakani, Basarir, &
Karrech, 2017), whereas when ordinary Portland cement
is used as a binder, like other concrete structures,
cemented backfill gains most of its strength within
28 days (Clark, 1988; Wang & Villaescusa, 2000; Lee,
2003; Potvin, Thomas, & Fourie, 2005).

Carrying out an experimental program for every po-
tentially viable recipe is an expensive and time-
consuming task. Therefore, modelling studies are widely
used to predict UCS values. In most of the modelling
studies, the above-mentioned main factors are considered
as independent variables for the prediction of UCS. For
cement-like mixtures such as CHB, conventional regres-
sion modelling has been widely used (Tsivilis & Paris-
sakis, 1995; De Siqueira Tango, 1998; Kheder, 2003;
Akkurt, Tayfur, & Can, 2004) to predict UCS. Recently,
evolutionary soft computing methods such as artificial
neural networks (ANN) and adaptive neuro fuzzy infe-
rence systems (ANFIS) have been used for similar pur-
poses (Akkurt, Tayfur, & Can, 2004; Ozcan, Atis, Kara-
han, Uncuoglu, & Tanyildizi, 2009).

Jinfeng underground gold mine is located in South-
west Guizhou province of China. The annual production
of the mine is around 0.5 Mt and will be increased to
0.75 Mt/year. Such production will increase not only the
amount of waste rock but also the amount of tailings;
almost 95 — 98% of feed ore, from the processing plant
will be generated. The inclination and thickness of the
orebody ranges from 55 to 85° and 3 to 20 m respective-
ly. Hangingwall and footwall contacts are mostly located
within fault and fissure zones. For such conditions the
most appropriate mining method was selected as the over-
hand cut and fill mining method, requiring high strength
backfill in order to prevent collapse and provide a strong
working floor for mechanised mining equipment. Consi-
dering relevant environmental issues, the selected mining
method and corresponding backfill requirements, the com-
pany preferred the use of CHB as the support method. For
the development of an effective backfill program, the
company started a comprehensive research and testing
program as explained in the following section.

In this paper, the results of the research program are
used to construct linear regression, nonlinear regression
and ANFIS models to predict the UCS of different CHB
recipes at certain curing times. The developed models
can be used to design CHB recipes considering the de-
sired UCS. In the models, accepted intrinsic factors such
as D, ATR, CD and CT are considered as independent
variables given that the other factors such as chemistry of
tailings and mixing water properties have fixed values
for the studied mine.

2. FIELD AND LABORATORY STUDIES

The main components of CHB are cement, crushed
waste rock from both open pit and underground mines,
processing plant tailings and water. The specific gravi-
ty, bulk density and void ratio of crushed waste rock are
2.57 g/lem?, 1.05 g/cm? and 0.57 respectively. The parti-
cle size distribution of the crushed waste rock is given
in Figure 1.
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Figure 1. Particle size distribution of crushed waste rock

The chemical and physical properties of the Portland
cement, PC 32.5, used at the mine are given in Table 1.

Table 1. Chemical and mechanical properties of cement used

in backfill
MgO, % 2.15
S0s, % 2.02
Alkali (NaO + 0.658 K20), % 0.76
Chloride content, % 0.009
Loss on ignition, % 5.26
Insoluble residue, % 12.71
+0.08 mm, % 17.50
Specific surface, cm?/g 3580
Soundness, mm 62.3
Initial setting time, min 172
Final setting time, min 204
3 days Compressive strength, MPa 14.77
7 days Compressive strength, MPa 21.5

28 days Compressive strength, MPa —

The specific gravity, bulk density and osmotic coeffi-
cient of the tailings are 2.7 g/ecm’, 1.3 g/cm® and
0.28 cm/h respectively. The grain size distribution of
tailings is given in Figure 2.
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Figure 2. Grain size distribution of tailings

An experimental program was designed considering
the main parameters D, CD, ATR and CT, affecting the
strength of CHB as independent variables. The histo-
grams and brief statistical information of the variables
are shown in Figure 3.
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Figure 3. Histograms of D, ATR, CD, and CT

The program was operated over three years and
1641 UCS tests were conducted on cylindrical samples.
The prepared samples were poured into cylindrical plastic
moulds and cured in a humidity chamber maintained at
90% humidity and 23 + 2°C temperature for a period of 7,
14 and 28 days. At the end of the curing time, the speci-
mens were cut into 80x160 mm size and loaded using a
100 kN capacity universal testing loading machine.

3. MODELLING STUDIES

For model development, the database was initially
randomly divided into two parts, being the training and
checking data sets to be used in the modelling phase. The
statistical properties of training, checking and all datasets
are presented in Table 2.

Conventional linear (LMR), nonlinear (NMR) multiple
regression and ANFIS modelling techniques were used to
construct the UCS prediction models. The models were
trained using the training dataset and the performance of
trained model is checked using the checking dataset.

Table 2. Statistical properties of training, checking and all

datasets
CD, CT, UCS
0, ) 9 )
D% ATR % days  MPa
Noof 1149 1149 1149 1149 1149
data

Max 76 11.45 29.98 28 6.34

Training Min 67 1.46 1.92 7 0.03
dataset Range 9 9.99  28.06 21 6.31
Average 7541 486 11.80 1636 0.90

Std. 127 111 418 875 0.63
Dev.
Noof o 490 492 492 492
data

Max 76 9.02 29.14 28 4.09

Checking Min 68 146 193 7 0.04
dataset Range 8 7.56  27.21 21 4.05
Average 7542 491 1146 1623 0.86

Std o0 105 386 870 0.58
Dev.
Noof = yoil 1641 1641 1641 1641
data

Max 76 11.45 29.98 28 6.34

All Min 67 1.46 1.92 7 0.03
datasets Range 9 9.99  28.06 21 6.31
Average 754 487 11.70 1632 0.89

Std. 1.25 1.10  4.09 8.73 0.61
Dev.

A Pearson correlation table was used to survey the
independence of the variables relative to each other.
Exceeding the limits of correlation between the varia-
bles can force the equation to produce unfaithful out-
puts due to multi-collinearity. The Symmetrical Pearson
Table shown in Table 3 shows the one-to-one statistical
relationships between the variables. It is undesirable to
have the variables with a correlation value higher than
0.7 in the equation (Pallant, 2010). All values in the
table are less than 0.7 and no correlation is detected
between the variables.

Table 3. Pearson’s correlation table

D ATR CD CT ucCs
D 1 0.45 0.01 0.00 0.09
ATR 1 -0.35 0.00 -0.20
CD 1 0.00 0.69
CT 1 0.46
UucCs 1

Through modelling studies, a number of LMR, NMR
and ANFIS models were constructed using different ran-
domly generated training sets. The best performing models
were selected and presented in the following sections.

3.1. Multiple regression modelling

Application of multiple regression analyses using a sta-
tistical package SPSS 20 (SPP20 IBM, 2011) yielded the
following linear (LMR) and nonlinear (NMR) models:

UCS = ~0.0144D +0.0316ATR +0.1091CD +
+0.0335CT; 1)
UCS = exp(0.0835D +0.0373ATR +0.0910CD +
+0.0352CT —8.3578). )
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For the LMR and NMR models the coefficient of cor-
relation (R) values were 86 and 90% respectively. The
analysis of variance (ANOVA) tables for linear and non-
linear models are given in Table 4. F-test was used to
confirm the validity of the overall model. The calculated
probability value (Prob(F)) demonstrates a very high
significance and confirms the adequacy of the models.

The significance level of the test is specified as the
commonly accepted value of 0.05.

The cross-correlation graphs showing the observed
and predicted UCS for training, checking and overall
data sets from LMR and NMR models together with the
1:1 correspondence line are given in Figure 4, together
with the coefficient of correlation R.

Table 4. ANOV A tables for linear and non-linear multiple regression models

Degree Sum Mean . >
Source of freedom  of squares square F, ratio R Prob (F)
Regression 3 332.33 110.78 1072.38 74 0
LMR Error 1145 118.28 0.103
Total 1148 450.61
Regression 4 364.28 91.07 1206.72 81 0
NMR Error 1144 86.34 7.55
Total 1148 450.62
LMR Checking set LMR All set

LMR Training set
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Figure 4. Cross correlation graph for LMR and NMR models

3.2. ANFIS modelling

Artificial neural network (ANN) and fuzzy inference
system (FIS) have been increasingly used as soft model-
ling techniques. Each technique has its own advantages
and disadvantages. The main advantage of ANN are
pattern recognition and adaption to a changing environ-
ment, whereas, FIS has the advantage of incorporating
human knowledge and expertise to deal with uncertainty
and imprecision. As a hybrid modelling technique, adap-
tive neuro fuzzy inference system (ANFIS) has the ad-
vantages of both methods and is widely used in practical
cases involving high uncertainty (Asrari, Shahriar, &
Ataeepour, 2013; Bilgehan & Kurtoglu, 2015; Fattahi,
2016; Basarir & Dincer, 2017; Basarir, Wesseloo,

Karrech, Paternak, & Dyskin, 2017). A brief introduction
to ANFIS modelling is given in Appendix A.

The same training and checking datasets with
regression modelling were used for constructing the
ANFIS model. MATLAB (MATLAB, 2011) was used
to train the ANFIS model incorporating a Sugeno-type
FIS and ANN structure. Due to its inherent advantages,
a hybrid learning algorithm combining a least square
estimator and gradient descent method was preferred
(Jang, 1993; Jang, Sun, & Mizutani, 1997; Nayak,
Sudheer, Rangan, & Ramasastri, 2004). As shown in
the sequential network structure given in Figure 5, the
inputs and output of the ANFIS model are D, ATR, CD,
CT and UCS, respectively.
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Figure 5. Sequential network structure of ANFIS model

The explanations of the notations used are provided
in Figure 6, showing the trained membership functions.
In ANFIS modelling, the number of membership func-
tions is defined by the number of clusters. In this study,
the number of clusters, two for all inputs, were deter-
mined experimentally by developing various modelling.
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10 20
Cement Dosage, %
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Aggregate to Tailing Ratio

Short (S)

12 16 20 24
Curing time, days

Figure 6. Trained membership functions and Gaussian
membership function parameters

For each input a linguistic expression was assigned
for each of the membership functions. In this study, a
Gaussian membership function was selected due to its
smoothness, concise notation and non-zero output at all
points. The trained Gaussian type membership func-
tions (Equation (1)), controlling parameters (o and c)

and names for each input membership function are
shown in Figure 5:

~(x—c)’

f(x;O';c)ze 267 . (3)

A rule-based mechanism, consisting of the rules ex-
tracted from data statistics, determines the relationship
between input and output variables. Having four input
variables with two membership functions, 16 rules, each
of which yield different outputs, were derived. The type
of output can be in the form of a linear equation (or a
constant) depending on the order of fuzzy model used.
The derived rules and corresponding constant output
values for the constructed zero order Sugeno-type ANFIS
model are shown in Table 5.

Table 5. Derived ANFIS rules and corresponding output

values
No. Rule Output, f
! aIndeCIISj I;sail i::iTngsisLs then 0.240
2 aLdeCE I;s ?irﬁiTCRTI?SLL then —0.166
3 aildeCII; I;s ?IlirﬁiTg T1 SisLS then —0.377
4 dCDLHadCTiy then 0898
S andCDilandCrins  en 448
6 adeCIB%saEirﬁTngisli then —2.735
7 aIrldeCIIS)I;saﬁ(iziﬁ(;r ng SISH g them  —17.320
S amdCDiHmdCTaL  Men 24510
? o omiand ARSI then ~0.260
10 alrldeCIISjI;Is alflirﬁTngissLL then —0.298
i alndeCIIS)I;ls?-IIlilﬁiTé{TlsisLs then 2835
12 aildeCIISjI;Is?IIl(allrﬁiTCRTl?sLL then  7.324
B mdCDisLandCras  Men -2069
M dCDisLandCTaL B 1613
5 pdCDisHandCTis  en 088
6 niCDisHagcTeL  Ten T

The final stage of the constructed ANFIS model is the
de-fuzzification stage. At this stage a crisp value,
expressed as a combination of outputs is obtained. For a
certain set of D, ATR, CD, CT each rule yields different
UCS values. Finally, combining the calculated UCS
values, a final crisp UCS value is determined.

An example showing the practical application of the
constructed model is given in Appendix B.

Plots of the predicted vs observed UCS values with
1:1 correspondence line, and coefficient of correlation
(R) values for training, checking and overall data set are
given in Figure 7.
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Figure 7. Measured and predicted UCS by ANFIS model

4. MODELLING PERFORMANCE

For model performance assessment the most widely
used performance indicators, variable account for (VAF)
and mean absolute percentage error (MAPE), are used.
VAF performance indices are used to investigate to what
degree the model can explain the variance in data. VAF
is used to verify the correctness of a model, by compar-
ing the measured values (y) with the estimated output of
the model (y.s). In other words, the higher the VAF the
better the model performs. If the measured and predicted
values are exactly the same, VAF will be equal to 100%.
The accuracy of a fitted model can be measured using
mean absolute percentage error (MAPE), expressing
accuracy as a percentage:

var(y—
VAFZ I_M .1()(); (4)
var(y)
Vi = Vest;
MAPE = lzyzl 2L 700, (5)
n i
where:

var — variance;

n — the number of samples;

y —measured;

Vest — predicted UCS.

The constructed models and corresponding statistical
performance indicators are presented in Table 6. It can be
seen that the ANFIS model presented better performance
than LMR and NMR models. The ANFIS model has the
highest R?, VAF and lowest MAPE values for all datasets.

Table 6. Statistical performance indicators for LMR, NMR

and ANFIS models
VAF MAPE
T.ral- Chec- All T.ral- Chec- All
ning  king ning king
LMR 73775 7126 73.11 48.70 44.17 47.34
NMR 80.87 74.54 79.18 37.03 40.26 38.00
ANFIS 82.88 80.13 82.16 2393 2412 23.99

In order to check the model sensitivity to sampling
variation, the overall data set was randomly divided into
separate training and checking data sets 10 more times. In
each case, the training set and checking data sets were
composed of 1149 and 492 records, respectively. For each
training and checking data set, the developed models were

applied, VAF and MAPE values were calculated and
presented in Figure 8. For each case, higher VAF and
lower MAPE values are observed for the ANFIS model.
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Figure 8. Statistical performance indicators for randomly
generated training and checking datasets

In order to compare the relative importance of each
parameter for the constructed models, a sensitivity analy-
sis was conducted using the selected values (Fig. 9). The
effect of each parameter was analysed by changing one
variable in a specified range, as others were kept con-
stant. Both ANFIS and NMR models indicated that the
most dominant parameter controlling the UCS is CD
followed by ATR and D, respectively. However, LMR
models reveal that CT is the most effective parameter
followed by CD.

D is the least significant parameter according to
LMR and ANFIS models, for NMR model ATR is the
least significant parameter. Unlike the LMR model,
both ANFIS and NMR models indicate a strong positive
correlation between D and UCS, compatible with cur-
rent literature and expert opinion. All the models reveal
that UCS increases with increasing CD and ATR. Such
a result is also compatible with observations, i.e. it is
expected that as the amount of coarse aggregate
increases, UCS increases.
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Figure 9. Sensitivity analysis results

Regarding curing time, it is well known that for con-
crete-like structures most of the strength is gained within
28 days of curing time, unless cement replacement mate-
rials such as fly ash or furnace slag are used
(Elchalakani, Basarir, & Karrech, 2017). Only ANFIS
models predict such behaviour, since both LMR and
NMR show that the strength will continue to increase
even after 28 days of curing time.

5. CONCLUSIONS

In this study conventional LMR, NMR and ANFIS
modelling techniques were employed to construct predic-
tive UCS models to be used for designing CHB recipe.
The intrinsic parameters affecting the strength of CHB
such as D, ATR, CD, CT were selected and used as input
variables for the developed models. Some other variables
affecting the strength such as chemistry of tailings and the
content of water were not considered as independent vari-
ables for the studied mine since they were kept unchanged.

All of the constructed models represented acceptable
prediction performance indicating that the models con-
structed in this study can conveniently be used for the
initial estimation of UCS of CHB. The ANFIS model
yielded the best performance considering the statistical
performance indicators such as MAPE and VAF.

In order to analyse the effect of random dataset con-
struction processes and model sensitivities, 10 more
datasets were randomly constructed and model perfor-
mances were checked again. The results proved that the
ANFIS model yields the best performance and the most
consistent results for all randomly generated datasets.

The sensitivity analysis showed that the ANFIS mod-
el is more sensitive to the changes in the input parame-
ters than the regression models; the model reflects even a
small change in the input variables. Moreover, the results
of the ANFIS model seem to be more compatible with
the expert opinion and current literature. One of the rea-
sons behind high performance and compatibility is the
learning capacity of the technique as proved by the better
performance indicators for checking datasets. Unlike re-
gression modelling, ANFIS does not require pre-defined
mathematical equations for the relationship between input
and output variables, and it uses the provided data set for
determining the structure of the model effectively.

Through modelling, a special recipe suitable for a de-
sired CHB application can be designed. Therefore, the
cost and time of site and laboratory testing can be re-
duced. Although the performance of the models are satis-
factory and acceptable, their accuracy can be further
improved by enriching the database with additional ex-
perimental results. For the cases where the chemical
properties of tailings are different and thus affect the
achievable strength, new models can be derived using the
algorithm presented in this study.

APPENDIX A

In this paper Takagi, Sugeno, & Kang fuzzy inference
system was used to construct ANFIS. A common figure
(Fig. 10) is used to explain the method through a simple
model containing two rules (Sugeno & Kang, 1988). The
model involves premise and consequent parts (Jang, Sun,
& Mizutani, 1997). The inference system consists of five
layers, each of them involves several nodes, described by
node functions.

(@) Premise part Consequent part

Al
| , F=px+qqy+ry
Wi Wy
A2 f= Wotw, W+ . f,
W2 £=pxtqytr, _
=Wl Wl
(b) Layer1 Layer 2 Layer 3 Layer 4 Layer 5

Adaptive Fixed
Node Node

Figure 10. An adaptive network and a fuzzy inference system

The system has two input variables x and y and an
output variable f. In fuzzy systems every input variable is
described by fuzzy sets. In the example, 4, and 4> are the
fuzzy sets for the x variable and B; and B, are the fuzzy
sets for the y variable.
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A fuzzy set A(x) is represented by the constituent
elements x and their associated membership values z4(x)
(the degree of belongingness):

A ={(x.p4(x)),x€ X}, (©)

where:

X —the universal set consisting of all possible
elements;

14(x) — the membership function, ranges from 0 to 1.

In the ANFIS model the relationship between input
and output is expressed by means of if-then rules. The
explained example model involves 2 fuzzy “if-then”
rules as follows.

Rule 1: if x is 4; and y is By; then:

fi=pixtaqy+r. (7
Rule 2: if x is 4> and y is B»; then:

L=pxtqytr, (®)

where:

P, q1, ', P2, ¢2, 2 — the consequent parameters;

A, Bi, A>, B> — the linguistic labels, which are repre-
sented by fuzzy sets as shown in Figure §;

{p1, q1, 1}, {p1, q2, >} — the parameter sets.

Each layer containing the node functions is described
below.

Layer 1: fuzzification layer. In this layer, every node
is an adaptive node with a node function. In other words,
the antecedents of the fuzzy rules are represented by
nodes in this layer. The parameters of these nodes control
the shape and the center of each fuzzy set. The Gaussian
type membership function, one of the most widely used
membership functions, is adapted in this study and the
membership function is given by:

—(x—c)2
O = My; (x)=f(x05¢)=e 20° , 9)

where:

0,,; — the output functions;

x — the input node i;

A; — the linguistic label associated with this node (i.e.
low, moderate, high etc.);

{0, c} —the parameter set that changes the shape of
the membership function;

o, ¢ —referred to as premise parameters.

Layer 2: rule layer. The nodes in this layer are fixed
and their output is the product of all the incoming sig-
nals. In this layer each node calculates the firing strength
of each rule via multiplication. Each rule is assigned as
firing strength measuring the degree to which the rule
matches the inputs. The number of nodes in this layer
equals the number of if-then rules i.e. 2 for the explained
example:

Oy =w; =ty (x)=pp (v) i=1,2, (10)

where:

0, — the output of layer 2;

w; — the firing strength.

Layer 3: normalization layer. The nodes in this layer
are the fixed nodes as in layer 2. The ratio of the i rule’s

firing strength to the sum of all rules firing strength is
calculated by the nodes in this layer:

Oy;=w,=—"—,i=1,2, (11)

where:
03, — the output of this layer called as normalized fir-
ing strength (;,)

Layer 4: defuzzification layer. Node function is given by:
Oy =wifi =wi (px+qy+7),i=1,2, (12)
where:

w, —anormalized firing strength from layer 3;

{pi, qi, ri} —the consequent parameter set of this
node;

/i can either be first order polynomial as shown in the
example or predefuzzified constant.

Layer 5: output layer. The single node in this layer is
a fixed node labeled as X. The overall output, as the
summation of all input from layer 4, is computed by a
fixed node. Overall output is given by:

Os =% v fy =00 212 (13
2 W

APPENDIX B

It is assumed that the used recipe is as follow; D is
71.5, ATR is 6.454, CD is 15.95 % and curing time is
14 days.

Layer 1: fuzzification. In this layer for each input
variable the membership degrees are calculated by sub-
stituting the presented membership function parameters o
and ¢ (Table 5) into Equation (7).

For diameter (D) for the value of 71.5 mm the mem-

bership degrees of Low ('UDL) and High (/UDH) are

calculated as follow:
tp, (T1.5) = £(71.5:5.141;68.43) =

~(71.5-68.48) (14)
—e 2514 03837,
tip,, (71.5) = £(71.5:5.306,75.97) =

~(71.5-75.97)* (15)
—e 253060 =701,

For assumed 6.454 ATR the membership degrees of
Low ( HATR, ) and High ( HATR, ) are calculated:

faTr, (6.454) = f(6.454;3.505;1.134) =
~(6454-1.134)° (16)

=e 23.505° =0.316;

Harr,, (6-454) = f(6.454;2.497;11.84) =

~(6.454-11.84)? 17)
—e 224977 _(.0098.
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The degree of membership functions cement dosage —

Low (/UCDL) and High (/UCDH); and curing times —

Short ( Hcrg ) and Long ( Hcr, ) are calculated:

tep, (15.95) = £(15.95:14.39;6.887) =

In the second layer firing strength measuring the degree
to which rule matches the input are calculated for each rule
via multiplication of calculated membership degrees.

For Rule 1 if D is L and ATR is L and CD is L and
CT is S the firing strength can is calculated as follow:

W ZIUDS (71.5)'/1ATRL (6454)X

(1595-6.857)” I8 _ (22)
(1595-6.887) U8 ey, (15.95)- per (14)=0.105.
=e 21439 =0.820; ] ) ) )
For Rule 2 if D is L and ATR is L and CD is L and
Hepy, (15.95)= f(15.95;14.l8;33.03) = CT is H the firing strength can is calculated as follow:
~(15.95-33.03) (19) wy = pg (71.5)- farg, (6.454)x o
- 21418%  _ . -
=e =0.484; Xtcp, (15.95)~,uCTH (14) =0.106.
Hcryg (14) =f (14;7413;5-043) = Similarly for each rule firing strength are calculated.
(14-5.043) (20) The calculatgd firing strength and corresponding rules
B S e o A are as shown in Table 7.
=e 27413 (482
0.105
i =—l =22 20126 24)
Hcr, (14)= £ (14;10.32;26.35) = 211'21 w; 0.828
~(14-26.35)? @1 0.106
P iy = ——2 == _0.128 (25)
=e 210327 =(.4809. 16 T
€ >2ow  0.828
Table 7. Calculation steps for ANFIS example
Firing Normalized firing _
No. Rule strength, W; strength, . Constant, f; w, Ji
1 IfDisLand ATRisLandCDisLand CTis S 0.105 0.126 0.240 0.030
2 IfDisLand ATRisLand CDis Land CT is L 0.106 0.128 -0.166 -0.021
3 IfDisLand ATRisLand CDisHand CTis S 0.062 0.075 -0.377 —-0.028
4 IfDisLand ATRisLand CDis Hand CT is L 0.063 0.076 0.898 0.068
5 IfDisLand ATRisHand CDisL and CT is S 0.032 0.039 4.483 0.175
6 IfDisLand ATRisHand CDisLand CTis L 0.033 0.040 -2.735 —-0.108
7 IfDisLand ATRis Hand CDis Hand CT is S 0.019 0.023 -17.320 -0.399
8 IfDisLand ATRisHand CDisHand CT is L 0.019 0.023 24.510 0.572
9 IfDisHand ATRisLand CDisL and CT is S 0.088 0.106 —-0.260 —0.028
10 IfDisHand ATRisLandCDisL and CT is L 0.089 0.107 —-0.298 —-0.032
11 IfDisHand ATR is Land CD is Hand CT is S 0.052 0.062 2.835 0.177
12 IfDisHand ATRisLand CDisHand CTis L 0.052 0.063 7.324 0.464
13 IfDisHand ATRisHand CDisL and CTis S 0.027 0.033 —2.065 —0.068
14 IfDisHand ATRisHand CDisLand CTisL 0.027 0.033 -1.615 —0.054
15 IfDisHand ATRisHand CD is Hand CT is S 0.027 0.033 9.883 0.323
16 IfDisHand ATRisHand CDisHand CTisL 0.027 0.033 7.431 0.246
Sum: 0.828 1.319

The calculated firing strengths are normalized in the
third layer. Example calculations for the first two rules
are calculated as follows. The calculated normalized
firing strengths for each rule are shown in Table 7.

Fifth layer is defuzzification layer in which constant
functions fspecified in Table 5 are multiplied by normal-
ized firing strength for each rule. For the first two rules
the calculations are shown below, all the calculated
values are shown in Table 7.

For Rule 1 and 2:

Wi - f1 =0.126-0.240 = 0.030;; (26)

iy - f, = 0.128-(=0.166) = —0.021 . 27)

The last layer is the output layer. In this layer the out-
put value is calculated by summing up the output of
previous layer:

UCS = S18,305 f; = Wy - fy +...+ W6 - fig =
=0.030+...+0.246 = 1.319.

(28)
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CUCTEMA AJIAIITUBHOI'O HEMPOHEYITKOI'O JIOI'TYHOI'O BUBEIEHHS
JIJIS1 MOJIEJTFOBAHHSI MEJKI MILTHOCTI ITPH OJTHOOCHOBOMY
CTUCKAHHI IEMEHTHOI I'l/IPABJIIYHOI 3AKJIAIKH

X. Bacapip, X. bin, E. ®yp’e, A. Kapeu, M. Enuanakani

Merta. [ToOynoBa Mozeneid aJisl MPOrHO3YBaHHS MEXi MIIHOCTI IPH 0JTHOOCKOBOMY CTHUCKaHHI IIEMEHTHOI T'ipaBJIi-

YHO1 3aKJaJKHU JJIsI 3alIOBHEHHS BHpOGJ’IeHI/IX l'[pOCTOpiB mIaxT.

Metoauka. 151 JOCSITHEHHs IOCTABJICHOI METH OYyJIM BHKOPHCTaHI Pi3HI METOIM MOJIETIOBAHHS: JiHINHA Ta HEi-
HilffHAa MHOXXHHHA PErpecisi, a TaKOXK IMOPIBHIHO HEJABHO CTAB MOIMYJSIPHHM METOJ] IIPOrpaMyBaHHs — aJalTHBHE HEl-
poneuitke noriude BuBeneHHs (ANFIS). 3a ix momomororo Oyio criporHo30BaHO 3MiHY MIITHOCTI HA OJJHOOCHOBE CTHC-
KaHH, 110 € KIIOYOBHM MTOKA3HUKOM JUIsl BU3HAYCHHS CKIIay 3aKiIanHoi cymimi. s noOynoBu Moneneli BUKOPHCTaHa
3Ha4YHa 0a3a MaHWX, AKa BKIOYA€ pe3ynbraTu Oimbin Hix 1600 BumpoOyBaHs Ha OJHOOCKOBE CTHCKaHHS. JlabopaTop-
HUMH TOCTIIKCHHIMH TaK0)K BU3HAYAJIFICSA BJIACTUBOCTI 3aKJIaJHIX MaTepiajiB i CyMmiTi.

PesyabraTu. Monens ANFIS nana Halikpaiiy npoayKTHBHICTD 3 ypaXyBaHHIM CTATUCTUYHHX MOKA3HHUKIB e(heKTH-
BHOCTI, TaKUX SIK cepe/iHsl a0COJIOTHA MPOICHTHA MOXUOKa 1 3MIHHUIT 00ikoBuil 3anuc. CTaTUCTHYHI MTOKa3HUKU MPO-
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JTYKTHBHOCTI, SIKi BAKOPUCTOBYIOTBCS ISl OLIHKH €(heKTUBHOCTI PO3po0IIeHUX MOJIeNei, CBiqUaTh, IO MO/ICITIOBAHHS 32
nonomoroto ANFIS no3Bossie oTprMaTu pe3ysbrary, siKi OlIbIe BiIOBIAIOTh KCIEPTHIH OLIHI Ta JaHUM 3 cydac-
HOI JIiTepaTypH, HiXK iHPOPMAITis, OTpHMaHa 3a JOITOMOT'O0 TPAIHIIIHHOTO MOJICTIOBaHHS. BCTaHOBIICHO, 110 HA BiaMi-
Hy Big perpecuBHoro mozemoBanHs, ANFIS ne Bumarae 3a3manerinp BU3HAU€HHX MaTEeMaTHYHUX PIBHSHB JUIST B3ae-
MO3B’SI3Ky MK BXIJIHUMH Ta BHUXIJHAMHU 3MIHHFMH i BUKOPHCTOBYE HaJaHWU HAOip MaHWX IS €(pEeKTHBHOTO BH3HA-
YEeHHS CTPYKTYPH MOJETI.

HaykxoBa HoBHU3HA. Briepiie aiist mporHO3yBaHHS MIITHOCTI IPH OAHOOCHOBOMY CTHCKaHHI OYJIH BUKOPHUCTaHI He
JUIIe TPaAWIiiHI CTIocOON MOZEIOBAHHS, 3aCHOBAHI Ha perpecii, a i iHHOBAIIHIIA METO ] IporpaMyBaHHs — a/Iar-
THBHE HelpoHediTke noriune BuBeneHHsS ANFIS. V craTTi HaBemeHi umcenpHI NMPUKIIATW BIPOBAKCHHS HOBHX
moOya0BaHUX MOJENeH.

IpakTuyna 3na4uMicTh. CTATUCTUYHI IHAWKATOPU MPOIYKTUBHOCTI TOKAa3aJH, IO PO3POOJICHI MOJEN MOXYTh
OyTH BUKOPHCTaHI JUIsl HAIHHOTO MPOrHO3YBaHHS MIIIHOCTI IIPH OJJHOOCHOBOMY CTHCKaHHI i ONTUMAaJIbHOI pelenTypu
3akiagHol cymimi. OxHak, mo0 oTpUMaTh OiIbII TOYHI pe3yJbTaTd, HEOOXIIHO MaTH OUTBII HIMPOKY 0a3zy AaHHX i
CTBOPUTH OLIBLI JJOCKOHAJII MOJIEIIi Ha OCHOBI aJITOPUTMY, 3alIPOIIOHOBAHOMY B JIaHil CTaTTi.

Kniouosi cnosa: yemenmna eiopasniyna 3axnadka, adanmuene Heupoueuimxe A02iuHe GUSEEOEHHS, MHOICUHHA
peepecitina Mooenb, nI03eMHA po3POOKA

CUCTEMA AJIAITUBHOI'O HEHPOHEUYETKOI'O JJOTHYECKOI'O BBIBOJIA
A MOJEJINPOBAHUA ITPEJIEJIA TPOYHOCTHU ITPU OJHOOOCHOM
CKATHM LIEMEHTHOM I'MIPABJIMYECKOM 3AKJIAJIKH

X. bacapup, X. bun, D. ®ypbe, A. Kapeu, M. Dnuanakanu

Heas. [Toctpoenne Mozeneil Uit MPOTHO3UPOBAHUS MTpeiesa MPOYHOCTH IIPU OJHOOCHOM C)KaTHUH IIEMEHTHOH TH/I-
PaBIMYECKOH 3aKJIaIKH JUIS 3aIIOJTHEHUS BEIPAOOTaHHBIX MPOCTPAHCTB MIAxXT.

Metoauka. {7151 JOCTH)KEHHS TTOCTaBICHHON IENN OBUIM MCHOJIB30BaHbl PA3IMIHBIE METOABI MOAEIHPOBAHUS: JTH-
HEHas W HEeNMHEHHAas MHOMKECTBEHHAS! PETPECCHs, a TaKKe CPaBHUTEIBHO HENABHO CTaBIIUH MOMYJISPHBIM METOX
MIPOrpaMMHPOBAHUS — aIAaNITUBHBIN HelipoHeueTkuit norudeckuit BeiBoA (ANFIS). C ux moMompio ObUIO CIIPOrHO3UPO-
BaHO M3MEHEHHE NTPOYHOCTH HA OJHOOCHOE CKAaTUE, YTO SIBJISETCS KIFOUEBBIM MOKa3aTeIeM Ul ONpEeeIIeHUs] COCTaBa
3aKJIaJ09HON cMecHu. Jlist mocTpoeHus: Moziesiel NCTIONb30BaHa OOLIMpHas 6a3a JaHHBIX, KOTOpas BKIFOUAET pe3yJbTa-
ThI Oosiee yem 1600 ucTBITaHUI HA OTHOOCHOE CxkaTHe. JIabopaTOpHBIMHU HCCICTIOBAHUIME TAK)KE ONPEICIISIINCH CBOM-
CTBa 3aKJIaJJOYHBIX MaTE€PHUAIOB U CMECH.

PesyabTartnl. Mogens ANFIS nana Haumydiryro mpoM3BOJUTENBHOCTh C YYETOM CTATUCTHUYECKHX IOKa3aTelel
3¢ PEKTUBHOCTH, TAaKUX KaK CpeIHss aOCONIIOTHAS MPOLEHTHAs MOTPENIHOCTh U NepeMeHHast ydeTHast 3amuch. CraTu-
CTHYECKHE ITOKa3aTeM MPOU3BOANTEIBHOCTH, UCIIONIb3YEMbIE ISl OLEeHKH 3()(EKTUBHOCTH pa3pabOTaHHBIX MOJETEH,
CBUJICTENIECTBYIOT, YTO MojenupoBanue ¢ momMompio ANFIS mo3BosnseT momyduTs pe3yiabTaThl, KOTOpEIE 0oiiee cooT-
BETCTBYIOT 3KCIIEPTHOI OIIEHKE M JAaHHBIM M3 COBPEMEHHOM JIUTEpaTyphl, 9eM HH(POPMAIHS, TIOJTydeHHAs! TPH TOMOIIN
TPaTUIIMOHHOTO MOJEIHPOBaHUA. Y CTaHOBICHO, YTO B OTVIMYHE OT perpeccrnoHHoro monenupoBanus, ANFIS ue Tpe-
OyeT 3apaHee ONpe/eIeHHbIX MAaTEeMaTUYEeCKUX YPABHEHUI Ul B3aMMOCBS3U MEXY BXOIHBIMM U BBIXOJHBIMHU II€pe-
MEHHBIMHU U HCIIOIBb3YeT NPEAOCTaBIeHHbIH HA0OP JaHHBIX 1A 3()(HEKTUBHOTO ONPEAENIECHUS CTPYKTYPB MOJEIIH.

Hayunasi HoBu3Ha. BriepBble AJ1s1 IPOTHO3UPOBAHUS NIPOYHOCTH NPU OJHOOCHOM CXKAaTHH OBLIN HCIIOJIb30BAHBI HE
TOJIBKO TPAJAUIMOHHBIE CIIOCOOBI MOJICIMPOBAHUsI, OCHOBAaHHbBIE Ha PETPECCUH, HO ¥ MHHOBAIIMOHHBIA METO]] IPOrpam-
MHUpPOBaHUS — aJalTUBHBINA HelipoHeueTkuil normdeckuil BeiBog ANFIS. B craThe mpuBefeHBl YHCIIEHHBIE MPUMEPHI
BHEJ[PEHHS HOBBIX NTOCTPOSHHBIX MOJIEINEH.

[pakTnyeckasi 3HAYMMOCTh. CTaTHCTHUECKUE MHIUKATOPHI MPOU3BOAMTENBHOCTH MOKA3alH, YTO pa3padboTaH-
HBIE MOJIENTH MOTYT OBITh MCIIOJIb30BAHbI IS HA/IEKHOTO IPOTHO3WPOBAHMS ITPOYHOCTU IPU OJHOOCHOM COKaTHH U
ONITUMANILHON pelenTypsl 3aKIago9Hoi cMecH. OqHAaKO, YTOOBI MOMYyYUTh O0Jiee TOUHBIE Pe3yIbTaThl, HEOOXOIMMO
nMeTh OoJiee MUPOKYI0 0a3y AaHHBIX M CO3AATh 0OJIEe COBEPIIEHHBIC MOJEIH Ha OCHOBE aJITOPUTMA, IPEATI0KEHHO-
ro B JaHHOM CTaThbe.

Knrouegvle cnosa: yemenmuas cuopasiudeckas 3aKiaokd, a0anmueHblll HellpoHeuemKull 102Uieckull 6b1600, MHO-
JHCECMBEHHAS PecPecCUOHHASL MOOENb, NOO3EMHAs paspabomka
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