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Abstract. For safe operation of mine hoisting machines (MHM) in 
the mining industry, it is necessary to provide high constructive 
reliability of brake systems, in particular, brake systems based on 
the block brake. The contact interaction of the brake with the 
translational movement of the shoes applied in MHM, remains 
insufficiently studied. In particular, it is necessary to develop a 
technique for accurate determination of the braking moment and 
forces in the elements of the brake linkage, as well as to study the 
nature of the pressure distribution along the brake beam. The 
purpose of this article is to simulate the contact interaction of the 
MHM brake taking into account the coefficient of friction, the ratio 
of the flexural stiffness to the longitudinal stiffness of a beam, as 
well as the ratio of the transverse stiffness of a lining to the flexural 
stiffness of a beam. The application of the developed model will 
help to reduce the maximum contact pressure in the shoe brakes of 
the mine hoisting machines and will allow more accurate 
calculation of the braking moment value compared to existing 
methods. 

1 Introduction 
The hoists are considered to be the most important installation among all the machinery 
used in the mining industry. An emergency situation in the process of the hoisting machine 
operation actually stops all the mining works in the mine, which leads to huge financial 
losses. This determines the high requirements to the technical level of mine hoisting 
machines and the quality of their manufacturing. 

Novokramatorskyi Mashynobudivnyi Zavod (NKMZ), one of the largest production and 
research complexes in Europe, up to now produces drum-type hoisting machines, which are 
often equipped with shoe brakes. A lot of well-known scientists have been involved into the 
designing of the braking device for MHM, but because of the imperfection of the 
previously used computing facilities, the very important parameters for the interaction 
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between the brake beam, lining and the brake rim, have not been studied. For example, the 
problem of calculating the brakes of mine hoisting machines has recently been considered 
by Barecki Z. and Sciezska S.F. [1]. However, in their mathematical model of the contact 
interaction between the brake shoe and the drum, they did not take into account the 
influence of tangential forces on the distribution of the contact pressure, and the calculation 
given as an example concerns a particular machine without specifying brake parameters, in 
addition, the article published on this topic does not contain any generalized dependences. 

To calculate the braking parameters for large hoisting machines produced by the NKMZ 
with the translational movement of the brake shoes, the method described in the works of 
Davydov B.L., Karpyshev N.S., and Fedorova Z.M. has been used so far. Here, a 
hypothesis is made about the sinusoidal law of contact pressures distribution, which is 
consistent with the assumption of the absolute stiffness of the brake beam [3, 7, 10]. 

The traditional mathematical model of Davydov B.L. for calculating the distributed 
tangential and normal forces acting on the brake beam of the MHM shoe brake is based on 
the assumption that these forces are distributed independently of the lining friction against 
the drum and the flexural stiffness of the beam. This assumption cannot be considered 
valid, and therefore the results of determining the specified loads in the construction of a 
shoe brake can lead to significant errors and the creation of further emergency situations. 

The results of the computational experiment carried out by means of the SolidWorks 
Simulation Program on the study of a shoe brake for the CR-4x3/0.7 type mine hoisting 
machine with translationally moving shoes, make it possible to construct a U-shaped 
pressure distribution curve. 

Many researchers of contact interaction of shoe brakes with a drum, in particular, 
Day A.J., Newcomb T.P., Harding P.R., Huang YU.M., Shyr J.S., Tirovic M., Barecki Z. 
and Sciezska S.F., using in their works the method of finite elements, finite-difference 
method and the boundary element method, have proved the invalidity of the hypothesis 
about absolute stiffness of a beam. 

The calculations, given in works of Day A.J., with the use of the finite elements method 
relate to the specific case where the brake beam is modeled as a sequence of beams with 
different cross sections [4-6]. 

In the calculations of Huang Y.M. and Shir J.S. the boundary element method was used 
without analysis of the basic parameters influencing the contact interaction [8]. 

In the works of Zabolotnyi K.S., Kolosov D.L., Moskalova T.V. the techniques were 
described for the construction optimization of drums and brakes in the mine hoisting 
machines by determining the stress-strain state [11, 15, 17 – 20]. 

In further numerous works on improving the calculation technique for brakes, the 
dynamic and thermal processes were taken into account which proceed in the braking 
system elements. For example, in the works of Kyrychenko Y.O., Samusia V. I., Ilyn S.R. 
and Bondarenko V.I., the problems of hoisting plant dynamics during working and safety 
braking was considered. Most importantly, that the hypothesis of stiffness of the brake rim 
and beam, was not substantiated [2, 9, 12 – 14, 16]. 

2 Development of a three-parameter model of contact interaction 
Fig. 1 shows the scheme of a part of the braking system for large-size MHM produced by 
NKMZ. By means of the brake linkage, the braking force is transferred to the upper 4 and 
lower 5 rods. The center of the brake beam rotates on a vertical pillar 3. The brake shoe 
consists of a brake beam 1 and a set of linings 2. These linings interact with the drum 6 
during braking. Thus, it can be assumed that the brake shoe is affected by two couplings: a 
vertical pillar and a drum. 



The exact calculation of the forces arising in the brake shoe is possible only with the use 
of numerical methods (the methods of finite or boundary elements), but in order to reveal 
the basic laws of contact interaction, it is required to create a simplified analytical model of 
a structure. It has been decided to represent it in the form of a circular bar with the constant 
cross section, fixed from vertical displacements in the central point. According to the 
accepted assumption, the same external forces act on the bar in the horizontal rods. 

The physical model of the brake lining has been defined as an array of elastic bodies, 
like Winkler foundation, which do not interact with each other, work in compression and 
transfer the distributed frictional forces arising between the brake drum and the brake shoe, 
calculated for the limited equilibrium state in accordance with Coulomb’s law (Fig. 2). 

 

  
Fig. 1. Scheme of a part of the MHM 
brake system. 

Fig. 2. Scheme of the forces arising in the brake beam. 

The condition has also been accepted that the drum rotates clockwise, and the angle of 
wrap of the brake shoe is equal to 2γ. Having replaced the couplings on reactions, we 
determine the concentrated vertical force yF  in the central point of the bar, as well as the 
distributed forces q  and p  of the drum action on the lining. In view of small thickness of 
the beam, we consider that these forces are applied to the neutral axis of the bar. 

The action of the horizontal movable bearing in the brake system causes the occurrence 
of a force jump (vertical reaction of the bearing), which ensures the discontinuity of the 
longitudinal force function, excluding the possibility to consider the bar as an element of 
structural mechanics. Therefore, in the model for calculation, it is provided that the bar 
consists of two parts: the upper and lower ones. 

The mathematical model for calculation of forces in the brake shoe includes the number 
of the equations presented below. 

Equilibrium equations for the lower ( i = 0) and upper ( i = 1) parts of the bar have the 
following form: 
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, Ti(φ) is the longitudinal force; 

Qi(φ) is the shear force; Mi(φ) is the bending moment; φ is the current angular coordinate; 
R is the radius of the neutral line of the brake beam.  

The equation for calculating the distributed normal forces that correspond to the model 
of a structure with an elastic base, can be represented as follows: 

( ) ( ) ( ); 0, 1 ,i iq φ κw φ i  = =  (2) 

where wi (φ is the depth of beam deflection; El is the elasticity modulus of the lining 
material; Hl is the thickness of the lining; Bb is the width of the brake field; κ is the 
transverse stiffness of the lining, defined by the following expression: 
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The equation describing the distributed friction force according to Coulomb’s law has 
the following form:  

( ) ( ) ( ); 0, 1 .i ip φ fκw φ i  = =  (4) 

We formulate Hooke’s law for determining the bending moment, that is 
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where E is the elasticity modulus of the beam material; I is the inertia moment of the beam 
section; θi is the angle of the beam rotation. 

Here we take into account the following kinematic dependence: 
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and Hooke’s law for determining the longitudinal tension, that is 
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where F is the cross-sectional area of the beam. 
Both bars are connected in a place designated in the scheme by the point K, in which the 

value ϕ = 0, they are fixed there from vertical displacements. Thus, the state of the 
construction corresponds to the following dependences: 

( )0 0 0;v =  ( )1 0 0;v =  ( ) ( )0 10 0 ;w = w  

( ) ( )0 10 0 ;θ = θ  ( ) ( )0 10 0 ;M = M  ( ) ( )0 10 0 .Q = Q  

At the upper and lower ends of each beam, zero values of the bending moments are set, 
as well as the tangential and radial components of the horizontal forces in the rods, that is 
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Now we turn to the determination of dimensionless quantities, namely: 
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=  is a multiplier factor proportional to the applied force. 

To reduce the volume of the record, we transform the listed expressions into a vector-
matrix form. 

The vector of undetermined values is a transposed line, that is: 
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Then the equation corresponding to the mathematical model will be as follows: 
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where λ is the relative transverse stiffness, defined as follows: 
4

,κRλ
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ζ is the relative flexural stiffness, which is calculated by the following formula: 

2 .EIζ =
EFR

 

To solve the formulated system of linear differential equations with constant values of 
the coefficients, Euler’s method is used. When used for the MHM braking system, the 
following dependences are valid: 
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where n is the eigenvalues of the matrix А; Ф is the eigenvectors of the matrix А. 
If the coefficient of friction is zero, then the zero root becomes reiterated, namely: 

5 0n .=  

This makes it necessary to find out the eigenfunction as a linear one, that is 
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In this case  
( )4 ;z φ = D  

( )5 .z φ = C Dφ+  

The solution of the differential equations system corresponds to a linear combination of 
fundamental functions with undetermined values of the coefficients, that is  
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To determine these coefficients, the boundary conditions given below (Тable 1) are 
used. These conditions are assigned in the form of the following system of algebraic 
equations: 

.GS = B  

To calculate the coefficient values, the function S = lsolve (G, B) built into the 
MathCAD program is used. 

We designate the ratio of the contact pressure to the pressure caused by the same force 
N acting on an absolutely rigid section of the same area (F = BR2γ) by the adjusted pressure 
value Ξ. We denote by χ its maximum value. 

Table 1. Boundary conditions of the mathematical model for determining the forces acting  
on the brake beam. 

Boundary conditions Physical meaning 
( )0, 0
0k kG = z    ( )0 0 0v =  
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( )3, 2
0k kG = z   ; ( )3, 6 2
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Fig. 3 shows the distribution curves of the adjusted values of the contact pressure 
according to different values of the parameters λ and ζ. Here we see that the parameter ζ 
influences the pressure distribution only in case when λ > 100. The nature of the distribution 
depends essentially on the relative transverse stiffness of the structure. Thus, if λ > 10, then 
the distribution curve has a U-shaped form with a clear-cut edge effect, but in case of λ value 
increasing it becomes asymmetric. When λ ≤ 10, the character of the curve is sinusoidal, 
according to which the maximum values of the contact pressure are observed in the center of 
the brake shoe. Close distribution to the uniform distribution of contact pressures, taking into 



account the considered values of the parameter ζ occurs if λ ≈ 10. Neglect of the frictional 
forces when calculating the distribution of the contact pressure leads in the sequel to an error 
of the obtained maximum pressure values of 1.3%, if ζ = 0.002, and 11% when ζ = 0.07. 

In order to consider both types of distribution, we use the above described adjusted 
maximum value of the contact pressure Ξ. Since in Fig. 3 the adjusted values of the contact 
pressure in specific points are indicated, and the value of the parameter λ exceeds the value 
of the parameter ζ, we plot the graph of the maximum pressure dependence as a continuous 
function λ (Fig. 4). 

 

a b 

  
Fig. 3. The distribution curves of contact pressure values along the arc of the brake shoe: 
a – ζ = 0.002, b – ζ = 0.07. 
 

a b 

  
Fig. 4. Graph of the maximum contact pressure dependence on the relative transverse stiffness, at 
various values of the parameter ζ: a – the general graph view, b – the enlarged fragment of the graph. 

As follows from the data in Fig. 4, in the range of the parameter λ > 4 values, the 
dependence of the maximum contact pressure on the relative transverse stiffness is a 



monotone function with a decreasing angle of its curve slope, which corresponds to the 
edge effect of the U-shaped distribution curve. If the values of the parameter λ < 4 (which 
corresponds to the central part of the sinusoidal curve), then this dependence is a 
monotonically decreasing function, close to the linear one. 

In Fig. 5, for greater clearness, the curves of the level of contact pressure maxima are 
shown, depending on different values of the relative transverse stiffness and the relative 
longitudinal stiffness of the structure (dashed lines indicate the level curves reflecting the 
values, which were calculated without considering the influence of friction forces on the 
contact pressure distribution). 

As the data analysis in Fig. 5 has shown, if the value of the parameter λ < 150, then the 
curves are close to vertical straight lines and reflect insignificantly the dependence on the ζ 
values. With an increase in the value of the parameter λ, they acquire a parabolic shape, and 
at λ > 800, they show the dependence close to a straight line at an angle of 45º. 

 

Fig. 5. The level curves of the adjusted contact pressure maxima depending on different λ and ζ 
parameters values. 

To carry out the numerical experiment, the characteristics of the brake beam of the CR-
4x3/0.7 machine with the following parameters have been chosen: 

– radius of the neutral line of the brake beam R = 2.26 mm; 
– width of the brake field lB = 400 mm; 
– half of the grip hold arc of the brake drum γ = 50º; 
– thickness of the brake beam H = 400 mm; 
– thickness of the lining lH = 80 mm; 
– elasticity modulus of the beam material E = 2.1·1011 Pа; 
– elasticity modulus of the lining material lE = 3·108 Pа; 
– coefficient of friction f = 0, 0.3; 
– relative stiffness of the brake beam λ = 109.4; 
– relative flexural stiffness of the brake beam ξ = 2.61·10-3. 
The graph of the contact pressure calculation results is shown in Fig. 6, where the red 



color indicates the curve reflecting the calculation by the model without consideration of 
the effect of friction on the contact pressure distribution (hereinafter ‘without friction’), the 
blue color – the curve with account of frictional forces and the green color indicates the 
curve constructed by calculations using the model of Davydov B.L. 

 

Fig. 6. Graph of the contact pressure values distribution along the arc of the brake beam. 

Having transformed the equations describing the distributed normal forces in the beam, 
we obtain the following dependences: 

– braking moment: 

( )2 ;
γ

b b
-γ

M fB R q φ dφ=   

– total force in the horizontal rods: 

( ) ( )cos ;
γ

x b
-γ

N B R q φ φ dφ=   

– force in the vertical pillar: 

( ) ( )sin .
γ

y b
-γ

N B R q φ φ dφ=   

The force value in the horizontal rods applied to this machine is 699 kN, used in the 
calculations based on the model of Davydov B.L. [3]. 

Then the braking moment calculated with the use of ‘no friction’ model is equal to 
7.72·105 N·m, with account of friction – 7.87·105 N·m, but the braking moment calculated 
by the model of Davydov B.L. – 6.98·105 N·m.  

The deviation of this parameter value towards the decrease when calculating with the 
use of simplified model is 1.94%, but in the calculations by the model of Davydov B.L. – 
11.3%. 

As in the previous case of the mentioned models use, the force in the vertical pillar has 
the following values: 2.75·105 N; 3.48·105 N; 2.75·105 N respectively. The error in 
determining this indicator with the use of both models, simplified and Davydov B.L., is 
26.5%. 



3 Conclusions 
For the first time, a physical model of the MHM brake shoe has been developed, in which 
the linings are modeled as an array of elastic bodies like Winkler foundation. These bodies 
work in compression and transfer the distributed tangential load (frictional force) arising 
between the brake drum and the brake shoe; the load is calculated for the ultimate 
equilibrium state in accordance with Coulomb’s law; and the brake beam is represented as a 
circular bar with a constant cross-section, which has the finite tensile stiffness, the bar is 
mounted on a vertical pillar and interacts with the brake drum through the brake lining 
loaded with a distributed normal and tangential load, which simulates the contact 
interaction of the brake shoe and the drum; at the same time, the vertical pillar has been 
modeled as a movable hinge pivot located in the middle of the circular bar. 

For the first time, a three-parameter mathematical model for the determination of the 
tangential and normal forces acting on the brake beam has been developed, in which the 
flexural stiffness and tensile stiffness of the beam, as well as the transverse stiffness of the 
lining under the influence of different friction forces values on the contact pressure 
distribution, have been taken into account. The model contains six equilibrium equations 
for the elementary sections of a circular bar on an elastic foundation, which are under the 
action of distributed friction forces, calculated according to Coulomb’s law; equations 
describing Hooke's law as applied to the bending moment and longitudinal force; twelve 
boundary conditions for determining the values of the cutting and longitudinal force, the 
bending moment along the bar edges, the continuity of all displacements and forces, with 
exception of the longitudinal one; while the longitudinal displacement in the place of 
setting the movable hinge pivot is equal to zero. 

By the method of solving the problem of finding the eigenvalues, the dimensionless 
quantities of all variables and forces in the form of linear combinations of eigenfunctions 
have been determined. Using a linear system of equations for coefficients determination of 
these combinations obtained with account of the boundary conditions, we have formulated 
the system of linear equations and calculated the contact pressure, the braking moment, the 
forces in the rods and in the pillar.  

For the first time, the dependences of the adjusted maximum pressure value on the 
relative transverse stiffness of the brake lining and the relative longitudinal stiffness of the 
brake beam have been established. 

The most uniform distribution of the contact pressure is achieved in the range of 
variation of the relative transverse stiffness of the beam from 1 to 10. At lower values of 
this parameter, the nature of the distribution curve has a sinusoidal form when the 
maximum values of the contact pressure are observed in the center of the brake shoe, and 
the higher values are distributed along the U-shaped curve with a clear-cut edge effect. 
Neglect of the frictional forces when calculating the distribution of the contact pressure 
causes an error in calculation of the maximum pressure value equal to 1.3%, with a relative 
flexural stiffness of 0.002 and 11% when the relative flexural stiffness is 0.07. 

If the values of the relative transverse stiffness are below 150, the curves of the maximum 
pressure level are close to vertical straight lines and reflect insignificantly the dependence on 
the values of the relative flexural stiffness. With an increase in the relative transverse stiffness 
parameter, the curves acquire a parabolic shape, while when the relative transverse stiffness 
exceeds 800, the curves of this dependence are close to straight lines at an angle of 45º. 

By the example of the shoe brake operation of the CR-4x3/0.7 mine hoisting machine, it 
has been proved that the distribution of the contact pressure acting upon the brake beam, 
which is calculated by the method of Davydov B.L. and obtained with the use of proprietary 
technology, has a fundamental difference: in the first case of the given distribution – a 
sinusoidal, and in the second case, stated in this work, it is a U-shaped parabola with a clear-



cut edge effect. In this case, the value of the maximum contact pressure, calculated by the 
model of Davydov B.L., has turned out to be by 2.5 times lower. 

The error in the braking moment determination with the application of the model of 
Davydov B.L. is 11.3%, and the efforts in the vertical pillar is 26.5%. 

Authors express gratitude to Yurii Ovchynnikov, the Lead Designer of the Novokramatorskyi 
Mashynobudivnyi Zavod for providing help and consultations during the work performance. 
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