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Introduction. This paper is devoted to the hydrodynamics of a one-component 
gas with small potential interaction. The basis of investigation is the kinetic equation 
in case of small potential interaction which contains general nonlocal collision 
integral [1] and describes arbitrary non-uniform states. In the local approximation this 
equation coincides with the well-known Landau–Vlasov kinetic equation. In 
hydrodynamics the system is supposed to be weakly non-uniform. 

Usually the system hydrodynamics is built on the basis of the local collision 
integral, but the use of the nonlocal collision integral is of significant importance. 
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Firstly, some terms of the second order in small interaction may be lost if we deal 
with the local collision integral. Secondly, the Burnett approximation meets 
difficulties in the hydrodynamics with the local collision integral. Maybe, in some 
cases these difficulties can be overcome on the basis of the nonlocal collision 
integral. The conservation laws for the considered problem were investigated in [2]. 
The system hydrodynamics can be based on the investigated conservation laws.  

The aim of this paper is to investigate the system hydrodynamics based on the 
nonlocal collision integral in the leading order in small gradients. 

Basic equations of the theory. The investigation is based on the kinetic 
equation of the second order in small potential interaction with the general nonlocal 
collision integral [1]: 
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where (| |)V x  is the pair system potential, ( , )f tχ  is the one-particle distribution 
function, and 1( , )I fχ  is the general nonlocal second-order collision integral. This 
kinetic equation can be obtained [1] by the Bogolyubov reduced description method 
and in the local approximation for the collision integral it gives the known Landau–
Vlasov kinetic equation.  

It should be noticed that the densities of the conserved quantities such as 
particle number, momentum and kinetic energy are usually used as the parameters 
which describe the hydrodynamic states of the system (the hydrodynamic reduced 
description parameters). These densities are introduced by standard definitions: 

 
( , ) ( , )n t d f t= χ∫x p ,     ( , ) ( , )n nt d p f tπ = χ∫x p ,     2

kin ( , ) ( 2 ) ( , )t d m f tε = χ∫x p p . (2) 
 

In [2] it is shown that although the system kinetic energy is conserved on the 
basis of the local Landau collision integral, it is not conserved on the basis of the 
nonlocal collision integral (1). The potential energy and total energy densities are 
introduced by definitions 

  
pot 1 1 2 2 1 2 12( , ) ( , , ( ))t d d f f t Vε = χ χ χ∫x p ,         kin pot( , ) ( , ) ( , )t t tε = ε + εx x x  (3) 
 

where the expression for the two-particle distribution function 2f  in terms of the one-
particle distribution function f  up to the first order in small potential interaction is [1] 
 

2 1 2( , , )f fχ χ = (4) 
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On the basis of (1) – (4) it is shown [2] that the total energy of the system is 

conserved up to the second order both in small potential interaction and in small 
gradients. So, the following set of the hydrodynamic RPDs should be used: particle 
density (2), momentum density (2) and total energy density (4). The use of the kinetic 
energy density as a reduced description parameter is unreasonable even for a model 
problem without the Vlasov term. 

Investigation of the system hydrodynamics in the leading order in 
gradients. In the previous section the refined set of hydrodynamic reduced 
description parameters is proposed and in what follows the system hydrodynamics is 
built on the basis of the Chapman–Enskog method [1]. The parameters velocity nυ  
and temperature T  are often used instead of nπ , ε . The definitions of nυ , T  in terms 
of f  should be the same as in equilibrium case. As is known [1,3], in equilibrium we 
have 
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where the temperature is given in energy units. The basic equation of the theory (1) is 
obtained up to the second order in small potential interaction, so the expression for 

eq
potε  should be truncated up to the second order in ( )V r T  and on the basis of (2), 

(3) and (5) we obtain the definitions of the reduced description parameters n , nυ  and 
T  in terms of the one-particle distribution function: 
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Equations (6) with account for (4) are the additional conditions to the kinetic equation 
(1). It is shown that in the leading order in small gradients of hydrodynamic variables 
the Maxwellian distribution function  
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satisfies both the kinetic equation (1) and the additional conditions (6). The parameter 
g  describes the smallness of the gradients and is given by (7) where fpl  is the free 

48



 

 

path length and L  is the characteristic length at which the hydrodynamic parameters 
are significantly changed. So, the system distribution function of the leading order in 
gradients is the Maxwellian one (7). 

Conclusions. The definitions of system velocity and temperature are obtained 
in terms of the one-particle distribution function. The corresponding additional 
conditions to the kinetic equation are also obtained. The leading-order-in-gradients 
hydrodynamics of the considered system is built on the basis of the general nonlocal 
collision integral. It is shown that the system distribution function in the leading order 
in gradients is the Maxwellian one.  

Our future plan is to build the system dissipative hydrodynamics and to 
calculate the corresponding kinetic coefficients. The results obtained here are the 
basis of such an investigation.  

The results of the present work can be used in plasma investigations, because, 
as known, the Landau–Vlasov kinetic equation is widely used in plasma physics. So, 
the obtained results and the proposed approach have many applications. Among other 
things, they can be applied to the description of physical processes in 
telecommunication and information systems. 
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