РЕЗУЛЬТАТЫ ГЕОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ И РЕКОМЕНДАЦИИ ПО ИХ ПРАКТИЧЕСКОМУ ПРИМЕНЕНИЮ (УЧЕБНЫЙ ПОЛИГОН НТУ ДП «ПРИАЗОВЬЕ»)

А.С. Поляшов, А.А. Запорожец, И.В. Назаров, М.Ф. Шмигельский, Национальный ТУ «Днепровская политехника», Украина

В ходе проведения учебной геологической практики на полигоне «Приазовье» собран фактический материал, проведены исследования, получены результаты и рекомендованы к практическому применению.

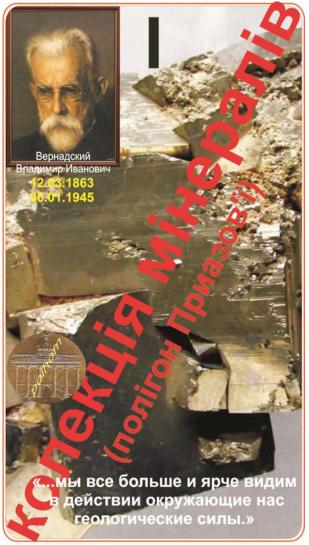
На геологической практике (полигон «Приазовье» - база г. Бердянск) студентами горного факультета НТУ «ДП» изучались геологические процессы и геологические тела, часть из которых отнесены к полезным ископаемым. Геологические тела на полигоне входят в состав Украинского щита. Они формировались в результате развития эндогенных геологических процессов с архей-протерозойского до современного времени. Длительный срок формирования предопределил уникальность вещественного состава и строения с разнообразным проявлением в них следов тектонических движений.

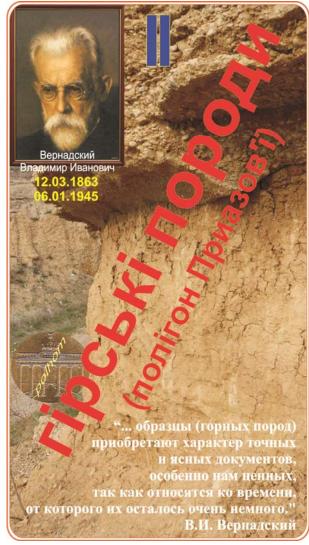
Верхняя часть геологических тел, будучи выведенной на земную поверхность, в течение длительного времени под воздействием экзогенных геологических процессов разрушалась. Продукты разрушения под воздействием энергии физических полей находились и находятся в состоянии постоянного движения, перемещаясь в отрицательные формы рельефа земной поверхности. К конечному результату природного разрушения и массопереноса продуктов разрушения геологических тел относятся можно отнести пляжевые отложения Азовского моря.

В ходе перемещений продукты разрушения пород и минералов рассеивались (усреднялись) и концентрировались (обогащались). Результат концентрирования и рассеивания минеральных масс наиболее отчетливо наблюдается в пляжевой зоне Азовского моря, где скопления черных песков (локальное концентрирование плотных рудных минералов) сменяется их рассеиванием и наоборот.

Места скопления черных песков создают локальные радиационные поля с повышенным гамма излучением. Причины образования радиационных полей и возможная опасность для людей рассмотрены в работе [1]. Однако, практическое использование минерального вещества, представленного на площади полигона, исследовано недостаточно полно. Настоящая работа посвящена восполнению этого недостатка.

Цель работы: провести геологические исследования на площади полигона «Приазовье» и дать рекомендации по практическому использованию полученных результатов.


Для достижения поставленной цели были поставлены задачи:


- 1. Изготовить из отобранных образцов горных пород и минералов коллекции.
- 2. Проанализировать физические свойства минералов и дать предложения по выбору способов их обогащения.
 - 3. Предложить минеральное сырье для изготовления художественных красок.
 - 4. Оценить перспективность поиска драгоценных металлов на площади полигона.

Для решения первой задачи после завершения полевых маршрутов, отобранные образцы были отсортированы и сокращены до размеров кондукторов коллекционных коробок. Лицевая сторона коллекционных коробок оформлена следующим образом (рис. 1). Коллекции предложены для использования в учебных целях, для пополнения фондов краеведческих музеев и для частных коллекций.

Для решения второй задачи необходимо было получить концентраты минералов. Оптическими методами установлено, что отдельные обломки (песчинки) пляжевых отложений представлены не обособившимися минералами, а их агрегатами (рис. 2), которые для проведения качественного обогащения следует отделить друг от друга. В результате эффективность концентрирования минералов будет повышена. Для этого продукты

природного разрушения предварительно следует подвергнуть дроблению до крупности $0.05 \ \mathrm{mm}$.

Коллекция минералов

Коллекция горных пород

Рис. 1. Оформление коллекций минералов и горных пород, обнаруженных на площади полигона «Приазовье»

После предварительного дробления продуктов природного разрушения полученный материал готов к проведению обогащения. Для обоснования применяемых методов обогащения, использующих энергию физических полей, проанализируем физические свойства отобранных образцов минералов.

В табл. 1 приведен перечень минералов, отобранных в коллекции, с указанием их физических свойств. На основании анализа приведенных в табл. 1 данных сделан вывод о применении двух основных методов обогащения: магнитных, основанных на различиях в магнитных свойствах, и гравитационных, основанных на использовании разницы в плотностях, размерах и форм минералов. Предложенные методы обогащения наиболее целесообразно использовать в следующей последовательности: сначала отделить магнитные минералы в магнитном поле, затем оставшуюся массу разделить по плотности, например, на концентрационном столе. Таким образом, применение магнитного и гравитационного полей полностью решают задачу разделения продуктов предварительного разрушения на концентраты минералов.

Вопросы, связанные с обоснованием выбора параметров напряженностей предложенных физических полей, нами не рассматривался, как не входящие в задачи данной работы. В результате обогащения (в нашем случае при помощи постоянных магнитов разной мощности) был получен рудный концентрат (рутил, ильменит, магнетит) и концентрат плотных минералов

путем промывки в восходящей струе воды (монацит). Монацит радиоактивен, так как содержит торий и редкие земли. В случае концентрации монацита на пляжах Азовского моря возникают локальные участки с повышенной гамма радиацией. Вывод: пляжевые и аллювиальные отложения, размещенные на площади полигона, представляют собой полезные ископаемые для добычи титана, железа, тория и редких земель.

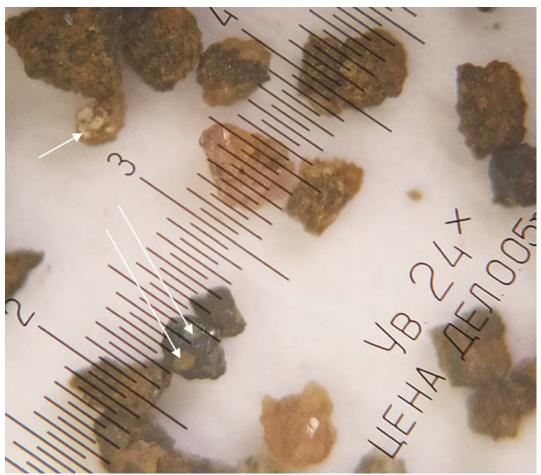


Рис. 2. Частицы пляжевых отложений представлены, в основном, агрегатами минералов (показаны стрелками).

Таблица 1

Физические свойства минералов

Физические своиства минералов							
Название минералов	Плотность, г/см3	Магнитность	Твердость	P/a*	Оптические свойства		
					Блеск	Прел .	Погл.
Магнетит	5,1	Сильно магн.	6		п/мет	3,2	н/пр.
Гематит	5,3	магнитен	4		п/мет	3,2	н/пр.
Лимонит	3,9	Слабо магн.	3		Мет.	2,0	н/пр.
Каолин	2,6		1		Мет.	1,5	н/пр.
Ортоклаз	2,5		6		Стек.	1,5	п/пр.
Апатит	3,1		5		Стек.	1,6	Проз.
Роговая	3,2	Слабо магн.	5	_	Стек.	1,7	н/пр.
обманка	3,2	Слаоо магн.					
Биотит	3,0		3		Перл.	1,5	Проз.
Мусковит	3,0	_	2		Перл.	1,5	Проз.
Серицит	2,7		2		Шелк	1,6	Проз.
Турмалин	3,1		7		Стек.	1,6	н/пр.

			(у нас 4)				
Рутил	4,2	диамагнитен	6		Мет.	2,6	Проз.
Ильменит	4,8	магнитен	5		п/мет.	2,7	Непр.
Гранат	3,6		7	_	Стек.	1,7	п/пр.
Циркон	4,7		8	Слабо р/а	Алм.	2,0	Проз.
Кварц	2,6		7	_	Стек.	1,5	Проз.
Монацит	5,5	Слабо магн.	5	p/a	Жир.	1,8	п/пр.
Эпидот	3,5		6	_	Стек.	1,7	п/пр.

^{*-} радиоактивность, п/мет – полуметаллический, Мет. – металлический, Алм. – алмазный, Стек. – стеклянный, Перл. – перламутровый, Шелк. – шелковистый, Жирн. – жирный, н/пр. – непрозрачный, Проз. – прозрачный, Прел. – преломление; Погл. – поглощение.

Минералы диагностируют по оптическим свойствам: цвету, блеску, прозрачности, форме, размеру, состоянию ограничивающей минерал поверхности. Оптические свойства минерал приобретает в результате взаимодействия с электромагнитным полем. Диапазон оптического электромагнитного излучения принято делить на три области: ультрафиолетовую (УФ), видимую (длина волны 380-760 нм) и инфракрасную (ИК). Ультрафиолетовую область делят, в свою очередь, на УФ-А (315-400 нм), УФ – В (280-315 нм) и УФ – С (100 – 280 нм). Поток оптического электромагнитного излучения взаимодействует с минералами. Он может отражаться, рассеиваться, поглощаться с преобразованием в другие виды энергии (нагреваться, возбуждать электронные оболочки, светиться в другой спектральной зоне - люминесценцировать), преломляться — проходить через минерал часто с оптическими эффектами (поляризация).

Отобранные концентраты минералов облучались в диапазоне спектра $У\Phi$ -В и результат оптических эффектов некоторых образцов приведен в табл. 2.

Таблица 2

Люминесцирующие минералы коллекции

Название минералов			
	длинноволновом (около 365 нм) или коротковолновом (около 253 нм		
	облучении		
Магнетит			
Гематит	_		
Лимонит	Красный цвет		
Каолин	_		
Ортоклаз	_		
Апатит	Сероватый цвет		
Роговая обманка			
Биотит			
Мусковит	_		
Серицит	_		
Турмалин	Голубой и красный цвет. Обладает пироэффектом.		
Рутил	_		
Ильменит	_		
Гранат	Гранаты люминесцируют, если присутствует ванадий		
Циркон	Желто - оранжевый цвет (редкоземельные ионы)		
Кварц	Сине-розовый цвет (высокотемпературный)		
Монацит	Черный с желтоватым оттенком цвет		
Эпидот			

На рис. 3 приведено изображение концентрата циркона в видимом и ультрафиолетовом свете. Видно, что цвет циркона в ультрафиолетовом свете воспринимается в другом

спектральном диапазоне, то есть он люминесцируют. Такой метод диагностики минералов прост в исполнении, мобилен в применении (лампа и фильтр), опробован на кафедре общей и структурной геологии и его следует в дальнейшем применять при экспресс-анализе образцов на присутствие люминесцирующих минералов в период прохождения студентами учебных геологических практик.

Концентрат циркона в видимом свете

Концентрат циркона в ультрафиолетовом свете

Рис. 3. Диагностика циркона путем анализа цвета в дневном и ультрафиолетовом освещении

Научный интерес представляет люминесценция образцов кварца. Некоторые из них отличаются «мятой» структурой, то есть несут в себе следы пластической деформации: продавливание, скольжение. Такие деформации кварц может приобрести только в условиях высоких термобарических нагрузок. Можно предположить, что пластические деформации приводят к ослаблению межмолекулярных связей в кристаллах кварца и последние приобретают способность люминесцировать. Обнаруженный эффект рекомендован для исследования генезиса кварцсодержащих пород архей-протерозойского возраста Украинского щита.

При знакомстве с Корсакским месторождением были отобраны образцы магнетита, гематита, лимонита и каолина. Лимонит ярко - желтого цвета с шелковистым блеском и эффектом искрящегося свечения, гематит — буро-коричневый. Эти минералы были опробованы для приготовления пигментов (охр), для чего они истирались до размера частиц менее 0,075 мм. При рассмотрении образцов пигмента под микроскопом установлено присутствие в них прозрачных минералов - кварца и серицита. Последние придают пигменту эффект свечения. Пробные образцы красок готовились путем смешения пигмента с олифой, с эмульсиями из яичного желтка и белка. Смешение красок, приготовленных из лимонита и гематита, позволяет получить гамму, изменяющуюся от цвета светло-желтого к буро-красному цвету (рис. 4).

С помощью полученных красок были сделаны наброски изображений на дереве. Вывод: при помощи красок, изготовленных на основе пигмента из лимонита и гематита Корсакского месторождения можно рисовать картины в манере ограничения гаммы цвета с приданием художественной выразительности, аскетизма, без излишней яркости. Этот прием характерен для иконописи. В отличие от ярких, цветных икон Востока (Палестина, Египет, Сирия), появившихся более 5000 лет тому назад, иконы после проникновения христианства в Киевскую Русь долгое время писались (с 10 до 15 века) темными красками.

Следует предположить, что охры Корсакского месторождения могли использоваться для иконописи. Считается, что разведка Корсакского месторождения была начата в 1793 году П. С Палассом. В действительности, оно осваивалось еще неоседлыми народностями: киргизами и

ногайцами, торговавшими желтой охрой, добываемых из этих мест. Местом сбыта охр был Мелитополь, откуда мог поступать в другие места, в частности, мастерские иконописи Киева. Это предположение может быть рекомендовано для разработки историкам.

Рис. 4. Гамма цвета, полученная при смешении краски, полученной из пигмента гематита и лимонита

Для подтверждения возможности иконописи красками, приготовленными из минеральных пигментов, на рис. 5 показан первый слой наброска изображения на дерево (имитация триптиха). Нанесенный слой краски отличается глубиной цветопередачи, что было, в свое время, подмечено по отношению к каолинам - коре выветривания по гранитам [2].

При изучении охры из лимонита с помощью рентгенфлуоресцентного спектрометра (ElvaX Plus) было установлено присутствие, кроме железа, серебра и гадолиния. Элементный состав лимонита приведен в табл. 3.

Таблица 3 Определение элементного состава пигмента из лимонита

onpegenenne onementnote ecotaba init menta ils immonita					
Атомный номер	Элемент	Содержание в %	Кларк элементов, %		
26	Fe	$37,98 \pm 0,08\%$	6,24		
14	Si	$16,71 \pm 0,08\%$	25,7		
20	Ca	$2,77 \pm 0,06\%$	5,8		
13	Al	$1,79 \pm 0,10\%$	7,6		
19	K	$0,60 \pm 0,11\%$	1,34		
47	Ag	$0.33 \pm 0.01\%$	1*10 ⁻⁵		
64	Gd	$0,28 \pm 0,02\%$	1,3*10 ⁻⁵		
22	Ti	$0.27 \pm 0.03\%$	0,5		

В выделенных серым цветом строчках табл. 3 расположены элементы с содержанием, превышающим кларк химических элементов. Это железо, серебро и гадолиний – серебристобелый ковкий редкоземельный металл группы лантаноидов. Два последних чаще всего встречается в рассеянном виде, в виде примесей в рудах других металлов и могут достигать высоких содержаний.

Приведенные в табл. 3 данные позволяют рекомендовать, как перспективное направление, исследования содержаний серебра и гадолиния в железистых кварцитах Приазовья.

ВЫВОДЫ И ПРЕДЛОЖЕНИЯ:

1. Изготовлены коллекции горных пород и минералов, слагающих отложения на площади учебного полигона «Приазовье», рекомендованы к использованию в учебных целях, для пополнения экспонатов краеведческих музеев, для любителей.

Рис. 5. Изображение образа на дереве после первого слоя нанесения краски.

- 2. Предложены способы обогащения пляжевых и аллювиальных отложений для получения концентратов магнитных и плотных минералов.
- 3. Опробовано минеральное сырье для изготовления красок для живописи, в частности, для иконописи.
- 4. Рекомендован для использования при исследовании генезиса кварцсодержащих пород люминесцентный метод.
- 5. Обоснована перспективность разведки серебра и гадолиния в железистых кварцитах Приазовья.

Список литературы

- 1. А.С. Поляшов, Ю.Т.Хоменко, П.О.Чечель Оценка возможных доз облучения на пляжных песках Азовского моря вблизи устья р. Берда// Матеріали міжнародної конференції «Форум гірників», т.3. Дн-ськ: $H\Gamma Y 2015 C$. 216 219.
- 2. Петр Симон Паллас Наблюдения, сделанные во время путешествия по южным наместничествам Русского государства в 1793 1974 годах. (Научное наследие; т.27). М.; Санкт-Петербург: Изд-во «Наука» 1974 247 с. (Ссылка на с. 214).