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Abstract 

Purpose is to determine dependences of velocities of elastic waves in isotropic rocks and anisotropic waves with orthotropic 

and trans-verse-isotropic symmetry upon pressure and depth to develop evaluation criteria and control rock mass characte-

ristics and conditions in the neighbourhood of mine workings. 

Methods. Continuous anisotropic medium is under consideration. Group one of boundary conditions is represented by con-

tinuity of stresses, acting normally towards the boundary while transiting from layer 1 to layer 2. Group two of the boundary 

conditions is as follows: displacements in the process of the boundary transition are measured continuously too. The condi-

tions are necessary to solve a Navier Stokes equation of dynamic balance of absolutely elastic medium. The experiments 

were carried out with the help of geoacoustic method in terms of the acoustic parameter of compressional velocity. 

Findings. It has been determined that compressional velocity values, anisotropy of compressional velocity, and elastic be-

haviour reflect regularly structural features being pressure-dependent ones. It has been demonstrated that dependence upon 

the stress state, anisotropy appearance/disappearance emergence takes place or a sign inversion. Qualitative dependences 

have been obtained to define elastic behaviour (Е, μ, G) of anisotropic formation with orthotropic and transverse-isotropic 

symmetry. The dependences have been obtained through compressional velocity to consider accurately the anisotropy of the 

rock mass while evaluating its stress state. The research results will help estimate nature of the stress distribution; identify 

stress concentration zones; and zones of the disturbed rock in the neighbourhood of a mine working. That will be done using 

acoustic parameter of compressional velocity using a method of geoacoustic control developed by the authors. 

Originality. In terms of the new obtained dependences, elastic behaviour of rocks (Е, μ, G) as well as acoustic parameters 

of compressional velocity has been determined scientifically. They are important to design and schedule mining operations. 

Practical implications. Being quite accurate to satisfy the demands of practical use, the obtained research results may be 

applied to identify digital values of elastic behaviour (Е, μ, G); to use the method of geoacoustic control of rock mass cha-

racteristics and conditions in the neighbourhood of mine workings; and to mine deposits with complex structural and  

mechanical properties. 

Keywords: isotropic and anisotropic rocks, rock stress, elastic behaviour, acoustic parameter, compressional velocity, geo-

acoustic control 

 

1. Introduction 

Disturbance of the initial stress by means of mining ope-

rations results in the significant stress concentration; within 

certain areas of the rock mass in the neighbourhood of outcrops 

it may factor into initiation of extremely complicated geome-

chanical processes exercising a dominant influence on the 

safety of mining and its efficiency [1]-[4]. Deformations after 

outcrop origination continue in time; thus, failure is possible in 

terms of stresses being quite less than the rock strength [5], [6]. 

Solving a number of important practical problems depends 

upon regularities of the development of geomechanical pro-

cesses. Analytical methods to evaluate outcrop stability in the 

neighbourhood of mine workings cannot explain a field of 

stress distribution in rock mass [7]-[10]. 

That is why it is necessary to use a method of geoacoustic 

control of rock mass characteristics and conditions in the 

neighbourhood of mine workings as a simple and operational 

experimental technique making it possible to analyze rocks 

under full-scale conditions with a possibility of the unlimited 

measurement repetition within the analyzed point with no rock 

mass disturbance [11], [12]. Acoustic parameter of a compres-

sional velocity, determined through regularities of elastic be-

haviour and compressional velocity of rocks, are the basic 

informative parameters of geoacoustic control. The matter is 

that naturally anisotropy of rock properties causes changes in the 
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principles of stress and deformation distribution while effecting 

the nature of acoustic characteristic distribution within them. 

Numerous scientific sources concern the problem of elastic 

behaviour of anisotropic rocks through the velocities of elastic 

waves [13]-[15]. For the cases of thin-layer medium λ >> h1h2, 

papers [16]-[20] determine wave velocities through average 

values of elasticity coefficients K ׀׀ and K
┴
 corresponding static 

purely compressional and lateral deformations along the bed-

ding and transversely to it. However, the cases did not involve 

calculation of velocity changes depending upon the wave 

propagation angle. Papers [21]-[25] considered propagation of 

elastic waves within the diametric-isotropic and transverse-

isotropic media. As a result, dependences of elastic wave ve-

locities within two orthogonally related directions upon a 

seismic beam exit were obtained. Moreover, elastic wave 

velocities have been calculated taking into consideration the 

specified elasticity constants Gik, and meaningful coefficient of 

stress-deformation linear connection [26]-[29]. Representing 

orthotropic medium as imposition of two lateral-isotropic 

media, group three of papers has obtained values of elastic 

wave velocities for orthotropic medium relying upon values of 

elasticity constants Gik. 

Papers [30]-[32] focus on kinematic characteristics of elas-

tic wave propagation within the anisotropic media; and calcu-

lation of phase wave surfaces and wave ones. Such studies 

help determine approximately the velocity values in terms of 

some tendency as for the medium homogeneity and isotropism 

[33]-[36]. Hence, the problem of wave propagation within the 

layered media is not clearly understood which can be ex-

plained by the complexity of its theoretical description. 

2. The research methods 

Generally, anisotropic medium is represented as the or-

ganized alternate two layers with varying different h1 and h2 

thicknesses; different elastic constants E1 and E2; different 

wave propagation velocities; and different ρ1 and ρ2 densi-

ties. Since the medium is considered as a continuous one, 

elastic disturbances transfer from one its part to another. 

Hence, certain connection is available between the stresses 

and deformations of particles located on the opposite sides of 

the boundary. In terms of isotropic body and anisotropic one, 

the connection between stress components and deformation 

components is described either through the generalized 

Hooke’s law or through the deformation components. They 

are mutually defined. 

Group one of the conditions within a boundary is repre-

sented by stress continuity conditions acting normally to-

wards the boundary while transiting from layer 1 to layer 2. 

Group two of boundary conditions is as follows: shifts in the 

process of the boundary crossing are measured continuously 

too. The conditions are necessary to solve an equation of 

dynamic balance of absolutely elastic medium. In terms of a 

vector form, it is the Navier Stokes equation: 

( )
2

2

2

d U
grad divU U

dt
   = = +   +  ,           (1) 

where: 

λ and μ – Lame constants determining elastic behaviour 

of a medium. 

If displacement filed U in elastic medium is connected 

with scalar potential φ and vector potential  : 

U grad rot = + ,             (2) 

then equation (2) falls into the two independent wave  

equations: 

2 2
2

2

d
rotU rotU

dt




 =  ;            (3) 

( )2
2

2

2d
divU divU

dt

 



+
 =  .            (4) 

Independent equations (3) and (4) are indicative of the 

availability of two disturbance types within the limitless 

elastic medium. The disturbances are propagated with two 

physically different velocities – compressional velocity and 

lateral velocity. 

In the context of anisotropic media, λ and μ values depend 

upon the space coordinates. Since changes in velocities ex-

ceed significantly changes in density, then medium density is 

averaged in terms of its volume being specified as a constant 

one. In general, velocities of elastic wave propagation within 

the anisotropic media are identified by means of an equation 

involving 21 elastic constants Gik, density ρ, and direction of 

oscillation propagation n . The equation of elastic medium 

motion may be expressed in the following compact form: 

2
ki ik ok j eV P C P n n = ,             (5) 

where: 

( ),   , P U V W  – components of a displacement vector. 

Displacement components in a plane wave may be repre-

sented as follows: 

( )i t kr
oP P e

 −
= , 

where: 

k – is a wave vector. 

Normal incidence to a plane boundary of media separa-

tion of a plane compressional wave P results in the origina-

tion of one quasi-compressional wave and two quasi-

transverse waves within the medium: SV – when the trans-

verse wave is polarized in the incidence plane; and SH – 

when the transverse wave is polarized perpendicularly to the 

incidence plane. Increase in the incidence factors into origi-

nation of the converted waves. 

Equation (5) involves three positive roots corresponding 

to three velocities of elastic wave propagation within the 

elastic body. Generally, their values depend upon elastic 

constant media as well as upon a direction of the wave prop-

agation relative to elastic symmetry axes determined by l, m 

and n values (they are constant for any directions in terms of 

isotropic medium). 

In general, three independent waves with mutually per-

pendicular displacements are propagated in any direction 

irrespective of a degree of the medium anisotropy. However, 

components of displacement vectors not always coincide 

with a direction of wave propagation and normally to the 

wave front. Put it differently, in the general case elastic 

waves are neither purely compressional waves nor purely 

transversal ones. Nevertheless, there are specific directions in 

crystals along which a normal to a wave front coincides with 

a displacement vector of one of the three waves being purely 
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compressional. Considering that their displacement vectors 

are mutually perpendicular, displacement vectors of two 

other waves are within the wave front plane. Thus, separation 

of purely compressional and purely transversal is only possi-

ble in media having certain symmetry of elastic properties.  It 

is common knowledge that within anisotropic medium, seis-

mic waves are not orthogonal to a wave front and elastic 

wave velocity depends upon n  direction. That is why ultra-

sonic measurements consider velocities towards a normal to 

the front. The research uses values of velocities of compres-

sional and transversal waves propagating towards reference 

axes. Subsequently, the case in hand will be the waves only. 

Since rocks are characterized by anisotropy as well as 

elastic and acoustic properties, theoretical evidence are re-

quired to make it possible to determine elastic characteristics 

of anisotropic rocks using geoacoustic methods. 

The research does not apply values of linear connection 

Gik coefficients being extremely important for crystallog-

raphy but elastic characteristics of media having a direct 

physical meaning: elasticity modulus E, shear modulus G, 

and Poisson’s ratio μ. To achieve the goal, below a problem 

to determine elastic characteristics of anisotropic rocks in 

terms of elastic wave velocities is considered. 

3. Results and discussion 

3.1. Analysis of elastic properties 

of anisotropic rock mass 

3.1.1. Rock with orthotropic symmetry 

Generally, in terms of elastic symmetry, anisotropic rocks 

may be classified as orthotropic media with nine independent 

elastic constants. In terms of the medium, each separated 

elementary volume demonstrates three mutually perpendicu-

lar reference axes. Symmetrically, they are similar to crystals 

of a rhombic system. If availability of symmetry of proper-

ties is assumed then the number of elastic constants, deter-

mining conditions of orthotropic body, reduces from 21 

down to 9: C11, C12, C22, C13, C23, C33, C44, C55 and C66; other 

constants will be equal to zero. 

As a rule, engineering tests use constants having a direct 

physical meaning rather than such values as aik and Cik. If so, 

the generalized Hooke’s law for orthotropic media through 

physical constants is expressed as follows: 

1

1
;

1
,

;
xy xz

x x y z
x y z

yx yz
y x y z

x x z

zyzx
z x y z

x y z

E E E

E E E

E E E

 
   

 
   


   

=  −  − 

= −  +  − 

= −  −  + 

           (6) 

hence: 

;

;

,

y yx x xy

z zy z zy

x zx z xz

E E

E E

E E

 

 

 

=

=

=

              (7) 

Elastic properties of anisotropic body with three axes of 

elastic symmetry are characterized by following types of 

elastic constants: three elasticity moduli – Ex, Ey, and Ez; 

three shear moduli – Gyz, Gzx, and Gxy; and three Poisson’s 

ratios – μyz, μzx, and μxy (three other constants, resulting from 

rearrangement of indices, are not independent). 

To evaluate anisotropy effect on elastic properties of the 

media, it is necessary to study them from the viewpoint of 

three lines at least. Determination of complete set, involving 

nine elastic constants, is quite sufficient to evaluate the effect 

of elastic property anisotropy on the stress distribution within 

the orthotropic medium. 

Through physical constants, values of elastic constants 

for orthotropic medium are as follows: 

11

22

33

12

13

23

44 23

55 31

66 12

1
;

1
;

1
;

;

;

;

;

;

,

yz zy
x

xz zx
y

xy yx
z

yx zx yz
y

zx zy yx
z

zy zx xy
y

C E

C E

C E

C E

C E

C E

C C

C C

C C

 

 

 

  

  

  







−
=

−
=

−
=

+
=

+
=

+





=

=



=

=

             (8) 

where: 

  symbolizes a determinant: 

1                 

     1       

            1 

xy xz

yx yz

zx zy

 

 

 

 = − −

−

,             (9) 

hence, 

1 2xy yx yz zy zx xz xy yz zx         = − − − − .        (10) 

Determinant equation for anisotropic body with average ρ 

density, within which elastic wave propagates, is: 

2 2 2 2
66 55 66 5511 12 13

1
2 2 2 2

52 23

13

5 66 22 44 44

2 2 2 2
55 23 44 55 44 33

( ) ( )

( ) ( )

( ) ( )

0.

C C C C C C C

C C C C C

l m n pV lm nl

lm l m n pV mn

nl mn l m n p

C C

C C C C C C VC

+ + − + +

+ + + − +

+ + −

=

+ +

 (11) 

Relying upon (11), obtain three equation system with cor-

responding set of elastic constants: 

( ) ( )

2 2 2
11 66 55 01

12 66 02 13 55 03 0;

C l C m C n V P

C C lm P C C nl P

 + + −  +
 

   + +   +   =   +

        (12) 

( )

( )

2 2 2 2
12 66 01 66 22 44

02 23 44 03 0;

C C lm P C l C m C n V

P C C mn P

  +   + + + −    

  + +   = 

  (13) 

( ) ( )13 55 01 23 44 02

2 2 2 2
55 44 33 03 0.

C C nl P C C mn P

C l C n C n V P

   +   + +   +   

 + + + −  =
 

        (14) 
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Consider geometric configuration of a rhombic system 

with a system of orthotropic symmetry, corresponding to it 

(Fig. 1а). As it has been mentioned, a normal towards a wave 

front coincidence with a displacement vector is a condition 

of purely compression wave propagation. Then, two other 

waves, being perpendicular to it, will be transversal ones. Let 

a plane axial wave propagates along x axis in terms of the 

system, superimposed with the coordinate axes x, y and z. 

l = 1, m = 0 and n = 0 condition corresponds to that. Thus, 

using equation system (12)-(14) we find: 

( )

( )

( )

2
11 01

2
66 02

2
55 03

0;

0;

0.

C V P

C V P

C V P







−  =

−  =

−  =

,           (15) 

(a) (b) 

n (001)

l (100)

m  (100)

x

y

z

 

l (100)

n (001)

m (100)

x

y

z

 

Figure 1. Geometrical configuration of rhombic symmetry (a) and 

hexagonal symmetry (b) 

It follows that propagation velocity of a compression 

wave along axis x is determined using the ratio: 

2
11PxV C = ,            (16) 

in terms of a transversal wave, propagating in the same line 

but polarized within xy plane and being perpendicular to 

orthogonal axis, we obtain: 

2
66SxyV C = .            (17) 

In terms of a transversal wave towards x axis but pola-

rized within xz plane we have: 

2
55SxzV C = .            (18) 

If a wave propagates along y axis, i.e. l = 0, m = 1 and 

n = 0, then the equation system (12)-(14) will help to write 

the following: 

( )

( )

( )

2
66 01

2
22 02

2
44 03

0;

0;

0.

C V P

C V P

C V P







−  =

 =

−  =

− .           (19) 

Thus, a velocity of compressional wave propagation 

along y axis, and velocities of transversal waves, propagating 

along y axis but polarized in yz and yx plane, are determined 

using the ratios: 

2
22PyV C = ;            (20) 

2
44SyzV C = ;            (21) 

2
66yxV C = .            (22) 

l = 0, m = 0 and n = 1 is fulfilled for a wave propagating 
along z axis. Then equation system (12)-(14) will be: 

( )

( )

( )

2
55 01

2
44 02

2
33 03

0;

0;

0.

C V P

C V P

C V P







−  =

−  =

−  =

.           (23) 

Same as previous, propagation velocities of compression-
al wave and transversal wave towards orthogonal axis, pola-
rized within a zy, zx plane, are identified using the ratio: 

2
33PzV C = ;            (24) 

2
55SzxV C = ;            (25) 

2
44zyV C = .            (26) 

Consequently, (16)-(18), (20)-(22), and (24)-(26) ratios 
have been obtained for the orthogonal symmetry rocks having 
three axes of elastic symmetry. The ratios interconnect the 
velocities of elastic wave propagation along the certain axes 
with elastic medium constants. As the formulas explain, three 
waves with orthogonal displacements propagate along each 
axis of elastic symmetry: one compressional wave (i.e. quasi-
compressional wave) and two transversal waves (i.e. quasi-
transversal ones). Since it is known that rays are not perpen-
dicular to a wave front in anisotropic media, it is necessary to 
consider two velocities: a velocity in the ray line and a velocity 
in the normal line towards the wave front (subsequently, the 
velocities will be the issue). Inserting corresponding values of 
elastic constants from (3)-(4) equations we obtain the following: 

– along axis x direction: 

2
1 yz zy

Px xV E
 




−
=  ;           (27) 

– along axis y direction: 

2 1 xz zx
Py yV E

 




−
=  ;           (28) 

– along axis z direction: 

2
1 xy yx

Pz zV E
 




−
=  ;           (29) 

2
Szx zxV G = . 

Substitute for   its value from formula (9). Therefore, 
we obtain the dependence for limitless orthotropic medium 
with three orthogonal reference axes: 

( )
( )

( )
( )

( )
( )

2

2

2

1 2
;

1

1 2
;

1

1 2
.

1

Px xy yx yz zy zx xz xy yz zx

x

yz zy

Py xy yx yz zy zx xz xy yz zx

y
zx xz

Pz xy yx yz zy zx xz xy yz zx

z

xy yx

V
E

g

V
E

g

V
E

g

         

 

         

 

         

 

− − − −
=

−

− − − −
=

−

− − −



−



−
=

  (30) 
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Shear moduli along the key directions are: 

2

2

2

;

;

,

Sxy
xy

Syz
yz

Szx
zx

V
G

g

V
G

g

V
G

g







=

=


=




            (31) 

where: 

Ex, Ey and Ez – elasticity moduli in terms of the key  

directions; 

Gxy, Gyz and Gzx – shear moduli within the key shear 

planes; 

μxy, μyz, μzx, μyx, μzy and μxz – Poisson’s ratios for the corre-

sponding planes of symmetry. 

Their values may be determined in terms of compressional 

and transversal waves measured in corresponding lines; ρ is 

rock density; and g is gravity acceleration. Complete character-

istic of orthotropic rock mass should also involve Poisson’s ratio 

values according in terms of different axes of elastic symmetry. 

To do that, it is necessary to consider shear wave propa-

gation at some α angle towards the key directions. Let the 

key directions coincide with x, y and z axes; shear wave 

propagates in the line of x being polarized within x'y' plane. 

Then, Hook’s law for angular deformations will be: 

1
y x x y

y xG
    

 

= ,           (32) 

where: 

1 11 1 1
2

xy xy

y x x y xy xy

sin
G E E E G

 


 

 − −
 = + −  +
 
 

.        (33) 

In terms of α = 45°: 

045

1 2

x
xy

x
xy

y

E
G

E

E


=

+ +

.           (34) 

Hence: 

0 045 452

2

y x xy x xy

xy
xy x

E E G E G

G E


 
+ − 

 


= .         (35) 

Similar operations help obtain expressions for Poisson’s 

ratios in other two directions (i.e. μzx, and μyz). 

In practical terms, μzx, μyz, and μxy Poisson’s ratios can be 

determined with the help of velocities of compressional and 

transversal waves measured along the key anisotropic lines, i.e.: 

( )

( )

( )

2 2

2 2

2 2

2 2

2 2

2 2

2
;

2 2

2
;

2 2

2
.

2 2

Px Sxy
xy

Px Sxy

Py Syz
yz

Py Syz

Pz Szx
zx

Pz Szx

V V

V V

V V

V V

V V

V V







−
=

−

−
=

−

−
=

−

           (36) 

Other three Poisson’s ratios (i.e., μxy, μyz, and μzx) are 

independent ratios. Hence, availability of (30), (31), and 

(36) dependences makes it possible to define each dynamic 

elastic characteristic of anisotropic rock with orthotropic 

elastic symmetry. To do that, it is required to identify ve-

locity values of compressional waves and transversal 

waves along the key lines of elastic symmetry axes as well 

as velocity values of transversal waves at 45° angle to the 

key directions. 

3.1.2. Rock with transverse-isotropic symmetry 

Anisotropic (i.e. sedimentary) rocks are of a transverse-

isotropic type with elastic symmetry and five elastic con-

stants. Such a symmetry type is characteristic for the strati-

fied rocks. All the lines within a plane of the laminated layers 

are equal to each other; hence, the stratification plane will be 

isotropic plane and an axis, being perpendicular to it, will be 

a symmetry axis of an infinite order. 

In this context, the generalized Hook’s law, expressed 

through physical constants, will be of the form: 

1 xy zx
x x y z

x y zE E E

 
   = − − ; 

1yx zy
y x y z

x x zE E E

 
   = − + − ; 

1zyzx
z x y z

x x zE E E


   = − − + ; 

( )

1
;

1
;

2 1
.

yz yz
yz

zx zx
zx

xy

xy xy
xy

G

G

G

 

 


 

=

=

−
=

           (37) 

If axis z is assumed as an axis of an infinite order and xy 

axis is assumed as an isotropic plane then substitution of all y 

and x indices from (7) will result in: 

1 1
;

;

.

x y

zx xz

x z

zy yzzx xz

x y z z

E E

E E

E E E E

 

  

=

=

= = =

           (38) 

In this context, the number of elastic constants, character-

izing condition of the medium is equal to 5: C11, C12, C22, 

C13, C33, C44, and 11 12
66

2

C C
C

−
= . Other elastic constants 

are equal to zero.  

In terms of symmetry, such media are similar to crystals 

of a hexagonal system. 

Determinant equation for a transverse-isotropic medium 

with ρ density within which elastic waves with velocities 

propagate will be expressed as follows: 
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 (39) 

Similarly to a case of orthotropic body, it is possible to 

obtain following equations using an equation of motion in 

elastic medium: 
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If a wave propagates along hexagonal axis x (Fig. 1b) 

then that corresponds to l = 1, m = 0 and n = 0 condition 

resulting in the equation system (39) simplification: 

( )

2
0;11 01

1 2
  0;11 12 02

2

2
0.44 03

C V P

C C V P

C V P







−  =
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−  =

 
 

 
 
 

 
 

.          (40) 

Hence, in terms of a compressional wave, propagating 

along x axis, we have: 

2
11V P Cx = ,            (41) 

in terms of a transversal wave, propagating towards x axis, 

polarized in xz plane, we have: 

2
44V S Cxz = .            (42) 

In terms of a wave, polarized within xy plane but propa-

gating along x axis, we have: 

( )
12

11 12 66
2

V P C C Cx = − = .          (43) 

If a wave propagates along hexagonal axis z, then l = 0, 

m = 0 and n = 1. Thus, we obtain the equations: 

2
44 01

2
33 03

0;

0.

C V P

C V P





 −  =
 

 −  =
 

           (44) 

Hence, for a compressional wave, propagating towards z 

axis, we have: 

33
2

V CzP = .            (45) 

In terms of a transversal wave, propagating along z axis 
but polarized within zx plane, we have: 

2
44zxV S C = .            (46) 

Substituting values of elastic constants into (42), (43), 
(44), (45), and (46) for elastic characteristics of transverse-
isotropic body, we have: 
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            (48) 

Transverse-isotropic body is characterized by five elastic 
constants E1, E2, G2, μ1, μ2. In the context of coordinate sys-
tem with z axis, being perpendicular to a plane of isotropy xy, 
specifying: 
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            (49) 

and taking into consideration (46) and (47) for anisotropic 
rocks with transverse-isotropic symmetry we obtain: 

( ) ( )2
2 1 1 2

1 2
2

1 1 2

1

xV P
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2

2
xzV S

G
g


=


.            (52) 

where: 
E1 – elasticity modulus for lines within the plane of isotropy; 
E2 – elasticity modulus for lines being perpendicular to 

the plane of isotropy; 
G2 – shear modulus for planes being perpendicular to the 

plane of isotropy; 
μ – Poisson’s ratio characterizing deformation within the 

plane of isotropy subject to the same plane force; 
μ1 – Poisson’s ratio characterizing deformation within a 

plane of isotropy under tension in a perpendicular line; 
μ2 – Poisson’s ratio characterizing deformation within a 

plane being perpendicular to the plane of isotropy. 

Such Poisson’s ratios as μ, μ1 = μzx, and μ2 = μxz can be 

obtained using velocity values of compressional and shear 

waves in terms of corresponding directions. 
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(36) and (50)-(52) dependences help determine values of 

elasticity moduli as well as values of shear of anisotropic 

rocks with transverse-isotropic symmetry using elastic wave 

velocities identified in the two key directions: along stratifi-

cation, and transverse to it. For this purpose, it is necessary 

to know velocities of elastic waves (VP, VS) along the key 

axes of elastic symmetry. 

Consequently, the identified quantitative dependences 

make it possible to calculate elastic characteristics of aniso-

tropic rocks on the velocities of compressional and transversal 

waves measured along the key axes of elastic symmetry as 

well as velocities of transversal waves at 45° angle to the lines. 

To verify the derived quantitative dependences, it is neces-

sary to define analytical scheme of anisotropy the rock belongs 

to: to media with orthotropic or traverse-isotropic elastic 

symmetry. That is connected with determination of values, and 

the key anisotropic lines of the rocks under analysis. 

3.2. Dependence of elastic wave velocities within 

isotropic and anisotropic rocks upon pressure 

Along with pressure increase, all rocks demonstrate in-

crease in elastic wave velocities. The velocity increase starts 

as soon as pressure is applied coming to its end depending 

upon rock types when load achieves 30-70% of a failure 

pressure. In terms of similar load intensity, increase in a 

compressional wave velocity exceeds increase in a transver-

sal wave velocity. That is why study of stress rock mass using 

geoacoustic method as an informative parameter and the most 

important technological parameter should involve a value of a 

compressional wave being the handiest parameter. Since the 

basic velocity change is observed in the line of a load axis 

value of the compressional wave velocity increment helps 

evaluate nature of stress distribution within the rock mass. 

Laboratory tests VP, S = f (σcomp) are widely used while an-

alyzing stress state of rock mass. However, the tests are not 

sufficient; thus, a method of multiparameter control of char-

acteristics and stress-strain state of rocks is proposed to be 

used at a research stage. 

In the context of homogenous isotropic rocks, compres-

sional wave velocity increases almost linearly at a stage of 

elastic deformation along with pressure increase. 

Influence curve V = f (p) approaches its saturation level 

while completing a densification process. Compression of 

different defects terminates; velocity increase slows down. 

Subsequent load increment results in rock discontinuity and 

in the velocity decrease. Further progress of the process 

factors into rock disintegration. 

It should be noted that informativeness of functional de-

pendences varies for different loading cases. In terms of 

linear pressure and uniform pressure, changes in velocities of 

compressional waves are minor being within the accuracy of 

laboratory tests. 

As for the anisotropic rocks, nature of V = f (p) curve de-

pends upon the wave propagation direction relative to the 

applied load line. Changes in velocities of compressional 

waves at loads, oriented diversely relative to stratification 

take place differently. Stratification curve VP‖ = f (p) has 

greater values to compare with a curve of transverse stratifi-

cation VPꞱ = f (p). 

Analysis of experimental data, concerning dependence of 

velocities of elastic waves upon pressure, shows that velocity 

increment value helps evaluate nature of stress distribution 

within rock mass. Rocks with isotropic symmetry and aniso-

tropic symmetry have been selected to observe the regulari-

ties in terms of the specific rocks and use them for full-scale 

experiments. Nature of VP = f (σ) dependence has been iden-

tified by means of uniaxial compression tests with simulta-

neous scanning (Fig. 2). 
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Figure 2. Dependence of a compressional wave velocity (а) and its 

increments (b) upon pressure in terms of the silicified 

jasperoids 

Strain-gauge station and hydraulic press have been ap-

plied to determine statistically deformation characteristics. 

Oscillograph with loop galvanometers kept the records. The 

scheme made it possible to obtain broad deformation pattern 

before disintegration. Electrical facilities used to operate with 

the sensors. The facilities are quite accurate to record auto-

matically minor resistance changes. 

If deformation characteristics of anisotropic media with 

three axes of elastic symmetry then resistance strain sensors 

are located differently relative to elastic symmetry axes. A 

scheme of the strain sensor attachment to the oriented samples 

helps determine E and μ values along the key symmetry lines. 

A force to a sample, located between press plates, is applied 

along axis being parallel to a larger side of a parallelepiped. 

The loading is performed step by step with a short-period 

interval to take a reading. Purpose-made sensor matrices with 

200 Hz resonance frequency are placed between a press plate 

and a sample. Ultrasounds device records simultaneously time 

of flight of acoustic wave pulse for the loading step. 

As for the isotropic rocks, the main velocity increment is 

observed in the line of compressive load action. Total veloci-

ty increment along here achieves 30%; in terms of certain 

samples the increase is up to 35% if the load intensifies from 

zero to a critical one. More than fourfold velocity increment 

exceeds natural variability natural of characteristics of the 

rocks under analysis (Fig. 2b). 

Dependence of propagation velocity of elastic waves in 

anisotropic rocks upon pressure was analyzed with the help 

of cylindrical and prismatic rock samples representing a wide 

range of rocks with varying anisotropy degrees. 

The tests were carried out in the lines of elastic symmetry 

axes. Graphs of velocities of elastic waves were constructed 

separately for each line; pressure changes along the line were 

also involved. Totality of the dependences makes it possible 

to control both qualitative and quantitative changes in the 

velocities of elastic waves as well as anisotropy coefficients 

of the elastic waves depending upon load application line 

relative to anisotropy axes. 

According to the specified procedure, samples of the lam-

inated limestones, jasperoids, and shales were tested in two 

orthogonal directions: along stratification (i.e. along fissility) 
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and transversely to stratification (i.e. transversely to fissility. 

Samples of micaceous-quartz shales were tested in three 

directions: to the dip; along the strike; and transversely to 

stratification of layers. 

Tests of the samples have demonstrated that in terms of 

loading being parallel to stratification, a curve of velocity 

changes with VP‖ = f (p) pressure is located quite higher to 

compare with VPꞱ = f (p) curve when transversely to fissility 

loading is performed (Fig. 3). 
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Figure 3. Changes in a velocity of a compressional wave with 

pressure for the laminated limestones I: (a) loading 

along fissility; (b) transverse to fissility loading. Chang-

es in a velocity of a compressional wave with pressure 

for micaseous-quartz shales II: (c) loading to the dip; d 

is loading along the strike; (d) transverse to stratifica-

tion loading 

Loading process shows the increased velocity of compres-

sional waves with pressure increase; its increment is not uni-

form throughout the loading cycle: first, velocity with pres-

sure increase intensifies; then, velocity increase starts slowing 

down being behind pressure increment. In terms of loads, 

being 50% of critical ones, velocity increment following 

pressure increase VPꞱ = f (p) taking place transversely to strat-

ification is ~30% for the laminated limestones; 35% for mica-

seous-quartz shales; and ~20% for jasperoids. In terms of 

loading along stratification VP‖ = f (p) it is ~7% for the lami-

nated limestones; and ~10% for micaceous-quartz shales. 

Relative increments of compressional waves with pres-

sure were determined using the formula: 

0

0

100PV VV

V V

−
=  %,           (53) 

where: 

VP – a compressional wave velocity in terms of pressure P; 

V0 – a compressional wave velocity within a sample un-

der the nonloaded condition. 

Propagation of elastic waves within a solid body happens 

the faster the tighter the medium is, and the less disconnec-

tions between particles are. Generally, velocity value of a 

compressional wave, determined along layers for the non-

loaded samples is higher than a wave velocity determined 

transversely to layers. 

In terms of tests, carried out transversely to fissility, 

VP = f (p) a curve of micaseous-quartz shales for load cycle is 

situated lower that a curve for unload cycle (Fig. 3); i.e., 

hysteresis loops are available. Difference in velocity values 

in the process of loading/unloading is not more than 3% 

corresponding to the limit of measurement accuracy. 

When samples are loaded along fissility within initial 

load zone, compressional wave velocity decreases down to a 

definite load (~100 kg/cm2). Then, the velocity increase 

starts along with pressure increase. In this context, the pres-

sure is less to compare with a case when loading takes place 

transversely to fissility. Evidently, such nature of changes in 

a velocity with pressure depends upon a type of deformation 

and subsequent disintegration of the stratified-anisotropic 

media. Transversal deformation progresses faster to compare 

with axial deformation (velocity decrease and negative in-

crement sign); pores and microfissures, oriented along layers, 

are filled simultaneously. Then, intensive growth of transver-

sal deformation comes to its end (knee point) and increase in a 

compressional wave velocity starts with pressure increase (a 

sign of relative velocity increment varies to a positive one). 

Lab environment demonstrates significant decrease in 

anisotropic coefficients of the laminated limestones and 

micaceous-quartz shales depending upon pressure increase 

(Fig. 4); moreover, the majority of the changes are ob-

served in terms of pressures being 20-30% of critical ones. 

Then, the changes slow down. If pressure is ~50% of a 

critical one anisotropy coefficient of the laminated lime-

stones decreases averagely by 40-50 down to 7-12%; in 

terms of micaceous-quartz shales the decrease is 80-100 

down to 30-40% respectively. 
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Figure 4. Changes in anisotropy coefficient with pressure: а is for 

the laminated limestones; and b is for micaceous-quartz 

shales 

As it has been mentioned, the laminated limestones expe-

rience their disintegration faster if loading is along fissility 

(σ‖
comp = 610 kg/cm2). The disintegration takes place due to 

breakage of intergranular contacts. In this context, the veloci-
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ty, measured transversely to fissility decreases depending 

upon rock decompression; in turn, velocity anisotropy in-

creases. If the loading is transversely to fissility then rocks 

experience their disintegration in terms of higher loads 

(σꞱ
comp = 800 kg/cm2). Intergranular contacts become more 

compact; velocity of compressional waves transversely to 

fissility increases; and velocity anisotropy decreases. Name-

ly, changes in values of anisotropy coefficients of elastic 

wave velocities may be associated virtually with availability 

of stresses directed horizontally or vertically to layers. 

Consequently, anisotropy of compressional wave veloci-

ties depends upon the applied pressure varying according to 

it. In other words, anisotropy of a compressional wave veloc-

ity depends upon stress state of rocks. However, the correla-

tion is understudied. 

3.3. Study of correlation between 

rock characteristics and conditions 

Studies prove the pronounced velocity increase along 

with rock strength increase. For instance, rocks of marble 

and Chat-Bazar limestone type, being notable for their max-

imum homogeneity and isotropism, demonstrate rather high 

velocity-strength correlation (r = 0.86). In the context of the 

rocks, strength anisotropy coefficient, identified on K = σꞱ /σ‖ 

values, is close to 1. Rocks of Uluu-Too deposit (effusives, 

listvenites, shales, and serpentinites) are characterized by 

significant homogeneity and anisotropy; as a result, in this 

case correlation coefficient is low (r = 0.64). As for the ani-

sotropic rocks, values of strength characteristics depend upon 

load application lines as well as upon directions of elastic 

symmetry axes. 

Anisotropic micaceous-quartz shales, the silicified jas-

peroids, the laminated limestones, and shales experienced the 

unconfined compressive strength test in terms of different 

load orientations relative to layers (Fig. 5). 
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Figure 5. Dependence of rock strength in terms of uniaxial com-

pression depending upon incidence angles of the layers: 

а is the laminated limestone; b is jasperoid; and c is mi-

caceous-quartz shale 

As it is understood from Figure 5, σcomp values, obtained 

for micaceous-quartz shales along fissility and transversely 

to it, are almost similar. Their minimal resistance has been 

demonstrated in the line where 45° angle with layer direction 

is available. In this context, σ45°
comp = 525 kg/cm2 being 60% 

of σ90°
comp. As for the jasperoids, ultimate compression 

strength, measured at 60° with σ65°
comp = 850 kg/cm2 layer 

direction, is a determinative factor. It is ~70% of σ90°
comp. In 

terms of carbonaceous shales and the laminated limestones, 

minimal σcomp value corresponds to the case when layer di-

rection coincides with a loading line. 

In the majority of cases, strength anisotropy of rock may 

be reduced to availability of the certain systems of loosening 

surfaces in it when rock shear force and tension strength 

deteriorate to compare with the basic mass of the rock. 

In the context of the unconfined compressive strength test 

along layers on the condition that friction is not available and 

elastic behavior of rock matrix as well as a binding material 

is almost similar, a surface over which disintegration takes 

place coincides with direction of interlayers failed by micro-

fissures. Disintegration has a form of separation. 

Many authors consider strength anisotropy separately 

from analysis of elastic characteristic anisotropy; however, 

velocity-strength correlations for isotropic rocks are known. 

Increase in elastic anisotropy coefficient is followed by 

the increase in strength anisotropy; in turn, decrease in elastic 

anisotropy value results in the increased uniaxial compres-

sion strength (Table 1). 

Nevertheless, as it appears from the experimental data 

(Fig. 5) the process is not constant. As for the micaceous-

quartz shales, characterized by orthotropic elastic symmetry, 

anisotropy of strength properties along the key anisotropic 

axes is less than 10%. In other words, anisotropy of elastic 

wave velocities as it is evaluated in this case, may character-

ize anisotropy of rock strength with the help of transverse-

isotropic elastic symmetry only. Higher velocities of com-

pressional waves correspond to the toughest rocks. Moreo-

ver, in terms of rocks with high homogeneity coefficient, 

spread of values of an average one is Δp = ±0.024 g/cm2. 

In the context of Uluu-Too deposit rocks, characterized 

by structural nonhomogeneity and fissility, absolute error of 

rock density identification on the value of compressional 

wave velocity is significant. That is to say, qualitative evalu-

ation of rock density according to velocities of elastic waves 

is possible for rocks with high homogeneity coefficient. 

Homogeneity coefficient and anisotropy coefficient were 

determined ultrasonically on the value of compressional 

wave velocity: 

( )
2
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3
P Pin

P i

P

V V
V

n
K

V

=

−
− 

= ,          (54) 

where: 

VP – average velocity of a compressional wave along one 

direction, m/sec;  

VPi – one of velocity values, m/sec;  

n – measurement number. 

In the context of anisotropic waves, characterized by dis-

tinctly varying velocity values in terms of different direc-

tions, it seems to be dilemmatic to evaluate their density. 

Elastic wave velocities (VP, VS, VR) were measured using 

methods of through scanning of in-line profiling, and trans-

versal one. In case of anisotropic rocks which anisotropy 

coefficient is more than 8% profiling should be performed 

involving three orthogonal profiles with the development of 

phase hodographs for each line.  
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Table 1. Correlation between elastic anisotropy and strength characteristics 

Rock 

Velocity of elastic 

waves, m/sec 
Anisotropy 

coefficient of velocity 

of elastic waves, % 

Ultimate compression 

strength, kg/сm2 

Coefficient of strength anisotropy, %, 

max min

min

K
 




=  

VP‖ VPꞱ σmax σmin 

Basalt 4610 4410 4.5 1070 940 13.9 

Marmorized limestones 5460 5100 6.8 865 830 4.1 

Chloritic shale 7120 6400 11.3 3140 2400 30.8 

Jasperoids  4760 4050 17.0 1290 850 51.9 

Laminated limestones 4740 3280 44.6 805 610 32.0 

Carbonaceous shales  5105 2715 87.5 1400 830 68.6 

Micaceous-quartz shales 5100 2550 100.0 880 525 68.1 

 

Anisotropy coefficient along any profile is determined 

using the formula: 

100Px Pz

Pz

V V
A

V

−
=  %,           (55) 

where: 

VPx – compressional wave velocity towards x axis, m/sec; 

VPz – compressional wave velocity towards z axis; 

n – measurement number. 

In case of anisotropic rocks, analysis of elastic, strength, 

and deformational characteristics should start from determi-

nation of occurrence orientation and analytical model. For 

the purpose, 30×30×30 cm rock blocks were applied for 

through scanning to identify directions of maximum and 

minimum values of compressional wave velocities. 

Three orthogonal planes are selected at one of monolith 

angle for more accurate determination of spatial orientation 

of the samples. Each plane is divided into several profiles, 

concurring and shifted relative to each other to 11, 22, 5 or 

45° (Fig. 6). The total of diagrams of velocity distribution 

within the three orthogonal planes is used to single out lines 

of maximum, minimum, and intermediate values of veloci-

ties of compressional waves. 
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Figure 6. Scanning scheme for blocks of anisotropic rocks 

Three orthogonal planes are selected at one of monolith 

angle for more accurate determination of spatial orientation 

of the samples. Each plane is divided into several profiles, 

concurring and shifted relative to each other to 11, 22, 5 or 

45° (Fig. 6). The total of diagrams of velocity distribution 

within the three orthogonal planes is used to single out lines 

of maximum, minimum, and intermediate values of veloci-

ties of compressional waves. 

Results of the analysis, carried out using the laminated 

limestones, have helped identify that the coefficient of veloc-

ity anisotropy, defined on the ratios of axial velocities, meas-

ured along fissility and transversely to it, is 1.43. Thus, 

acoustic characteristics and elastic characteristics differ 

greatly in terms of orthogonal directions. Values of compres-

sional waves, measured within stratification planes with the 

help of radial profiles, oriented to each other at different 

angles, do not depend upon the direction of propagation of 

the waves. They are equal in terms of reasonable errors.  

Average velocity of a compressional wave along stratifica-

tion is 4550 70pV =   m/sec; it is 2520 90sV =   m/sec for 

transversal wave; and 0.27 = . Determination of velocities 

of elastic waves within planes, making a certain angle with 

the stratification plane, has shown that along with the angle 

increase, acoustic parameters of the rock decrease becoming 

a minimum transversely to the stratification (Table 2). 

Similar measurements were performed for other rocks 

under study. It has been obtained that in the context of shales 

and laminated limestones from Khaidarkan deposit, analyti-

cal anisotropy model with transverse-isotropic elastic sym-

metry is typical. In this case, stratification plane is isotropic 

plane. To calculate elastic characteristics of such a medium, 

it is required to know VP and VS velocities, measured within 

two orthogonal planes. 

Moisture exercises a significant influence on the velocities 

of compressional waves, and anisotropy coefficient of com-

pressional waves of the laminated limestones. To identify the 

influence, the samples were moistened up to complete satura-

tion. While saturating, compressional wave velocities were 

measured. After complete water saturation, velocity anisotropy 

coefficient decreased from 1.45 down to 1.20. Apparently, the 

fact can be explained by intensive increase in a compressional 

wave velocity transversely to a layer to compare with changes in 

a compressional wave velocity along the layer. The abovemen-

tioned depends upon textural changes during humidification. 

In contrast to shales and laminated limestones from 

Khaidarkan deposit, micaceous-quartz shales and amphibo-

lites from Tereksay deposit are characterized by orthotropic 

anisotropy scheme. Velocities of compressional ways, meas-

ured to the dip, along the strike, and transversely to stratifica-

tion, differ greatly (Table 3). 

Anisotropy degree of elastic oscillation velocities was 

evaluated using (54)-(55) formulas and methods of the ori-

ented profiling. Values of anisotropy coefficients, calculated 

on the velocities of P-and S-waves, do not coincide. General-

ly, values of anisotropy coefficients for transversal waves are 

lower than those for compressional waves. However, they 

have not any single-valued correlation.  
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Table 2. Velocimetry of compressional and transversal waves measured at different angles to the stratification plane 

Laboratory 

number 

of a sample 

Velocity of a compressional 

wave VP, m/sec 

Velocity of a transversal 

wave VS, m/sec 
Poisson’s ratio 

Anisotropy coefficient 

p

K
p

V
A

V
⊥

=  
0° 30° 60° 90° 0° 30° 60° 90° μ‖ μꞱ 

1 4570 4050 3400 3200 2420 2380 2300 1980 0.30 0.19 1.41 

2 4600 4070 3280 3180 2530 2290 2060 1880 0.28 0.22 1.45 

3 4510 3800 3170 3030 2245 2300 2170 1910 0.31 0.16 1.48 

4 4560 3680 3360 3060 2640 2470 3200 1900 0.23 0.17 1.19 

5 4500 4140 3200 3020 2700 2540 2100 1720 0.21 0.26 1.49 

6 4660 4050 3570 3200 2420 2340 2210 1950 0.27 0.20 1.45 

7 4350 3380 3160 3040 2540 2280 2080 1690 0.25 0.27 1.43 

8 4700 3870 3380 3290 2540 2300 1700 1560 0.29 0.33 1.43 

 
Table 3. Average values of velocities of elastic waves and anisotropy coefficients of compressional waves for the rocks under study 

Rock 

Compressional wave 

velocity, m/sec 

Transversal wave 

velocity, m/sec 

Anisotropy coefficient 

of velocities of 

compressional waves, % 

Anisotropy coefficient 

of velocities of  

transversal waves, % 

VPx VPv VPz VSx VSy VSz AP
yx AP

yz AP
xz AS

yx AS
yz AS

xz 

Micaceous-quartz shales 5130 4370 2540 2880 2500 1540 17.5 102.4 72.2 15.6 88.0 63.3 

Amphibolites 6000 5630 5080 2970 3010 2650 6.6 18.3 10.9 5.5 12.4 13.5 

Laminated limestones 4610 – 3190 2460 – 1930 – 45.0 – – 23.4 – 

Silicified jasperoids  4770 – 3930 2400 – 2180 – 21.0 – – 11.1 – 

Siliceous shales 5060 5000 4450 2940 2800 1980 1.2 13.7 12.3 5.0 48.4 41.4 

Marmorized limestones 5450 5380 5100 3160 3280 3190 1.3 6.8 5.4 3.6 1.0 2.8 

 

Elastic characteristics have been defined for the analyzed 

rocks taking into consideration analytical anisotropy scheme 

and using formulas (30), (31), (36), and (50)-(52) to calculate 

elastic characteristics of anisotropic rocks with orthotropic, 

and transverse-isotropic symmetry (Table 4). 

Table 4. Elastic characteristics of anisotropic and isotropic rocks 

under study 

Rock 

Elastic characteristics 

Ex·105, 

kg/сm2 

Ey·105, 

kg/сm2 

Ez·105, 

kg/сm2 

Micaceous-quartz shales 5.77 4.99 1.41 

Amphibolites 7.48 6.61 5.35 

Laminated limestones 4.80 – 2.26 

Silicified jasperoids 4.35 – 3.13 

Shales 6.71 – 5.22 

Siliceous shales 5.80 6.19 4.48 

Marmorized limestones 7.00 6.76 6.2 

Jasperoids 5.58 5.56 5.60 

 

As it is understood from Tables 3 and 4, the rocks are 

characterized by significant anisotropy of velocities of elastic 

waves varying broadly (i.e. 5-10 to 80-100%). Elastic char-

acteristics, measured in terms of different direction relative 

to symmetry axes, differ significantly too. 

Elasticity moduli, determined in the line of stratification E‖, 

G‖, μ‖, are larger than those, determined transversely to stratifi-

cation EꞱ, GꞱ, μꞱ; so, E‖ > EꞱ, G‖ > GꞱ, μ‖ > μꞱ ratios take place. 

While comparing Tables 3 and 4, one can deduce easily that 

relative the abovementioned occurrence components, n2 times 

variation of compressional wave velocity corresponds to n2 

times variation of elasticity modulus and shear modulus in 

terms of corresponding directions. In other words, the greater 

anisotropy degree is, the more significant is difference in the 

parameters determined in terms of the directions. 

The research of anisotropic samples has demonstrated 

that rock strength characteristics are functions of the oriented 

rock microstructure which depend upon a line of load appli-

cation relative to fissility. In accordance with structural and 

textural features, minimum and maximum strength values 

not always coincide with layer direction. In terms of mica-

ceous-quartz shales, minimum strength value is when layers 

are located at 45° towards load action; the angle is 60° for 

the silicified jasperoids. In terms of carbonaceous shales and 

limestones, minimum strength value corresponds to a case 

when loading line coincides with layer direction; maximum 

value is when the process takes place transversely to layers. 

Reason of such differences is in the mechanism of aniso-

tropic sample disintegration. 

In the context of all mechanical experiments, large 

strength indices always corresponded to directions of large 

velocity values of elastic waves. Increase in a velocity anisot-

ropy coefficient, i.e. decrease in elastic anisotropy value 

results in the increased uniaxial compression strength. 

Determination of acoustic VP, VS, Aik and elastic E, G, μ 

rock indices when analytical scheme of rock anisotropy was 

taken into consideration has helped identify that the rocks 

under study are characterized by their own significant anisot-

ropy. Analysis of the results supports the idea that the larger 

degree of velocity anisotropy is, the greater elastic parame-

ters, defined for different orientations relative to occurrence 

components, vary. 

Elasticity moduli, calculated on the elasticity theory for-

mulas for isotropic body, differ from each other by 50-60%. 

If they are calculated according to formulas for anisotropic 

rocks, the difference reduced down to 20-25%. 

Laboratory unconfined compressive strength tests with 

simultaneous scanning have made it possible to define the 

following. Pressure exercises a significant influence on the 

velocity of compressional waves. If load increases 0 to 50% 

of destructive one then VP
Ʇ (p) velocity for the rocks under 

study increases by 25-35%; the increase is 7-15% for VP
‖ (p). 

Nonlinear correlation is between compressional wave veloci-

ty and compression stress. 
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A curve of velocity of a compressional wave change 

along layers is above a curve of a velocity change transverse-

ly to layers. Hence, the rocks are characterized by anisotropy 

of velocities of elastic oscillations and under pressure. 

Degree of V(p) variation in terms of loads, oriented dif-

ferently to fissility, is not identical, and depends upon textur-

al features of a medium; anisotropy decrease is observed in 

terms of loading being transverse to fissility. The anisotropy 

increases while loading along fissility. 

Under laboratory conditions, anisotropy coefficients of 

velocities of compressional wave demonstrate significant 

decrease along with pressure increase. Considerable part of 

the changes falls on pressure being 20-30% of failure one. 

The research helps determine dependences of elastic 

characteristics upon pressure and depth; moreover, they 

explain a pattern of absolute and relative stress distribution 

within rock mass in the neighbourhood of mine workings. 

However, to compare with the specific laboratory experi-

ments, in-situ rocks experience effect of numerous factors as 

well as rather complex stress field. 

That is why the only way to obtain reliable information 

concerning stress distribution within the specific area of the 

Earth’s crust is to perform immediate measurements of stress 

state of rocks in mine workings; experiments remain the 

basic research method. 

4. Conclusions 

Dynamic elastic characteristics of anisotropic rock with 

orthotropic elastic symmetry should be determined through 

values of compressional and transversal wave velocity 

along the basic directions of elastic symmetry axes, and 

values of velocities of transversal waves at 45° angle to the 

key directions. 

The obtained quantitative dependences make it possible 

to calculate elastic characteristics of anisotropic rocks in 

terms of velocities of compressional and transversal waves, 

measured along the key axes of elastic symmetry, and veloci-

ties of transversal waves at 45° angle to the key directions. 

To verify the derived quantitative dependences, it is nec-

essary to define a type of analytical scheme of anisotropy the 

rock belongs to: media with orthotropic or transverse-

isotropic elastic symmetry. The abovementioned is connect-

ed with determination of values as well as the key anisotropy 

directions of the rocks under study. 

Laboratory unconfined compressive strength tests with 

simultaneous scanning have helped identify the following: 

– pressure exercises a significant influence on the velocity 

of compressional waves. In terms of 0 to 50% of a failure load 

increase, VP
Ʇ (p) velocity enhancement is 25-35%; the in-

crease is 7-15% for VP
‖ (p) velocity. Nonlinear correlation is 

between compressional wave velocity and compression stress; 

– curve of velocity of a compressional wave change 

along layers is above a curve of a velocity change transverse-

ly to layers. Hence, the rocks are characterized by anisotropy 

of elastic oscillation velocities and under pressure; 

– V(p) change degree in terms of loading, oriented differ-

ently to fissility, is not identical and depends upon textural 

features of a medium; anisotropy decrease is observed in 

terms of loading being transverse to fissility. The anisotropy 

increases while loading along fissility; 

– lab environment demonstrates significant decrease in 

anisotropic coefficients of the laminated limestones and 

micaceous-quartz shales depending upon pressure increase; 

moreover, the majority of the changes are observed in terms 

of pressures being 20-30% of critical ones. 

Consequently, the research helps determine dependences 

of elastic characteristics upon pressure and depth; moreover, 

they explain a pattern of absolute and relative stress distribu-

tion within rock mass in the neighbourhood of mine work-

ings. A = 1.45, obtained for the laminated limestones, and 

A = 1.200, obtained for carbonaceous shale are the essential 

and necessary conditions to consider stress state. 

However, to compare with the specific laboratory exper-

iments, in-situ rocks experience effect of numerous factors as 

well as rather complex stress field. 

Thus, obtaining of reliable information concerning 

stress distribution within the specific area of the Earth’s 

crust involves further research to develop criteria of evalua-

tion and stability control of rock mass around a mine work-

ing using acoustic module on the basis of quantitative con-

sideration of anisotropy A influence through velocities of 

elastic waves VP and VS. 
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Дослідження взаємозв’язку властивостей та стану порід 

А. Абдієв, Р. Мамбетова, А. Абдієв, Ш. Абдієв 

Мета. Встановлення залежностей швидкостей пружних хвиль в ізотропних та анізотропних породах з ортотропною і транс-

версально-ізотропною симетрією, від тиску та глибини, для розробки критеріїв оцінки й контролю властивостей і стану породного 

масиву поблизу гірничих виробок. 

Методика. Розглядається суцільне анізотропне середовище. Перша група умов на межі являється умовами безперервності на-

пружень, що діють нормально до межі при переході з шару 1 в шар 2. Друга група граничних умов полягає в тому, що зміщення 

при переході через межу вимірюються також безперервно. Ці умови є необхідними для виконання рівняння динамічної рівноваги 

пружного середовища Новьє-Стокса. Експериментальні дослідження виконувалися геоакустичним методом за акустичним параме-

тром швидкості поздовжньої хвилі. 

Результати. Встановлено, що величини швидкостей пружних хвиль, анізотропія швидкостей поздовжніх хвиль, пружні харак-

теристики закономірно відображають особливості будови і залежать від тиску. Виявлено, що залежно від напруженого стану від-

значаються випадки зникнення чи появи анізотропії, або зміни знаку на зворотний. Отримано кількісні залежності з визначення 

пружних характеристик (Е, μ, G) анізотропного масиву з ортотропною, трансверсально-ізотропною симетрією через швидкості 

пружних хвиль для правильного обліку анізотропії властивостей масиву при оцінці його напруженого стану. Результати дослі-

джень дозволять оцінити характер розподілу напружень, виявити зони концентрації напружень і зони порушених порід поблизу 

гірничої виробки за акустичним параметром швидкості поздовжньої хвилі розробленого авторами методом геоакустичного контролю. 

Наукова новизна. Згідно нових отриманих залежностей, науково визначені значення пружних характеристик гірських порід  

(Е, μ, G) та акустичні параметри швидкості поздовжньої хвилі, що є цінними для проектування й планування розвитку гірничих робіт. 

Практична значимість. Отримані результати досліджень, з достатньою для практичного застосування точністю, можуть вико-

ристовуватися для визначення числових значень пружних характеристик (Е, μ, G), дають можливість застосування методу геоакус-

тичного контролю властивостей і стану породного масиву поблизу гірничих виробок і залучати до відпрацювання родовища зі 

складними структурно-механічними особливостями. 

Ключові слова: ізотропні та анізотропні породи, напруження гірських порід, пружні характеристики, акустичний параметр, 

швидкість поздовжньої хвилі, геоакустичний контроль 
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Исследование взаимосвязи свойств и состояния пород 

А. Абдиев, Р. Мамбетова, А. Абдиев, Ш. Абдиев 

Цель. Установление зависимостей скоростей упругих волн в изотропных и анизотропных породах с ортотропной и транс-

версально-изотропной симметрией, от давления и глубины, для разработки критериев оценки и контроля свойств и состояния по-

родного массива вблизи горных выработок. 

Методика. Рассматривается сплошная анизотропная среда. Первая группа условий на границе представляется условиями не-

прерывности напряжений, действующих нормально к границе при переходе из слоя 1 в слой 2. Вторая группа граничных условий 

состоит в том, что смещение при переходе через границу измеряются также непрерывно. Эти условия являются необходимыми для 

выполнения уравнения динамического равновесия абсолютно упругой среды Новье-Стокса. Экспериментальные исследования 

выполнялись геоакустическим методом по акустическому параметру скорости продольной волны. 

Результаты. Установлено, что величины скоростей упругих волн, анизотропия скоростей продольных волн, упругие характе-

ристики закономерно отражают особенности строения и зависят от давления. Выявлено, что в зависимости от напряженного состо-

яния отмечаются случаи исчезновения или появления анизотропии, или перемены знака на обратный. Получены количественные 

зависимости по определению упругих характеристик (Е, μ, G) анизотропного массива с ортотропной, трансверсально-изотропной 

симметрией через скорости упругих волн для правильного учета анизотропии свойств массива при оценке его напряженного состо-

яния. Результаты исследований позволят оценить характер распределения напряжений, выявить зоны концентрации напряжений и 

зоны нарушенных пород вблизи горной выработки по акустическому параметру скорости продольной волны разработанным авто-

рами методом геоакустического контроля. 

Научная новизна. Согласно новым полученным зависимостям научно определены значения упругих характеристик горных 

пород (Е, μ, G), и акустические параметры скорости продольной волны, ценные для проектирования и планирования развития гор-

ных работ. 

Практическая значимость. Полученные результаты исследований, с достаточной для практического применения точностью, 

могут использоваться для определения числовых значений упругих характеристик (Е, μ, G), дают возможность применения метода 

геоакустического контроля свойств и состояния породного массива вблизи горных выработок и привлекать к отработке месторож-

дений со сложными структурно-механическими особенностями. 

Ключевые слова: изотропные и анизотропные породы, напряжение горных пород, упругие характеристики, акустический  

параметр, скорость продольной волны, геоакустический контроль 
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