MiHicTepcTBO OCBiTH | HAYKH Y KpaiHu
HanionanbHuii TexHivyHMii yHiBepcuTeT
«/lHINPOBCHKA MOJITEXHIKA)

[HCTUTYT €IEKTPOECHEPTETUKU
(iHCTHTYT)

dakynbpTeT iHOOPMAIIHHIX TEXHOJIOTIN
(dpakynbrer)

Ka(l)ezlpa HpOFpaMHOFO 3a0e3MeueHHs KOMH’IOTepHI/IX CUCTEM
(ToBHa Ha3Ba)

IHOACHIOBAJIBHA 3AITMCKA
kBaJidikaniiiHol podoTH CTyneHs

baxanaspa
(Ha3Ba OCBITHBO-KBaTi(iKALIHHOTO PIBHS)

CTYJAEHTAa Yooxa Cynoas Toma Piuapoa
(TTIB)
aKkajaeMiqHOI rpynu 122-17-3
()
creniajJbHOCTI 122 Komn romepni nayku
(kox i Ha3Ba crelialbHOCTI)
OCBITHBOI IPOrpaMu Kowmn tomepni nayxku
(Ha3Ba OCBITHBOI IPOTPaMH)
HA TeMy: Po3spobra eeb6-0o0amxky ons 0baiky cmyoenmis na 6a3zi
¢petimsopky Django

Ouinka 3a HIKAJ0I0

KepiBHuku HpizBunie, inimiaan — - — IMignuc
PEUTHHIOBOIO IHCTUTYIIMHOIO
KkBasTi(hikainHO1
oboTH Jloy. Cupomrxina O.1.
03/UTiB:
CriemiaabHAM Jloy. Cupomxina O.1.

€KOHOMIYHUI Jloy, Kacvanenxo JI.B.

Pemenzenr

HopmoxouTtposep | doy. ['ynina .1

JHinpo
2021

MiHicTepcTBO OCBIiTH | HAYyKH Y KpaiHu
HTY «/[HinpoBcbKa NMOJIITEXHIKA»

3ATBEPIKEHO:
3aBiqyBad Kadenpu
IPOrPaMHOTO 3a0€3IEUCHHS KOMIT FOTEPHUX CHCTEM

(moBHa Ha3Ba)

.M. VoBuk

(riammc) (Tipi3BHIIE, THITHIATH)

» 2021 poky

3ABJJAHHA
Ha KBaJiikaniliny podory
baxanaspa
(Ha3Ba OCBITHBO-KBaJTi(DiKAIITHOTO PiBHSI)

CTy/IeHTa 122-17-3 Yooxa Cynoas Toma Piuapoa

(rpyma) (mpizBuIIe Ta iHIIIATN)
TemMa kBaJdiikaniiHoi podoTu Po3spobka ee6-0o0amky ons 001iKy cmyoenmis

Ha b6asi ¢petimsopky Django

3aTBeppkeHa HakazoM pekropa HTY «/II1» Bixg 07.06.2021 Ne 317-c

Tepmin

Po3aia 3MiCT BUKOHAHHSA
BUKOHAHHSA

Cneuyianvhuii Ha ocnosi mamepianié eupoonuyuoi npaxmuku
ma iHWUX HAYKO80-MEXHIYHUX 0Xicepesl nposecmu
aHaniz cmany piwienna npoonemu ma nocmanogxy | 13.05.2021 p.
3aoaui.

Oorpynmyeamu eubip ma 30ilicHUmMuU
peanizauiro memoois eupiuieHHs npoodaemu
Exonomiunuii Ilposecmu po3paxynok mpyoomicmkocmi
PO3POOKU NPOZPAMHO20 3a0e3neYeHHs, GUmpPam Ha 27.05.2021 p.
cmeopennsa I13 it mpusanocmi 1020 po3pooku

3aBgaHHs BUIaB Joy. Cupomxina O.1.
(mimmc) (mocana, npi3BHILE, 1HIIIAIIH)

3aBaaHHs MPUNHSAB 10 BUKOHAHHS Yoox Cynoau Tom Piuapo
(miammc) (mpizBuIIe, iHIIIATN)

Hara Bunauyi 3aBnanns: 14.01.2021 p.

Tepmin noganns kBamigikauiitHoi podotu 1o EK: 17.06.2021 p.

PE®EPAT

[TosicuroBanibHa 3amucka: 94c., 53 puc., 1 Tabn., 3 goxa., 22 mxepena.

OO6’€eKT po3poOKu: po3poOKa BeO-TOAATKY IJIi CUCTEMU OOJIKY CTYJEHTIB Ha
ocHoBl Django Framework.

Merta kBamidikariiinoi podoTu: po3poOKka BeO-10/aTKy, 110 HATA€ MOXKIUBICTh
IpairoBaTy 3 iHGOPMAITI€I0 MPO CTYACHTIB OHJIAH 3aMiCTh (DI3UYHOTO BEJICHHS JTaHUX.
Be6-pecypc Hamae 3pyuny popmy A CTBOPEHHSI HOBUX KITIEHTIB.

VY BcTymi aHaMI3yeThCsl MOTOYHUIN CTaH MUTAHHSA, 3’ ICOBYEThCS IpobiieMa, MeTa
kBaui(ikariitHoi podotu Ta cdepa ii 3acTOCyBaHHSA, OOIPYHTOBYETHCS AKTYaJIbHICTh
TEMH.

VY mepitomy po3aiii TPOBOIUTHCS AOCIIHKEHHS MPEAMETHOT ramy3i Ta ICHYI0UnX
plllieHb, BU3HAYAETHCA AaKTYyaJbHICTh 3aBJaHHS Ta MeTa PO3pPOOKHU, PO3pOOJIIETHCS
MOCTAaHOBKA 3aB/IAHHS.

Y apyromy po3aiai BuOUpaeTbes IiaT@opMa Uil po3poOKH, 3IMCHIOETHCS
po3poOka mporpamMu Ta ii po3poOKa, MA€EThCA OINHUC AITOPUTMY Ta CTPYKTYpH
(GYHKIIOHYBAaHHS CUCTEMH, BHU3HAYAIOTHCS BXIJHI Ta BUXIJIHI JIaHl, XapaKTEPUCTUKU
CTPYKTYpPH MapaMeTpiB HABOJATHCS TEXHIYHI 3aCO0H, OMUCYETHCS pOOOTA MPOTrpamu.

B ekoHOMIYHOMY PO3/11J1i BU3HAYAETHCS CKJIAJIHICTh PO3POOJIEHOT0 TPOTrPAaMHOTO
IPOJIYKTY, MiPaXxOBY€EThCSA BAPTICTh POOIT 31 CTBOPEHHS JOIATKY Ta OOUHUCIIOETHCS Yac
Ha WOTr0 CTBOPEHHS.

[IpakTiyHe 3Ha4YeHHS pOOOTHM TOJAraE y CTBOPEHHI BeO-CEpBICY, SKHIA
3a0e3neuy€e MOKJIMBICTh OOJIIKY JaHUX CTYAEHTIB Ta MOXJIMBICTH iX TpadiuHOro
B1JIOOpaXEHHS Ha JICSIKUX Jlarpamax.

AKTyanbpHICTb 1H(pOpMALIHOT CHCTEMHU BU3HAYAETHCS BACOKUM MOMUTOM Ha TaKi
CUCTEMH 4Yepe3 NepexiJi Ha OHJAH-KypC Ta BIACYTHICTb BUIBHOTO Ta 3pPYYHOTO
PIIIEHHS, K€ MOYXe MOeAHATH B co01 6arato GyHKIII# KOPUCHUX TSl YCTAHOB, JJIS IKUX
HEOOX1THO JIETKO Ta 3pYYHO BECTH OOJIIK JAaHUX CTY/ICHTIB.

Cnucox xmouoBux ciiB: CXEMA, KJIIEHT, CEPBEP, IH@OPMAL[IPTHA
CUCTEMA, KOMITIOTEP, BEB-AOIATOK, ®OPMHU, BA3A JAHUX,
[TABJIOHU, TTEPETJIA AU, DJANGO.

ABSTRACT

Explanatory note: 94pp., 53 figs., 1 tab., 3 apps, 22 sources.

Object of development: development of a web application for students’
management system based on Django Framework.

Purpose of the qualification thesis: development of a web app favouring an easier
method for dealing with students’ information than physical kept records. Developers
will provide a convenient form for creating their clients.

The introduction analyses the current state of the problem, clarifies the problem,
the purpose of the qualification work and the scope of its application, and substantiates
the relevance of the topic.

In the first section the research of the subject area and existing decisions is carried
out, the urgency of the task and purpose of development is defined, the statement of the
task is developed.

In the second section the platform for development is chosen, the program design
and its development are carried out, the description of algorithm and structure of
functioning of system is given, input and output data are defined, characteristics of
structure of parameters of technical means are given, work of the program is described.

The economic section determines the complexity of the developed software
product, calculates the cost of work to create an application and calculates the time to
create it.

The practical significance lies in the creation of a web service that provides the
ability to manage student data, and the ability to graphically display the data in some
charts.

The relevance of the information system is determined by the high demand for such
systems due to the switch to the online course and the lack of a free and convenient
solution, which we have combined many features useful for institutions who want to
manage with ease students’ data.

Keywords: CHART, CLIENT, SERVER, INFORMATION SYSTEM,
COMPUTER, WEB APP, FORMS, DATABASE, TEMPLATES, VIEWS, DJANGO.

CONTENTS

PEDEP AT ... a e e a e e e e e n 3
ABSTRACT .ottt ettt et et e besbesbeaneereeneeneeneenees 4
LIST OF ACRONYMSttt et e e e e e 7
INTRODUCTIONcoiiieiiiite ettt ae bbb sbesnesre e eneeneenees 8
0 = O 1 []\ S 9
ANALYSIS OF THE SUBJECT AREA AND PROBLEM STAMENT.................. 9
1.1 General Information about the Subject Areacccoovvvvevce i, 9
1.2 Development Objectives and Area 0f USEccccveveeiieiiicic e 12
1.3 Grounds for the Project DeVvelopment..........cccvvveiienieenie e 13
1.4 Problem STatemeNtc.ooiiiie e 14
1.5 SOftware REQUITEMENTSoiieiiiiieeiie et stee e ee et e sree e e 15
1.5.1. Functional REQUITEMENTS.........cccveiieiie et ee et 15
1.5.2. Information Security REQUIFEMENTScccveiivieiieiiccicce e 16
1.5.3. Hardware Environment REQUIFEMENTS.........ccovvereerieeiiesieeie e esee e e 16
1.5.4. Compatibility REQUIFEMENTSccuveiiiiiciie e 16
SECTION 2 ..ottt ettt sttt st be e beare e e e e e e s 18
DESIGN AND DEVELOPMENT OF THE STUDENT MANAGEMENT.......... 18
2.1 Functional purpose Of the SYStEM........ccccvviiiiiii e 18
2.2 Description of applied mathematical methods...........ccccoovveiiiiiniiic i, 19
2.3 Description of used technologies and programming languagesc.c........ 19
2.4 Description of the system structure and algorithms of its functioning 26
2.4.1 Relationship between different parts of the system structure. 39
2.4.2 Database of the Student Management SYStem.cccooeveeiinienenee e, 40

5

2.4.3 Django architecture fUNCLION VIEWcccooiviiieiin e 41

2.5 Justification and organization of input and output data of the program 42
2.6 Description of the developed SYSteMcccvvviiierin i 43
2.6.1 Description of the developed SYStEMcccvevveviiiie i 43
2.6.2 The SOtWAIE USEA.........ooiiiiiieieee e 43
2.6.3 Calling and downloading the program.ccccevvevieiie e 43
2.6.4. Description of the user iNterface.ccccocvvvveiienin i 43
POBJIIIL 3 1ottt ettt et et e e e st et ettt s et et et e en s et et e e ene 59
EKOHOMIUHUI POBJIIIL ..ottt eeen e 59

3.1. Po3paxyHOK TPYJOMICTKOCTI Ta BAPTOCTI PO3POOKU MPOTPaMHOTO MPOIYKTY 59

3.2. Po3paxyHOK BUTPAT HA CTBOPCHHS ITPOTPAMU ..vvvvreeirnrrreressiirnreessssnneeesssnsnnees 62
CONCLUSIONS ...ttt te e e sraentesneesteaneenreens 65
REFERENGCESottt ettt st nas 67
APPENTIX A. SOUICE COUB.....uviiiieieesiiecee st ee et e e sree e e nreesree e 69
Jomatok b. Biaryk kepiBHUKA €KOHOMIUHOTO PO3IILITY «.vvvvreirrveresssrersssnessssseeesssnnes 93
Appendix C. List of files 0n the diSC.........cccevvveiiiiiiiiece e 94

LIST OF ACRONYMS

API — Application Programming;

OS — Operating System;

Ul — User Interface;

HTTP — Hypertext Transfer Protocol;

ERP — Enterprise Resource Planning;

SMS — Student Management System;

SIS — Student Information System;

HOD — Head of Department;

ASGI — Asynchronous Server Gateway interface;
VS Code — Visual Studio Code;

INTRODUCTION

The objectives of this qualification thesis and the object of its activities are directly
related to the direction of training and corresponds to the generalized topics of
qualification work and a list of these production functions, typical tasks, skills and
competencies that must have bachelors in 122 "Computer Science".

The theme of the qualification thesis is the development of a web application for
students’ management system based on Django Framework.

The current record management system in some university is already defined as an
older generation management system and it already cannot satisfy the wanted user.

As a result, a system called Student Management System is being developed as an
upgrade version of the old system in order to replace the manual system to solve the
problem it faced while using the old system or the manual system. The Student
Management System (SMS) is a software application for education that uses to manage
student information and data. It is also known as, Student Information System (SIS),
Student Information Management System (SIMS) or School Management System
(SMS).

The qualification thesis involves the development of database Management with
the use of Python Django, HTML, CSS, JavaScript and Bootstrap.

This design of this system is web type, so that user can also directly operate the
system by connecting to the internet. The users of this system are divided into three
groups, which are administrators (admin), teachers (staff) and students.

This software is relevant because it fit the time in which we currently are with the

sudden adoption of the online course due to current pandemic.

SECTION 1
ANALYSIS OF THE SUBJECT AREA AND PROBLEM STAMENT

1.1 General Information about the Subject Area

Student management system is an environment where all the method of the scholar
within the institution is managed. It is done through the automated computerized
method. Conventionally this technique is completed using papers, file and binders.

This system saves the time of the scholar and of the administrator. It includes
process like registration of the student’s details, assigning the department supported their
course and maintenance of the record.

This system reduces the value and workforce required for this job. because the
system is online the knowledge is globally present to everyone. This makes the system
easy to handle and feasible for locating the omission with updating at an equivalent time.

As for the prevailing system, they use to take care of their record manually which
makes it susceptible to security. If filed a question to look or update during a manual
system, it'll take tons of your time to process the query and make a report which may be
a tedious job.

As the system utilized in the institute is outdated because it requires paper, files
and therefore the binders, which can require the human workforce to take care of them.
to urge registered within the institute, a student during this system one should come to
the university.

Get the forms from the counter while standing within the queue which consumes
tons of the student’s time also as of management team. because the number of the scholar
increases within the institute manually managing the strength becomes a busy job for
the administrator.

This computerized system stores all the info within the database, which makes it
easy to fetch and update whenever needed. This technology offers us advantages and

disadvantages.

Advantages and Disadvantages of SMS.

Advantages for schools:

— At the level of the school structures:

Setting up such an application makes it easier to manage student files, and it
facilitates a better communication between the various departments of the university.
There is less documentation, which avoids errors and waste of paper. There is also a
better communication between the administration and the teaching body and a follow-
up of the seriousness of the teachers.

— At the level of teachers:

It makes the job easier because they have the flexibility to work wherever they
want. It is easier to follow the progress of the graduates through their grades, to transmit
the lessons to the graduates in case of absence and to inform them. It is an excellent
means of following the seriousness and implication of the student in their work
according to the subjects.

— At the student level;

It provides real-time access to information about university and assignments or
courses disclosed by professors. It allows you to follow their progress in the various
subjects and to have information on their grades, absence and sanction taken against
them. There is the possibility to communicate directly and have a follow-up with the

Head of Department.

Disadvantages for school:

— At the level of the school structures:

A follow-up of the professors and their work which can be frowned upon. The web
application needs a maintenance agency to monitor the site in the event of a problem. It
can happen that they would be too much message from students and teachers which
could end up being difficult to manage.

— At the Level of Teacher:

10

There is going to be a double work because of the obligation to postpone the notes
after correction on paper. The Permanent follow-up from the university management
can also not been accepted by the teacher.

— At the Student level:

There is too much information at the same time, lack of rest on the part of teachers
who are often too busy and the traceability of its school data.

Presently at the market, we have a lot of commercialized student managing system,
which are efficient and have been successful in simplifying the works of institutions
when it comes to student management. The list is very long, however an analysis will

be made on four of the most influential system.

Comparisons of top Student Management System

MasterSoft - MasterSoft SIS works as a centralized database whereby all the
information related to students is stored. It helps the institutions to manage every single
detail about students in an organized and cost-effective way. Besides, multiple users can
access at the same time. The undoubted advantage of the system is that it has a best work
environment and Seniors are supportive. The software is an online website, which is
different from others that are desktop. One of the inconvenient is that the system lack of
technology in SQL not using tools. It is not free.

Fakera - Fakera acts as a student ERP system, which provides a complete 360-
degree solution to student management. From taking care of student’s admission process
to settling of fees online and maintaining attendance record, it does it all. It is a very user
friendly and free for universities. Fekara’s pro version is totally free for non-profits; the
basic version is free for all educational institutes.

PowerSchool - PowerSchool is changing the way a school runs. With the help of
technology, this school management system attempts to unify back office with the
classroom to put everyone on the same team. It is a great system that helps realize

students’ full potential. The advantage is that we can connect to an API. The only

11

problem is that it is a Desktop application; in a case of less memory storage, you cannot
install the application to use it.

Edu-Orbit - Edu-Orbit is an online student management system that follows a
modular approach. For starters, you can choose as many numbers of modules you want.
Besides, it allows teachers to create their teaching and evaluation plan and generate a
performance report on the same. The advantage is that the application is both an online
software and a Desktop app for the Windows system. Probably they are developing an
IOS Desktop app. You can use API, there is an option for customization, and they have
a mobile support. The inconvenience with Edu-Orbit could be also be called non-

intuitive interface and no display of graphics.

Table 1.1

Advantages and disadvantages of programs
Opportunities MasterSoft | Fakera PowerSchool | Edu-Orbit
Online website YES YES NO YES
Desktop Platforms | NO NO YES YES
API NO NO YES YES
GRAPHICS NO YES NO NO
CUSTOMIZATION| YES YES YES YES
MOBILE YES YES YES YES
SUPPORT
FREE NO YES NO NO

From the table of capabilities of each of the programs (Table 1.1), you can do
conclusions about what opportunities the development system should provide, and

which ones shortcomings it must get rid of.

1.2 Development Objectives and Area of Use

The full name of the developed system for qualification work:
“Development of a web application for Student Management System based on

Django Framework “.

12

Basic Terminology and Keywords:

A web application (web app) is an application program that is stored on a remote
server and delivered over the internet through a browser interface. Web services are web
apps by definition and many, although not all, websites contain Web apps. According to
Web.AppStorm editor Jarel Remick, any website component that performs some
function for the user qualifies as a Web app.

Django is a high-level Python Web framework that encourages rapid development
and clean, pragmatic design. Built by experienced developers, it takes care of much of
the hassle of Web development, so you can focus on writing your app without needing
to reinvent the wheel. It’s free and open source.

A Framework is an abstraction in which software providing generic functionality
can be selectively changed by additional user-written code, thus providing application-
specific software.

The developed web app should be used in the field of managing student records by
universities, institutions and any group interested of managing records such as attendees,
marks and so on and so forth in other to have real data saved in the system.

The aim of the project is to develop an easier method for dealing with students’

information than physically kept records at a free course and with better graphic design.

1.3 Grounds for the Project Development

According to the educational program, according to the curriculum and schedules
of the educational process, at the end of the study the student performs qualification
work.

The topic of work is agreed with the project manager, the graduating department,
and approved by order of the rector.

Thus, the grounds for development (performance of qualifying work) are:

— Educational program of specialty 122 "Computer Science”

— Curriculum and schedule of the educational process;

13

— Order of the Rector of Dnipro University of Technology Ne 317-c from
07.06.2021;
— Tasks for qualification thesis on “Development of a web application for

Students’ Management System based on Django Framework."

1.4 Problem Statement

The aim of the task is to develop a web application for managing student records.
Since in this category we are dealing with 3 User Interface, we are to notate that every
user has different attribute likewise they have different Dashboard.

Admin:

— See Overall Summary Charts of Students Performance, Staffs Performances,
Courses, Subjects, Leave, etc.

— Manage Staffs (Add, Update and Delete).

— Manage Students (Add, Update and Delete).

— Manage Course (Add, Update and Delete).

— Manage Subjects (Add, Update and Delete).

— Manage Sessions (Add, Update and Delete).

— View Student Attendance.

— Review and Reply Student/Staff Feedback.

— Review (Approve/Reject) Student/Staff Leave.

Staff/Teachers:

— See the Overall Summary Charts related to their students, their subjects, leave
status, etc.
— Take/Update Students Attendance.
— Add/Update Result.
— Apply for Leave.
— Send Feedback to HOD.
Students:

14

See the Overall Summary Charts related to their attendance, their subjects,
leave status, etc.

View Attendance.

View Result.

Apply for Leave.

Send Feedback to HOD.

1.5 Software Requirements

1.5.1. Functional Requirements

The developed application must meet the following functional characteristics:

Every user have their own dashboard accordingly;

The server must process the information and give a “response” to each HTTP
request;

In case of errors the web service must process errors and display the correct
error messages;

It should be possible to add information about the Staff/Teacher or Student
details such as name, surname, sessions, course etc.;

The opportunity to create a relationship between the admin and the teacher and
student;

The ability to create different user accounts must be implemented and
authorization and authentication must be implemented,;

The possibility to see the data in a convenient graphic form should be realized
The Creation of the new record for the new student;

Deletion of the record which already exist in the system based on the
requirement of the institute;

Update in the record which is present in the system as per the need;

Generate the report on the attendance of the student as per his/her record;
Admin’s handle of the department, this function eases the process of

management;
15

1.5.2. Information Security Requirements

To ensure a reliable operation of the system, it is important to implement:
— Protection against unauthorized access to the web service.
— Control of source information, exclusion of cases of sending important/secret
information from the student or teacher.

— Handling of exceptional situations and output of messages in case of errors.

1.5.3. Hardware Environment Requirements

For the normal operation of the web app, it is necessary that the computer, which
the web-oriented subsystem will operate, meet the following requirements:
— 13 core processor with a clock speed of at least 2.4GHz;
— RAM of at least 8GB; -120 GB SSD;
The above technical characteristics are recommended, i.e. in the presence of
technical means not lower than those specified, the developed software product will
function in accordance with the requirements for reliability, data processing speed and

security, set by the customer.

1.5.4. Compatibility Requirements

For the normal operation of the program, it is necessary that the software of the
computer on which the web-oriented system will operate, meet the following
requirements:

— OS: Windows (7, 8, 10), Mac OS, Linux;

— Browsers: Chrome, Safari, Mozilla Firefox and others;

— Framework for automation of project collection: Django Framework
— MYSQL database (Or Django database SQL)

— Recommended internet connection speed: from 3 Mbps.

16

The main programming languages that were used: Python, JavaScript, Bootstrap,
HTML and SQL.ite query language.

The entire application will be developed in Visual Studio Code.

17

SECTION 2
DESIGN AND DEVELOPMENT OF THE STUDENT MANAGEMENT

2.1 Functional purpose of the system

The Student Management System, serve to provide a ‘simple to use’ User Interface.
The aim of this project is to develop an easier method for dealing with students’
information than physically kept records. | believe this project will minimize the amount
of effort and paper work and thereby save time.

In application, this innovation will facilitate the work of data collection and records
such as personal details, academic performance, attendances, etc. According to a recent
statistics, we find out that at least four billion people have access to the internet; it is
safe to say, that the internet is a part of our daily lives. Moreover, with the recent
outbreak of the Covid-19 pandemic, there was a strong shift to online platforms because
of the lockdown restrictions that meant more and more people interacted on the internet,
further highlighting the fault of the old system in collecting, accessing and storing data.
For instance, the use of books and papers to collect student’s marks and other
information. All the above remarks show that there is a need for Student Information
System software for management of all educational data.

There are numerous branches of organization for the preservation of students’ data
in any institution in the world. Every one of these offices keep and give different records
concerning student information. The information about the students has to be updated
on a regular basis. The relevant information to be collected would be student details like
name, age, performance, attendance, marks, subjects, and so forth. Every one of the
modules in universities are related and their maintenance is done manually. The
information between subjects of study and activities can be related, hence, the need to
cluster and automate it.

An example of the system in use would be, a student looking to apply for a leave
of absence in advance, the HOD seeing the application request for authentication of the

reason from the students and the teacher before approving. This proves as a form of
18

accountability and avoidance of unnecessary lies, which may bolster average student’s

attendance.

2.2 Description of applied mathematical methods

Mathematical methods are not used in the system developed.

2.3 Description of used technologies and programming languages

This web service has been developed using the following technologies and
programming languages:

— Python;

— Django Framework;

— Bootstrap;

— HTML;

— CSS;

— JavaScript;

— SQLite database.

Python

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. It is a high-level built language in data structures combined with
dynamic typing and binding. This make it very attractive for rapid application
development, as well as for use as a scripting or glue language to connect existing
components together. Python is a simple easy to learn syntax that emphasizes readability
and therefore reduces the cost of program maintenance. Python supports modules and
packages, which encourages program modularity and code reuse. The Python interpreter
and the extensive standard library are available in source or binary form without charge
for all major platforms, and can be freely distributed.

19

Often, programmers fall in love with Python because of the increased productivity
it provides. Since there is no compilation step, the edit-test-debug cycle is incredibly
fast. Debugging Python programs is easy: a bug or bad input will never cause a
segmentation fault. Instead, when the interpreter discovers an error, it raises an
exception. When the program does not catch the exception, the interpreter prints a stack
trace. A source level debugger allows inspection of local and global variables. It allows
evaluation of arbitrary expressions. It permits setting breakpoints, stepping through the
code a line at a time, and so on. The debugger is written in Python itself, testifying to
Python's introspective power. On the other hand, often the quickest way to debug a
program is to add a few print statements to the source: the fast edit-test-debug cycle
makes this simple approach very effective.

Python differs from many languages because it is one of the few that is easy to
learn and easy to understand. Many consider Ruby a great place to start, like Python, yet
the latter has a four-year head start. This means that it has a big foothold in the enterprise
world, and it is much more popular with C developers. This is because it is easy to
crossover between the two languages. Both Ruby and Python share a significant amount
of growth in the job market, so choosing either language would be beneficial in terms
of a career. PHP is also used often though the application of the language is different.
Ultimately, it comes down to what type of content you will be developing, as each
language has its niche.

e Cross platform:

Python is a cross-platform language: a Python program written on a Macintosh
computer will run on a Linux system and vice versa. Python programs can run on a
Windows computer, as long as the Windows machine has the Python interpreter
installed, (most other operating systems come with Python pre-installed).

e Memory management:

Having a good understanding of how chunks of memory are allocated, re-used,

and de-allocated for python objects enables you to write code that is more efficient and

20

solve many issues related to extra memory that your program pulls. Python memory

management plays a major role to make it much more popular and adaptable.

Django Framework

Django is a high-level Python web framework that enables rapid development of
secure and maintainable websites. Built by experienced developers, Django takes care
of much of the hassle of web development, so you can focus on writing your app without
needing to reinvent the wheel. It is free and open source, has a thriving and active
community, great documentation, and many options for free and paid-for support.
Django helps you write software that is:

e Complete

Django follows the "Batteries included” philosophy and provides almost
everything developers might want to do "out of the box". Because everything you
need is part of the one "product”, it all works seamlessly together, follows consistent

design principles, and has extensive and up-to-date documentation.

e Versatile
Django can be (and has been) used to build almost any type of website — from
content management systems and wikis, through to social networks and news sites.
It can work with any client-side framework, and can deliver content in almost any
format (including HTML, RSS feeds, JSON, XML, etc). The site you are currently

reading is built with Django!

Internally, while it provides choices for almost any functionality you might want
(e.g. several popular databases, templating engines, etc.), it can also be extended to

use other components if needed.

e Secure
Django helps developers avoid many common security mistakes by providing a

framework that has been engineered to "do the right things" to protect the website

21

https://docs.djangoproject.com/en/stable/

automatically. For example, Django provides a secure way to manage user accounts
and passwords, avoiding common mistakes like putting session information in
cookies where it is vulnerable (instead cookies just contain a key, and the actual data
Is stored in the database) or directly storing passwords rather than a password hash.
Django enables protection against many vulnerabilities by default, including
SQL injection, cross-site scripting, cross-site request forgery and clickjacking (see
website security[15] for more details of such attacks).
e Scalable
Django uses a component-based “shared-nothing” architecture (each part of the
architecture is independent of the others, and can hence be replaced or changed if
needed). Having a clear separation between the different parts means that it can scale
for increased traffic by adding hardware at any level: caching servers, database
servers, or application servers. Some of the busiest sites have successfully scaled
Django to meet their demands (e.g. Instagram and Disqus, to name just two).
e Maintainable
Django code is written using design principles and patterns that encourage the
creation of maintainable and reusable code. In particular, it makes use of the Don't
Repeat Yourself (DRY) principle so there is no unnecessary duplication, reducing
the amount of code. Django also promotes the grouping of related functionality into
reusable "applications" and, at a lower level, groups related code into modules.
e Portable
Django is written in Python, which runs on many platforms. That means that
you are not tied to any particular server platform, and can run your applications on
many flavours of Linux, Windows, and Mac OS X. Furthermore, Django is well-
supported by many web hosting providers, who often provide specific infrastructure

and documentation for hosting Django sites.

22

https://developer.mozilla.org/en-US/docs/Learn/Server-side/First_steps/Website_security
https://en.wikipedia.org/wiki/Shared_nothing_architecture

Bootstrap

Bootstrap is a free toolkit for building site and web application interfaces.
Its capabilities are focused solely on front-end development. Bootstrap is a very
popular project, as evidenced, for example, by the fact that it ranks (as of early March
2018) the second largest star on GitHub.

The main advantage of using Bootstrap is less, a dynamic style language that
greatly enhances CSS. With it, developers can create variables, nested columns, manage
colors, etc. Also Less is very easy to use. Simply paste the code into the pages. Basic
Bootstrap tools:

e Grids:
Predefined column sizes that can be used immediately, such as the 90px
column width refers to the .span2 class that we can use in the CSS document description.

o Templates:

Fixed or rubber document template.
o Typography:

Font descriptions, defining some classes for such fonts like code, quotes, etc.
e Media:

It presents image and video management capabilities.
e Tables:

It a means of designing tables, before adding functionality to enable sorting.
e Forms:

It classes for designing not only forms but also some events, what is happening

to them.
« Navigation:
It is layout classes for tabs, pages, menus, and panel’s tools.
e Alert:
Its design dialog boxes, tooltips, and pop-ups.
Examples of sites created using the Bootstrap framework:
netflix.com - Netflix, the world's largest online provider of series and films;

Gitlab.com - Gitlab, one of the world's largest code repositories;
23

Toyota.com - Toyota Motor, the world's largest car company.

HTML

HTML can be called the main language of the World Wide Web. Most web
pages hosted on the web are written in any variation of HTML. With it, developers
determine how multimedia, text, or hyperlinks will be displayed among other content in
the browser.

From the elements that link to your document (hypertext) to the elements that
make those documents interactive (such as forms), these are all part of HTML. W3C or
the World Wide Web Consortium developed the HTML standard in 1997. In HTML,
tags are used to define text structure; tags and elements are highlighted using <and>
characters. Some examples of the tags mentioned above are headings,
tables, paragraphs, etc.

In turn, browsers are responsible for rendering the content of a page using these
tags. HTML was not the only standard for web development. In the early days of
internet development, all content and style tags were present in one giant, cumbersome
(and quite complex) language. Subsequently, the W3C came to a decision about the
need to share content and page style. This led to the creation of style sheets or CSS.
Currently, tags used to define text style (such as font) are unwanted and almost unused,
with style sheets coming in, and only content definition tags (such as h1l) still form the
core of HTML.

There have been many updates to HTML over time, and it is currently the
latest version of HTMLD5. It is, of course, primarily a markup language, but it has
received many features unlike HTML and has eliminated some of the severe restrictions
that were present in XHTML. Although HTMLS5 is updated almost daily, there are no
new numbered releases. The main difference between HTML and HTMLS5 is that
neither audio nor video is an integral part of HTML, while both can be regarded as
integral parts of HTML5.

24

Cascading CSS Style Sheets

It is a technology for describing the appearance of a document written in a
markup language. It is mainly used as a HTML and XHTML web page design tool, but
can be used with any type of XML document, including SVG and XUL.

JavaScript
JavaScript is a multi-paradigm programming language. Supports object-oriented,
imperative and functional styles. JavaScript is commonly used as a built-in language for
programming access to application objects. The most widely used is in
Browsers as a scripting language to make web pages interactive.
Main architectural features: dynamic typification, weak typification, automatic
memory management, prototype programming, functions as objects first class.

Script do not need special training or compilation to run.

SQL.ite database

Django in its 'out-of-the-box' state is set up to communicate with SQLite -- a
lightweight relational database included with the Python distribution. Therefor by
default, Django automatically creates a SQL.ite database for your project. In addition to
SQL.ite, Django supports (i.e. included in Django itself) four other popular relational
databases that include PostgreSQL, MySQL, Maria DB and Oracle. Django supports
connectivity to other relational databases that include SAP (Sybase) SQL Anywhere,
IBM DB2 and Firebird, as well as the ADO (ActiveX Data Objects) and ODBC (Open
Database Connectivity) interfaces, the last two of which are standard for connecting to
Microsoft SQL Server and the latter is supported by most relational database brands.
The Django configuration to connect to a database is done inside the settting.py file

(Fig.2.) of a Django project in the database variable (Fig.2.11).

25

2.4 Description of the system structure and algorithms of its functioning

The structure of the Student Management System web app is interconnected files,
where each file performs its corresponding function. For the convenience of work with
the project, and its further expansion, files are located on the folders corresponding to
them where each folder (fig. 2.1) contains files on the maintenance with their respective
content.

@ EXPLORER

~~ OPEN EDITORS
~~ DJANGO-STUDENT-MANAGEMENT-S... [§ B 1 &

» media

student_management_app

student_management_system
sqlite3

manage.py

README.md

= requirements.kxt

Fig.2.1. The structure of the folders of the SMS

The media folder (Fig. 2.2) contains uploaded files by users on the system. The
uploaded files are JPG files. Most of the uploaded files in the media folder will be
student’s profile pictures.

~ DJANGO-STUDENT-MANAGEMENT-S... [L_i_ L =
v media
Majoh.jpg
profile.jpg

Vijay Thapa Pro.jpg

Fig.2.2. Contents of the media folder

Media files should not be trusted like static files.

26

The static folder (Fig.2.3) contains files like CSS, JavaScript, and fonts. These files
are the core piece of any modern web application. Django provides tremendous
flexibility around how these files are used, however this often leads to confusion for
newcomers. For local development, the Django web server will serve static files and

minimal configuration is required.

DJANGO-STUDENT-MANAGEMENT-S... [%

OPEN EDITORS v datatables

5 1query

DJANGO-STUDENT-MANAGEMENT-S ‘_‘

Fig.2.3. Contents of the static folder.
The Student_management_app folder (Fig. 2.4) is the app structure on the SMS

web app. This folder contains python files that are the center of the development of the

web app.

27

« student_management_app

» migrations

> templates
__init__py
admin.py
apps.py
EmailBackEnd.py
Forms.p
HodV py

LoginCheckMiddleWare.py

models.py
Staffviews.py
StudentViews.py
tests.py

urls.py

Fig.2.4. Contents of the student_management_app folder.

e _init_.py
This file (Fig.2.5) has the same functionality just as in the _init_.py file in the
Django project structure. It remains empty and is present just to indicate that the specific

app directory is a package.

Visua ode ~ 4ep 21 21:05

__init__.py - django-student-management-system - Visual Studio Code

@ EXPLORER >3 m -
& _app init_.py

OPEN EDITORS
X & _init_py

- DJANGO-STUDENT-MANAGEMENT-S... [%

> OUTLINE
» TIMELINE

e master O Python38.564bit ®0A0 Ln1,Col1 Spaces:4 UTF-8 LF Python & 0

Fig.2.5. Contents of _init_.py file.

28

e Admin.py
As the name suggests, this file (Fig.2.6) is used for registering the models into the
Django administration. The models that are present have a superuser/admin who can

control the information that is being stored.

admin.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help

> OUTLINE
» TIMELINE
§o master* 3 Python3.8564bit @0A0 Ln25Col1 Spaces:4 UTF8 LF Python & 0

Fig.2.6. Contents of the admin.py file.

* apps.py
This file (Fig.2.7) deals with the application configuration of the apps. The default

configuration is sufficient in most of the cases.

Activities Visual studio Code v uep 21 21:14

apps.py - django-student-management-system - Visual Studio Code
File Edit selection View Go Run Terminal Help
@ EXPLORER a >0 -
~ OPEN EDITORS E

apps.py
~ DJANGO-STUDENT-MANAGEMENTS....

> OUTLINE

> TIMELINE
PP master* O Python3.8.564bit ®0A0 Ln1,Col1 Spaces:4 UTF8 LF Python & 0

Fig.2.7. Contents of the apps.py file.
29

e EmailBackend.py

This file (Fig.2.8) is responsible for sending and receiving emails.

Visual studio Code ~ uep 21 21

EmailBackEnd.py - django-student-management-system - Visual Studio Code

E

~ OPEN EDITORS

EmailB

authenticat
el

> OUTLINE
> TIMELINE
§° master® < Python3.8.564bit @OA0 Ln1,Col1 Spaces:4 UTF8 LF Python & 0Q

Fig.2.8. Contents of the apps.py file.

e AdminHODviews.py
This file (Fig.2.9) is responsible for the view of the HOD(Admin) board.

Visual studio Code ~ uep 21 21:29

HodViews.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help

HodViews.py X

_init__.

admin.p

> OUTLINE

> TIMELINE
}e master* O Python38564bit @0A0 Ln1,Col1 Spaces:4 UTF8 LF Python &

Fig.2.9. Contents of the AdminHODviews.py file.

30

e LoginCheckMiddleWare.py
This file (Fig.2.10) contains code that check and verify login process.

yep 21 21:30

LoginCheckMiddleware.py - django-student-management-system - Visual Studio Code

modulename ==

modulename ==

> QUTLINE
> TIMELINE .
§# master* O Python3.8564-bit @OAQ Ln1,Col1 Spacess4 UTF-8 LF Python & 01

Fig.2.10. Contents of the AdminHODviews.py file.

e Models.py
This file (Fig.2.11) contains the models of our web applications (usually as classes).
Models are basically the blueprints of the database we are using and hence contain the

information regarding attributes and the fields etc of the database.

models.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER models py

+ OPEN EDITORS stud

models py

a, max_length=10)

> OUTLINE
» TIMELINE
o master* & Python38.564bit @0A0 Ln1,Col1 Spacesi4 UTF8 LF Python &

Fig.2.10. Contents of the models.py file.
31

o Staffsviews.py

This file (Fig.2.12) is responsible for the view of the staff board.

Visual Stud

get(id=subject.course
id)

id list:
final _c

se_id__in=final
> OUTLINE
> TIMELINE
fo master* O Python3.8.564bit @040 Ln1,Col1 Spaces:4 UTF-8 LF Python & 0

Fig.2.11. Contents of the models.py file.

e Studentsviews.py

This file (Fig.2.12) is responsible for the view of student board.

Activities Visual Studio Code yep 21 04

StudentViews.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER StudentViews.py X

~ OPEN EDITORS
redir

> OUTLINE

2 TIMELINE
Je masters & Python38564bit ®0A0 Ln1,Col1 Spaces:4 UTF8 LF Python & 0

Fig.2.12. Contents of the models.py file.
32

e Tests.py
This This file contains the code that contains different test cases for the application.

It is used to test the working of the application. We will not be working on this file.

isual Studio Code ~ uep 21 22

tests.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EX R - tests.py

~~ OPEN EDITORS

> QUTLINE
> TIMELINE
J° master* <+ Python3.8.564-bit ®0A0 Ln1,Col1 Spaces: UTF-8 LF Python A 01

Fig.2.12. Contents of the tests.py file.

o Urls.py
This file (Fig.2.13) handles all the URLSs of our web application.

vep 21 22:14

urls.py - django-student-management-system - Visual Studio Code

_init__.
admin.p;

urls.py

> OUTLINE
» TIMELINE ;
§# master* © Python3.8564-bit ®@0A0 Ln1,Col1 Spaces:4 U A Q0

Fig.2.13. Contents of the tests.py file.
33

o Views.py
This file (Fig.2.14) contains all the views (usually as classes). Views.py can be
considered as a file that interacts with the client. Views are a user interface for what we

see when we render a Django Web application.

Activities Visual Studio Code * yep 21 22:17

views.py - django-student-management-system - Visual Studio Code
File Edit Selection View Go Run Terminal Help
EXPLORER A views.py X P

~ OPEN EDITORS

uest):
rn render(request, 'index.html')

e=request.POST.get('email'), rd=request.POST

£ requil
> OUTLINE .
elif user type
> TIMELINE -
§# master* < Python3.8.564bit ®0A0 Ln1,Col1 Spaces:4 UTF8 LF Python & 01

Fig.2.14. Contents of the views.py file.

The Student_management_system folder (Fig. 2.15) is also composed of python

files. Generally the setup is the default project structure.
~ student_management_system
__pycache__

__init__.py

Fig.2.15. Contents of the views.py file.

o Asgi.py
In the newer versions of Django, you will also find a file named as asgi.py

(Fig.2.16) apart from wsgi.py. ASGI can be considered as a successor interface to the
34

WSGI. ASGI also has the work similar to WSGI but this is better than the previous one
as it gives better freedom in Django development. That is why WSGI is now being

increasingly replaced by ASGI.

Activities Visual Studio Code ~ 4ep 21 22:35

asgi.py - django-student-management-system - Visual Studio Code
File Edit Selection View Go Run Terminal Help

> %0 -

> QUTLINE
» TIMELINE
1P master* O Python38564bit ®0A0 Ln17,Col1 Spacessd UTF8 LF Python & 0

Fig.2.16. Contents of the asgi.py file

e Settings.py
This file (Fig.2.17) is present for adding all the applications and the middleware
application present. Also, it has information about templates and databases. Overall, this

Is the main file of our Django web application.

yep 21 22:36

settings.py - django-student-management-system - Visual Studio Code

O oo ’ > 9y 0 -
o oy

~ OPEN EDITORS

README.md
imp

STUDENT-MANAG

BASE DIR = 0s.path.dirname(os.path.dirname(o abspath(_file)))

> OUTLINE

» TIMELINE
}o masters O Python38564bit @0 A0 Ln1,Col1 Spaces:4 UTF8 LF Python A Q1

Fig.2.17. Contents of the settings.py file.
35

o urls.py
This file (Fig.2.18) handles all the URLs of the web application. This file has the

lists of all the endpoints that we will have for our website.

Activities Visual Studio Code ~ vep 21 22:41

urls.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help

@ EXPLORER

» OPEN EDITORS

ngs.MEDIA ROOT)

> OUTLINE
> TIMELINE
§o master* O Python3.8.564-bit ®0A0 Ln1,Col1 Spaces:4 UTF8 LF Python & 0Q

Fig.2.18. Contents of the settings.py file.

o Wsgi.py
This file (Fig.2.19) mainly concerns the WSGI server and is used for deploying
our applications onto servers like Apache etc. However if you intend to deploy the

project on Apache, the code would like what is described in Fig.2.19.

Activities Vis udio Code ¥ yep 21 22:42

wsgl.py - django-student-management-system - Visual Studio Code

File Edit Selection View Go Run Terminal Help
EXPLORER >t
~~ OPEN EDITORS

READI

STUDENT-MANAGE... [} E

default('DJA

OUTLINE

> TIMELINE
P master* O Python3.8564bit @OA0 Ln1,Col1 Spaces:d UTF8 LF Python @ 0

Fig.2.19. Contents of the Wsgi.py file.
36

e manage.py
This file (Fig.2.20) is used as a command-line utility and for deploying, debugging,
or running the web application. This file contains code for ‘runserver”, or
“makemigrations” or “migrations”, etc. that we use in the terminal.
Runserver: this is the command to run the server for our web application.
Migration: this is used for applying the changes done to our models into the
database. That is if we make any changes to our database then we use migrate command.
This is used the first time we create a database.
Makemigration: this is done to apply new migrations that have been carried out

due to the changes in the database.

Activities Visual Studio Code ~ uep 21 22:44

manage.py - django-student-management-system - Visual Studio Code

:XPLORER nd M manage.py X Bt o -
W JPEN EDITORS

L d

ommand-line utility for ad

exec

< requirements.txt f nam
= requirement: if name ==

main()

=)
%
-
©
B
A

o QUTLINE
= . TIMELINE
* > Python38564-bit ®0AO0 Ln1,Col1 Spaces:4 UTF8 LF Python & [

Fig.2.20. Contents of the manage.py file.
There is also an important folder that we skipped in the listing of the structure of

the student_management_app (Fig.2.4). | am referring to the folder called templates
(Fig2.21). This is the folder where all the HTML files of the project are stored.

37

mplates

» hod_template

» staff_template

» student_template

Fig.2.21. Contents of the templates folder.

The templates folder is sorted in three groups such as:

e Hod template
This template (Fig2.22) contains all the HTML files for the HOD (Admin) board.

~ hod_template
add_course_template.html
on_template.html
add_staff template.html
add_student_template.htmil
add_subject_template.html
admin_profile.html
admin_view_attendance.html
ase_template.htmil
course_template.html
ion_template.heml
edit_staff template.html
edit_student_template.htmil
edit_subject_template.html

footer.html

form_template.html

home_content.html

manag se_template.html
MENED ssion_template.hitml
manage_staff_template.htmil

manage_student_template.html

Fig.2.22. Contents of the HTML files of hod_template’sfolder.

e Staff template
This template (Fig2.23) contains all the HTML files for the staff board.

38

~ staff template

add_result_template.html

base_template.html

footer.html
sidebar_template.html
staff_apply_leave_template.html
staff_Feedback_template.html
staff_home_template.html
staff_profile.html
take_attendance template.html

update attendance template.html

Fig.2.23. Contents of the HTML files of staff template’s folder.

e Student_template
This template (Fig2.24) contains all the HTML files for the student board.

~ student_template
base_template.html
footer.html
sidebar_template.html
student_apply_leave.hitml
student_attendance_data.html
student_feedback.html

student_home_template.html

student_profile.html

ttendance.htmil

aw_result.html

Fig.2.24. Contents of the HTML files of student template’s folder

2.4.1 Relationship between different parts of the system structure.

In a traditional data-driven website, an internet application waits for HTTP
requests from the online browser (or other client). When an invitation is
received, the appliance works out what is needed supported the URL and possibly
information in POST data or GET data. Counting on what is required it is going

to then read or write information from a database or perform other tasks required to

39

satisfy the request. The appliance will then return a response to the online browser,
often dynamically creating an HTML page for the browser to display by inserting
the retrieved data into placeholders in an HTML template.

Django web applications typically group the code that handles each of those steps
into separate files (Fig.2.25):

HTTP URLS
Request ™ (urls.py)
I
Forward request to
appropriate view
Model read/write View HTTP Response
(models.py) *— data » (views.py) . (HTML)
Template

(<filename=>.html

Fig.2.25 Relationship between different parts of the system structure.

2.4.2 Database of the Student Management System.

The structure of the database (Fig. 2.26) is as follows:

40

idINT(1)

leave_stas TINVINT(1)
& eated_at DATETIME(S)

Fidmer(n

“ gender VARCHAR(255)

@ profie_pic VARCHAR{100)
@ address LONGTEXT

> adress LONGTENT | sesson_snd_yeer DATE
¥ cresied_st DATETIME(E) @ created_at DATETIME(S)
S updsted_st DRTETIVE(S)
L, | ®admin_d T
 course ¢ INT(11)

@ customuser d INT(11)
 permizman_id INT(11)
Indexes.

1 Flemve_stabus TINYINT(Y)

-

@ lemve,_memsage LOMGTEXT

S cresied_pt DATETIME(E)
S upeiated_st OATETINEE)
@ student jd_Jd INT(11)

@ student jd_jd INT{11)

FidINT (1)
— — — £ atiendance_daie DATETIVE(E)
@ created_st DATETIMES)
9 updated_at DATETIME(E)
subject id_id INT(11)

FidmT(n
% app_label VARCHAR(100)

dmT(n
 passward VARCHAR(128)
=i lst_gin DATETIME(S)
Slmpeuser TROBTO) Lo
usemame YARCHARL150) mmmm = b e NI I—
@ fest_reme VICHAR{30) -
18t pame VARCHAR(15D)
ensl VARGUR(S
is_staf TIHVINT(1)

Tl ie_active TINENTCY)

& dte_jnined DATETIME(S)
umer_tyoe YARCUR(0)

& ipire_date DATETIME(S)
Indeses

admin_d TV (11)
Indexes

1id T (11)

@ customuser_d INT(1)
group_jd INTLA)
Tndexes

Fig.2.26 Database design.

2.4.3 Django architecture function view

The view retrieves data from the database via the model, formats it, bundles it up

in an HTTP response object and sends it to the client (browser).

The structure of the architecture (Fig. 2.27) is as follows:

41

Client

Django Template .
jane P Side
I'_'“_":'_“:“_"_“I::"_":'_":' pinieielaielrtt
| |
| App View |
| Logic Logic |
| Django I I I
| Framework :
| | Server
| Model .
| | Side

Database

Fig.2.27 View of Django’s architecture.

2.5 Justification and organization of input and output data of the program

The input for the web app system is plain text, UTF-8 encoded. The data is entered
manually by the user and are transmitted to the server in its pure form, or using the
Django forms format, which is a simple format for exchanging tribute, the data is
transmitted in this way easy to handle and use on both the client side and the side server.

A form is a collection of elements inside <form>...</form> that allow a visitor
to do things like enter text, select options, manipulate objects or controls, and so on,

and then send that information back to the server.

42

The advantage of this format is also the possibility of always check input and
output data without seeking help from third parties programs because the data is

transmitted in plain text, and easily readable by both computer and human.

2.6 Description of the developed system
2.6.1 Description of the developed system

For the development of the web app, an HP ELITEBOOK - laptop, with the
characteristic of Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz 2.70 GHz, 8GB RAM,
running under Ubuntu 20.04.2 LTS was used.

2.6.2 The software used

The following were used during the development of the qualification work:
— Text editor: VSCode.
— Local server: Ubuntu Terminal.
— Web browser: Brave Browser.
— Environment: Python environment.

— GitHub: Clone of the admin template.
2.6.3 Calling and downloading the program.
To start working with the SMS, you need to download the system to a web server
and go to its internet address. The system can also be used locally for development, or
testing, using any local server.

2.6.4. Description of the user interface.

The SMS has three User Interfaces:

e The admin side
43

The admin side (Fig.2.28), can see overall summary charts of students

performance, staffs performances, courses, subjects, leave, etc.

o] 0 © 127.0.0.1:8000/admin_home/ alg A » =

= Student Management System HOD Login &

q
oo
L]
&

Total Student in Each Course - x Total Students in Each Subject

—_y prp Pyths - Miczo Finance
I Computer achitecture

L
Fig.2.28 Ul of the admin side

— ccA s

e The staff/teacher side
Staff/Teacher side (Fig2.29), can see the overall summary charts related to their
students, their subjects, leave status, etc.

q @ N @ 127.0.0.1:8000/staff_home/ al@ A » =
= Student Management System | Staff Dashboard e 5
Staff Home tome

2

Total Leave Taken
More info @

Subjects Attend Chart

Student Attendance Data

Fig.2.29 Ul of the staff/teacher side

44

e The student side
The Student side (Fig2.30), can see the overall summary charts related to their

attendance, their subjects, leave status, etc.

q C A @ 127.0.0.1:8000/student_home/ alg A » =
e Ope = Student Management System | Student Dashboard o
[] Student Home Home
2]

Present

More info @

Attendance Statistics by Subjects

Copyright @ 2021, Richard Udoh. All rights reserved Version 10

Fig.2.30 Ul of the student side

The charts on the Ul are included in the free Admin template theme (Fig 2.31) that
we cloned from GitHub: https://github.com/ColorlibHQ/AdmInLTE.

The template was edited to get this final design with the accurate data displayed on
the chart.

B ColorlibHQ / AdminLTE L Notifications T Star | 389k W Fork | 16.5k

<> code () Issues 48 I, pull requests 3 U Discussions ») Actions [T Projects 2 @) security |~ Insights

P master - P 4branches 76 tags Go to file About

AdminlTE - Free admin dashboard

B dependabot Bump rollup from 2.51.2 to 2.52.2 (#3802) .. + 24f28c1 2daysago {® 2179 commits template based on Bootstrap 4
i dminlte.i
.github Resolve typos in CONTRIBUTING.md 2 months ago & adminlteio
build [Treeview Menu]: Fix childs behaviour when closing parent treeview menu. 8 days ago bootstrap admin admin-dashboard

admin-template admin-panel
dist Bump eslint-plugin-unicorn from 31.0.0 to 32.0.1 (#3685) ast month

M Readme
docs fix sample code ast month
B &2 MIT License
pages [pages, scss]: Add new light and dark buttons variants to the buttons... ast month
plugins update plugin files 3 months ago
Releases 76
[9 .babelrcjs Update babelrcjs 12 months ago
i © AdminLTE 3.1.0 (Lstest)
[% browserslistrc Update .browserslistrc (#2249) 12 months ago on Mar 22
[bundlewatch.configjsan add ermorhandling to cardrefrash plugin (#3555) 2 months ago PE——
[% .editorconfig Update .editorconfig (#2749) 12 months ago

Fig 2.31 GitHub page of the free admin template theme

45

https://github.com/ColorlibHQ/AdminLTE

Like every other web app, there is a need for the customer or user to log in before
having access to all the features of its system. The same process is applicable with the
SMS. However, in this project, the admin or the HOD is the superuser meaning to say
that from the database, he has already signed up, and through him, users like students or
staff/teacher can be added in from his dashboard.

The block of authorization (Fig. 2.32) of users is under the categories of goods and

performs the function of entering the personal account of the user.

q © R @ 127.00.1:8000 o~ a | A » =

Student Management
System

Fig.2.32 Login page

Adding students (Fig2.33) and staffs (Fig.2.34) are of necessity in this project.

46

= Student Management System HOD Login =

Add Student Home

Add Student

Email:

First Name:

Last Name:

Address:

Fig2.33 Student form from admin board

q fe] 0 @ 127.0.0.1:8000/add_staff/ o o |G A »

= Student Management System HOD Login -

Add Staff Home

Add Staff

Email address

First Name
Last Name

Address

Add Staff

Copyright @ 2021, Richard Udoh. All rights reserved Version 1.0

Fig2.33 Staff form from admin board

Furthermore, the admin have the ability to add also courses (Fig 2.34), subjects
(Fig 2.35) and sessions (Fig 2.36).

47

C 0 @ 127.0.0.1:8000/add_course/
= Student Management System HOD Login

Add Course

Home

Add

Course Name

Copyright @ 2021, Richard Udoh. All rights reserved

Version 1.0

Fig 2.34 Courses page from admin board

q c 0 @ 127.0.0.1:8000/add_subject/ al g A » =

= Student Management System HOD Login -]

Add Subject

Home

Subject Name

staff

Ivor Burch

Add Subject Add Subject

Copyright © 2021, Richard Udoh. All rights reserved Version 1.0

Fig.2.35 Add Subjects page from admin board

48

@ 0 @ 127.0.01:8000/add_session/ al| g A »

= Student Management System HOD Login 2

Add Session Year Home

Add Session Year
Session Start Year

mm/ddyyyy o
Session End Year

mm/dd/yyyy [m]

Add Session Year

Copyright @ 2021, Richard Udah. All rig]

Version 1.0

Fig.2.36. Add session page from admin board

The Admin manages the courses, staffs, subjects, sessions and students pages.
(Respectively Fig.2.37, Fig.2.38, Fig2.39, Fig.2.40, Fig.2.41)

q e A ® 127.0.0.1:8000/manage_course/ e, O A » =
@ Open U = Student Management System HOD Login °
® Manage Course Home

+ Add Course

Course Details

a
D Course Name: Created At Updated At Action
1 BBA June 26,2020, £:02 p.m June 26,2020, 4:02 p.m
2 MBA June 26, 2020, 4:02 p.m. June 26, 2020, 4:02 p.m.
3 Bsc.IT June 26,2020, £:02 p.m June 26,2020, 4:02 p.m
4 Msc.IT June 26, 2020, 4:02 p.m. June 26, 2020, 4:02 p.m.
Copyright © 2021, Richard Udoh. Al rig] Version 1.0

Fig.2.37 Manage course page from admin board

49

q fo] 0 @ 127.0.0.1:8000/manage_staff/ a | g A » =
Q = Student Management System HOD Login -
W Manage Staff Home
LIt 20 Staff Details Q

D First Name Last Name Username Email Address Last Login Date Joined Action

2 ver Burch kunifi cihezymo@mailinator.net Nisi reiciendis pari None June 26, 2020, 4:01 p.m.

4 LEMAITRE ERIC staff staff@gmail.com Frejus June 21,2021, 8:03 p.m. June 26, 2020, 4:02 p.m.

15 Skyler Carter cugenana rynex@mailinator.com Ut quos autem aliqui None July 7,2020, 3:15 p.m.

16 Fulton strong misola caracax@mailinator.net Voluptatem consecte None July 7,2020,3:15p.m

0 UDOH PROF UDOHPROF Udohteach@gmail.com Titova st 23 June 21,2021, 3:43 p.m. June 21,2021, 3:42 pm.

Copyright ® 2021, Richard Udoh. Allright Version 1.0
Fig.2.38 Manage staff page from admin board
q e} 0 @ 127.0.0.1:8000/manage_subject/ alg A » =
@ = Student Management System HOD Login o
("} Manage Subjects Home
Subject Details Q
D Subject Name Course Staff Created At Updated At Action
1 PHP Bsc. IT LEMAITRE ERIC June 26, 2020, 4:03 p.m. June 26, 2020, 4:03 p.m.
2 Python Bsc.IT LEMAITRE ERIC Junc 26,2020, 403 p.m June 26,2020, 403 p.m
3 Finance BBA Ivor Burch July 3,2020, 8:26 a.m. July 3, 2020, 8:26 a.m.
B Manage Subject
a Micro Finance MBA Wor Burch July 5,2020, 1:25 p.m. July 5, 2020, 1:25 p.m.
5 Entrepreneurship MBA Wor Burch July 5,2020, 1:25 p.m. July 5, 2020, 1:25 p.m. m
8 Computer achitecture Bsc.IT Wor Burch June§, 2021, 1:39 p.m. June §,2021, 1:39 p.m.
Copyright © 2021, Richard Udoh. All rights reserved Version

Fig.2.39 Manage subjects page from admin board

50

q C A @ 127.0.0.1:8000/add_session/ a | g A »

= Student Management System HOD Login -]

Add Session Year Home

Add fear

Session Start Year
mm/dd/yyyy [m]

Session End Year

mm dd /yyyy [m]

Add Session Year

Add Session

Copyright @ 2021, Richard Udoh. All rig] rvec Version 1.0

Fig.2.40 Manage session page from admin board

q c 0 © 127.0.0.1:8000/manage_student/ alg A » =
@ = Student Management System HOD Login &
("] Manage Student FTE
Student Details Q
ID FirstName LastName Username Email Address Gender Profile Pic Start Year End Year Course LastLogin
® Manage Student
5 Student Hero student student@gmail.com gagarina 61, Dnipro,Ukraine Male June1,2018 June30,2020 Bsc.IT June2l,2021,80

6 Maria Lemaitre Majoh Lemaitre.majoh@gmail.com Frejus Female ™ Junel,2018 June30,2020 Bsc.IT None
7 Michole Franklin student2 student2@gmail.com MostClty Female Junel,2020 June30, 2022 MscIT July3,2020,7:37
12 irene Galloway tywifajak gixakibag@mailinator.net Minus mollit laudantium quaerat aut minus idiru Female Junel,2020 June30,2022 MBA None
Ld
Copyright © 2021, Richard Udoh. All rights reserve Version 1.0

Fig.2.41 Manage student page from admin board

The admin receive and can reply to feedbacks from students (Fig.2.42) and staffs
(Fig.43)

o1

q C A O 127.0.0.1:8000/student_feedback_message/ a|g A »

= Student Management System HOD Login -]
Student Feedback Home
Student Student Student
D I Name Session Message Sended On Reply
1 s Student Junel,2018- Please bring some guest lecturers. Juy 1, We'll try our best.
Hera June 30,2020 2020, 6:04
am
2 7 Nichole June 1, 2020 - Test Feedback from New Student July 1, Tested Successfully. Thanks!
Franklin June 30, 2022 2020,9:01
am.
3 s Student Junel,2018- Online courses should be interactive. And lectures should be recorded and published, so that the Julys,
Hero June 30,2020 students who have missed the live zoom class can take the classes later. 2020, 10:53
am
4 s Student Junel,2018- Hello Head of department, could please tell teacher Syrotkina to come 2 min before the lessons June6, Ok, no problem i will speak to her and from taday, she will
Hera June 30,2020 202,153 beable to beonline 2 min befare the lessons
p.m.
5 s Student Junel,2018- Jen'ai pas aime le cours d"aujourdnui, le professeur etait trop rapide, Cetalt comme s'il senfoutait June, POuvez vous me donnez ke nom du prof comme ca je sais
SRl Hero June30,2020 dufait qu on ne particpais pas a son cours. 2021,5:07 comment gerer avec lui
pm.
Copyright © 2021, Richard Udoh. All rights reserved Version 1.0
q C A @ 127.0.0.1:8000/staff_feedback_message/ a|@ A » =
= Student Management System HOD Login &
Staff Feedback HooE

D I Stafflame Message Sended On Reply
1 4 LEMAITRE ‘Adding Smart board June 27, 2020, 8:26 We'll consider itin new Session.
ERIC am. Thanks!
2 4 LEMAITRE Test Feedback 2 July1,2020,1035 Test Reply.
ERIC a.m
3 4 LEMAITRE This is Third Feedback. July 1, 2020, 10:3% Okay, I'll Reply here.
ERIC am.
4 3 LEMAITRE We need a better and secure Learning Management System. It'll help to deliver educational contents easily and also helps to monitor July 8, 2020, 10:52
ERIC the progress of students. am =
Copyright © 2021, Richard Udoh. All ights reserved Version 1.0

Fig.2.43. Staff Feedback page from admin board

In addition to the role of management, the admin can view attendances (Fig.2.44),

approve or refuse leave from student (Fig.2.45) and staff (Fig.246).

52

@IPHR@ U@ U-HLEANOTD (@s@s/HrRep@mcdesbcBu@sd®o@udgp

4 c

View Attendance

Subject

PHP

Session Year

June 1, 2018 to June 30, 2020

Fetch Attendance Date

Attendance Date

2020-06-26

Fetch Student Data

Student Attendance:

Student Hero [Present]

Copyright @ 2021, Richard Udoh. All ight

0 @ 127.0.0.1:8000/admin_view_attendance/

= Student Management System HOD Login

Maria Lemaitre [Absent |

T@x @iFEes=sRrRBEGC +

al@ A

Fig.2.43 View attendance page from admin board

| X
» =
™
Home

Version 1

@SPHR U@ U=HLEANYTD (1@ss@s/HrRep@Bc@ebcBu@s®oo@udo

4 C

Leave Apply by Students

D studentID student Name

1 5 Student
2 7 Nichole
3 7 Nichole
4 5 Student
5 5 Student

Copyright © 2021, Richard Udoh. Al

0 @ 127.0.0.1:8000/student_leave_view/

Leave Date

2020-07-10

2020-07-25

2020-07-31

2021-06-07

2022-02-14

= Student Management System HOD Login

Leave Message

ForMarriage

Sick Leave

Marriage Leave for 2 days

travelling back to Africa

Je me marie avec une tres belle le 14 fevrier 2022, telle est la raison de mon absence

mT@x @iFEs=sRBEGC +

ald A

Applied On

July 1,2020,6:01a.m.
July3,2020, 738 2.m.
July3,2020,8:11a.m.
June 6, 2021, 1:49 p.m.

June 9,2021, 5:03 p.m.

Action

Approved

Rejected

L]

Home

ave Apply by students

Approved

Approved

Fig.2.45 Application of leave by students from the admin board

53

Version

yep 23 02:03

@SE@PHR U@ U=~ HEE®MNY TR ((@s@SIBFrFeDFC@oscEBUd LA DOBURED@ @ x @iFNEessREKGC + 0 _ = x
4 C 0 @ 127.0.0.1:8000/staff_leave_view/ al®@ A » =
= Student Management System HOD Login o
Leave Apply by Staffs Home
Leave Apply by Staffs
[Staff ID Staff Name Leave Date Leave Message Applied On Action
1 4 LEMAITRE 2020-06-30 Attend Family Meeting June 27, 2020, 7:33 a.m. Appraved
2 4 LEMAITRE 2004-01-01 Eum duis sed qui ac June 27,2020, 7:34 2.m e —
3) LEMAITRE 1999-03-23 Laboris illo debitis June 27,2020, 7:34 a.m m
4 4 LEMAITRE 2020-06-30 Attend Family Event June 27,2020, 7:35 a.m m
5 F) LEMAITRE 2021-06-10 e serai en voyage le 10 juin June 9,2021,5:14 p.m. e
Version 1

Copyright © 2021, Richard Udoh. All right

Fig.2.45 Leave apply by staffs from the admin board

The Students can see their results (Fig.2.46), apply for leave (Fig.2.47) and send a
feedback message to the HOD (Fig.2.48).

Ac e Vel yep 23 02:11
@SE@PHR U@ U=~ HEE®MNY TR ((@s@SIBFrFeDFC@oscEBUd LA DOBURED@ @ x @iFNEessREKGC + 0 _ = x
4 C 0 @ 127.0.0.1:8000/student_view_result/ al g A a =
= Student Management System | Student Dashboard o
Result Home
#D Subject Assignments Marks Exam Marks status
1 PHP 55.0 60.0 E
Version 1

Copyright © 2021, Richard Udoh. All right

Fig.2.46 Result of Exams from student board

54

Im @ x @iFNEesREG + 0 _ = x
al@ A » =

Home

nNOTmd (@s@sBrepECAdscHBUS DB UED

@SI@EH@ 1S 1= HE& i
4 C 0 @ 127.0.0.1:8000/student_apply_leave/

Leave Report and Apply for Leave

Apply For Leave

Leave Date

mm/dd /yyyy

Leave Reason

Apply for Leave

Leave Apply History

#D Leave Date Leave Message

1 2020-07-10 For Marriage

4 2021-06-07 travelling back to Africa

5 2022-02-14 Je me marie avec une tres belle le 14 fevrier 2022, telle est la raison de mon absence Approved

Version 1.0

Copyright @ 2021, Richard Udoh. All righs res

mT@x @iFEs=sRBEGC + 0 - v x

nN@To ((@s@sHrep@Ecd@sBkcHu@ado@UGD

@SI@EH® U 1=~ HE&

q c 0 @ 127.00.1:8000/student_feedback/ al@ A » =
= Student Management System | Student Dashboard o
Feedback Message Home
Leave a Feedback Message
Feedback Message
® Send Feedback
)
Feedback
Feedback History
1D Feedback Message Feedback Reply
1 Please bring some guest lecturers. We'll try our best
3 Online courses should be interactive. And lectures should be recorded and published, so that the students who have missed the
live zoom class can take the classes later.
4 Hella Head of department, could please tell teacher Syrotkina to come 2 min before the lessons Ok, na problem i will speak to her and from today, she will be able to be online
2min before the lessons
5 Jen'ai pas aime le cours d'aujourdhui, le professeur etait trop rapide, Cetait comme s'l s'enfoutait du fait qu on ne particpais pas POuvez vous me donnez le nom du prof comme ca je sais comment gerer avec
ason cours. lui

Fig.2.48. Feedback message from student board

The Staffs can View and update attendances (Fig2.49), add students results
(Fig.2.50), apply for leave (Fig.2.51) and send a feedback message to the HOD
(Fig.2.52).

55

1S

@SE@PHR U@ 1U-HEE®MNOTTO cR@s@SIBFrFeDF s cBUdLAPDOBURED@ @ x @iFNEessREKGC + 0 _ = x
4 C 0 @ 127.0.0.1:8000/staff_update_attendance/ al®@ A » =
= Student Management System | Staff Dashboard o

Home

View Update Attendance

View Update Attendance

Subject

B view Update Attendance PHP

Session Year

June 1, 2018 to June 30, 2020

Fetch Attendance Date

Attendance Date

2020-06-26

Fetch Student Data

Student Attendance:

H Student Hero [Present] (] Maria Lemaitre [Absent]

Save Attendance Data

Copyright @ 2021, Richard Udoh. All rights reserves Version 1
127.0.0.1:8000/staff_home/ chardden. 2T ' ersion

Fig.2.49 View update attendance from staff board

@SI@HR U@ 1= HEEBANYTO c@s@sIBFreDFBcResbcBU@ PO UHRED @ @x @iFNEssREGC + 0 - v x
q C N @ 127.0.0.1:8000/staff_add_result/ al|g A » =
= Student Management System | Staff Dashboard o
Add Result Home
Subject
PHP ~
7= AddResult Session Year
June 1, 2018 to June 30, 2020 A
tudent
Student List
1D: 5 : Student Hero A
Assignment Marks : [Exam Marks :
Version

Copyright © 2021, Richard Udoh. Al "

Fig.2.50 Adding Result from Staff Board

56

yep 23 02:18

SSIEH® 111~ HE& nN@nmoe c@s@EsBreEcAesBcBU@ 2 CDBUED @ @x @iFNEssREGC + 0 _ =

4 (o] 0 @ 127.0.0.1:8000/staff_apply_leave/ al@ A » =

Leave Report and Apply for Leave

Apply For Leave

Leave Date

[m]

mm/dd /yyyy

Leave Reason

Apply for Leave

Leave Apply History

#D Leave Date Leave Message Status

1 2020-06-30 Attend Family Meeting Approved
2 2004-01-01 Eum duis sed quiac

3 1999-03-23 Laboris illo debitis Pending

4 2020-06-30 Attend Family Event Pending

5 2021-06-10 Je serai en voyage le 10 juin

yep 23 02:19

@S@EHR U@ - HLE@NOTO cRsEsBrRepECc@sBbcBUdAPPBUED@r@x @iFNE=RBEG + © _ & x
4 C 0 O 127.0.0.1:8000/staff_feedback/ al@ A » =
= Student Management System | Staff Dashboard =
Home

Feedback Message

Leave a Feedback Message

Feedback Message

& reedback

Leave a Feedback

Feedback History

#ID Feedback Message Feedback Reply

1 ‘Adding Smart board We'll consider itin new Session. Thanks!

2 Test Feedback 2 Test Reply.
3 Thisis Third Feedback. Okay, I'll Reply here.
4 We need a better and secure Leaming Management System. Il help to deliver educational contents easily and alsa helps to monitor the progress of students

Version 1.0

Coovright & 2021. Richard Udoh. All rishts reserver

Fig.2.52. Feedback message from staff board

It is important to mention that the whole project is running on a local server.

Therefor the Ubuntu terminal (Fig.2.53) helped the installation of the virtual

S7

environment, which provides the necessary tools for developing web applications with

Django.

Activities =] X-terminal-emulator + yep 23 19:23

richi@richi-laptop: ~/project/django-student-management-system

richi@richi-laptop: ~/project/django-student-management-system 150x38

Fig.2.53. Ubuntu terminal

58

PO3JILI 3
EKOHOMIYHUIA PO3ILI

3.1. Po3paxyHOK TpPyIOMiCTKOCTI Ta BapTOCTi PO3POOKH TPOIrPaMHOIO

NPOAYKTY

[TowaTkoBi gaHi:

1) nependauyBaHe yucio oneparopis mporpamu — 2058;

2) KoeiIieHT CKIAAHOCTI porpamu — 1,2;

3) xoedilieHT KOpeKIii mporpaMu B xoi ii po3pooku — 0,06;

4) roauHHA 3apo0iTHA TUIaTa mporpamicra — 125 rpH/ro;

5) koedimieHT 301IBIICHHS BUTPAT ITparli BHACIIOK HEJIOCTaTHLOTO OITHCY 33]1a4i
-1,2;

6) xoedimienT kBamidikamii mporpamicrta, 00yMOBJICHUH Bil cTaxy poOOTH 3
aHoIl cnerlaiabHocTI — 1,2;

7) BapTicTh MamuHO-roauau EOM — 14 rpu/ro.

HopmyBannst mpami B mporieci ctBopeHHs [I3 1CTOTHO yCKIQgHEHO B CHILY
TBOPUYOI'O XapakTepy Ipani nporpamicra. ToMy TpynomicTkicTs po3poOku 13 moxe
OyTH po3paxoBaHa HA OCHOBI CUCTEMHU MOJIEJIEH 3 P13HOIO TOYHICTIO OIIHKH.

TpynomicTkicTb po3po6ku [13 MokHa po3paxyBatu 3a GOPMYIIOHO:

t= to + tu + ta + tn + tom/z + t() » JITOAUHO-TOAUH, (31)

netl, — BUTpaTH mparli Ha MATOTOBKY i OMUC MOCTABIICHO1 3a1a4i (MPUHMAETHCS
50);

t, — BUTpaTH mparli Ha TOCIIKEHHS allTOPUTMY PIIIIEHHS 3a/1a4i;

t, — BUTpaTu mpaiii Ha po3poOKy OJIOK-CXEMH aJITOPUTMY;

t, — BUTpaTu mpaili Ha MPOTrpaMyBaHHs 10 TOTOBIM OJIOK-CXEMI;

59

t,m, — BUTPATH TIpaIll HA HANIAroKeHHS nporpamu Ha EOM;

ty — BUTpaTH Tparli Ha MATOTOBKY JTOKYMEHTAITI].

Cka710B1 BUTPATH Mpalll BU3HAYAIOTHCS Yepe3 YMOBHE uuciio omnepatopiB y 13,
AK€ PO3pOOJIAETHCS.

YMOBHE 4HCII0 OnepaTopiB (MiAMpOrpam):
Q=q-C-(1+p) ne (3.2)

g — nependayyBaHe YHUCIIO ONEepaTopiB;
C — koedilie€HT CKIATHOCTI MPOTPaMU;

P — KOe(iLIEHT KOPEKLIi MporpaMu B X0/ ii pO3pOOKH.
Q = 2058-1,3-(1+0,06) = 2835,92;

Butpatu mparii Ha BUBUYEHHS OINUCY 3aiadl l, BU3HAYAETHCA 3 ypaxXyBaHHAM

YTOUHEHHS ONUCY 1 KBaji(ikalli mporpamicra:

_ _ @B -
ty = 75..85) & "HOAMHO-TOIHH, (3.3)

ne B — xoedimieHT 301Ib1IEHHS] BUTpAT Tpalll BHACIIIOK HEJOCTATHBOI'O OMHUCY
3aJ1a4l;
K — koedimienT kBamidikarii mporpamicra, 00yMOBICHHH cTaxkeM poOOTH 3 JaHOI

CITCI1AJTbHOCTI,;

_283592:1,2

u 5012 - 35,44, moquHO-TOINH.

Butpatu npaiii Ha po3poOKy anropuTMy pillIEHHS 3a/aui:

60

ty = ——a— (3.4)

(20..25)-K '

2835,92
24-1,2

t, = 98,46, TIOAUHO-TOIUH.

Butpartu Ha ckiiagaHHsl IPOrpaMu 1O TOTOBINA OJIOK-CXEMi:

_ o .
tn = (20..25)K’ (3-5)
t, = 283592 _ 94,53, MFOAUHO-TOIMH.

25-1,2

Butparu npaiii Ha HanaropKkeHHs rporpamu Ha EOM:

— 3da YMOBH aBTOHOMHOI'O HAJIAIrO>KCHHS OJHOT'O 3aBAaHHS:

— Q .
tOTJ'I - (45) 'K’ (3-6)
51
torn = 2?%1’22 = 472,65, 10IUHO-TO/INH,

— 3a YMOBH KOMIIJICKCHOI'O HAJIArOJUKCHHA 3aBAaHHA:

thJl =12 - Lorns (37)

ts, = 1,2 -472,65 = 567,18, moquHo-roauH

Butpartu mparii Ha miArOTOBKY TOKYMEHTAITIT:

ta = tap + tao; (3.8)

61

ne ty, — TPyAOMICTKICTb MIJTOTOBKU MaTepialliB 1 PyKOIUCY

_ o .
top = (15..20)K’ (3.9)

A 2835,92
o~ 17.12

= 139,01, mroauHO-TOINH.

ty)o— TPYAOMICTKICTB pearyBaHHs, IeYaTKH i oPOpMIICHHS JTOKyMEHTallil

too=0,75top ; (3.10)

tso = 0,75 - 139,01 = 104,25, mtoauHO-TOAMH.

t; = 139,01 + 104,25 = 243,26, n10QUHO-TOJIHH.

OTpuMaeMo TPyAOMICTKICTh PO3POOKH IPOTPaMHOI0 3a0€3CUCHHS:

t=50+ 35,44 + 98,46 + 94,53 + 427,65 + 243,26 = 949,34, moaAnHO-TOIUH.

VY pe3ynbTaTi po3paxyBas, 110 B 3arajibHii CKJIaTHOCTI He0OX11HO 949,34 moauHO-

TOJIMH ISl PO3POOKH JTAHOTO TPOTrPAMHOTO 3a0€3MEeUEHHS.

3.2. Po3paxyHOK BUTPAT Ha CTBOPECHHS NPOIrPamMu

Butpatu Ha ctBopenHs II3 Kno BkitouaroTh BUTpaTh Ha 3apoOITHY IJIaTy
BUKOHABIIS MTpOrpamMu 33/I 1 BUTPAT MALIMHHOTO Yacy, HEOOXITHOTO Ha HaJaroKeHHs

nporpamu Ha EOM.

Ko = 331 + 3us , TpH, (3.11)

62

1€ 337 — 3apo0iTHA TUTaTa BUKOHABIIIB, SIKAa BUSHAYAETHCA 32 (POPMYIIOO:

33 =t-Cnp , TPH, (3.12)

ne t — 3arajgpHa TPYJIOMICTKICTb, JIFOAMHO-TOJIUH;

Crp — cepeliHs TOAMHHA 3apo0IiTHA IUIaTa Mporpamicra, I'pH/TouHa

33p = 949,34 - 125 = 118667,5 rpH.

3up — BapTicTh MAaIMHHOTO Yacy, HEOOX1THOTO JIJIsl HAJIArOJKEHHS MPOrpaMu Ha

EOM:

3MB = ton'u . CM N FpH, (3. 13)

1€ tym, — TPYAOMICTKICTh HAJIAaroJKeHHs rnmporpamu Ha EOM, ro.

Cyy — BapTicTh MammHo-roguau EOM, rpa/rog.

3mp = 949,34 - 14 = 13290,75 rpH.

Kpo = 118667,5 + 13290,75 = 131958,25 rph.

OuikyBanuii nepioa cropenns I13:

, M€c. (3.14)

ne By- unciio BUKOHABIIIB;
Fp — Micstunnit pona podoyoro vacy (pu 40 roquHHOMY pobouomy TrxkH1 Fp=176

TOJMH).

63

94934
T 1-176

5,3 Mic.

BucnoBku. Ha po3poOky nanoro mporpamHoro 3a0esmeueHHs mige 949,34
moauHO-roauH. ToOTO, WMOBiIpHA OYIKyBaHa TPUBAIICTh PO3POOKH cKiagaTume 5,3
Micall Tpu cTaHaapTHoMy 40-roguHHOMY pobodoMy THXHI 1 176-ToAMHHOMY
poboyomy Micsmi. OuikyBaHI BUTpAaTH Ha CTBOPEHHS NPOrpPaMHOro 3a0e3MeueHHS

ckiagatumyTh 131958,25 rpH.

64

CONCLUSIONS

In this qualification thesis, a web app was developed to manage student’s data
different that the archaic manner.

This software is designed to reduce the amount of paper work. It valorizes the
importance of storing students‘data or records online than keeping it physically on
papers that can be burned or misplaced. The Student Management System is of a great
necessity in our modern days.

As a result of web app development, the following features were implemented:
admin registration, student registration, staff registration in the system, authorization
and authentication. The three different group of users have in common the ability to add
/ edit / receive / delete/ and send. The Admin manages the courses, subjects, sessions,
staffs and students. He approves requests and can receive feedbacks from the staffs and
students. The teacher marks attendances, add results of any exams, send feedbacks and
can apply for a leave. The student can view his attendance; choose courses, subjects
and sessions. The student can send feedbacks and apply for a leave.

During the implementation of this qualification thesis the following tasks were
performed:

- the subject area of the problem is analyzed;

- a comparison was made with the capabilities of existing similar services;

- the rational structure of the database is chosen;

- the program code of the web app is written;

- the user interface on different board with display of graphics and charts in real

time.

- Further development of the project is analyzed.

The web application is implemented in Python programming language using the

Django Framework. The database used is SQL.ite database integrated in Django. The

65

client part was developed using the JavaScript, bootstrap, HTML and CSS
programming language using the using the Django way to implement the code.
Databases and files are stored locally on the laptop used to write the whole project.
Also in the qualification thesis, an economic study was made to determine the
complexity of the developed software product. The study shows that nine hundred forty-
nine point thirty four hours (949.34 person-hours) were dedicated to the realization of
the project. The calculation shows that the cost of work to create a program like the SMS
Is about one hundred thirty-one thousand nine hundred fifty-eight point two five hryvnia
(131958,25 UAH). The calculation indicates that the time to create it is five point 3

months (5.3 months).

66

REFERENCES

1. Mark Lutz, Learning Python 5™ Edition, July 2013.

2. Nigele Gorge, Django Framework: Build a website with Django 3, June 12, 2020.

3. Jogn Dean, Web programming with HTMLS5, CSS, and JavaScript. O’Reilly
Media, 2019. 678 c.

4. Tal Ater, Building Progressive Web Apps: Bringing the Power of Native to the

Browser, 2017.

James Bennett, Practical Django Projects, July 01, 2009.

Bryan Sullivan, Web Application Security, A Beginner’s Guide 1% Edition.

Learn JavaScript Quickly by Code Quickly, November 10, 2020.

Jon Duckett, Web Design with HTML, CSS, JavaScript and jQuery Set 1st

Edition.

© N o o

9. Harry Percival, Architecture Patterns with Python: Enabling Test-Driven
Development, Domain-Driven Design, and Event-Driven Micro services, Mar 31,
2020.

10. Arun Ravindran, Django Design Patterns and Best Practices, Mar 31, 2015.

11. Harold Kerzner, Project Management: A Systems Approach to Planning,
Scheduling, and Controlling 12th Edition.

12. John Rezig. JavaScript for professionals. -M.: "Williams", 2016, 242 s.

13. Alessandro Del Sole, Visual Studio Code Distilled: Evolved Code Editing for
Windows, macOS, and Linux 1st ed. Edition, November 30, 2018.

14. Philip Kirkbride, Basic Linux Terminal Tips and Tricks: Learn to Work Quickly
on the Command Line 1st ed. Edition, August 5, 2020.

15.Andrew Hoffman, Web Application Security: Exploitation and Countermeasures
for Modern Web Applications, Mar 24, 2020.

16.Jay A. Kreibich, Using SQL.ite: Small. Fast. Reliable. Choose Any Three, Jul 6,
2012

17.David Alastair Hayden, The Forbidden Library (Storm Phase) (Volume 3), May

14,2014
67

18.Full Stack Python Security: Cryptography, TLS, and attack resistance
By Dennis Byrne, Aug 24, 2011.
19. Learn Server-side Django
URL:https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
20.Explanation of Django structure
URL.: https://djangobook.com/mdj2-django-structure/
21.Using Django authentication system.

URL.: https://docs.djangoproject.com/en/3.2/topics/auth/default/

22.Best Student Management system.

URL: https://www.softwaresuggest.com/student-management-system

68

https://docs.djangoproject.com/en/3.2/topics/auth/default/
https://www.softwaresuggest.com/student-management-system

%1">

APPENDIX A

SOURCE CODE

base.html

{% load static %}
<IDOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="1E=edge">
<title>Student Management System | Dashboard</title>
<I-- Tell the browser to be responsive to screen width -->
<meta name="viewport" content="width=device-width, initial-scale=1">
<!-- Font Awesome -->
<link rel="stylesheet" href="{% static "fontawesome-free/css/all.min.css" %}">
<!-- lonicons -->
<link rel="stylesheet" href="https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css">
<I-- Tempusdominus Bbootstrap 4 -->

<link rel="stylesheet"” href="{% static ‘tempusdominus-bootstrap-4/css/tempusdominus-bootstrap-4.min.css'

<!-- iCheck -->

<link rel="stylesheet" href="{% static "icheck-bootstrap/icheck-bootstrap.min.css" %}">

<!--JQVMap -->

<link rel="stylesheet" href="{% static "jgvmap/jgvmap.min.css" %}">

<I-- Theme style -->

<link rel="stylesheet" href="{% static 'dist/css/adminlte.min.css' %}">

<I-- overlayScrollbars -->

<link rel="stylesheet" href="{% static "overlayScrollbars/css/OverlayScrollbars.min.css" %}">

<!-- Daterange picker -->

<link rel="stylesheet" href="{% static "daterangepicker/daterangepicker.css" %}">

<l-- summernote -->

<link rel="stylesheet" href="{% static "summernote/summernote-bs4.css" %}">

<!-- Google Font: Source Sans Pro -->

<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,400i,700" rel="stylesheet">
</head>

69

{% block content %}

{% endblock %}

<I-- jQuery -->
<script src="{% static "jquery/jquery.min.js" %}"></script>
<!--jQuery Ul 1.11.4 -->
<script src="{% static "jquery-ui/jquery-ui.min.js" %}"></script>
<!-- Resolve conflict in jQuery Ul tooltip with Bootstrap tooltip -->
<script>

$.widget.bridge(‘uibutton’, $.ui.button)
</script>
<!-- Bootstrap 4 -->
<script src="{% static "bootstrap/js/bootstrap.bundle.min.js" %}"></script>
<!-- ChartJs -->
<script src="{% static "chart.js/Chart.min.js" %}"></script>
<!-- Sparkline -->
<script src="{% static "sparklines/sparkline.js" %}"></script>
<1--JQVMap -->
<script src="{% static "jgvmap/jquery.vmap.min.js" %}"></script>
<script src="{% static "jgvmap/maps/jquery.vmap.usa.js" %}"></script>
<!-- jQuery Knob Chart -->
<script src="{% static "jquery-knob/jquery.knob.min.js" %}"></script>
<!-- daterangepicker -->
<script src="{% static "moment/moment.min.js" %}"></script>
<script src="{% static "daterangepicker/daterangepicker.js" %}"></script>
<I-- Tempusdominus Bootstrap 4 -->
<script src="{% static "tempusdominus-bootstrap-4/js/tempusdominus-bootstrap-4.min.js" %}"></script>
<!-- Summernote -->
<script src="{% static "summernote/summernote-bs4.min.js" %}"></script>
<!-- overlayScrollbars -->
<script src="{% static "overlayScrollbars/js/jquery.overlayScrollbars.min.js" %}"></script>
<!-- AdminLTE App -->
<script src="{% static 'dist/js/adminlte.js' %}"></script>
<!-- AdminLTE dashboard demo (This is only for demo purposes) -->
<script src="{% static 'dist/js/pages/dashboard.js' %}"></script>
<!-- AdminLTE for demo purposes -->

<script src="{% static 'dist/js/demo.js' %}"></script>

70

</body>

</html>
Login.html

{% extends 'base.html’ %}
{% load static %}

{% block content %}

<body class="hold-transition login-page">
<div class="login-box">

<div class="login-logo">

Student Management System
</div>
<I-- /.login-logo -->
<div class="card">

<div class="card-body login-card-body">

<p class="login-box-msg">Sign in to Student Management System</p>

<form action="{% url ‘doLogin' %}" method="POST">
{% csrf_token %}
<div class="input-group mb-3">
<input type="email" class="form-control" placeholder="Email" name="email">
<div class="input-group-append">
<div class="input-group-text">

</div>
</div>
</div>
<div class="input-group mb-3">
<input type="password" class="form-control" placeholder="Password" name="password">
<div class="input-group-append">
<div class="input-group-text">

</div>
</div>

</div>
<div class="col-12">

<button type="submit" class="btn btn-primary btn-block">Sign In</button>

</div>

71

{% comment %} <div class="col-12 text-center">
Reset Password

</div> {% endcomment %}

{% comment %} Display Messages {% endcomment %}
{% if messages %}
<div class="col-12">
{% for message in messages %}
{% if message.tags == "error" %}
<div class="alert alert-danger alert-dismissible fade show" role="alert" style="margin-top: 10px;">
{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-label="Close">
×
</button>
</div>
{% endif %}
{% endfor %}
</div>
{% endif %}

<I--/.col -->
</div>

</form>

</div>
</div>

<I-- /.login-box -->

{% endblock %}

base template.html

{% load static %}

<IDOCTYPE html>

<html>

<head>
<meta charset="utf-8">
<meta http-equiv="X-UA-Compatible" content="1E=edge">
<title>Student Management System | Dashboard</title>

<!-- Tell the browser to be responsive to screen width -->

72

<meta name="viewport" content="width=device-width, initial-scale=1">

<I-- Font Awesome -->

<link rel="stylesheet" href="{% static "fontawesome-free/css/all.min.css" %}">

<!-- lonicons -->

<link rel="stylesheet" href="https://code.ionicframework.com/ionicons/2.0.1/css/ionicons.min.css">
<!-- Tempusdominus Bbootstrap 4 -->

<link rel="stylesheet" href="{% static ‘tempusdominus-bootstrap-4/css/tempusdominus-bootstrap-4.min.css'

%}>
<!-- iCheck -->
<link rel="stylesheet" href="{% static "icheck-bootstrap/icheck-bootstrap.min.css" %}">
<!--JQVMap -->

<link rel="stylesheet" href="{% static "jgvmap/jqgvmap.min.css" %}">

<I-- Theme style -->

<link rel="stylesheet" href="{% static 'dist/css/adminlte.min.css' %}">

<I-- overlayScrollbars -->

<link rel="stylesheet" href="{% static "overlayScrollbars/css/OverlayScrollbars.min.css" %}">
<!-- Daterange picker -->

<link rel="stylesheet" href="{% static "daterangepicker/daterangepicker.css" %}">

<l-- summernote -->

<link rel="stylesheet" href="{% static "summernote/summernote-bs4.css" %}">

<I-- Google Font: Source Sans Pro -->

<link href="https://fonts.googleapis.com/css?family=Source+Sans+Pro:300,400,400i,700" rel="stylesheet">

{% comment %} For Custom CSS {% endcomment %}

{% block custom_css %}

{% endblock custom_css %}

</head>

<body class="hold-transition sidebar-mini layout-fixed">

<div class="wrapper">

<!-- Navbar -->
<nav class="main-header navbar navbar-expand navbar-white navbar-light">
<!-- Left navbar links -->
<ul class="navbar-nav">
<li class="nav-item">
<i class="fas fa-bars"></i>

73

<h4 style="margin-left: 10px; margin-top: 5px;">Student Management System HOD Login</h4>

<ul class="navbar-nav ml-auto">

<!-- Notifications Dropdown Menu -->
<li class="nav-item dropdown">

<i class="fas fa-cog"></i>
<fa>

<div class="dropdown-menu dropdown-menu-lg dropdown-menu-right" style="left: inherit; right: Opx;">

<i class="fas fa-user-edit mr-2"></i> Update Profile

<fa>

<div class="dropdown-divider"></div>

<i class="fas fa-power-off mr-2"></i> Logout

<div class="dropdown-divider"></div>
</div>

</nav>

<l-- [.navbar -->

<!-- Main Sidebar Container -->

{% include 'hod_template/sidebar_template.html' with user=user id=id %}

<!-- Content Wrapper. Contains page content -->

<div class="content-wrapper">

<!-- Content Header (Page header) -->
<div class="content-header">
<div class="container-fluid">
<div class="row mb-2">
<div class="col-sm-6">
<h1 class="m-0 text-dark">
{% block page_title %}

74

{% endblock page_title %}
</h1>
</div><!--/.col -->
<div class="col-sm-6">
<ol class="breadcrumb float-sm-right">
<li class="breadcrumb-item">Home

</div><!-- /.col -->
</div><!-- [row -->
</div><I-- /.container-fluid -->
</div>

<l-- /.content-header -->

<!-- Main content -->
{% block main_content %}
{% endblock main_content %}
<!--/.content -->
</div>
<!-- /.content-wrapper -->
{% include 'hod_template/footer.html' %}

</div>

<!-- ./wrapper -->

<!I-- jQuery -->
<script src="{% static "jquery/jquery.min.js" %}"></script>
<!-- jQuery Ul 1.11.4 -->
<script src="{% static "jquery-ui/jquery-ui.min.js" %}"></script>
<I-- Resolve conflict in jQuery Ul tooltip with Bootstrap tooltip -->
<script>
$.widget.bridge(‘uibutton’, $.ui.button)
</script>
<!-- Bootstrap 4 -->
<script src="{% static "bootstrap/js/bootstrap.bundle.min.js" %}"></script>
<!-- ChartJS -->
<script src="{% static "chart.js/Chart.min.js" %}"></script>
<!-- Sparkline -->
<script src="{% static "sparklines/sparkline.js" %}"></script>
<!--JQVMap -->

75

<script src="{% static "jgvmap/jquery.vmap.min.js" %3}"></script>

<script src="{% static "jgvmap/maps/jquery.vmap.usa.js" %}"></script>

<!-- jQuery Knob Chart -->

<script src="{% static "jquery-knob/jquery.knob.min.js" %}"></script>

<!-- daterangepicker -->

<script src="{% static "moment/moment.min.js" %}"></script>

<script src="{% static "daterangepicker/daterangepicker.js" %}"></script>

<!-- Tempusdominus Bootstrap 4 -->

<script src="{% static "tempusdominus-bootstrap-4/js/tempusdominus-bootstrap-4.min.js" %}"></script>
<I-- Summernote -->

<script src="{% static "summernote/summernote-bs4.min.js" %}"></script>

<!-- overlayScrollbars -->

<script src="{% static "overlayScrollbars/js/jquery.overlayScrollbars.min.js" %}"></script>
<!-- AdminLTE App -->

<script src="{% static 'dist/js/adminlte.js' %}"></script>

<I-- AdminLTE dashboard demo (This is only for demo purposes) -->

<script src="{% static 'dist/js/pages/dashboard.js' %}"></script>

<!-- AdminLTE for demo purposes -->

<script src="{% static 'dist/js/demo.js' %}"></script>

{% comment %} For Custom JS {% endcomment %}
{% block custom_js %}
{% endblock custom_js %}

</body>

</html>
add_course_template.html

{% block main_content %}
{% load static %}

<section class="content">

<div class="container-fluid">

<div class="row">
<div class="col-md-12">
<!-- general form elements -->
<div class="card card-primary">
<div class="card-header">
<h3 class="card-title">Add Course</h3>

</div>

76

<!--/.card-header -->

<!-- form start -->

<form role="form" method="POST" action="{% url 'add_course_save' %}">
{% csrf_token %}

{% comment %} Display Messages {% endcomment %}
{% if messages %}
<div class="form-group">
<div class="col-12">
{% for message in messages %}
{% if message.tags == "error" %}

<div class="alert alert-danger alert-dismissible fade show" role="alert" style="margin-top:

10px;">

{{ message }}

<button type="button" class="close" data-dismiss="alert™ aria-label="Close">

×
</button>
</div>
{% elif message.tags == "success" %}

<div class="alert alert-success alert-dismissible fade show" role="alert" style="margin-

top: 10px;">

{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-label="Close">
×
</button>
</div>
{% endif %}
{% endfor %}
</div>
</div>
{% endif %}

<div class="card-body">
<div class="form-group">
<label>Course Name </label>

<input type="text" class="form-control" name="course" placeholder="Enter Course">

</div>

</div>

77

<l-- /.card-body -->

<div class="card-footer">
<button type="submit" class="btn btn-primary">Add Course</button>
</div>

</form>

</div>

<!--/.card -->

</div>

</div>

</div><!-- /.container-fluid -->

</section>

{% endblock main_content %}

add_session_template.html

{% extends 'hod_template/base_template.html’ %}

{% block page_title %}
Add Course
{% endblock page_title %}
{% extends 'hod_template/base_template.html' %}

{% block page_title %}
Add Session Year
{% endblock page_title %}

{% block main_content %}
{% load static %}

<section class="content">

<div class="container-fluid">

<div class="row">
<div class="col-md-12">
<!-- general form elements -->
<div class="card card-primary">

<div class="card-header">

78

<h3 class="card-title">Add Session Year</h3>

</div>

<!--/.card-header -->

<!-- form start -->

<form role="form" method="POST" action="{% url 'add_session_save' %}">
{% csrf_token %}

{% comment %} Display Messages {% endcomment %}
{% if messages %}
<div class="form-group">
<div class="col-12">
{% for message in messages %}
{% if message.tags == "error" %}

<div class="alert alert-danger alert-dismissible fade show" role="alert" style="margin-top:

10px;">

{{ message }}

<button type="button" class="close" data-dismiss="alert" aria-label="Close">

×
</button>
</div>
{% elif message.tags == "success" %}

<div class="alert alert-success alert-dismissible fade show" role="alert" style="margin-

top: 10px;">

{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-label="Close">

×
</button>
</div>
{% endif %}
{% endfor %}
</div>
</div>

{% endif %}

<div class="card-body">
<div class="form-group">
<label>Session Start Year </label>
<input type="date" class="form-control" name="session_start_year">

</div>

79

<div class="form-group">
<label>Session End Year </label>
<input type="date" class="form-control" name="session_end_year">

</div>

</div>

<!--/.card-body -->

<div class="card-footer">
<button type="submit" class="btn btn-primary">Add Session Year</button>
</div>

</form>

</div>

<!--/.card -->

</div>

</div>

</div><!-- /.container-fluid -->

</section>

{% endblock main_content %}

add_staff template.html

{% extends 'hod_template/base_template.html' %}

{% block page_title %}
Add Staff
{% endblock page_title %}

{% block main_content %}
{% load static %}

<section class="content">

<div class="container-fluid">

<div class="row">
<div class="col-md-12">

<!-- general form elements -->

80

<div class="card card-primary">

<div class="card-header">
<h3 class="card-title">Add Staff</h3>

</div>

<!-- /.card-header -->

<!-- form start -->

<form role="form" method="POST" action="{% url 'add_staff _save' %}">
{% csrf_token %}

{% comment %} Display Messages {% endcomment %}
{% if messages %}
<div class="form-group™>
<div class="col-12">
{% for message in messages %}
{% if message.tags == "error" %}

<div class="alert alert-danger alert-dismissible fade show" role="alert" style="margin-top:

10px;">

{{ message }}

<button type="button" class="close" data-dismiss="alert" aria-label="Close">

×
</button>
</div>
{% elif message.tags == "success" %}

<div class="alert alert-success alert-dismissible fade show" role="alert" style="margin-

top: 10px;">

{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-label="Close">

×
</button>
</div>
{% endif %}
{% endfor %}
</div>
</div>

{% endif %}

<div class="card-body">
<div class="form-group">

<label>Email address</label>

81

id="id_email">

id="id_username">

<input type="email" class="form-control" name="email" placeholder="Enter email"

</div>

<div class="form-group">
<label>Username</label>

<input type="text" class="form-control* name="username" placeholder="Username"

</div>

<div class="form-group">
<label>Password</label>
<input type="password" class="form-control" name="password" placeholder="Password">

</div>

<div class="form-group">
<label>First Name</label>
<input type="text" class="form-control" name="first_name" placeholder="First Name">

</div>

<div class="form-group">
<label>Last Name</label>
<input type="text" class="form-control" name="last_name" placeholder="Last Name">

</div>

<div class="form-group">
<label>Address</label>
<textarea class="form-control" name="address" placeholder="Address"></textarea>

</div>

</div>

<!--/.card-body -->

<div class="card-footer">
<button type="submit" class="btn btn-primary">Add Staff</button>
</div>

</form>

</div>

82

<!--/.card -->

</div>

</div>

</div><!-- /.container-fluid -->

</section>

{% endblock main_content %}

{% block custom_js %}

{% comment %} Checking if email and username already exists or not usin Ajax {% endcomment %}

<script>
$(document).ready(function(){
/I keyup event will be triggered when user leaves keyboard
$("#id_email").keyup(function(){
var email = $(this).val();

if(email!=""){
$.ajax({
url : '{% url ‘check_email_exist' %},
type : 'POST’,
data : {email:email}
b
.done(function(response){

/lconsole.log(response);

if(response == "True"){
$(".email_error").remove();
$(" Email Not
Available. ").insertAfter("#id_email")
¥
else{
$(".email_error").remove();
$(" Email
Available. ").insertAfter("#id_email™)
¥
b

fail(function(){

83

console.log("Failed");

)
¥

else{
$("".email_error").remove();

)

$("#id_username").keyup(function(){
var username = $(this).val();

if(username!=""){
$.ajax({
url : '{% url 'check_username_exist' %},
type : 'POST’,
data : {username:username}
b
.done(function(response){

/lconsole.log(response);

if(response == "True"){
$(".username_error").remove();
$("" Username
Not Available. ").insertAfter("#id_username™)
¥
else{
$(".username_error").remove();
$(" Username
Available. ").insertAfter("#id_username")
}
b

fail(function(){
console.log("Failed");
b
}

else{

$(".username_error").remove();

84

b))
)

</script>

{% endblock custom_js %}

add_student_template.html

{% extends 'hod_template/base_template.html' %}

{% block page_title %}
Add Student
{% endblock page_title %}

{% block main_content %}

{% load static %}

<section class="content">

<div class="container-fluid">

<div class="row">
<div class="col-md-12">
<!-- general form elements -->
<div class="card card-primary">
<div class="card-header">
<h3 class="card-title">Add Student</h3>
</div>
<!-- /.card-header -->
<!-- form start -->
{% url 'add_student_save' as action_path %}
{% include ‘hod_template/form_template.html" with
action_path=action_path button_text="Add Student" %}

</div>

<!--/.card -->

</div>

</div>

</div><!--/.container-fluid -->

</section>

85

messages=messages

form=form

{% endblock main_content %}

{% block custom_js %}

{% comment %} Checking if email and username already exists or not usin Ajax {% endcomment %}

<script>
$(document).ready(function(){
Il keyup event will be triggered when user leaves keyboard
$("#id_email").keyup(function(){
var email = $(this).val();

if(email!=""){
$.ajax({
url : '{% url ‘check_email_exist' %},
type : 'POST’,
data : {email:email}
b
.done(function(response){

/lconsole.log(response);

if(response == "True™){
$(".email_error").remove();
$(" Email Not
Available. ").insertAfter("#id_email")
¥
else{
$(".email_error").remove();
$(" Email
Available. ").insertAfter("#id_email")
}
b

fail(function(){
console.log("Failed");
b
}

else{

$(".email_error").remove();

86

b))

$("#id_username™).keyup(function(){
var username = $(this).val();

if(username!=""){

$.ajax({
url : '{% url 'check_username_exist' %},
type : 'POST',
data : {username:username}

b

.done(function(response){
/lconsole.log(response);

if(response == "True"){
$(".username_error").remove();
$(" Username
Not Available. ").insertAfter("#id_username")
¥
else{
$(".username_error").remove();
$(" Username
Available. ").insertAfter("#id_username")
¥
b

fail(function(){
console.log(*Failed");

b
}

else{

$(".username_error").remove();

)
)

</script>

{% endblock custom_js %}

87

add_subject_template.html

{% extends 'hod_template/base_template.html’ %}

{% block page_title %}
Add Subject
{% endblock page_title %}

{% block main_content %}
{% load static %}

<section class="content">

<div class="container-fluid">

<div class="row">
<div class="col-md-12">

<I-- general form elements -->

<div class="card card-primary">

<div class="card-header">
<h3 class="card-title">Add Subject</h3>

</div>

<!-- /.card-header -->

<!-- form start -->

<form role="form" method="POST" action="{% url 'add_subject_save' %}">
{% csrf_token %}

{% comment %} Display Messages {% endcomment %}
{% if messages %}
<div class="form-group">
<div class="col-12">
{% for message in messages %}
{% if message.tags == "error" %}
<div class="alert alert-danger alert-dismissible fade show" role="alert" style="margin-top:
10px;">
{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-label="Close">
×

</button>

88

</div>
{% elif message.tags == "success" %}
<div class="alert alert-success alert-dismissible fade show" role="alert" style="margin-
top: 10px;">
{{ message }}
<button type="button" class="close" data-dismiss="alert" aria-label="Close">
×
</button>
</div>
{% endif %}
{% endfor %}
</div>
</div>

{% endif %}

<div class="card-body">
<div class="form-group">
<label>Subject Name </label>
<input type="text" class="form-control" name="subject" placeholder="Enter Subject">

</div>

<div class="form-group">
<label>Course </label>
<select class="form-control" name="course">
{% for course in courses %}
<option value="{{ course.id }}">{{ course.course_name }}</option>
{% endfor %}
</select>

</div>

<div class="form-group">
<label>Staff </label>
<select class="form-control" name="staff">
{% for staff in staffs %}
<option value="{{ staff.id }}">{{ staff.first_name }} {{ staff.last_name }}</option>
{% endfor %}
</select>

</div>

</div>

89

<l-- /.card-body -->

<div class="card-footer">
<button type="submit" class="btn btn-primary">Add Subject</button>
</div>

</form>

</div>

<!--/.card -->

</div>

</div>

</div><!-- /.container-fluid -->

</section>

{% endblock main_content %}

admin_profile.html

{% extends 'hod_template/base_template.html’ %}

{% block page_title %}
Update Profile
{% endblock page_title %}

{% block main_content %}
{% load static %}

<section class="content">

<div class="container-fluid">

<div class="row">
<div class="col-md-12">
<!-- general form elements -->
<div class="card card-primary">
<div class="card-header">
<h3 class="card-title">Update Profile</h3>
</div>
<!-- /.card-header -->
<!-- form start -->

<form role="form" method="POST" action="{% url 'admin_profile_update' %}">

90

{% csrf_token %}

{% comment %} Display Messages {% endcomment %}
{% if messages %}
<div class="form-group">
<div class="col-12">
{% for message in messages %}
{% if message.tags == "error" %}

<div class="alert alert-danger alert-dismissible fade show" role="alert" style="margin-top:

10px;">

{{ message }}

<button type="button" class="close" data-dismiss="alert™ aria-label="Close">

×
</button>
</div>
{% elif message.tags == "success" %}

<div class="alert alert-success alert-dismissible fade show" role="alert" style="margin-

top: 10px;">

{{ message }}
<button type="button" class="close" data-dismiss="alert™ aria-label="Close">
×
</button>
</div>
{% endif %}
{% endfor %}
</div>
</div>

{% endif %}

<div class="card-body">
<div class="form-group">
<label>Username </label>
<input type="text" class="form-control" name="username" value="{{ user.username }}"
disabled="disabled">

</div>

<div class="form-group">

<label>Email </label>

91

<input type="text" class="form-control" name="email" value="{{ user.email }}"
disabled="disabled">

</div>

<div class="form-group">
<label>First Name </label>
<input type="text" class="form-control" name="first_name" value="{{ user.first_name }}">

</div>

<div class="form-group">
<label>Last Name </label>
<input type="text" class="form-control" name="last_name" value="{{ user.last_name }}">

</div>

<div class="form-group">
<label>Password </label>
<input type="text" class="form-control" name="password" placeholder="Fill only if you want
to change Password.">

</div>

</div>

<!-- /.card-body -->

<div class="card-footer">
<button type="submit" class="btn btn-primary">Update Profile</button>
</div>

</form>

</div>

<!--/.card -->

</div>

</div>

</div><!--/.container-fluid -->

</section>

{% endblock main_content %}

Bech iHmmit ko1 MOkKHA 3HAWTH B (haiiyax MPOEKTY.

92

JIOJIATOK B

BIAI'YK
KePiBHUKA eKOHOMIYHOT0 PO3JiLy
Ha KBaJidikaniiiny podoTy 0akanaBpa
Ha TeMy:
«Po3podka Bed-101aTKY A5 001Ky cTyaeHTIB Ha 6a3i ppeiimBopky Django »

cryaenrta rpynu 122-17-3 Ynoxa Cynngas Toma Piuapaa

KepiBHUK eKOHOMIYHOT0 PO3iLy

aoueHt Kag. IIEII ta ITY, k.e.Hn JI. B. KacbsiHeHKO
93

APPENDIX C

LIST OF FILES ON THE DISC

Im’s daiimy Onuc

[TosicHIOBaJIBH1 JOKYMEHTHU

RichardUdoh_Diploma2021.docx [TosicHrOBaTbHA 3amucKa KBaJi(hiKaIinHol

po6otu. Jlokyment Word.

RichardUdoh_Diploma2021.pdf [TosicHrOBaIbHA 3amucKa KBaiQiKamiiHOT
pob6otu B ¢popmarti PDF.

[Iporpama

RichardUdoh_Diploma2021.zip ApxiB. MiCTUTB KOJIU TIPOTPaMHU.

[Ipe3enTanis

RichardUdoh_Diploma2021.pptx [Ipesenraris kBamiikaiiiHoi poOOTH.

94

