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Abstract

Purpose. To put forward the concept of machine learning and deep learning approach in Mining Engineering in order to get high
accuracy in separating mine microseismic (MS) event from non-useful events such as noise events blasting events and others.

Methods. Traditionally applied methods are described and their low impact on classifying MS events is discussed. General
historical description of machine learning and deep learning methods is shortly elaborated and different approaches con-
ducted using these methods for classifying MS events are analysed.

Findings. Acquired MS data from rock fracturing process recorded by sensors are inaccurate due to complex mining envi-
ronment. They always need preprocessing in order to classify actual seismic events. Traditional detecting and classifying
methods do not always yield precise results, which is especially disappointing when different events have a similar nature.
The breakthrough of machine learning and deep learning methods made it possible to classify various MS events with high-
er precision compared to the traditional one. This paper introduces a state-of-the-art review of the application of machine
learning and deep learning in identifying mine MS events.

Originality. Previously adopted methods are discussed in short, and a brief historical outline of Machine learning and deep
learning development is presented. The recent advancement in discriminating MS events from other events is discussed in
the context of these mechanisms, and finally conclusions and suggestions related to the relevant field are drawn.

Practical implications. By means of machin learning and deep learning technology mine microseismic events can be iden-
tified accurately which allows to determine the source location so as to prevent rock burst.
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1. Introduction

Microseismic (MS) monitoring is a useful short-term
rock burst prediction tool that can forecast the occurrence of
rock burst by extracting useful signals which propagate from
the fracturing process of rock masses [1]. Monitoring design,
acquired data processing and locating event sources are the
crucial technical concerns for creating a reliable measure to
maintain rock mass stability for the assessment of mine
seismic hazard [2], [3]. In order to establish an adequate
early warning of rock burst, accurate classification of origi-
nal MS data that are swamped by noises and other unwanted
events should be accurately processed [4]. Nevertheless, MS
signals are different from the natural earthquake signal which
has low magnitude and is highly influenced by various back-
ground noise sources characterised by an abrupt amplitude,
comprised of human walking, vehicle sounds, electromagnet-
ic interference and blasting vibrations, giving the appearance
of MS events [5], [6]. Due to this reason, differentiating
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actual MS events from other various events is always a com-
plicated task. MS classification is often conducted by an
experienced analyst, which is time-consuming and always
suffers from the subjective views of professionals [7]. There-
fore, extraction of the genuine rock fracturing signal from
collected MS signals has always been the topic of discussion
among various researchers.

In the course of years, many classification methods have
been introduced to deal with the problem of MS and seismic
field [8]-[11]. For instance, Yu et al. used fractal wave char-
acteristics of MS wave and distinguished various types of
MS events [12]. Jiang et al. classified the background noises,
MS events and electromagnetic interferences based on the
multi-channel joint recognition method of a single event
[13]. Jeffery et al. extracted the frequency domain character-
istics, duration characteristics and statistical characteristics of
MS events during the development of shale gas in the Cold
Lake area of Alberta and constructed a model of MS event
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classification and recognition based on principal component
analysis [14]. Dargahi-Noubary proposed non-stationary
random model to establish a model for identifying under-
ground nuclear explosions and natural earthquakes [15].
Arrowsmith et al. built spectral modulations to distinguish
delay fired mine blasts from other events with an enhanced
algorithm [16]. However, classification of MS signals relates
to various factors, and it is not feasible to fully make use of
MS data relying on such conventional method due to the
massive quantity of small MS events and because automatic
discovery of events is frustrated by the contamination of the
MS signal, the surrounding noise and mining activities,
which also yields unsatisfactory result [17]. Hence, recently,
machine learning and deep learning methods have been gain-
ing more concern and have been widely utilised for the au-
tomatic identification and classification of signals in various
seismic fields [18]-[22], because they reduce the computa-
tional burden and provide high predicting accuracy. Never-
theless, in mining, MS is still in the developing stage.

In this paper we have presented an overview of the work
done by various researchers applying machine learning and
deep learning methods in mining to identify and classify MS
events. The review is organised in five sections: after the
introduction part in section 2, previously applied methods of
discriminating MS events are shortly explained. Brief histor-
ical development of machine learning and deep learning
methods are presented in the third section for a general un-
derstanding of the methods, the fourth section provides clas-
sification of the events performed by different scholars using
machine learning and deep learning approaches (which is our
prime concern), and the final section represents conclusion
and suggestions in the related field.

2. Former approaches to microseismic
event classification

MS event classification and detection are based on the
identification of differences between effective signals and
environmental noise. The most universally accepted automa-
tic event recognition method in MS data processing is called
STA/LTA (the ratio of long and short-term average). The
STA/LTA method was first used for seismic phase identifica-
tion in the field of natural earthquake research [23]. With the
emergence and development of MS monitoring technology,
this method has also been used for automatic identification of
MS events [24]. The advantage of the STA/LTA method is
that the principle is simple, easy to implement, and can meet
the requirements of real-time processing. However, this
method is usually more effective for events with a higher
signal-to-noise ratio (SNR), and it is often impossible to ob-
tain satisfactory results for low SNR events, therefore later
various ideas were proposed to improve the efficiency, which
is briefly elaborated.

Cao et al. summarised the important waveform character-
istics of different MS signals through the time-frequency
analysis technology [25]. Analysing signal features like fre-
quency characteristics, signal duration energy release, signal
attenuation etc., various mine MS activities were classified.
It became helpful to reveal the source mechanism and rock
burst prediction work. Zhao et al. employed the mathematical
model using a Fisher discriminant analysis [26]. The results
confirmed that the proposed method succeeded in correct
classification of the regular and blast events with accuracy
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above 97.1%. Li et al. investigated various characteristics of
mine earthquake and blasting signals through Hilbert Huang
Transform (HTT) and analyzed wave duration and instanta-
neous energy attribute of both signals under different circum-
stances. However, no clear line of demarcation was obtained
between the characteristics of both types of signals [27]. Pan
et al. using the STA/LTA method and waveform information
identified and calibrated MS events and adopted the subse-
quent step on establishing structural model energy-absorbing
coupling support subjected to rock burst [28]. Li et al. made
a comprehensive analysis of blasting vibrations using HTT
and wavelet analysis method. They discussed the feature
extraction and time-frequency distribution of blasting vibra-
tion signals and found that HTT is more adaptable when
analysing non-stationary signals [29]. Yoones and Mirko
employed new method power spectral density (PSD) and
applied it on the recorded raw data to automatically detect
weak events obscured by background noise [30]. The method
is more robust than STA/LTA because no prior bandpass
filtering is necessary to enhance the SNR. Similar kinds of
events were also detected by Wang et al. who constructed
target function of event detection, which can detect and re-
store clean MS events simultaneously [31]. Tselentis and
others put the idea of statistical Chi-squared test for event
detection and automatic phase picker of primary wave based
on Kurtosis criterion [32]. With the help of Fourier trans-
form, Zhang et al. investigated the spectral differences be-
tween mine tremor, blasting and earthquake [33]. The exper-
imental analysis revealed existing differences between corner
frequency and the maximum spectral value of compression
wave and the shear wave between earthquakes and blasting.
Hu et al. established mathematical model using Fisher dis-
criminant analysis and discriminated two different blasting
and MS events 98.59% accurately and established that blast-
ing signals containing mechanical vibration noises and a
non-blast event recorded by the system as one event that
occurred closely following the blast are the two factors that
impacted 1.49% of misclassification [34].

As the subsurface geological environment in mining are-
as is complicated, and the propagation medium is not contin-
uous and homogeneous, the MS signals in mining scenario
reflect more complex characteristics than naturally occurring
earthquakes. Therefore, distinguishing genuine MS signals
from polluted signals makes it more difficult because the
underground monitoring area is small, and most of the moni-
toring transducers are a single component in nature. The
recorded signals are always vague due to the overlapping of
multiple types of events. Traditionally identifying methods
always present a low accuracy problem and cannot precisely
distinguish the event easily due to such deficiency. This gap
can be only filled using machine learning and deep learning
approaches that have shaded many traditionally applied
methodologies in the field of signal processing in perfor-
mance and reliability.

3. Fundamental concepts of machine learning
and deep learning methods

Concepts of machine learning and deep learning methods
commenced with the research into the artificial neural net-
work. Aristotle described ‘“Associationism” in 300 BC,
which is the first attempt in human history to understand the
brain. However, this approach in modern science began in
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mid-1900 when Wallen McCulloch et al. put forward the
concept of a mathematical model of a neural network which
mimics the functionality of the brain to compute the theory
of neural networks [35]. Frank Rosenblatt proposed the idea
of a single-layer neural network called “Perceptron” in 1957,
which allows neurons to learn and operate elements within
the training set single at a time, later Minsky et al. pointed
inability of Perceptron to resolve XOR and NXOR problems
and mentioned its limitations in performing certain functions
[36], [37]. Despite having some flaws in the algorithm, this
infancy approach still turned a trailblazer for modern ma-
chine learning methods. A study done by Hubel and Wiesel
regarding the cat’s visual cortex rendered more insights on
understanding the complexity of neural network models [38].
However, due to less capable single-layer neural network on
solving some sophisticated functions, it diminished the neu-
ral network research for a decade during 1970s. Rumelhart et
al. brought about the idea of Backpropagation algorithm (BP)
that utilises a hidden layer in the neural network again in
mid-1980s. It became a powerful tool in solving pending
complexity like XOR and parity problems, the principal
mechanism of this algorithm being to effectively train the
neural network through a chain rule method [39]. Moreover,
this attempt revived the neural network research again. Yann
LeCun et al. published a biologically inspired image recogni-
tion model Convolution neural network (CNN) based on the
BP algorithm [40]. His paramount model played a significant
role to establish the foundation for modern computer vision.
During the last decade of 1900s, different statistical ap-
proaches were introduced to construct classification algo-
rithm like Support vector machine (SVM) and boost-
ing [41], [42]. In comparison with other conventional ma-
chine learning methods, these methods are memory efficient
and convenient to use but have insufficient learning capabil-
ity in noisy data [43], [44]. Hochreiter et al. developed Long
short-term memory (LSTM) recurrent neural network to
handle the exploding and vanishing gradient problem [45].
This milestone revolutionised the approaching prospects in
Machine learning. Along with computer hardware, techno-
logical improvement computational burden became no obsta-
cle, and more capable algorithms powered a benchmark of
artificial neural network. Hinton and Simon introduced deep
learning, a subset of machine learning that has a multilayer
neural network which is more analogous to the human brain
in intelligence [46]. The employed model drastically changed
the future of the artificial neural network and achieved high
performance in the field of computer vision, image classifi-
cation, speech recognition and handwritten digit identifica-
tion [47], [48]. Supported by big data, cloud computing and
other advanced functionality, deep-learning reflects the fu-
ture of machine learning [49]. Furthermore, the advent of
sophisticated Generative adversarial network (GAN), deep
reinforcement learning augmented the era of deep learning
into another level [50]. Figure 1 shows the historical devel-
opment of machine learning and deep learning methods.

4. Event classification using machine
learning and deep learning methods

Machine learning and deep learning methods need input
data to create the classifier model. Hence, scholars have
liberated several parameters obtained from the original wave-
form and the seismic sources to construct the trained model.
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Figure 1. Historical evolution of machine learning and deep learning

Various waveform-based parameters from the original
waveform such as time and frequency variant parameters,
spectral ratio, maximum frequency, the ratio of P and S wave
amplitudes, Signal duration etc. [51] and the source parame-
ters like seismic moment, seismic energy, time of occur-
rence, stress drop etc. are utilised to construct the event clas-
sifier to distinguish various events from the Microseismic
data [52]. Manual classification of MS event is a tedious and
time consuming task that requires experienced professionals
and may suffer from the biased opinion of the observer [53].
Recently machine learning and deep learning methods have
gained popularity in the field of Mine Microseism to distin-
guish MS events from unwanted events. Taking benefit of
Machine and deep learning models, researchers have applied
it on automatic classification of Mine MS events.

4.1. Classification model based
on waveform related parameters

Zhu et al. constructed a support vector machine (SVM)
network model for the classification of MS events [54].
Using fractal box counting dimension of the frequency band
as a signal feature of blasting, electromagnetic and MS sig-
nals, 23-dimensional feature vector was established and
SVM model was trained to classify and identify randomly
selected 300 sets of data. The maximum accuracy of 94% in
the case of MS signals and 100% for electromagnetic signals
were achieved through the proposed method.

Shang et al. employed the knowledge of Empirical mode
decomposition (EMD) and Singular value decomposition
(SVD) to extract the feature of mine signals [55]. This model
uses SVD that solves the singular value of matrix composed
by the components of real intrinsic mode function (IMF)
which was obtained through EMD. Finally, Support vector
machine (SVM) utilised EMD-SVD based feature vector to
precisely identify the events of Yongbashan mine in China.
A comparison was made between SVM and other machine
learning classifiers like Backpropagation neural network
(BPNN) and Bayes method, but SVM displayed a better
performance (93%). Shang et al. used an updated model of
previous work applying Back propagation neural network
(BPNN) for classification [56]. Necessary details as input
parameter for BP were extracted by merging two methods:
Frequency slice wavelet transform (FSWT) and SVD, given
the method confirmed 91% of the signals recognized precise-
ly. In order to prove the superiority of the adopted methodol-
ogy, 70 training and 50 test samples of MS and blasting
datasets were used and also trained with other three different
machine learning models — Logistic regression (LR), Bayes
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and Fisher classifier, but BPNN method based on FSWT-
SVD stayed optimal.
Table 1 shows the comparison of various models.

Table 1. Classification results using different machine learning
methods

Classification &

Correct number .
recognition

Correct number

of training of test groups accuracy
roups
. (tota|g70 roups) (total 50 groups)  (a total of 100
Machine group groups)
learning
methods o g E‘E o ? g’é %\E 5 §
S BE 82 BE 2=t 3
|5} «© |5} < =
8 ms g ms 382 ¢
BP 67 66 45 46 91 91%
LR 64 64 46 42 88 88%
Bayes 63 65 44 45 89 89%
Fisher 63 65 44 45 89 89%

Li proposed a modified model of Shang et al. [56] and
classified MS and blasting signal based on local mean decom-
position (LMD) and pattern recognition method [57]. He in-
serted two primary product function (PF) components of ener-
gy spectrum and correlation coefficient as the feature vector
input of pattern recognition that was obtained through disinte-
grating MS signals based on LMD, EMD and Discrete wavelet
transform (DWT) method. Four machine learning classifiers —
artificial neural network (ANN), support vector machine
(SVM), logistic regression (LR) and Naive Byes (NB) were
embedded with each method, and the final model was trained
with 1-100 sets of rock fracturing and blasting data and tested
with 101-200 sets of data, the classification output based on
correlation coefficients of LMD remained outstanding over
EMD and DWT. Similarly, the energy spectrum of LMD-
based result of ANN and SVM proved significantly better than
LR and NB with the highest accuracy above 90%.

Jia et al. built a classifier model of Least Square-Support
vector machine (LS-SVM) to identify low SNR MS events
from noise events using Multiscale permutation entropy
(MPE) [58]. A similar amount of MS and noise samples were
taken, and the feature vector was extracted performing MPE
calculation to train the classifier. Auto-detection of the
events was conducted using 70 groups of data as a training
set and 30 groups as a test set. In the ten random experi-
ments, the classifier detected all events accurately with pre-
diction accuracy more than 90%. Similarly, LS-SVM classi-
fier displayed better result than traditional STA/LTA and
AIC method in identifying 62 events from 15 waveforms
with better precision. Figure 2 shows the performance of
different classifiers. The proposed method has real practical
value in industry, however, the appropriate number of samples
should be taken, which reduces the computational timing.

Lin et al. classified and recognised MS multichannel
waveforms with the maximum accuracy of 91.13% based on
Deep convolution neural network (DCNN) and Spatial pyr-
amid pooling (SPP) [59]. With the Data acquired from the
Dongguashan copper mine in China, multiple waveforms
were used as an input sample, to finish training and testing
set. However, due to the inconsistency in channel number
obtained from each MS signal, SPP was inserted to normal-
ise the feature maps of the convolution layer of the final
layer, and MS, blasting and noise events were classified.
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Figure 2. Identification accuracy of the three different classifier
methods

The proposed method is feasible because no manual fea-
ture extraction is needed. In his later proposed model, Lin
updated the classifier model combining DCNN with SVM to
achieve precision higher than the previous method [60]. The
constructed DCNN structure model comprehends and auto-
matically recognises the feature of the multi-channel wave-
form, and SVM is used to automatically classify the multi-
channel waveforms. To validate the performance, the DCNN
model was combined with other classifiers — like KNN, ran-
dom forest and SVM — for the same dataset of waveform
image. However, the SVM showed an excellent result over
other classifiers within less limit of time.

Zhao and Gross applied supervised machine learning algo-
rithms such as SVM and distinguished MS event from noise
events [6]. 16 input attributes extracted from 71 original time
and frequency domain features were used to train the final
SVM model based on neighbourhood component analysis.
Multiple optimisation models trained by various kernel func-
tions such as Linear, Gaussian, quadratic and cubic were com-
pared, but SVM trained through Gaussian kernel displayed a
remarkable performance with the prediction accuracy of 95
and 92% for MS events and noise events respectively.

Peng and other researchers developed Gaussian mixture
hidden Markov model (GMM-HMM) based on the Mel fre-
quency cepstral coefficient (MFCC) [61]. The proposed
model uses feature parameter vector of 24 dimensions ac-
quired from MFCC to train the model based on GMM-
HMM, MS signals containing various events (blasting, noise,
electromagnetic interference) of Dongguashan copper mine
in China that were classified accurately. Similarly, Peng
again employed Deep learning method for the automatic
classification of MS events [53]. Reliability of 35 features in
terms of frequency and time domain was uplifted using Ge-
neric algorithm (GA)-optimized correlation-based feature
selection (CFS) GA-CFS method and final 11x50 feature
matrix was put as CNN input. Well trained CNN classifier
identified MS records of Huangtoupo copper and zinc Mine
in China with full accuracy of 98.2%. The model was also
compared with 7 other traditional machine learning classifi-
ers, but none of them could beat the accuracy of CNN.

Chen et al. demonstrated how to use the technique of
CNN and K-means clustering (KC) to classify seismic events
and automatic arrival picking [62]. The results of CNN archi-
tecture in classifying signals outperformed the traditional
Multilayer perceptron (MLP), and KC-CNN based model
achieved a more remarkable output than KC in arrival pick-
ing even with MS data containing noise.
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Choi and Pyun studied four types of recorded mine signals
such as blasting, cleaning, drilling and noise and extracted the
various attributes from signals to make the supervised ma-
chine learning model [63]. To train the model, manual label-
ling was done on 1796 signals which contain 317 blastings,
901 drillings, 461 cleanings and 117 noises respectively. 80%
data were used as training set, whereas 20% were left for the
test set, the training set was also cross-validated into 5 groups
to avoid overfitting. Out of 22 trained models, most reliable
4 models like quadratic discriminant, boosting tree with an
ensemble, bagging tree and RUS Boosted tree with ensemble
were selected and verified applying test data. However, the
bagging tree with ensemble worked more suitably than
3 other models. The proposed model can be useful in real-
time monitoring to replace manual inspection.

Song et al. used Stockwell Transform to convert genuine
time-domain mine MS signals into a two-dimensional time-
frequency image which later was fed as input parameters to
train the CNN model [64]. The mechanism used two differ-
ent pixel size image datasets of 450x350 and 180x140 exam-
ined through the CNN model. The final outcome verified that
small pixel size 180x140 obtained maximum accuracy com-
pared to the bigger one when the weight tensor shape was
upgraded to optimal in distinguishing blasting and rock frac-
turing signals. Moreover, the proposed method depicts the
pixel size of the image having a high influence on the time
required for the model to be trained.

4.2. Classification model based
on source-related parameters

Multivariate Gaussian distribution implemented by Malo-
vichko proved to be more efficient in separating ordinary and
blasting events [3]. Discriminator takes advantage of four
seismic and source parameters like original time of blasting,
radiation pattern, high and low-frequency radiation ratio etc.
The technique was calibrated to check the performance of
discriminating features for four mines — A, B, C and D of
Australia, the discriminator showed better separation of the
blast and regular events in a dataset of mines A and C. The
larger-scale application of discriminator revealed almost 20%
(1431 out of 7035) of seismic events reclassified as blasts.

Vallejos and McKinnon applied LR and ANN to catego-
rise mine seismic and blasts events of two mines — Nikel rim
south and Kidd creek of Canada [65]. Relying on 13 signifi-
cant parameters, they established classifying indicators and
efficient classifying model built with LR and ANN that cate-
gorise the two different events even in the nonlinear case.
26811 training and 11490 testing sets in Nickel rim south
mine and 12762 training and 5469 testing sets of Kidd creek
mine were utilised to verify the results, the final product of
both the logistic and neural network model performed equal-
ly in distinguishing blast and seismic events with low mis-
classification with the datasets of Nikel rim south mine.
However, the neural network slightly degraded in perfor-
mance when Area under the Roc curve (AUC) value was
lower than 0.9.

Out of 19 parameters, Dong et al. utilised 6 relevant pa-
rameters to set up probability density distribution and three
Machine learning classifiers logistic regression. Fisher and
Bayesian classifiers were utilised to develop discriminator
embedding easy function [66]. The proposed method was
surveyed with the data of three mines in Australia and Cana-
da to check its feasibility. Further, backtest, cross-validated
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outcomes, receiver operating characteristic (ROC) curve and
applied result analysis revealed Logistic regression discrimi-
nator of one mine out of three surpassing other classifiers in
its quality to dissociate blasts and seismic events. However,
the applicability of this model is only confined to small
events, larger events still require manual inspection. Dong et
al. proposed amendment regarding some source parameters
for the above method [67]. Logistic and Log-Logistic models
were used to modify the density function of the blasting
occurrence time and the adjacent blasting time difference
in [67]. The multi-parameter analysis method is better for
identifying MS events, but its characteristic parameters are
complex, and it is more challenging to implement.

Shang et al. took 1600 events of the dataset from
Yongshaba mine in China and applied a new methodology
using ANN based on dimensionality reduction algorithm and
principal component analysis (PCA) to distinguish MS
events and quarry blasts with 22 seismic source parame-
ters [68]. The newly obtained data by reducing dimension
through PCA were taken as an input for ANN and different
classifiers such as NB, LR and Fisher classifiers adopted for
comparison. The final outcomes of PCA-based method and
without PCA-based method were compared with the Dong et
al. data [67]. However, the proposed PCA-ANN based idea
overweighs other classifiers and demonstrates better results
than the methodology of Dong et al. [67]. The predicted
result shows that the introduction of some new parameters
boosts the performance of Discriminators.

Zhou et al. constructed a discrimination model based on
backpropagation neural network (BPNN), which utilises the
feature vector computed by multiscale permutation entropy
(MPE) [69]. The final solution was compared and also ana-
lyzed through a ROC curve with other Machine learning
methods — SVM and NB. However, the proposed method
manifests 91.67% of overall accuracy over other methods in
classifying rock rupturing and blasting events.

Pu et al. encapsulated 10 machine learning models such
as SVM, BPNN, LR, Gaussian process classifier (GPC) etc.
in recognition of Microseismic/blasting activity [70].
Strength of each model was evaluated by exerting five dif-
ferent performance indicators, and ultimately considered
conclusion through Fuzzy comprehensive evaluation model
reveals that, out of 10 models, LR stood superior while GPC
appeared inferior. Figure 3 exhibits the reliability of different
adopted models.

Gradient boosting
Random forest
Adaboost

Logistic regression

K nearest neighbour

Naive Bayes

Decision tree

Gaussian process classifier

Support vector machine

Back propagation
neueal %e?work

0.85 0.90 0.95

Accuracy

1.00

Figure 3. Classification accuracies for ten machine learning
models
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5. Conclusions and suggestions

Current application of machine learning and deep learn-
ing methods have become universal in the plethora of fields
and overshadowed human intelligence in executing tasks. It
has reduced the engineering burden of manual separation of
useful rock fracturing signals and displayed its highly pro-
gressive superiority over other traditional and empirical
methods. Machine learning and deep learning are prospective
ways to simulate the nonlinear relationship between various
mine seismic events, even in complex underground condi-
tions. These models are feasible and convenient to use; the
reason is that they do not need any prior understanding of
any input/output variables and require less computation time.
However, there still seem to be various ways where further
improvement can be made on existing models.

Due to the complex geological underground environment,
the recorded signal captures different signals that are similar
in nature to genuine MS signals. Commonly applied machine
learning models are binary classifiers which only distinguish
MS events or non-MS events. Therefore, a single classifier
model can be upgraded to a multi-classifier model that can
additionally separate the collected events into further sub-
classes like blasting events, vehicle noises, electromagnetic
interferences and human-made sounds which substantially
reduce manual inspection in real-time monitoring.

The plethora of the research in classifying events mainly
focuses on studying the signal characteristics and separating
them with non-useful ones. Few types of research can be
found that classify useful events and automatically pick arri-
val time which is the crucial parameter to locate the hypocen-
ter. There is still further room for such improvement using
machine learning. Extraction of genuine MS signals is the
key factor which gives the necessary information about the
occurrence of rock burst. However, the present research only
focuses on differentiating rock fracturing signals from other
signals. The main motto of collecting MS signals are to find
rock burst occurrence time and location of the fracturing
place that is why a subsequent step can be imposed on creat-
ing a model that finds the relationship between MS signals
and rock burst occurrence.

Most of the Machine learning algorithms that have been
used in mine Microseism are shallow machine learning mod-
els such as Logistic regression, support vector machine,
decision tree, random forest etc. Even though these models
are corresponding in terms of convenience and cherish quick
computation, they can only simply correlate the relation
between useful events and non-useful events, and manual
feature extraction is still necessary before training the model.
Hence, further application of Deep learning should be put
into practice, since it extracts the features automatically, and
models can be trained with a large number of datasets. The
current implementation of Deep learning only uses Convolu-
tion neural network (CNN) in classifying MS signals which
have achieved a better result. However, other algorithms
such as Recurrent neural network (RNN), and Long Short-
term memory (LSTM) can be employed, which may result in
better accuracy. The advantage of RNN is that it can enhance
the early warning system in real-time. Due to its robust archi-
tecture model, it can comfortably readjust to highly dynam-
ical internal seismic source inside a mine. Even if mine
tremor properties change over time, the system trained with
data from past campaigns should be able to provide efficient
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monitoring. Combination of machine learning models such
as Generative Adversarial Network (GAN) and Random
Forest has already become prevalent in real-time seismic
signal discrimination of natural earthquakes.The benefit of
such model is that it can directly use waveform data, while
the output error rate is negligible. Similar model can be an-
ticipated in Mine Microseismic for real-time signal detection.

Moreover, CNN has shown great success in single label
image classification. Combination of two architectures - such
as CNN-RNN - might be quite effective for multi-label im-
age classification. It can be useful for identifying multi-label
mine seismic waveform images of different events, because
direct waveform image data can be fed into deep learning
methods, and this is pending for future research. In future
experiments, data mining in classifying Microseism is worth
exploring due to its function, according to which it extracts
knowledge from extensive data.

In a nutshell, utilizing machine learning and deep learn-
ing have shown great significance and achievement in Mi-
croseismic monitoring research, although the research using
these methods is still in infancy stage. But tremendous suc-
cess can be obtained in addressing the issue if more advanced
algorithms are involved.
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AHaJIi3 32CTOCYBaHHA MAIIIMHHOIO TA TJIU0O0KOI0 HABYAHHS
s kaacugikanii maxTHuX MikpoceiicMiyHuX moai

B. II3unsisH, I1. bacuer, III. MaxTab

Merta. AHani3 i y3araJpHEHHS T€XHOJOTH MAIIMHHOTO 1 TTHOOKOro HaBYaHHs B TipHUY0A00YBHIN MPOMHUCIOBOCTI AJIsI BUCOKOTOYHOI
imentudikamii ripcekux mikpoceiicmiuamnx (MC) noaiit Ha BiAMiHY Bif TAKAX HE3HAYHUX MO K IyM, BHOYX Ta iHIII.

Metoauka. Omcano Tpaaumiiiai Mmetonu knacudikanii MC mofiit i mokaszaHa iX HemocTaTHs eeKTUBHICTE. HagaHa KopoTka icTopuyHa
JIOBi/IKa TIPO PO3BHTOK METOIIB MAIIMHHOTO Ta TIMOOKOT0 HaBYaHHS, PO3IIITHYTI Pi3HI MiXOJH O BUKOPUCTaHHS IUX METOMIB IIPU KJIACH-
¢ikanii MC nomiid.

Pe3yabTaTn. Y cTaTTi HaBeAEHO OIJI]] HOBITHIX CIOCOOIB 3aCTOCYBAaHHS MAIIMHHOTO Ta TIMOOKOTO HAaBYAHHS JUTS BUSIBJICHHS LIAXTHUX
MC nopiii. ITpencrapieHi cy4dacHi gocsrHeHHs B rany3i inentudikanii MC noniit cepes mofiii iHIIoro pofy, 3po0ieHi 0CTaTOuHi BUCHOBKH i
MPOTIO3MLIi MOA0 PO3MIAHYTUX IpodieM. BigzHaueHo, mo Bizomi aani npo MC mogii, moB’s3aHi 3 IpoLecoM pyHHYBaHHS TiPCBKUX MOPiN,
OTpHMaHi 3a JIOTIOMOTOI0 IATYHKIB, HE € TOCTATHHO TOYHUMH Yy 3B 53Ky 3 KOMIUIEKCHHM BIUTHBOM TipCHKOTO CEPEeIOBHUINA 1 MOTPEOYIOTh HOTe-
penHboi 00pOOKH TepI, Hixk BHKOPUCTOBYBATH X Juisl kinacudikanii peansanx MC mogiii. BcraHoBieHo, o TpaaumiiHi ciocoOu BUSBICHHS
Ta knacuikanii MC noxiif He 3aBXKIM JO3BOJSIIOTH OTPUMATH TOYHI PEe3yIbTaTH, IO 0COOIMBO BAKIIMBO, KOJH MOAIT OAHIET IPUPOIH MafOTh
pi3Hi posiBu. Po3pobieHo knacudikanito pisHux MC noziif 3 61611 BUCOKOIO TOYHICTIO Y HOPIBHSHHI 3 iICHYIOUNMH METOJUKAMU.

Hayxosa noBusna. CopMoBaHa KOHIIEMIIisS MallIMHHOTO i TITMOOKOTO HABUAHHS B TiPHHYOA00YBHIH MPOMHCIIOBOCTI, IO TO3BOJISIE BU-
COKOTOYHO iIeHTU(IKyBaTH TipChKi yAapy B IIaXTaxX Ha BiAMiHY Bill iHIINX BHIIB T€OANHAMIUYHHX SBHII.

ITpakTHyHa 3HaYUMicTh. TexHOMOri1 MaIlIMHHOTO i TTMOOKOro HaBYaHHS J03BOJISIOTH TOYHO ifeHTUdikyBatH maxTHi MC noaii i Bu-
3HAYHUTH MICIIe PO3TALIYBaHHS iX JpKepesa, 0 JO3BOJISE 3aM00IrTH TipChKOro yaapy Ta HiABUIIUTH Oe3NeKy BeACHHs TipHIYHX POOiT.

Knruoei cnosa: zipcokuil yoap, mikpoceiicMiuna noois, 8udyx, uwiym, MAuWUHHe HA8YAHH, 2TUOOKe HAGUAHHSL

AHaJIN3 NPUMMeHEeHHs] MAIIMHHOIO U ITy00KOro o0y4yeHus
IS KJIaccH(UKANMH MIAXTHBIX MUKPOCelicCMHUYECKUX COOBITHI

B. II3unbign, I1. bacuer, 11I. MaxTtab

Leab. AHamm3 1 06001IeHNe TEXHOIOTHIT MAIIMHHOTO U ITyOOKOT0 00y4YeHHs! B TOPHOIOOBIBAIOIIEH MPOMBIIUIEHHOCTH IS BEICOKOTOY-
HO naeHTuduKamy ropasix MukpoceiicMuaeckux (MC) coOBITHIA B OTIIMYHE OT TaKUX HE3HAYUTEIBHBIX COOBITHI KaK IITyM, B3PBIB U IpyTHE.

MeToauka. Onucanbl TPaIUIMOHHBIE MeTOIbI Kiaccudukaiun MC coObITHII U MMOKa3aHa WX HexocTarouHas 3PQeKTHBHOCTH. JlaHa
KpaTKasd UCTOPHUYCCKas CIipaBKa O pa3BUTUU METOJ0B MAllIMHHOI'O U FJ'Iy6OKOFO 06y‘-[eHPI5[, PacCMOTPEHBI Pa3IMYHbIC MMOAXOAbI K UCIIOJIB30-
BaHUIO 9THX METOHOB NpH Kiaccuuranun MC coObITHI.

PesyabTathl. B cratbe mpuBeneH 0030p HOBEHIIMX cITOCOOOB MPHUMEHEHHS MAIIMHHOTO W TIyOOKOTO OOY4eHHs Uil OOHapy KEHUs
maxTHeIX MC coObitnif. [IpencraBneHsl coBpeMeHHBIE NOCTIDKEHUs B obnacté uaeHTH(uKanun MC coObITH cpean coOBITHH ApYroro
poxa, clieansl OKOHYATEeNIbHEIE BRIBOJBI U IPENIOKEHHS B OTHOIICHHN paccMaTpuBaeMbIX mpodieM. OTMeUYeHo, 9TO U3BECTHEIE JaHHBIE O
MC coOBITHSIX, CBSI3aHHBIX C MPOLECCOM Pa3pyIISHHUsI TOPHBIX HOPOJ, TOIyYEeHHBIE ¢ IIOMOIIBI0 JaTINKOB, HE SBIISIOTCS JOCTATOYHO TOU-
HBIMH U3-32 KOMIUIEKCHOT'O BIIMSHHSI TOPHOW CpeJIbl M HY)KIAI0TCs B IIPEABAaPUTENBHOM 00paboTKe Mpex /e, 4eM NCIOIb30BaTh UX I Kilac-
cudukanny peanbHbIXx MC coObITHL. Y CTaHOBJIEHO, YTO TPAAUIMOHHbIE CIIOCOOB! 0OHapyxeHus U kiaccudukannn MC coObITHii He Bcerzia
MO3BOJISIOT IIOJYYHTh TOYHBIE PE3YJIbTAThl, YTO OCOOEHHO Ba)XKHO, KOIJia COOBITHS OJHOI NMPUPOBI UMEIOT pa3iM4HbIe MposBIeHUs. Pa3pa-
6oTana xiaccupukanus pa3nmuaabix MC coOpiTHit ¢ 6051ee BBICOKOH TOUHOCTHIO [0 CPABHEHUIO C CYIIECTBYIOIIUMH METOIUKAMH.

Hayunas HoBu3Ha. ChopMupoBaHa KOHLEIIUS MAIIMHHOTO U TITyOOKOT0 00YYeHUs] B TOPHOAOOBIBAIONIECH MPOMBIIIIEHHOCTH, ITO3BO-
JISIOIAst BBICOKOTOYHO MICHTU(GUIMPOBATH TOPHBIEC YAAPHI B IIIAXTAX B OTJIHYUH OT APYTHX BUAOB T€OIHHAMHYECKUX SIBJICHHUIL.

IIpakTHyeckasi 3HAYMMOCTD. TEXHOJIOTHH MAIIMHHOTO U INTyOOKOro 0OydeHHs MO3BOJIIOT TOYHO MeHTHUIpoBaTh maxTHele MC coObrTrst
1 OIIPEJIENUTh MECTOPACTIONIOXKEHIE MX HCTOUHHKA, YTO MO3BOJISIET MIPEAOTBPATHTH TOPHBIH yap U ITOBBICHT OS30I1aCHOCTh BEACHHS TOPHBIX PadoT.

Knrouesuie cnosa: copuvlii yoap, mukpoceiicmuieckoe cobvimue, 63pble, Wiym, Mmawunnoe ooyyenue, 2nybokoe obyuenue
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