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Abstract 

Purpose. To put forward the concept of machine learning and deep learning approach in Mining Engineering in order to get high 

accuracy in separating mine microseismic (MS) event from non-useful events such as noise events blasting events and others. 

Methods. Traditionally applied methods are described and their low impact on classifying MS events is discussed. General 

historical description of machine learning and deep learning methods is shortly elaborated and different approaches con-

ducted using these methods for classifying MS events are analysed. 

Findings. Acquired MS data from rock fracturing process recorded by sensors are inaccurate due to complex mining envi-

ronment. They always need preprocessing in order to classify actual seismic events. Traditional detecting and classifying 

methods do not always yield precise results, which is especially disappointing when different events have a similar nature. 

The breakthrough of machine learning and deep learning methods made it possible to classify various MS events with high-

er precision compared to the traditional one. This paper introduces a state-of-the-art review of the application of machine 

learning and deep learning in identifying mine MS events. 

Originality. Previously adopted methods are discussed in short, and a brief historical outline of Machine learning and deep 

learning development is presented. The recent advancement in discriminating MS events from other events is discussed in 

the context of these mechanisms, and finally conclusions and suggestions related to the relevant field are drawn. 

Practical implications. By means of machin learning and deep learning technology mine microseismic events can be iden-

tified accurately which allows to determine the source location so as to prevent rock burst. 

Keywords: rock burst, MS event, blasting event, noise event, machine learning, deep learning 

 

1. Introduction 

Microseismic (MS) monitoring is a useful short-term 

rock burst prediction tool that can forecast the occurrence of 

rock burst by extracting useful signals which propagate from 

the fracturing process of rock masses [1]. Monitoring design, 

acquired data processing and locating event sources are the 

crucial technical concerns for creating a reliable measure to 

maintain rock mass stability for the assessment of mine 

seismic hazard [2], [3]. In order to establish an adequate 

early warning of rock burst, accurate classification of origi-

nal MS data that are swamped by noises and other unwanted 

events should be accurately processed [4]. Nevertheless, MS 

signals are different from the natural earthquake signal which 

has low magnitude and is highly influenced by various back-

ground noise sources characterised by an abrupt amplitude, 

comprised of human walking, vehicle sounds, electromagnet-

ic interference and blasting vibrations, giving the appearance 

of MS events [5], [6]. Due to this reason, differentiating 

actual MS events from other various events is always a com-

plicated task. MS classification is often conducted by an 

experienced analyst, which is time-consuming and always 

suffers from the subjective views of professionals [7]. There-

fore, extraction of the genuine rock fracturing signal from 

collected MS signals has always been the topic of discussion 

among various researchers. 

In the course of years, many classification methods have 

been introduced to deal with the problem of MS and seismic 

field [8]-[11]. For instance, Yu et al. used fractal wave char-

acteristics of MS wave and distinguished various types of 

MS events [12]. Jiang et al. classified the background noises, 

MS events and electromagnetic interferences based on the 

multi-channel joint recognition method of a single event 

[13]. Jeffery et al. extracted the frequency domain character-

istics, duration characteristics and statistical characteristics of 

MS events during the development of shale gas in the Cold 

Lake area of Alberta and constructed a model of MS event 
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classification and recognition based on principal component 

analysis [14]. Dargahi-Noubary proposed non-stationary 

random model to establish a model for identifying under-

ground nuclear explosions and natural earthquakes [15]. 

Arrowsmith et al. built spectral modulations to distinguish 

delay fired mine blasts from other events with an enhanced 

algorithm [16]. However, classification of MS signals relates 

to various factors, and it is not feasible to fully make use of 

MS data relying on such conventional method due to the 

massive quantity of small MS events and because automatic 

discovery of events is frustrated by the contamination of the 

MS signal, the surrounding noise and mining activities, 

which also yields unsatisfactory result [17]. Hence, recently, 

machine learning and deep learning methods have been gain-

ing more concern and have been widely utilised for the au-

tomatic identification and classification of signals in various 

seismic fields [18]-[22], because they reduce the computa-

tional burden and provide high predicting accuracy. Never-

theless, in mining, MS is still in the developing stage. 

In this paper we have presented an overview of the work 

done by various researchers applying machine learning and 

deep learning methods in mining to identify and classify MS 

events. The review is organised in five sections: after the 

introduction part in section 2, previously applied methods of 

discriminating MS events are shortly explained. Brief histor-

ical development of machine learning and deep learning 

methods are presented in the third section for a general un-

derstanding of the methods, the fourth section provides clas-

sification of the events performed by different scholars using 

machine learning and deep learning approaches (which is our 

prime concern), and the final section represents conclusion 

and suggestions in the related field. 

2. Former approaches to microseismic 

event classification 

MS event classification and detection are based on the 

identification of differences between effective signals and 

environmental noise. The most universally accepted automa-

tic event recognition method in MS data processing is called 

STA/LTA (the ratio of long and short-term average). The 

STA/LTA method was first used for seismic phase identifica-

tion in the field of natural earthquake research [23]. With the 

emergence and development of MS monitoring technology, 

this method has also been used for automatic identification of 

MS events [24]. The advantage of the STA/LTA method is 

that the principle is simple, easy to implement, and can meet 

the requirements of real-time processing. However, this 

method is usually more effective for events with a higher 

signal-to-noise ratio (SNR), and it is often impossible to ob-

tain satisfactory results for low SNR events, therefore later 

various ideas were proposed to improve the efficiency, which 

is briefly elaborated. 

Cao et al. summarised the important waveform character-

istics of different MS signals through the time-frequency 

analysis technology [25]. Analysing signal features like fre-

quency characteristics, signal duration energy release, signal 

attenuation etc., various mine MS activities were classified. 

It became helpful to reveal the source mechanism and rock 

burst prediction work. Zhao et al. employed the mathematical 

model using a Fisher discriminant analysis [26]. The results 

confirmed that the proposed method succeeded in correct 

classification of the regular and blast events with accuracy 

above 97.1%. Li et al. investigated various characteristics of 

mine earthquake and blasting signals through Hilbert Huang 

Transform (HTT) and analyzed wave duration and instanta-

neous energy attribute of both signals under different circum-

stances. However, no clear line of demarcation was obtained 

between the characteristics of both types of signals [27]. Pan 

et al. using the STA/LTA method and waveform information 

identified and calibrated MS events and adopted the subse-

quent step on establishing structural model energy-absorbing 

coupling support subjected to rock burst [28]. Li et al. made 

a comprehensive analysis of blasting vibrations using HTT 

and wavelet analysis method. They discussed the feature 

extraction and time-frequency distribution of blasting vibra-

tion signals and found that HTT is more adaptable when 

analysing non-stationary signals [29]. Yoones and Mirko 

employed new method power spectral density (PSD) and 

applied it on the recorded raw data to automatically detect 

weak events obscured by background noise [30]. The method 

is more robust than STA/LTA because no prior bandpass 

filtering is necessary to enhance the SNR. Similar kinds of 

events were also detected by Wang et al. who constructed 

target function of event detection, which can detect and re-

store clean MS events simultaneously [31]. Tselentis and 

others put the idea of statistical Chi-squared test for event 

detection and automatic phase picker of primary wave based 

on Kurtosis criterion [32]. With the help of Fourier trans-

form, Zhang et al. investigated the spectral differences be-

tween mine tremor, blasting and earthquake [33]. The exper-

imental analysis revealed existing differences between corner 

frequency and the maximum spectral value of compression 

wave and the shear wave between earthquakes and blasting. 

Hu et al. established mathematical model using Fisher dis-

criminant analysis and discriminated two different blasting 

and MS events 98.59% accurately and established that blast-

ing signals containing mechanical vibration noises and a 

non-blast event recorded by the system as one event that 

occurred closely following the blast are the two factors that 

impacted 1.49% of misclassification [34]. 

As the subsurface geological environment in mining are-

as is complicated, and the propagation medium is not contin-

uous and homogeneous, the MS signals in mining scenario 

reflect more complex characteristics than naturally occurring 

earthquakes. Therefore, distinguishing genuine MS signals 

from polluted signals makes it more difficult because the 

underground monitoring area is small, and most of the moni-

toring transducers are a single component in nature. The 

recorded signals are always vague due to the overlapping of 

multiple types of events. Traditionally identifying methods 

always present a low accuracy problem and cannot precisely 

distinguish the event easily due to such deficiency. This gap 

can be only filled using machine learning and deep learning 

approaches that have shaded many traditionally applied 

methodologies in the field of signal processing in perfor-

mance and reliability. 

3. Fundamental concepts of machine learning 

and deep learning methods 

Concepts of machine learning and deep learning methods 

commenced with the research into the artificial neural net-

work. Aristotle described “Associationism” in 300 BC, 

which is the first attempt in human history to understand the 

brain. However, this approach in modern science began in 



W. Jinqiang, P. Basnet, S. Mahtab. (2021). Mining of Mineral Deposits, 15(1), 19-26 

 

21 

mid-1900 when Wallen McCulloch et al. put forward the 

concept of a mathematical model of a neural network which 

mimics the functionality of the brain to compute the theory 

of neural networks [35]. Frank Rosenblatt proposed the idea 

of a single-layer neural network called “Perceptron” in 1957, 

which allows neurons to learn and operate elements within 

the training set single at a time, later Minsky et al. pointed 

inability of Perceptron to resolve XOR and NXOR problems 

and mentioned its limitations in performing certain functions 

[36], [37]. Despite having some flaws in the algorithm, this 

infancy approach still turned a trailblazer for modern ma-

chine learning methods. A study done by Hubel and Wiesel 

regarding the cat’s visual cortex rendered more insights on 

understanding the complexity of neural network models [38]. 

However, due to less capable single-layer neural network on 

solving some sophisticated functions, it diminished the neu-

ral network research for a decade during 1970s. Rumelhart et 

al. brought about the idea of Backpropagation algorithm (BP) 

that utilises a hidden layer in the neural network again in 

mid-1980s. It became a powerful tool in solving pending 

complexity like XOR and parity problems, the principal 

mechanism of this algorithm being to effectively train the 

neural network through a chain rule method [39]. Moreover, 

this attempt revived the neural network research again. Yann 

LeCun et al. published a biologically inspired image recogni-

tion model Convolution neural network (CNN) based on the 

BP algorithm [40]. His paramount model played a significant 

role to establish the foundation for modern computer vision. 

During the last decade of 1900s, different statistical ap-

proaches were introduced to construct classification algo-

rithm like Support vector machine (SVM) and boost-

ing [41], [42]. In comparison with other conventional ma-

chine learning methods, these methods are memory efficient 

and convenient to use but have insufficient learning capabil-

ity in noisy data [43], [44]. Hochreiter et al. developed Long 

short-term memory (LSTM) recurrent neural network to 

handle the exploding and vanishing gradient problem [45]. 

This milestone revolutionised the approaching prospects in 

Machine learning. Along with computer hardware, techno-

logical improvement computational burden became no obsta-

cle, and more capable algorithms powered a benchmark of 

artificial neural network. Hinton and Simon introduced deep 

learning, a subset of machine learning that has a multilayer 

neural network which is more analogous to the human brain 

in intelligence [46]. The employed model drastically changed 

the future of the artificial neural network and achieved high 

performance in the field of computer vision, image classifi-

cation, speech recognition and handwritten digit identifica-

tion [47], [48]. Supported by big data, cloud computing and 

other advanced functionality, deep-learning reflects the fu-

ture of machine learning [49]. Furthermore, the advent of 

sophisticated Generative adversarial network (GAN), deep 

reinforcement learning augmented the era of deep learning 

into another level [50]. Figure 1 shows the historical devel-

opment of machine learning and deep learning methods. 

4. Event classification using machine 

learning and deep learning methods 

Machine learning and deep learning methods need input 

data to create the classifier model. Hence, scholars have 

liberated several parameters obtained from the original wave-

form and the seismic sources to construct the trained model.  

 

Figure 1. Historical evolution of machine learning and deep learning 

Various waveform-based parameters from the original 

waveform such as time and frequency variant parameters, 

spectral ratio, maximum frequency, the ratio of P and S wave 

amplitudes, Signal duration etc. [51] and the source parame-

ters like seismic moment, seismic energy, time of occur-

rence, stress drop etc. are utilised to construct the event clas-

sifier to distinguish various events from the Microseismic 

data [52]. Manual classification of MS event is a tedious and 

time consuming task that requires experienced professionals 

and may suffer from the biased opinion of the observer [53]. 

Recently machine learning and deep learning methods have 

gained popularity in the field of Mine Microseism to distin-

guish MS events from unwanted events. Taking benefit of 

Machine and deep learning models, researchers have applied 

it on automatic classification of Mine MS events. 

4.1. Classification model based 

on waveform related parameters 

Zhu et al. constructed a support vector machine (SVM) 

network model for the classification of MS events [54].  

Using fractal box counting dimension of the frequency band 

as a signal feature of blasting, electromagnetic and MS sig-

nals, 23-dimensional feature vector was established and 

SVM model was trained to classify and identify randomly 

selected 300 sets of data. The maximum accuracy of 94% in 

the case of MS signals and 100% for electromagnetic signals 

were achieved through the proposed method. 

Shang et al. employed the knowledge of Empirical mode 

decomposition (EMD) and Singular value decomposition 

(SVD) to extract the feature of mine signals [55]. This model 

uses SVD that solves the singular value of matrix composed 

by the components of real intrinsic mode function (IMF) 

which was obtained through EMD. Finally, Support vector 

machine (SVM) utilised EMD-SVD based feature vector to 

precisely identify the events of Yongbashan mine in China. 

A comparison was made between SVM and other machine 

learning classifiers like Backpropagation neural network 

(BPNN) and Bayes method, but SVM displayed a better 

performance (93%). Shang et al. used an updated model of 

previous work applying Back propagation neural network 

(BPNN) for classification [56]. Necessary details as input 

parameter for BP were extracted by merging two methods: 

Frequency slice wavelet transform (FSWT) and SVD, given 

the method confirmed 91% of the signals recognized precise-

ly. In order to prove the superiority of the adopted methodol-

ogy, 70 training and 50 test samples of MS and blasting 

datasets were used and also trained with other three different 

machine learning models – Logistic regression (LR), Bayes 
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and Fisher classifier, but BPNN method based on FSWT-

SVD stayed optimal. 

Table 1 shows the comparison of various models. 

Table 1. Classification results using different machine learning 

methods 

Machine 

learning 

methods 

Correct number 

of training 

groups  

(total 70 groups) 

Correct number 

of test groups 

(total 50 groups) 

Classification & 

recognition 

accuracy 

(a total of 100 

groups) 
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BP 67 66 45 46 91 91% 

LR 64 64 46 42 88 88% 

Bayes 63 65 44 45 89 89% 

Fisher 63 65 44 45 89 89% 

 

Li proposed a modified model of Shang et al. [56] and 

classified MS and blasting signal based on local mean decom-

position (LMD) and pattern recognition method [57]. He in-

serted two primary product function (PF) components of ener-

gy spectrum and correlation coefficient as the feature vector 

input of pattern recognition that was obtained through disinte-

grating MS signals based on LMD, EMD and Discrete wavelet 

transform (DWT) method. Four machine learning classifiers – 

artificial neural network (ANN), support vector machine 

(SVM), logistic regression (LR) and Naive Byes (NB) were 

embedded with each method, and the final model was trained 

with 1-100 sets of rock fracturing and blasting data and tested 

with 101-200 sets of data, the classification output based on 

correlation coefficients of LMD remained outstanding over 

EMD and DWT. Similarly, the energy spectrum of LMD-

based result of ANN and SVM proved significantly better than 

LR and NB with the highest accuracy above 90%. 

Jia et al. built a classifier model of Least Square-Support 

vector machine (LS-SVM) to identify low SNR MS events 

from noise events using Multiscale permutation entropy 

(MPE) [58]. A similar amount of MS and noise samples were 

taken, and the feature vector was extracted performing MPE 

calculation to train the classifier. Auto-detection of the 

events was conducted using 70 groups of data as a training 

set and 30 groups as a test set. In the ten random experi-

ments, the classifier detected all events accurately with pre-

diction accuracy more than 90%. Similarly, LS-SVM classi-

fier displayed better result than traditional STA/LTA and 

AIC method in identifying 62 events from 15 waveforms 

with better precision. Figure 2 shows the performance of 

different classifiers. The proposed method has real practical 

value in industry, however, the appropriate number of samples 

should be taken, which reduces the computational timing. 

Lin et al. classified and recognised MS multichannel 

waveforms with the maximum accuracy of 91.13% based on 

Deep convolution neural network (DCNN) and Spatial pyr-

amid pooling (SPP) [59]. With the Data acquired from the 

Dongguashan copper mine in China, multiple waveforms 

were used as an input sample, to finish training and testing 

set. However, due to the inconsistency in channel number 

obtained from each MS signal, SPP was inserted to normal-

ise the feature maps of the convolution layer of the final 

layer, and MS, blasting and noise events were classified. 

83.87

87. 01

95.16

78

80

82

84

86

88

90

92

94

96

98

STA/LT

I
a

, 
d

e
nt

if
ic

a
ti

o
n
 

c
c
u

ra
c
y

%

ST AA/LT

AIC

The Propoesed Method

The ropoesedp  AIC
method  

Figure 2. Identification accuracy of the three different classifier 

methods 

The proposed method is feasible because no manual fea-

ture extraction is needed. In his later proposed model, Lin 

updated the classifier model combining DCNN with SVM to 

achieve precision higher than the previous method [60]. The 

constructed DCNN structure model comprehends and auto-

matically recognises the feature of the multi-channel wave-

form, and SVM is used to automatically classify the multi-

channel waveforms. To validate the performance, the DCNN 

model was combined with other classifiers – like KNN, ran-

dom forest and SVM – for the same dataset of waveform 

image. However, the SVM showed an excellent result over 

other classifiers within less limit of time. 

Zhao and Gross applied supervised machine learning algo-

rithms such as SVM and distinguished MS event from noise 

events [6]. 16 input attributes extracted from 71 original time 

and frequency domain features were used to train the final 

SVM model based on neighbourhood component analysis. 

Multiple optimisation models trained by various kernel func-

tions such as Linear, Gaussian, quadratic and cubic were com-

pared, but SVM trained through Gaussian kernel displayed a 

remarkable performance with the prediction accuracy of 95 

and 92% for MS events and noise events respectively. 

Peng and other researchers developed Gaussian mixture 

hidden Markov model (GMM-HMM) based on the Mel fre-

quency cepstral coefficient (MFCC) [61]. The proposed 

model uses feature parameter vector of 24 dimensions ac-

quired from MFCC to train the model based on GMM-

HMM, MS signals containing various events (blasting, noise, 

electromagnetic interference) of Dongguashan copper mine 

in China that were classified accurately. Similarly, Peng 

again employed Deep learning method for the automatic 

classification of MS events [53]. Reliability of 35 features in 

terms of frequency and time domain was uplifted using Ge-

neric algorithm (GA)-optimized correlation-based feature 

selection (CFS) GA-CFS method and final 11×50 feature 

matrix was put as CNN input. Well trained CNN classifier 

identified MS records of Huangtoupo copper and zinc Mine 

in China with full accuracy of 98.2%. The model was also 

compared with 7 other traditional machine learning classifi-

ers, but none of them could beat the accuracy of CNN. 

Chen et al. demonstrated how to use the technique of 

CNN and K-means clustering (KC) to classify seismic events 

and automatic arrival picking [62]. The results of CNN archi-

tecture in classifying signals outperformed the traditional 

Multilayer perceptron (MLP), and KC-CNN based model 

achieved a more remarkable output than KC in arrival pick-

ing even with MS data containing noise. 
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Choi and Pyun studied four types of recorded mine signals 

such as blasting, cleaning, drilling and noise and extracted the 

various attributes from signals to make the supervised ma-

chine learning model [63]. To train the model, manual label-

ling was done on 1796 signals which contain 317 blastings, 

901 drillings, 461 cleanings and 117 noises respectively. 80% 

data were used as training set, whereas 20% were left for the 

test set, the training set was also cross-validated into 5 groups 

to avoid overfitting. Out of 22 trained models, most reliable 

4 models like quadratic discriminant, boosting tree with an 

ensemble, bagging tree and RUS Boosted tree with ensemble 

were selected and verified applying test data. However, the 

bagging tree with ensemble worked more suitably than 

3 other models. The proposed model can be useful in real-

time monitoring to replace manual inspection. 

Song et al. used Stockwell Transform to convert genuine 

time-domain mine MS signals into a two-dimensional time-

frequency image which later was fed as input parameters to 

train the CNN model [64]. The mechanism used two differ-

ent pixel size image datasets of 450×350 and 180×140 exam-

ined through the CNN model. The final outcome verified that 

small pixel size 180×140 obtained maximum accuracy com-

pared to the bigger one when the weight tensor shape was 

upgraded to optimal in distinguishing blasting and rock frac-

turing signals. Moreover, the proposed method depicts the 

pixel size of the image having a high influence on the time 

required for the model to be trained. 

4.2. Classification model based 

on source-related parameters 

Multivariate Gaussian distribution implemented by Malo-

vichko proved to be more efficient in separating ordinary and 

blasting events [3]. Discriminator takes advantage of four 

seismic and source parameters like original time of blasting, 

radiation pattern, high and low-frequency radiation ratio etc. 

The technique was calibrated to check the performance of 

discriminating features for four mines – A, B, C and D of 

Australia, the discriminator showed better separation of the 

blast and regular events in a dataset of mines A and C. The 

larger-scale application of discriminator revealed almost 20% 

(1431 out of 7035) of seismic events reclassified as blasts. 

Vallejos and McKinnon applied LR and ANN to catego-

rise mine seismic and blasts events of two mines – Nikel rim 

south and Kidd creek of Canada [65]. Relying on 13 signifi-

cant parameters, they established classifying indicators and 

efficient classifying model built with LR and ANN that cate-

gorise the two different events even in the nonlinear case. 

26811 training and 11490 testing sets in Nickel rim south 

mine and 12762 training and 5469 testing sets of Kidd creek 

mine were utilised to verify the results, the final product of 

both the logistic and neural network model performed equal-

ly in distinguishing blast and seismic events with low mis-

classification with the datasets of Nikel rim south mine. 

However, the neural network slightly degraded in perfor-

mance when Area under the Roc curve (AUC) value was 

lower than 0.9. 

Out of 19 parameters, Dong et al. utilised 6 relevant pa-

rameters to set up probability density distribution and three 

Machine learning classifiers logistic regression. Fisher and 

Bayesian classifiers were utilised to develop discriminator 

embedding easy function [66]. The proposed method was 

surveyed with the data of three mines in Australia and Cana-

da to check its feasibility. Further, backtest, cross-validated 

outcomes, receiver operating characteristic (ROC) curve and 

applied result analysis revealed Logistic regression discrimi-

nator of one mine out of three surpassing other classifiers in 

its quality to dissociate blasts and seismic events. However, 

the applicability of this model is only confined to small 

events, larger events still require manual inspection. Dong et 

al. proposed amendment regarding some source parameters 

for the above method [67]. Logistic and Log-Logistic models 

were used to modify the density function of the blasting 

occurrence time and the adjacent blasting time difference 

in [67]. The multi-parameter analysis method is better for 

identifying MS events, but its characteristic parameters are 

complex, and it is more challenging to implement. 

Shang et al. took 1600 events of the dataset from 

Yongshaba mine in China and applied a new methodology 

using ANN based on dimensionality reduction algorithm and 

principal component analysis (PCA) to distinguish MS 

events and quarry blasts with 22 seismic source parame-

ters [68]. The newly obtained data by reducing dimension 

through PCA were taken as an input for ANN and different 

classifiers such as NB, LR and Fisher classifiers adopted for 

comparison. The final outcomes of PCA-based method and 

without PCA-based method were compared with the Dong et 

al. data [67]. However, the proposed PCA-ANN based idea 

overweighs other classifiers and demonstrates better results 

than the methodology of Dong et al. [67]. The predicted 

result shows that the introduction of some new parameters 

boosts the performance of Discriminators. 

Zhou et al. constructed a discrimination model based on 

backpropagation neural network (BPNN), which utilises the 

feature vector computed by multiscale permutation entropy 

(MPE) [69]. The final solution was compared and also ana-

lyzed through a ROC curve with other Machine learning 

methods – SVM and NB. However, the proposed method 

manifests 91.67% of overall accuracy over other methods in 

classifying rock rupturing and blasting events. 

Pu et al. encapsulated 10 machine learning models such 

as SVM, BPNN, LR, Gaussian process classifier (GPC) etc. 

in recognition of Microseismic/blasting activity [70]. 

Strength of each model was evaluated by exerting five dif-

ferent performance indicators, and ultimately considered 

conclusion through Fuzzy comprehensive evaluation model 

reveals that, out of 10 models, LR stood superior while GPC 

appeared inferior. Figure 3 exhibits the reliability of different 

adopted models. 
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5. Conclusions and suggestions 

Current application of machine learning and deep learn-

ing methods have become universal in the plethora of fields 

and overshadowed human intelligence in executing tasks. It 

has reduced the engineering burden of manual separation of 

useful rock fracturing signals and displayed its highly pro-

gressive superiority over other traditional and empirical 

methods. Machine learning and deep learning are prospective 

ways to simulate the nonlinear relationship between various 

mine seismic events, even in complex underground condi-

tions. These models are feasible and convenient to use; the 

reason is that they do not need any prior understanding of 

any input/output variables and require less computation time. 

However, there still seem to be various ways where further 

improvement can be made on existing models. 

Due to the complex geological underground environment, 

the recorded signal captures different signals that are similar 

in nature to genuine MS signals. Commonly applied machine 

learning models are binary classifiers which only distinguish 

MS events or non-MS events. Therefore, a single classifier 

model can be upgraded to a multi-classifier model that can 

additionally separate the collected events into further sub-

classes like blasting events, vehicle noises, electromagnetic 

interferences and human-made sounds which substantially 

reduce manual inspection in real-time monitoring. 

The plethora of the research in classifying events mainly 

focuses on studying the signal characteristics and separating 

them with non-useful ones. Few types of research can be 

found that classify useful events and automatically pick arri-

val time which is the crucial parameter to locate the hypocen-

ter. There is still further room for such improvement using 

machine learning. Extraction of genuine MS signals is the 

key factor which gives the necessary information about the 

occurrence of rock burst. However, the present research only 

focuses on differentiating rock fracturing signals from other 

signals. The main motto of collecting MS signals are to find 

rock burst occurrence time and location of the fracturing 

place that is why a subsequent step can be imposed on creat-

ing a model that finds the relationship between MS signals 

and rock burst occurrence. 

Most of the Machine learning algorithms that have been 

used in mine Microseism are shallow machine learning mod-

els such as Logistic regression, support vector machine, 

decision tree, random forest etc. Even though these models 

are corresponding in terms of convenience and cherish quick 

computation, they can only simply correlate the relation 

between useful events and non-useful events, and manual 

feature extraction is still necessary before training the model. 

Hence, further application of Deep learning should be put 

into practice, since it extracts the features automatically, and 

models can be trained with a large number of datasets. The 

current implementation of Deep learning only uses Convolu-

tion neural network (CNN) in classifying MS signals which 

have achieved a better result. However, other algorithms 

such as Recurrent neural network (RNN), and Long Short-

term memory (LSTM) can be employed, which may result in 

better accuracy. The advantage of RNN is that it can enhance 

the early warning system in real-time. Due to its robust archi-

tecture model, it can comfortably readjust to highly dynam-

ical internal seismic source inside a mine. Even if mine 

tremor properties change over time, the system trained with 

data from past campaigns should be able to provide efficient 

monitoring. Combination of machine learning models such 

as Generative Adversarial Network (GAN) and Random 

Forest has already become prevalent in real-time seismic 

signal discrimination of natural earthquakes.The benefit of 

such model is that it can directly use waveform data, while 

the output error rate is negligible. Similar model can be an-

ticipated in Mine Microseismic for real-time signal detection. 

Moreover, CNN has shown great success in single label 

image classification. Combination of two architectures - such 

as CNN-RNN - might be quite effective for multi-label im-

age classification. It can be useful for identifying multi-label 

mine seismic waveform images of different events, because 

direct waveform image data can be fed into deep learning 

methods, and this is pending for future research. In future 

experiments, data mining in classifying Microseism is worth 

exploring due to its function, according to which it extracts 

knowledge from extensive data. 

In a nutshell, utilizing machine learning and deep learn-

ing have shown great significance and achievement in Mi-

croseismic monitoring research, although the research using 

these methods is still in infancy stage. But tremendous suc-

cess can be obtained in addressing the issue if more advanced 

algorithms are involved. 
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Аналіз застосування машинного та глибокого навчання 

для класифікації шахтних мікросейсмічних подій 

В. Цзиньцян, П. Баснет, Ш. Махтаб 

Мета. Аналіз й узагальнення технологій машинного і глибокого навчання в гірничодобувній промисловості для високоточної 

ідентифікації гірських мікросейсмічних (МС) подій на відміну від таких незначних подій як шум, вибух та інші. 

Методика. Описано традиційні методи класифікації МС подій і показана їх недостатня ефективність. Надана коротка історична 

довідка про розвиток методів машинного та глибокого навчання, розглянуті різні підходи до використання цих методів при класи-

фікації МС подій. 

Результати. У статті наведено огляд новітніх способів застосування машинного та глибокого навчання для виявлення шахтних 

МС подій. Представлені сучасні досягнення в галузі ідентифікації МС подій серед подій іншого роду, зроблені остаточні висновки і 

пропозиції щодо розглянутих проблем. Відзначено, що відомі дані про МС події, пов’язані з процесом руйнування гірських порід, 

отримані за допомогою датчиків, не є достатньо точними у зв’язку з комплексним впливом гірського середовища і потребують попе-

редньої обробки перш, ніж використовувати їх для класифікації реальних МС подій. Встановлено, що традиційні способи виявлення 

та класифікації МС подій не завжди дозволяють отримати точні результати, що особливо важливо, коли події однієї природи мають 

різні прояви. Розроблено класифікацію різних МС подій з більш високою точністю у порівнянні з існуючими методиками. 

Наукова новизна. Сформована концепція машинного і глибокого навчання в гірничодобувній промисловості, що дозволяє ви-

сокоточно ідентифікувати гірські удари в шахтах на відміну від інших видів геодинамічних явищ. 

Практична значимість. Технології машинного і глибокого навчання дозволяють точно ідентифікувати шахтні МС події і ви-

значити місце розташування їх джерела, що дозволяє запобігти гірського удару та підвищити безпеку ведення гірничих робіт. 

Ключові слова: гірський удар, мікросейсмічна подія, вибух, шум, машинне навчання, глибоке навчання 

Анализ применения машинного и глубокого обучения 

для классификации шахтных микросейсмических событий 

В. Цзиньцян, П. Баснет, Ш. Махтаб 

Цель. Анализ и обобщение технологий машинного и глубокого обучения в горнодобывающей промышленности для высокоточ-

ной идентификации горных микросейсмических (МС) событий в отличие от таких незначительных событий как шум, взрыв и другие. 

Методика. Описаны традиционные методы классификации МС событий и показана их недостаточная эффективность. Дана 

краткая историческая справка о развитии методов машинного и глубокого обучения, рассмотрены различные подходы к использо-

ванию этих методов при классификации МС событий. 

Результаты. В статье приведен обзор новейших способов применения машинного и глубокого обучения для обнаружения 

шахтных МС событий. Представлены современные достижения в области идентификации МС событий среди событий другого 

рода, сделаны окончательные выводы и предложения в отношении рассматриваемых проблем. Отмечено, что известные данные о 

МС событиях, связанных с процессом разрушения горных пород, полученные с помощью датчиков, не являются достаточно точ-

ными из-за комплексного влияния горной среды и нуждаются в предварительной обработке прежде, чем использовать их для клас-

сификации реальных МС событий. Установлено, что традиционные способы обнаружения и классификации МС событий не всегда 

позволяют получить точные результаты, что особенно важно, когда события одной природы имеют различные проявления. Разра-

ботана классификация различных МС событий с более высокой точностью по сравнению с существующими методиками. 

Научная новизна. Сформирована концепция машинного и глубокого обучения в горнодобывающей промышленности, позво-

ляющая высокоточно идентифицировать горные удары в шахтах в отличии от других видов геодинамических явлений. 

Практическая значимость. Технологии машинного и глубокого обучения позволяют точно идентифицировать шахтные МС события 

и определить месторасположение их источника, что позволяет предотвратить горный удар и повысить безопасность ведения горных работ. 

Ключевые слова: горный удар, микросейсмическое событие, взрыв, шум, машинное обучение, глубокое обучение 
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