MiHicTepcTBO OCBITH 1 HAYKH YKpaiHu
HamionansHuii TEXHIYHUN YHIBEPCUTET
«/IHIMpOBCHKA MOJIITEXHIKAY

HaByajibHO-HAYKOBHI IHCTUTYT €JIEKTPOECHEPIETUKHU
(iHCTHTYT)
Enexrporexdiyanii hakyiabTeT
(paxynpTer)
Kadbenpa xibepdiznunux ta iHGOpMAIIHHO-BUMIPIOBAIEHUX CUCTEM
(roBHa Ha3Ba)

IHHOACHIOBAJIBHA 3AITMCKA
KBaJi(ikaniiiHoI po0OTH CTyNeHI0 Maricrpa

crynenTa Cautko AHacracis OnekcanapiBHa

(ILLB.)
akaaemiynoi rpynu 151m-19-1

(mmdp)
cneniajgbHocTi 151 ABTOMATH3aIlig Ta KOMIT FOTEPHO-1HTErPOBAHI TEXHOJIOTIT
(ko 1 Ha3Ba CIIEIIAIBHOCTI)

3a OCBiTHBO-podeciiiHoI0 mporpamoro 151 ABTomaru3sairisi Ta KOMI FOTEPHO-IHTETPOBaH1 TEXHOJIOT11
(odiuiiina Ha3Ba)

Ha Temy CHHTe3 Ta AOCTIIKEHHS CUCTEMH KepyBaHHs IPOMUCIOBUM poboToM kommaHii Fanuc B ymoBax

0e3nepepBHOr0 BUPOOHHUIITBA

(Ha3Ba 3a HaKa30M PEKTOpa)

Ouinka 3a KaJ0I0

KoncyabsranTn IIpizBuine, ininiaan > . o Mipnuc
PEHTHHI. | IHCTUTYLilHOIO
KepiBHuk
KBaJTi(iKaiiHOi npod. Tkayos B.B.
poboTtu
[TpoBinuuit .
OBl ct.BukI. boiiko O.0.
KOHCYJIbTAHT
CuHre3 cucrtemMu .
noi1. by6nikos A.B.
KepyBaHHS
ExcniepumeHnTanbHuiA .
P ct.BukI. boiiko O.0.
pO3.1iI

Exonomiuna yactuHa | cT. BUKI. SApemuyk 1.O.

OxopoHa nparii Ta

Oesreka B

Ha3BHYAITHIX npod. Yebepsuko FO.1.

CUTYaITisX
\ Perensent ‘ ‘ ‘ ‘
| HopMOKOHTpOJIED | ac. Cnasincekuit J1.B. \ | |

JHinpo
2020

3ATBEP/I’)KEHO:
3aBiayBad Kadeapu
kibepdiznuHux Ta iHbopMaIliiHo-

BI/IMiDI-OBaJ'IBHI/IX CHUCTEM
(ToBHA Ha3Ba)

TkauoB B.B.
(miamnuc) (npi3BuiLe, iHiIiamm)
« » 2020 poky

3ABJJAHHSA
Ha KBaJidikaniiny podory
CTYyIleHs1 Maricrpa

CTYJEHTY CHutko A.O. akaaeMmiyHoi rpynu 151m-19-1
(mpi3BUILE Ta 1HIIIATH) (udp)

crnemiajgbHocTi 151 ABromMaru3aliis Ta KOMI FOTEPHO-1IHTErPOBaH1 TEXHOJIOTIT

3a OCBITHBO-TIpPOdeciiiHoI0 mporpamMoro 151 ABroMaTu3ailis Ta KOMII IOTEPHO-IHTEIPOBaH1 TEXHOJIOTIT
(odiniitna Ha3Ba)

Ha Temy CHHTE3 Ta JOCIIKSHHSI CHCTEMH KepyBaHHS IPOMHCIOBUM poboTom kommanii Fanuc B
yMoBax 0e3nepepBHOro BUpOOHHIITBA

3aTBepKeHy Haka3oM pekropa HTY «/lninpoBceka nomitexnikay Big 20.11.2020 Ne 965-¢

Po3zain 3mict Tepmin
BUKOHAHHA
Cran nurtanHs Ta| Betyn. Ommc TexHONOriyHOro mporecy st 00’e€kTa
IIOCTAaHOBKA aBroMaru3aiii. Ormisy icHyrouux cucteM aBTomarm3aiiii. CrtaH 12.10.2020
3aBIaHHs. nuTaHHs. Bubip HanpsiMKy CTBOPEHHsI aBTOMATH30BaHOI CUCTEMH.
Teop‘eTI/IIIHI/II\/'I P03p961<a H OOrpyHTYyBaHHS METOJIB Ta IHCTPYMEHTY 02.10.2020
pO3.11 JIOCTPKEHHS CUCTEMH KepyBaHHS

OOpaHHS CTPYKTypH CUCTEMHM KepyBaHHA Ta 1 CHHTE3.

Cunrte3 cucremMu . . .
HocnipkenHs (QYyHKIIOHYBaHHS CHCTEMH KepyBaHHsA Ha 0a3i 02.11.2020

KepyBaHH: ,
00paHOro aIroOpuTMy KepyBaHHs 00’ €KTOM aBTOMaTH3alii
Po3poOka mporpamHoro 3a0e3nedeHHs CUCTeMH KepyBaHHs Ha
ExcnepumenTanb . \
MU O3 OCHOBI 3allpONIOHOBAHOIO AJITOPUTMY KEpyBaHHS 00 €KTOM 23.11.2020
P aBToMaru3arii
ExonomiuHa ExoHOMiuHE OOIpyHTYBaHHS JOLUIBHICT BUTpPAT Ha CTBOPEHHS 3011.2020
YacTHUHA CHUCTEMU KEpYyBaHHs. o
Oxopona mpari| Po3pobka opranizamiiiHO-TEXHIYHUX 3aXOJiB, IIOJ0 peami3arlii
Ta Oe3meka B| IMpaBWJI O€3MEKU MPU €KCILTyaTallii CUCTEMH.
. 07.12.2020
Ha/I3BUYAHUX
CUTYaITisX
3aB1aHHsS BUIAHO npod. Tkavos B.B.
(miamuc kep.) (npi3Buie, iHimiamm)
HMara Buaaudi 01.09.2020

JlaTa mogaHHs 10 aTecTtaniiHoi komicii 15.12.2020

IIpuitHATO 10 BUKOHAHHS Cautko A.O.
(migmuc cryaeHTa) (mpi3BuiLe, iHimiasmm)

ABSTRACT

Explanatory note: _ p., _ figs., _tab., app., _ sources.

Object of research: to design a robotic automatic system applied to a production
process in an industrial environment by using a simulation software tool.

The purpose of the project: the study and analysis of the capabilities and advantages
offered by current tools for offline simulation in production environments compared to
programming carried out in the real environment.

The entire robotic system is a continuous system that constantly analyzes the state
of the system, its position and its entry and exit signals. The positioning accuracy of the
robot in the simulation program is 0.001 mm, the positioning accuracy of the real robot is
0.05 mm.

To implement the process, one must assimilate and understand the programming
methods that the simulation tool supports, as well as the different functionalities and
configuration options of this software to carry out the entire process virtually.

In this way, the real process will be carried out in a simulated way, having previously
carried out the total configuration of the system: definition of robot tools, specification of
reference systems, definition of parts and objects, definition of fixed parts, definition of
points, the tracing of the different trajectories. The robotic system implemented by
simulating the process will be analyzed.

It will also be intended to carry out an expansion in the implemented system to
evaluate the ability to insert changes in the work cell through the use of the simulation tool.
The concept of simultaneous engineering applied to industrial environments capable of
implementing robotic simulation in their production lines will be analyzed and will be
represented general software development methodology.

After carrying out this project, we must be able to face the "offline" programming of

a workcell applied to the production of an industrial plant.

ROBOTIC SYSTEM, CONTROL, ROBOT, RESEARCH, FANUC ROBOTS,
ROBOGUIDE, SIMULATION, INDUSTRIAL PROCESS

CONTENT

List of acronyms

Introduction

1

Status of the question and statement of the task

1.1
1.2
1.3

1.4
1.5
1.6

Industry

Simulation in industrial robotics

Analysis of robotic systems

1.3.1 Characteristic of the manipulator's universe
1.3.2 Physical characteristics of the process

1.3.3 Mathematical descriptions of robot's motions
Choice justification of Roboguide FANUC
Research task statement

Conclusions

FANUC robot programming

2.1
2.2
2.3
2.4

TPE programming
Programming in the simulator software editor
Positioning error of industrial robots

Conclusions

Robotic system simulation

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Workcell design

Automatic process diagram. Petri net

Presentation of the manipulator

Automatic system implementation

Definition and configuration of the robot and the controller
Definition of manipulated objects (PARTS)

Tool definition and configuration (UTOOL)

Creation and configuration of fixed parts (FIXTUREYS)
Definition of user reference system (UFRAME)

3.10 Creation of the program

3.11 Simulation of the process

3.12 Conclusions

4 Extension of the work cell

4.1
4.2
4.3
4.4
4.5
4.6

Robotic cell redesign

Cell configuration with additional robot
Creation of the extended program

System simulation. Testing

General software development methodology

Conclusions

5 Solution for the transmission of information between PLC and robot

6 Economics

7 Labor protection, industrial safety and civil protection

Evaluation of results and conclusions

References

Appendix A —Robotic system software for the first simulation

A.1 Main program

A.2 Definitions of positions for the main program

Appendix B — Robotic system software for the extended simulation

B.1
B.2

B.3

List of programs

First robot’s program

B.2.1 Listing of the program

B.2.2 Definitions of positions for the program
Second robot’s program

B.3.1 Listing of the program

B.3.2 Definitions of positions for the program

58
59
59
63
66
69
70
70

71
84
90
91
92
92
94
98
92
98
98
98
98
98
98

LIST OF ACRONYMS

TP — Teach Pendant;

PC — personal computer;

CAD - computer-aided design;

TPP — Teach Pendant programming;
OLP — offline programming;

CAM - computer aided manufacturing;
EOAT — end of arm tool;

TPE — Teach Pendant editor;

TCP - tool center point or tool central point.

INTRODUCTION

The industrial robot is a programmable manipulator in three or more axes with
various purposes, automatically controlled and reprogrammable. The field of industrial
robotics can be defined as the research, design and use of robots for the execution of
industrial processes.

Industry 4.0 will play an increasingly important role in global manufacturing. As
obstacles such as systems complexity and data incompatibility are overcome, manufacturers
will integrate robots into networks of machines and systems throughout the factory. Robot
manufacturers are already developing and commercializing new service models: these are
based on real-time data collected by sensors that connect to the robots.

Analysts predict a rapidly growing market for cloud robotics in which data from one
robot is compared to data from other robots in the same or different locations. The network
allows these connected robots to perform the same activities. This will be used to optimize
the robot's motion parameters such as speed, angle, or force. Ultimately, the advent of big
data in manufacturing could redefine the industry boundaries between equipment
manufacturers and manufacturers.

At present, industrial robots have improved the working time and quality of some
products in large factories, even more they have also helped man in some tasks that are
highly dangerous, leaving the work to a mechanical arm.

ROBOGUIDE is the leading of offline programming product on the market for
FANUC robots. The ROBOGUIDE family of process focused software packages allows
users to create, program and simulate a robotic workcell in 3-D without the physical need
and expense of a prototype workcell setup. With virtual robots and workcell models, of
offline program- ming with ROBOGUIDE reduces risk by enabling visualization of single
and multi-robot workcell layouts before actual installation. To ensure minimal impact on
production, cells can be designed with imported CAD tested and modified entirely offline.
Built on Virtual Robot Controllers to give you accurate motion and cycle times.

FANUC, one of the leading four robot manufacturers, provides not one but two
different programming languages: Teach Pendant (or TP) and KAREL. TP programs are

8

binary files that can be edited through the robot’s teach pendant buttons (or touch screen for
newer robots). TP files can also be compiled/decompiled from an LS file (human-readable
ASCII file). TP programs offer a limited assembler-like functionality. Alternatively, with
FANUC, you can program your own algorithms using a PC and KAREL (programming
language based on Pascal), but KAREL does not allow you to do robot movements nor edit
the program from the controller’s teach pendant.

ROBOGUIDE incorporates many application-specific tools into its software
options. With HandlingPRO software, there is no need for a prototype work cell setup. This
software allows users to simulate a robotic process or study feasibility options for

applications in a 3D space.

1 STATUS OF THE QUESTION AND STATEMENT OF THE TASK

1.1 Industry

Industrial robotics and automation are the pillars that have made possible the
consolidation of Industry 4.0, in addition to bringing with it numerous benefits for the
productivity and efficiency of production resources.

The different models of industrial automation that are established today eliminate
the subjective factor of human decisions, achieving lower margins of error and more precise
processes, while freeing human labor from repetitive or dangerous tasks.

Countless manufacturers use industrial robots to automate tasks, improve worker
safety, and increase overall production, while reducing waste and operating costs. With the
increasing prevalence of industrial robots in manufacturing environments, there has been an
increase in demand for many different types of industrial robots to suit specific applications
and industries.

Industrial robots are mechanical devices that, to some extent, replicate human
movements. They are used whenever it is necessary to reduce danger to a human, provide
more force or precision than a human, or when continuous operation is required. Most robots
are stationary, but some move around the job site delivering materials and supplies.

Industrial robotics are used to perform highly accurate and repeatable tasks that
result in higher quality products. The ability of industrial robots to work continuously
without rest is helping manufacturers to increase production. Furthermore, robots can work
in dangerous and noxious environments, thus improving working conditions and safety in
the production plant. Thus, the various advantages of industrial robots are encouraging
manufacturers to integrate different types of industrial robots into their production line to

increase plant efficiency and profitability, that is, technological maturity.

1.2 Simulation in industrial robotics
When a complete study is carried out for the automation of an industrial process, it
IS necessary to use the simulation of the process using computers to be able to evaluate the

system once it has been designed and thus avoid possible failures and mismatches with the

10

actual robotic system mounted. The main reason for carrying out the simulation is mainly
the prevention of failures and possible damage to the robotic arm mechanisms and the
production environment, thus avoiding costs derived from online programming.

Today, the software tools, designed mostly by the manufacturers of the industrial
robots themselves, allow us to analyze the process through the complete simulation of the
robotic cells using computers.

The simulation concept is possible thanks to the "offline” programming of the
system using specific software. The characteristics of these applications are so advanced
that they allow us to adjust to the maximum all the parameters of the movements and actions
of our robot, including transferring this programming directly to the robot and avoiding
reprogramming of the entire process once the system is physically mounted on the
production environment.

It is worth mentioning that the interface for the “offline” programming of robotic
systems is much more efficient than the programming that we can carry out using the “teach
pendant” controllers or through a “lead-by-the-nose” to record the movements that the robot
has to perform in the determined process "online".

For “offline” programming, a graphic environment is currently required in the
programming and simulation software, in order to visualize the process, having previously
defined the “world” of the arm's working environment. Thanks to the power of computers
and the high performance of computer-aided design (CAD) software systems, the systems
used for 3D modeling are ideal for today's design and manufacturing environments,
especially for robotic industrial processes, such as for the manipulation of objects or parts,
welding processes, painting, deburring, assembly of parts, palletizing. In general, we can
affirm that any industrial process that has a level of repetition within a production chain can
be robotized, benefiting from the advantages that current systems provide.

These programming techniques known as offline programming OLP used
appropriately would allow us to perform the following tasks before working in a productive

environment;

11

1. Develop models, test them and optimize them, before being used in the
manufacture of parts and tools. With this, it is possible to analyze the behavior of very
complex systems that are difficult to evaluate by other procedures.

2. Know what the behavior of the systems will be before building them, without
losing sight of the fact that the final values of the simulators will be approximations of the
real values. This implies that the technicians who carry out the design using simulators must
know how to correctly interpret the simulation results at all times.

3. Reprogram the process outside of a manufacturing line that is already in
production, if for any reason needs change. With this method the downtime of machines and
robots is reduced.

4. Anticipate the operation and commissioning of production lines, since it is an
independent system and can be carried out in parallel with the assembly of robotic cells.

5. Improve the quality and accuracy of welding points that could be performed by
operators, even the most expert ones.

6. Correctly design the trajectories of the terminal element (gripper or claw) as well
as its speeds and accelerations. During modeling, simulator programs report any collision
or loss of proximity between the elements of the model and the environment.

Clamp — tool used to capture and manipulate objects with a prehensile action in the
automated process with robots.

Claw — fixed tool used to capture objects that will be manipulated in an industrial
production process.

Concurrent Engineering, also called Simultaneous Engineering, Parallel
Engineering, Total Engineering or Integrated Product Design, among other names, is a
philosophy that directly affects the culture of organizations and rethinks the conventional
way of working on projects. We will consider some definitions that detail and summarize
the concept as such.

The term Concurrent Engineering initially emerged in the summer of 1986 when it
was used in report R-338 of the Institute for Defense Analysis (IDA) from which one of the
most universally accepted definitions arises: “A systematic effort for an integrated,

concurrent design of the product and its corresponding manufacturing and service process”.

12

It intends that those responsible for development from the beginning take into
account all the elements of the Product Life Cycle (PLC), from the conceptual design to its
availability, including quality, cost and user needs: “Simultaneous engineering is the
simultaneous project of a product and its manufacturing process. It is an integrated approach
to product development that emphasizes customer expectations by manufacturing high-
quality products, faster and at lower cost. Supports the values of multidisciplinary
teamwork, such as cooperation, trust, and sharing and exchanging knowledge and
information, so that decision-making during the design stage proceeds with emphasis on the
simultaneous consideration of all aspects of the product life cycle”.

A group working on product design or a committee drawn from different
departments that meets regularly are not Concurrent Engineering. For Simultaneous
Engineering to really apply, the team must be comprised of product design engineers,
manufacturing engineers, marketing, purchasing, finance, and major suppliers of

manufacturing equipment and components.

e ™
Process planner |

.

's ™ "~ ™
Product designer }— —{ Logistics staff ‘

p ' . L product H \,
Prodgctlon design Client ‘

L Engineer decision L
[Maintenance \'}_ (Other staff in the \"
L engineer . Product Life Cycle |

e ™

‘ Shopping Staff |

h

Figure 1.1 Concurrent Engineering Multidisciplinary Task Team

It must also be permanent throughout the duration of the project so that your work
receives the priority it requires. The key in multidisciplinary work teams is that from the

start, when the design is still only a sketch, the manufacturing engineers who are part of the

13

team have as much information about the product as any other member of the group. This
way they can begin to plan the manufacturing facilities with the same concept with which
the design engineers are planning the object that they are going to produce, that is, they carry
out simultaneous work.

There is a direct and permanent relationship that allows recommendations to reduce
costs and number of pieces, considerably increasing quality. Having marketing staff on the
team ensures that sales goals are achievable, and most importantly, this staff contributes
directly to emphasizing customer expectations, allowing greater weight to be given to this
aspect in the simultaneous engineering than in traditional engineering. This approach makes
it possible to identify, at an early enough stage, points where rectifications should be made,
at a much lower cost than if they were done later. As we can see, the concept of simultaneous
engineering adapts perfectly to the production environments programmed by means of
simulation software, making it easier to reduce process corrections and ultimately the cost
of the product life cycle.

It has been shown in projects carried out that 80% of the manufacturing cost is
determined at the design stage, which is one of the first within the product life cycle.

This determines the ultimate importance of the design stage and how the activities
carried out here can impact the entire organization. To illustrate the concept, the figure
below shows the life cycle of a product development project under both approaches: that of
traditional engineering and that of simultaneous engineering, which is notable for its product

life cycle time (PLC) reduction.

14

Cost

Structuring ” Execution ” Closing H Production

Conventional
Engineering

i\ Simultaneous
i Engineering

Structuring H Execution H Closing H Production Timz

F 3

v

P.L.C. Conventional Engineering

" P.L.C. Simultaneous Engineering

Figure 1.2 Product life cycle under the traditional and concurrent approach

Among the specialized bibliography we highlight the book “Concurrent
Engineering” by John R. Hartley, where it clearly shows what traditionally happens in
companies depending on their “culture”. Conventional engineering drives a sequential
approach to the product development process. According to this approach, each area of the
company, after executing its part, transfers its result to the next sector and is waiting. Each
organizational unit that receives the information will inevitably find fault according to the
perspective of its own specialty, and will return it to the sector of origin for the
corresponding adjustments.

The traditional or compartmentalized system generates conflicts and consequently
brings many changes and feedbacks in the different stages, originated because some
necessary characteristics in the later stages were not considered from the beginning of the
process, a fact that directly affects the increase in costs and product development time. Using
traditional engineering, the quality of the product is put at risk, either because the corrective
measures were not taken or because the changes are seen as rectifications that would not
exist if an integrated product design had been worked on from the beginning. In the graph
we can see that in the early stages the time increases, but the total cycle time is substantially

reduced. A key principle of concurrent engineering is the introduction of quality from the

15

start of design, eliminating any element that may be affected by variations in production. A
culture is required in which each of the people involved in the process is responsible for
quality. This is where the concurrent engineering philosophy and the total quality
philosophy, whose common goal is customer satisfaction, totally fit.

Taking on the challenge of working under the simultaneous engineering approach
requires time and a special effort to train human talent, initially to change the way of
working and later trained in the techniques and skills required for its implementation.
Initially, there may be resistance and conflicts on the part of people, especially by the area
managers who feel the loss of power in favor of the project teams, or also by the pressure of
the deadlines for the delivery of tasks that were previously carried out after months, and
with the simultaneous approach many times they should be taken in a few days.

It is definitely not easy when sequential engineering with well-defined stages has
been used, where each department has responsibility for a particular function and it is
developed after the previous one has been completed.

The hierarchical systems that most organizations have make teamwork difficult, so
it is necessary to be careful and prepare for a transition process towards more flexible and
dynamic organizational structures that facilitate and support the development of new
attitudes, valuing and promoting teamwork, as well as towards performance evaluation
systems where not only technical competence is taken into account, but also creativity and
success as members of a team.

Sometimes the trend is a reorganization with an emphasis on the market and
competitiveness, as in the case of circular structures, matrix structures, and strategic
business units.

The current paradigms that govern both the training of professionals and the
performance of human talent in companies tend to value individual work. Concurrent
engineering requires a cultural change in which creativity, versatility, multidisciplinary
work, trust and enthusiasm are the raison d'étre of the conception of work. In many world-
class companies, especially Japanese ones, the simultaneous approach is so ingrained in
their culture that teamwork is inherent in political decisions and day-to-day operations and,

of course, they do not conceive of a different way of working. It is simply common sense.

16

Although it is not strictly necessary for the company to make strong investments in
computers, sophisticated software and state-of-the-art equipment to apply the fundamentals
of concurrent engineering, there is no doubt that it would be ideal and of great importance
to have tools and techniques that facilitate and expedite the decision-making process, as well
as that of cultural change. The challenge to manufacture today is to rely on techniques that
remain a competitive advantage through the use of information technology and tools that
allow efficient linking throughout the entire value chain.

However, as long as traditional management techniques continue to be used, it
cannot be said that concurrent engineering is being applied. Leadership has to come from
above, with senior managers resolutely supporting and facilitating the means to develop the
capacities of work teams. In addition, they must practice a delegation policy, allowing the
team to carry out the project with great autonomy, to the point that if a senior manager really
believes that the project is going in the wrong direction, he must gather the entire work team
to reach a true consensus decision.

Essential tools for Simultaneous Engineering include Computer Aided Design
(CAD) Systems, which are very important because they allow simulation in parallel, which
reduces the risk when deciding on the most practical option. To maximize the benefits of
Concurrent Engineering, one must tend towards the use not only of Design but also of its
integration with Computer Aided Manufacturing (CAD/CAM).

With a correct combination of "hardware" and "software" that allows engineers from
different disciplines to work in parallel, prototype manufacturing can be reduced and its lead
times can be reduced considerably. Likewise, Computer Aided Engineering (CAE) is
another tool that allows projects to be developed more efficiently through software. It is
important to mention that the use of CAO / CAM / CAE has as a priority to automate the
work of the elaboration of projects, while Simultaneous Engineering is more concerned with
ensuring interaction between team members working on the project. The simultaneous
approach is supported by techniques such as:

— Deployment of quality function (QFD). The product is specified in a matrix, relating
the consumer's wishes (customer attributes) with the quantified engineering

characteristics.

17

— Statistical process control (SPC). Set of techniques and procedures applied to the
various phases of the manufacturing process to reduce or eliminate failures in the
quality of the final product.

— Failure Analysis (FMEA): Set of activities that identify possible failures of a product
or process and their causes, measures that can prevent or reduce the possibility of
occurrence and documentation of the process, the result of which will be the
recommendation of improvements.

— Design for manufacturing and assembly (DFMA). Through software, the product
designer is alerted to the implications of their work in the manufacturing phase.

— Taguchi's methods. They lead to a robust design unaffected by the variables of the
production process.

— Justintime (JIT). A production method that attempts to make materials available only
when required, greatly reducing inventory costs.

— Benchmarking. Set of procedures through which parameters and specifications of a
product are compared with those of the competition, which has the highest
performance.

— Computer integrated manufacturing. Use of software that makes it possible to take
advantage of computing resources to connect the manufacturing equipment with the
database of the project area.

The current trend is to seek greater functional integration. ldeally, simultaneous
engineering seeks to apply the tools that allow all members of the project team to have
shared access to its updated information, in such a way that they can be stored and processed
transparently. The factory of the future must be, in its ideal conception, free of
organizational and geographical barriers, with some limitations imposed by the dynamics of
business. Fortunately, Simultaneous Engineering lends itself to a gradual introduction and
is as useful on small projects as it is on large ones. Therefore, small and large companies
can select the items they need. On the other hand, smaller companies are likely to use some
typical concurrent engineering elements in isolation, simply because employees often have
to take on more than one responsibility. Some sectors have been interested in this

philosophy, such is the case of the metal-mechanical sector, which has directed efforts to

18

the knowledge of the subject. Every day more companies will take into consideration the
simultaneous way of working, especially in the field of automated production.

In short, simultaneous engineering allows companies to increase productivity in the
face of a significant reduction in delivery times and costs, avoiding product rectifications,
as well as integration between different departments or areas and improvements in their
communication. In addition, it allows to improve the quality of the product, since from its
very conception and design the characteristics and conditions in which it will be developed
are foreseen, in such a way that the product is conditioned to the client's specifications from
the beginning of the life cycle of the product. For this reason, Concurrent Engineering brings
excellent results that allow companies that apply it to achieve true competitive advantages.

It must be borne in mind that simultaneous engineering must be adapted to the
characteristics of each organization, in order to create an environment and a structure for its

efficient application.

1.3 Analysis of robotic systems

1.3.1 Characteristic of the manipulator's universe

In Robotics Industries Association (RIA) an industrial robot — is a reprogrammable
multifunctional manipulator designed to move materials, pieces, tools or special devices, by
means of variable movements programmed for the execution of a variety of tasks.

The planning process of an industrial process for chain production, or any type of
activity that has a certain function in an automatic system, can be considered as an automatic
action carried out by an industrial robotic manipulator. Likewise, we must consider that each
action within an automated production chain has a series of conditions that the robot
manipulator must meet.

Therefore, the robots that are used in the industrial processes are analyzed for the
task that they must perform according to the following classification criteria:

— Degree of freedom: It is the number of axes that the robot has to carry out its
movements. Two axes are required to reach any point on a plane, three axes are
required to reach any point in the space of a bounded system. To fully control the

orientation of the arm end (i.e. the wrist), three more axes (yaw, pitch, and roll) are

19

required. Some designs (for example, the SCARA robot) exchange limitations on the
possibilities of movement in cost, speed and precision.

Degrees of freedom: it is the same classification as the number of axes.

Work envelope: the region of space a robot can reach.

Kinematics: the actual arrangement of the robot's rigid limbs and joints, which
determines the possible movements of the robot. Robot kinematics classes are:
Avrticulated, Cartesian, Parallel, and SCARA.

The load capacity or useful load: it is weight that a robot can lift.

Speed: the speed with which the robot can position the end of its arm. This can be
defined in terms of the angular or linear speed of each axis, or a compound speed,
that is, the speed of the end of the arm when all the axes move.

Acceleration: is the capacity with which an axis can be accelerated. This is a limiting
factor, since a robot cannot reach its maximum specified speed for short distance
movements or a complex path that requires frequent changes of direction.

Accuracy: is the ability of a robot to reach a certain exact position. When the absolute
position of the robot is measured and compared to the defined position, the error is a
precision measurement. Accuracy can be improved with external detection, for
example, an IR or vision system. Accuracy may vary with speed and position within
the work envelope and with the payload.

Repeatability: ability of the robot to return to a programmed position. It is not
considered the same as precision. It may be that when the robot adopts a certain
position X, y, z it only achieves a precision of 1 mm from that position. This would
be the accuracy that can be improved by calibration. If that position is programmed
into the controller memory and each time it is sent there it returns 0.1mm from the
programmed position then the repeatability will be within 0.1mm.

Motion Control: for some applications, such as “pick and place” mounting, the robot
only needs to repeatedly return a limited number of times to predefined positions. For
more sophisticated applications, such as welding and finishing (spray painting),
movement must be continuously controlled to follow a path in space, with controlled

speed and orientation.

20

— Power supply: some robots use electric motors, others use hydraulic actuators. The
former are faster, and the latter are stronger and more suitable in applications such as
spray painting, where a spark could cause an explosion, however, under the internal
pressurizing air of the arm it can prevent the entry of flammable vapors, thus like
other pollutants.

— Transmission: some robots use electric motors on the joints through gears and others
use the motor for direct articulation (direct transmission). The small robot arms are
capable of working at high speed, under direct current motor torques, which generally
require a complex gear system. In these cases, harmonic transmission is often used to
avoid gear mismatches.

— Conformity: This is the measure of the angle or distance that a robot axis moves when
a force is applied. Compliance when a robot goes into a position carrying its
maximum payload will be in a slightly lower position than it is carrying no load.
Compliance may also be responsible for mismatch carrying heavy loads in which case

the acceleration would have to be reduced.

1.3.2 Physical characteristics of the process

The industrial process to be performed is a “pick and place” handling system located
in an environment of an industrial production plant.

The manipulator will aim to move parts and materials from one location to another
within its range. By means of automatic accessory systems (such as conveyor belts and other
manipulator robots) the robot will be provided with parts so that it can manipulate, capturing
them from their initial position and depositing them in the desired final position. The pieces
that will take part in the process will be defined on supports, always maintaining the same
origin position, and thanks to the programming of the manipulator robot, they will always
maintain the same destination positions.

As for the manipulated objects, they will be pieces and tools whose mass n will
exceed 20Kg, and the distance between supports will not exceed 2.5 meters in length. In
order to manipulate the mentioned pieces it will be necessary to equip the robotic arm with

an EOAT tool (End of Arm Tool) capable of picking up these pieces in order to transport

21

them from their original position to their destination position. For this, a clamp with a
prehensile capacity will be used with the capacity to hold a mass of 20 kg, which is the
maximum mass to be handled.

Taking these characteristics into account by calculating the "payload” (payload
including the weight of the robotic doll, the EOAT and the part) we have to select a robot
with a sufficient "payload"” and range of range to be able to tackle the stated needs . The
chosen robot must have degrees of freedom enough to allow translational movements in the
work cell.

We must bear in mind that the pieces must be turned while they are moved from

position, which will imply that the freedom of movement of the robot must be high.

1.3.3 Mathematical descriptions of robot's motions

We know that the position of a point in three-dimensional Euclidean space is
determined by three quantities, which we call its coordinates, and we say that they are
expressed in some reference system, formed by three axes, usually rectilinear.

Hereinafter we will exclusively use straight, orthogonal (that is, with its three
perpendicular axes two by two), normalized (that is, the lengths of the basic vectors of each
axis are equal) and right-handed (the third axis is product vector of the other two). So we

will simply use the term "system" to refer to orthonormal systems.

/N
Z
Z
> >
« - <«
X X XANy=2Zz
1 — Non orthogonal system 2 — Orthonormal system

Figure 1.3 Types of referral systems

22

The coordinates of a point, denoted by (X; y; z), are the projections of that point
perpendicular to each axis, or, equivalently, the components of the vector that joins it to the
coordinate origin. Instead of using these, it will be more convenient to use the so-called

homogeneous coordinates, in the form:

x’ x' = xw

y, where y' = yw, (1.1)
z z' =zw

W

Where w is an arbitrary quantity, which is usually taken as 1. If, as a result of some
calculation, w were other than 1, the usual coordinates are reconstructed simply by dividing
the first three homogeneous coordinates by this fourth. The translation of a point x by a
vector v is obviously point x’ such that:

X'=xX+7, (1.2)

x' X Uy
(V) = (y) + (vy), (1.3)
z' z Vz

But also as the product of a matrix by a homogeneous vector, in the form:
x' 1 0 0 Uy X

y\1_[0 1 0 v, ||y

z 0 01 v,[\%Z
0 00 1/

This expression can be written as:

)) (1.4)
1
This has the advantage that, if:
X' =H-% (1.5)
then:
X=H)1-%, (1.6)

where the inverse can be calculated, it turns out to be:

1 0 0 —v,
01 0 —-vu
1
0

(H)™ = : (1.6)

0 O -,
0 0 1

which is consistent with the fact that x is translated by a vector —v with respect to x'.

23

Regarding rotation about an axis, in the two-dimensional case, it is rotating with

respect to a z axis perpendicular to the plane of the figure.

¥ ;
5 L~ o

Lrs L.

Figure 1.4 Rotation of the reference system with respect to the Z-axis

Calling i, j the basic vectors of the original system, and i' and j' those of the rotated system,

we have to:
X=xi+y/=xT+y7, (1.7)
and
oo o
To consider that:
xU+ y] = x'(cos T+ sin8)) + y'(—sin 67 + cos), (1.9)

Matching component to component, we write the matrix as:

G)=(o o (3) (1.10)

If we generalize to three dimensions, since the z coordinate does not vary and the fourth

homogeneous coordinate is still 1, we have:

X cos®@ —sinf 0 0\ /x'
Y\ _|[sinf cos® 0 O0\[y
z | 0 0 1 0 z' | (1.11)
1 0 0 0 1 1

To find the inverse transformation, it is enough to see that from the point of view of R', R is

rotated one angle —8. Then we can affirm that:

24

X cos(—8) —sin(—=6) 0 0\ /x'
y)_|sin(=8) cos(=6) 0 0\[y |_
z | 0 0 1 0) z |
1 0 0 0 1/ \1
cos(f) sin(@) 0 0\ /x' (1.12)
—sin(8) cos(8) 0 0 \[)y
0 0 1 0)\Z
0 0 0 1 1

This operation is simpler than inverting the matrix, although, of course, equivalent. In

general, if we had rotated around another of the basic axes, you can see that:

1 0 0 0
|0 cos(8) -sin(8) O
Rot(x,0) = 0 sin(@) cos(@) 0]’ (1.13)
0 0 0 1
cos(f) 0 sin(f) O
_ 0 1 0 0
Rot(y,0) = —sin(d) 0 cos(8) 0]’ (1.14)
0 0 0 1
cos(8) —sin(@) 0 O
Rot(z,0) = 51“0(9) COSO(Q) (1’ 8 (1.15)
0 0 0 1

It is worth noting the change of sign in the rotation around the y axis, because, if the axis
around which we rotate points at us, the other two form an angle of 90° in the case of xyz,
but -90° in the case of y. As many successive transformations (rotations and translations) as
desired can be applied to a point. The resulting operation would be given by a matrix that
would be the product of the matrices of each operation, applied in the correct order, since
the product of matrices is not commutative. The first transformation applied is placed to the
right, being expressed as:
Y = T,R;T{R, R, X, (1.16)
It means that rotation 1 is applied to point X, followed by rotation 2, followed by translation
1, then rotation 3 and finally translation 2.
Let us now see what the rotation matrix would be with respect to any axis. Let be an
axis that passes through the origin defined by a unit vector around which we will rotate an

angle 0.

25

7= (1,17, 1), (1.17)
This rotation can be broken down into three rotations on the basic axes, which will be
equivalent to:
— Rotate an angle a around x, whereby P will move to position P';
— Rotate an angle -p around y, whereby P* will move to position P";
— Rotate an angle 6 around z, which is the requested rotation;
— Rotate an angle around y, undoing the second rotation;

— Rotate an angle -a around x, undoing the first rotation.

So we have:
R?,G = Rx,—aRy,ﬁRz,HRy,—ﬁRx,a ’ (1-18)
1 0 0 0 cf 0 sp O cd —-s6 0 O
R — 0O ca sa O}y O 1 O O} ([(s6®@ 68 0 O
T 0 —sa ca 0) |\ =sp 0 ¢ O 0 0 1 0
0 O 0 1 0O 0 0 1 0 0 0 1
cf 0 —sp O 1 0 0O O (1.19)
0 1 0 0} (0 ca —sa O
sB 0 ¢ O 0 sa ca O

0O 0 0 1 0 O 0 1
The treated example is summarized in the following figure:

v
£ _"""""""""""""'i,’-‘-ﬁ
. ¥z = |
E o ~ i
! 14 o ; H -
i / a4t %
| 74 - ! H
| 3 15 i
1 ,/. D b ? !
i Sz ‘ i
4 ! 1
/u'-'-'-'-'-'-—---'-'-'---'------'-'.’ --------- &
o :
/ﬂ)<r_\,"~rz '
L/ =
Y ST e R e e o A A o e Y o - P’
2
l.//
s
7 pee 4
p s
/6

Figure 1.5 Rotation about an arbitrary axis from basic axes

26

We can check that it is met:

sa = —X—, (1.20)
ry+rs
ca = —2—, (1.21)
ri+rZ
sp=E=ry, (1.22)
ry+Ts
sp = =7+, (1.23)

By multiplying it all remains:

r2v0 + c6 v — 1,560 11r,vl + 1,50 0
2 —
Rip = vl + 1,50 100 + ¢ TZTJ;UH 7,s60 0 , (1.24)
r1rv0 — 1,560 1,n,v0 +1.s0 rivl +co 0
0 0 0 1
sO = sin6,cO = cosl, v =1 — cosH, (1.25)

Obviously, if r, =, = 0 is done, the rotation around the z axis is obtained. In the same

way we can obtain the rotation of the other two axes applying this same method. We must
emphasize that any consecutive sequence of transformations can be specified in two ways:
1. Performing the rotation that takes one system to the other, around the initial axes;
2. Performing the rotation that takes one system to the other around one of the rotated
axes, that is, those that resulted from the last transformation.
In the first case, the matrix that describes this transformation must be pre-multiplied by the
one that described the transformations carried out so far, obtaining the total transformation.
In the second case, the matrix that describes this transformation must be post-multiplied
by which she described the transformations carried out so far, obtaining the total

transformation.

1.4 Choice justification of Roboguide FANUC
The current market in the field of industrial robotics offers various possibilities in
terms of the choice of a simulation tool, generally associated with a specific brand of robots.

27

The vast majority of commercial simulation tools are developed by the manipulator robot
brand with which it intends to work, taking into account that robot manufacturers provide
simulation software adapted to their controller models. This fact has some logic since the
manufacturer is the provider of the controller and is the one that best knows all the
functionalities that your device offers when transferring them to software of this nature.

Given the great advantages offered by the simulation system of a process in an
"offline" way, manufacturers have expanded their commercial offer by offering these tools
to their customers, in order to improve the programming system of their manipulators and
also to expand their product offer. with this powerful software.

After reviewing the different manufacturers of current industrial robots (ABB,
FANUC, KIKA) we have been able to observe that the Roboguide tool from FANUC is one
of the most complete. Given the relevance of the FANUC brand in the industrial
environment, we have opted for its tool, taking into account the real application of the
industrial process to be simulated in the current industrial environment. Roboguide is a
powerful "offline” programming software, which allows us to supervise the programmed
process at all times, avoiding programming and testing costs in a real environment.

The interface that the application offers allows us to design the environment of the
cell in a very complete way and with some ease, as well as allowing us to configure each of
the objects that will intervene in the production process. The final objective that allows us
to achieve is the verification of the complete operation of the robot. We can easily detect
collisions or interferences produced between the robot and the other objects in the cell. It
allows us to import CAD files to include existing parts in the virtual environment. It also
includes an integrated virtual "Teach Pendant" that simulates real consoles.

One of the outstanding features of the application is that it is capable of automatically
creating reference programs with the real robot in order to calibrate the robotic system of
control, whenever the connection with the real robot is available. General control system is

shown in the figure below.

28

SERVO AMPLIFIERS
MODULE

PANEL PLATE

mg. -

(}\:’ ROBOT

'

: 000 o

PLATE E2/E7/AUTO
LA

ﬂ . . .
‘ N
‘) t I
XS2 XS3 XS4 § RP1 RM1
e e)

Figure 1.5 System of control for the robotic system Fanuc

Roboguide's HandlingPRO module allows us to carry out a “Pick and place”
handling system with the elements most frequently used for this type of process, which is

perfectly adapted to the process that needs to be programmed and simulated.

1.5 Research task statement

Based on the fact that the main objective of the research work is the development of
the Fanuc industrial robot control program by constructing a simulation model of a robotic
production workcell in the Roboguide software environment, we can define our main

research tasks:

— Calculate the payload, which includes the weight of the robot arm, EOAT, and part.
— Choose a robot in accordance with the given criteria, with sufficient “payload” and
range to be able to fulfill the stated needs. The selected robot must have a sufficient

degree of freedom to allow translational movements in the working area.

29

— Estimate the cycle time and volume of machined parts.

— Make the necessary changes to the simulation model to ensure the specified criteria.

— Add a second robot to the simulation model.

— Adjust the trajectories of the robots so as to avoid a collision.

— Define a general methodology for building control programs for Fanuc robots.
Given the following system requirements:

— Ensuring minimum runtime.

— Ensuring the maximum number of machined parts.

— The ability to implement control programs in the controller of a real Fanuc robot.

— Creating a simulation model in accordance with a given layout of elements.

— Ensuring synchronization between two robots.

1.6 Conclusions

The state of Industrial robotics today, the importance of Simulation in industrial
robotics was analyzed and the concept of "offline” programming was identified. In Analysis
of robotic systems, we identified the Characteristic of the manipulator's universe and
Mathematical descriptions of robot's motions, which gave us the opportunity to more
comprehensively understand the concept of a robotic system as a whole.

After reviewing the different manufacturers of current industrial robots we have
been able to observe that the Roboguide tool from FANUC is one of the most complete.
Given the relevance of the FANUC brand in the industrial environment, we have opted for
its tool, taking into account the real application of the industrial process to be simulated in
the current industrial environment. Roboguide is a powerful "offline” programming
software, which allows us to supervise the programmed process at all times, avoiding
programming and testing costs in a real environment.

Roboguide's HandlingPRO module allows to carry out a “Pick and place” handling
system with the elements most frequently used for this type of process, which is perfectly
adapted to the process that needs to be programmed and simulated. In this way, we were
able to identify the formulation of the research problem in this work.

30

2 FANUC ROBOT PROGRAMMING

2.1 TPE programming

The programming of a robot could be defined as the execution of a set of commands
and orders in a sequential way so that, step by step, they will execute each one of the orders
that will complete the different processes of our system. We have two possible methods to
design the manipulator program using the simulation tool:

“Roboguide Virtual Teach Pendant Editor” - the application offers us the possibility
of programming the robot with a virtual "teach pendant", capable of working with all the
manipulator functions administered by the controller. The virtual teach pendant has the same
software as a real teach pendant physically connected to the manipulator. It is used to create
complex instructions with the functionalities of TP programs.

“Roboguide Simulation Programs and editor” - the application also offers us an
intuitive and very complete editor, which allows programming of programs through a
graphical environment. The great advantages of this editor are that it allows creating robotic
programs in a more comfortable way than in a TPE terminal and offers the great advantage
of evaluating the cycles of work cell processes “offline” using the animations generated by
the simulation program, controlling the various factors that can interfere with our simulation
without having to suffer them in a real environment (incorrect or impossible trajectories,
collisions, points out of reach).

For the robotic arm to execute the given set of commands in accordance with its
working environment, will be written the program using the Virtual Teach Pendant robot's
virtual control panel, as this happens on real production lines. We will also carry out the
implementation process using the simulation editor offered by the software.

We will start with a brief description of the use of this interface, main functions,
menus and keys. There are different models depends on the model of the robot and the

controller you need. The real Teach Pendant FANUC robot control panel looks like:

31

EMERGENCY STOP

ON|OFF SWITCH___ | BUTTON
Used with the Stops a running program,
DEADMAN turns off drive power to

SWITCH this the robot servo, and
enables or applies brakes to all
disables robot joints.
motion.

SHIFT KEY

Must be pressed
and held before
you press a
desired jog key

RESET KEY ! bt il |, These 12 keys
Clears alarms ! % are used to

= X manually move
8 each axis of

~ the robot.

COORD (coordin:
Selects the job

coordinate
system or
select another
group.

JOG SPEED KEYS
Adjust the speed of the robot

while jogging the robot.

Figure 2.1 Teach Pendant FANUC robot control panel

The functionality of each virtual Teach Pendant’s key is the same as in real control
panel shown in the diagram. There are differences between different controller models, but
the difference is not significant. Teach Pendant makes possible to control HandlingTool. It
has keys for direct control over the motions of the HandlingTool, displaying the software
menu, selecting various options from different menus, prompts in creating TP programs,

and perform certain functions of palletizing.

32

Indicators

L]
7 Screen

Program keys: Use these keys to
" select menu options.

FCTN: Use this key to display
" the supplementary menu.

- STEP: Use this key to switch between
== L— step execution and cycle execution.

HOLD: Use this key to stop the robot.

ENTER: Use this key to enter a numeric
value or to select an item from a menu.

MENU: Use this key to
display the screen menu

CURSORS: Use these
keys to move the cursor

BACK SPACE: Use this key to
delete the character or number
immediately before the cursor.

RESET: Use this key to clear the alarm.

FWD: Use this key to run a program
in the forward direction.

BWD: Use this key to run a program
in the backward direction.

COORD: Use this key to select
the jog coordinate system.

ITEM: Use this key to select
an item using its number.

MOVE MENU: Use this key to
display MOVE MENU screen.

SET UP: Use this key to display the
screen of choosing different modes.
POSN: Use this key to

TOOL1/TOOL2: Use this key to display
screen of instructions for Tool1/Tool2.
display position data. Jog Speed keys: Use Jog keys: Use these keys

. ; STATUS: Use this :
1/0: Use this key to these keys to adjust the to move the robot manually.

; key to display the
display Input/Output speed of the robot when
data. STATUS screen. it moves.

L2 I8 \
/ ' Ern
alz2E)

Figure 2.2 Functionality of each virtual Teach Pendant’s key

The following table specifies each of the states according to the upper left LED

panel:
Table 2.1 — States of the “led” indicators of the “Teach Pendant” console
FAULT indicates that an alarm exists
indicates that the HOLD button is pressed or that a HOLD signal is
HOLD _
received
STEP indicates that you are under step-by-step operation mode
BUSY lights up while the robot is working. It also lights up when the CPU
performs jobs related to the movement of the robot (copy, paste, print ...)
RUNNING | indicates that the program is running

33

GUN ENBL | indicates that the gripper can be opened or closed
WELD o _
indicates that spot welding can be performed
ENBL
I/0 ENBL indicates that the 1/O signals are activated
WELD I L o
when illuminated, indicates arc welding is activated
ENBL
ARC illuminates when arc welding is being
ESTAB used
when DRY RUN is lit, it indicates that the operating mode is selected
DRY RUN _
using dry start
JOINT lights when JOINT movement is selected as the manual movement
coordinate system
V7 lights when Cartesian motion is selected as the manual motion coordinate
system
lights when tool movement is selected as the manual movement
TOOL

coordinate system

The LEDs that we will take into account for our simulation process will be those of

the “handling tool” since the LEDs that indicate the states of some welding process will not

be used (those marked in gray).

On the Teach Pendant keyboard we can find the buttons that we will use to operate

the manipulator programming software. The main functionalities are specified in the

following Table 2.2:

34

Table 2.2 — Overview of the Teach Pendant Console Buttons

KEY

FUNCTION

F1 JLHMFa ‘[F4J‘ FSJ

The function keys (F) are used to select a function menu on the last
line of the display.

:E}

The NEXT key is used to enable more function keys on the next

page.

i)

The MENU key to display the screen menu. The FCTN key to

display the function menu.

=] =

The SELECT key to display the program selection screen. The EDIT
key to display the program edit screen. The DATA key to display the

program data screen.

The MAN FCTNS key displays the manual operation screen.

The STATUS key displays the current position screen. The I/O key

Ipoenjk o) |%'WU% displays the 1/0 screen. The POSN key displays the current position
screen.
@ The SHIFT keys are used to enable robot motion, program position
data, and start a program.
Z |-y | x| +2 ” +y [ax . . .
@3 J| 92 | @ L(Ja) @2 || @1 | | The movement keys are effective as long as a Shift key is held down.
[3] = [fﬂ 2 E‘] X | | They are used for motion enablement.
(J6) w9)\ 18))| ws) J_ (49

The COORD key selects a manual move coordinate system. Each
time the COORD key is pressed, it selects the next type of movement
in the order: JOINT, JGFRM, World frame, TOOL, USER. When
this key is pressed while holding down a Shift key, a move menu

appears for changing the coordinate system.

The speed variation key. Each time it is pressed it varies in the order:
VFINE, FINE, 1%, 5%, 50%, 100%. (5% change of the amount for

5% or less and 5% change of the amount for 5% or more.

35

BWD|

{

D
K]

The FWD key or the BWD key (+ SHIFT key) starts a program.
When the shift key is released during regeneration, the program is

interrupted.

The HOLD key causes a program to be interrupted.

The STEP key selects step by step or performs continuous cycle

operation.

The PREV key recalls the most recent state. In some cases, the key

cannot immediately return to the previous state.

LIERENNENIN()

The ENTER key enters, validates and selects a number or a menu.

The BACK SPACE key deletes the character or number immediately

BACK
SPACE
before the cursor.
The arrow keys move the cursor. The cursor is the highlighted area
@ 5 that can be moved on the teach pendant screen. This zone becomes
© the operation object (input or change of value or contents) of the key

on the programming console.

@

The ITEM key moves the cursor to a line whose number is specified.

The last part that we can distinguish in the "Teach Pendant" is the "display", which

shows us the menus and the different screens available in the manipulator programming

software.

The following figure shows an example “SAMPLE1” of the “display” indicating the

main characteristics in an arm positioning program:

36

Program name_L,-;MLEl
1/9
Program statement Linenumber—— g 1: o P[1] 100% FINE
2 HAND1CLOSE
— [otion instruction————M» 3: 7 P[2] T70% CNT50
4: .. P[3] 500mm/sec CNT1O0
—» \Macro instruction™ T 5 HAND1OPEN
6: I. P[4] 500mm/sec CNT1O0
T HANDICLOSE
—» Endinstruction————» 8: END
Program end symbol——» [Endl
| POINT | | | |TC-'._T-Z‘.Z-I':_3

Figure 2.3 Example of program in a display TPE

Knowing the main characteristics of the TPE programming device, we can begin to
use it to be able to carry out our program, thus composing a routine for the robot and the

process in general.

MENUS MENUS

2 TEST CYCLE 2 EDIT

3 MANUAL FCTNS 3 DATA

4 ALARM 4 STATUS

5 1I/0 5 POSITION

6 SETUP 6 SYSTEM

7 FILE 7

8 8

9 TUSER 9

0 --NEXT-- 0 -- NEXT--
Page 1 Page 2

Figure 2.4 TPE device main menus

In the Figure 1.9 we can see the main menu of our TPE device. We will explain the
main sections in a general way and then specify those used in our programming process
using the Roboguide TPE device:

— UTILITIES The utility screen is used to display the tracks.
— TEST CYCLE The test cycle screen is used to specify the data for the test operation.

— MANUAL FCTNS The manual operation screen is used to execute macro

instructions.

37

— ALARM The alarm history screen shows the history and details of the alarms.

— 1/ 0 The I / O screen for viewing, forcing, simulating, and configuring input and
output signals.

— SETUP The setup screen is used to set the system.

— FILE The file screen is used to read or store files.

— USER The user screen shows user messages.

— SELECT The program selection screen is used to list or create programs.

— EDIT The program edit screen is used to correct and run the program.

— DATA The data screen shows the values in registers, position registers and other
variables.

— STATUS The status screen shows the status of the system.

— POSITION The current position screen shows the current position of the robot.

— SYSTEM The system screen is used to set system variables and mastering.

Program detail information names a program and defines the attributes of the
program. Program detail information consists from attribute-related information items
(such as a creation date, modification date, a copy source file name, presence/absence of
position data, and program data size) and information items (related to an execution
environment such as a program name, subtype, comment, group mask, write protection,

interruption disable and stack size).

Program detail
1/7
Creation Date: 16-Jan-1994
Modification Date: 08-Mar-1994
Copy Source:
Positions: FALSE Size: 312 Bytes
Program name:
1 SAMPLE3
2 Sub Type: [None]
3 Comment: [SAMPLE PROGRAM 3]
4 Group Mask: [1,%, ¥ * ¥ & & &
5 Write protect: [OFF]
6 Ignore pause: [OFF]
7 Stack size: [500 1
| o | erev | wmExT | | \

Figure 2.5 Program detail information screen

38

The program information screen is used to set program detail information. The
program information screen is displayed by selecting F2, DETAIL on the program selection
screen. After displaying the program selection screen. We can move the cursor to the

program that should be edited and press ENTER key. The program edit screen appears:

SAMPLELl
1/6

1: J P[1] 100% FINE

2: J P[2] 70% CNTS0

3: L P[3] 1000cm/min CNT30
4: L P[4] 500mm/sec FINE

5: J P[5] 100% FINE

[End]
| POINT | | | | TOUCHUP |

Figure 2.6 Program edit screen

To move the cursor, use the arrow keys such as up, down, right, and left. To move
quickly through the information, press and hold the SHIFT key and press the down or up
arrow keys. To select the line number, press the ITEM key and enter the line number you
want to move the cursor.

A motion instruction moves a robot tool to a specified point within the operating
area at a specified feed rate and in a specified traveling mode. The items listed below must
be specified in a motion instruction. The format of a motion instruction is shown in Figure
1.12.

110 272 deg/sec
110 3200 sec
110 32000 msec

Position data
UFD UT1
Position data format X 1500374 W: 10.000
P Y. -342992 P: 20.000
PR 7. 956895 R: 40.000
\/ CONF: N U T000
J Pli] J% CNTk
VAN VAN
Maotion format Feedrate Positioning path
J 1 to 100% FINE
L 1 to 2000 mm/sec CNT 0 to 100
c 1 to 12000 cmémin
A 0.1 to 4724 4 inch/min

Maximum value of feedrate depend on robat type.

Figure 2.7 Motion instructions

39

In teaching a motion instruction, a standard motion instruction is selected using

function keys. Motion instruction determined by:

— Motion format: Specifies how to control the path of motion to a specified position.
— Position data: Teaches a position to which the robot is to move.
— Feed rate: Specifies the feed rate of the robot.

— Positioning path: Specifies whether to position the robot at a specified point.

— Additional motion instruction: Specifies the execution of an additional instruction

while the robot is in motion

Every time we record a point, it can be represented in degrees and in Cartesian

coordinates. In Cartesian coordinates, the recorded coordinates are those of the TCP (Tool

Center Point or Tool Central Point), with respect to the origin of the Cartesian coordinate

system currently active and previously chosen by the user. (WORLD by default). By default
the TCP is located in the center of the outermost axis plate of the robot.

TCP is the source of the tool reference. When a tool reference is created, the TCP

moves to the end of the used tool. The tool reference can be oriented according to the attack

axis of that tool.

40

Figure 2.8 Tool Center Point

We distinguish 2 types of tools.

Simple tool. A simple tool is a tool in which the cutting axis is parallel to the Z axis
of the tool by default. In this case the orientation of the tool does not change with respect to
the default tool; only TCP moves. The 3-point learning method is the one chosen to

memorize the tool.

Figure 2.9 Simple tool

Complex tool. A complex tool is a tool in which the cutting axis is not parallel to the

Z axis of the tool by default. In this case the TCP is displaced and its orientation is redefined.

41

AL
+X
-

/T'-' P utilisateur

4+Y

R NuaT
<2

Figure 2.10 Complex tool

To define a tool select MENU - SETUP - F1: [TYPE] - FRAMES - F3: [OTHER] -
TOOL - ENTER. The TOOL FRAME SETUP page appears:

| SETUP Frames JOINT 10 %
Tool Frame Setup/ Direct Entry 1/9

P Comment

kkkkkkkkkhkdd
kkkkkkkkkhkdd
kkkkkkkkkhkdd
kkkkkkkkkhkdd
kkkkkkkkkhkdd
kkkkkkkkkhkdd
kkkkkkkkkhkdd
kkdkkkkkkkkkohk

. L0 kEkkkkkkk A Ak
Active TOOL SMNUTOOLNUM[1] = 1

[TYPE] DETAIL [OTHER] CLEAR SETIND

Figure 2.11 TOOL FRAME SETUP page

[e B o i B e e e T
(= Q= = = = = Y = =

t
Z
0
0
0
0.
0
0
0
0
0

(=1 I s S BT PR

(= Q= = = = T = = = T =]
0 o000 oo Q o
cocoooooo o

Direct input method of values. In this method, the coordinates and orientation of the
tool to be defined must be perfectly known. These coordinates will be entered directly by
hand in the following window: F2: [METHOD] - DIRECT ENTRY.

42

Frame Number
1 Comment:

[TYPE] [METHOD]

SETUP Frames
Tool Frame Setup/ Direct Entry

Casrrxxxsrrrnrersrsss]

2 X 0
3 ¥: 0
4 Z: 0
5 W: 0
6 P: 0
7 R: 0

Configuration: ND

Active TOOL S$MNUTOOLNUM[1] = 1

FRAME

JOINT

.000
.000
.000
.000
.000
.000
B, 0,

10 %
1/7

0, 0

Figure 2.12 Window of direct input method of values

3-point method. The purpose of this method is to move the TCP to the end of the

tool used. For this we have to mark the same point with 3 different orientations and

memorize those positions.

SETUP Frames
Tool Frame Setup/ Three Point
Frame Number: 1
X: 0.0 Y: 0.0 Z:
W: 0.0 P: 0.0 R:
Comment : % % %k % & d k% % % % % % % % & %k %

UNINIT

Approach point 2: UNINIT
Approach point 3: UNINIT

Active TOOL SMNUTOOLNUMI[1l] = 1

[TYPE] [METHOD] FRAME

JOINT

MOVE TO RECORD

10 %
2/4

0.0
0.0

Figure 2.13 Step 1

Active TOOL SMNUTOOLNUMI[1] = 1

SETUP Frames JOINT 10 %
Tool Frame Setupf Three Point 374
Frame MNumber: 1

X: 0.0 Y: 0.0 Z: oo
L7 H 0.0 P: 0.0 R: 0.0
Camment. :
ot RECOEDED
Aipproach point 2: UNINIT
Approach point 3: UNINIT

[TYPE] [METHOD] FBRAME MOVE TO RECOBRD

Figure 2.14 Step 2

SHIFT + F5: RECORD

SHIFT + F5: EECORD

43

o P
Tool Frame Setup/ Three Point 4/4 ", . e
Frame Number: 1 A R

X: 0.0 g 0.0 7z 0.0 I R S
W: 0.0 P: 0.0 R: 0.0 ?
Comment : ¥*kxkkkkkkkhhkhhhkrhn
Approach point 1: RECORDED I
aonceacn coioc o, [ty
ADD DO UNINIT
Active TOOL SMNUTOOLNUMI[1l] = 1 :'_-H]:FT + P:I . PEI'—HITJF IJ

[TYPE] [METHOD] FRAME MOVE TO RECORD

Figure 2.15 Step 3

When the three points have been memorized, the X, y, z coordinates of the new TCP
are displayed in the upper part of the window. These coordinates are given with respect to
the original factory TCP. The sense of the Z coordinate of the TCP created by the 3P method
Is the same as the original TCP of the robot. Final state of the window shown in the Figure

1.21:

[LTE e N
Tool Frame Setup/ Three Point 1/4
Frame MNumber: 4

X: 28.1 VLE 3.3 Z: 140.6

mont . T
Comment :

Appreoach point 1: USED
Appreoach point 2: USED
Approach point 3: USED

Active TOOL SMNUTOOLNUM[1] = 1
[TYPE] [METHOD] FRAME

Figure 2.16 Final state screen using the 3-point method

The purpose of this method is to move the original TCP of the robot to a specific
point on the tool used and to reorient the tool based on that point. The sense of the Z
coordinate of the TCP created by the 6P method is different from that of the original TCP

of the robot. In this case it is imposed by the user.

44

Steps 1, 2 and 3 are — the first three steps are identical to the first three steps as the
three-point method. The TCP is defined and now we must reorient the tool and memorize
three additional points.

Step 4 — Orient Origine Point. To memorize the orientation origin point, the OZ axis

of the tool must be positioned vertically, as in the following figure:

[UP Jme N 0 %
Tool Frame Setup/ Six Point 5/7

Frame Number: 1
X: 0.0 Y: 0.0 Z: 0.0
W: 0.0 E: 0.0 R: 0.0
Comment : **kkdkkkhhhhhhhkhhdd
Approach point 1: RECORDED
Approach point 2: RECORDED
Arproach poj : RECORDED

Tigin Po. H UNINIT

X Direction Point: UNINIT

Z Direction Point: UNINIT
Active TOOL SMNUTOOLNUM[1] = 1 ::I_D—_FT + P:] . EE-[_‘-I:H]EI I-:I

[TYPE] [METHCD] FRAME MOVE TO RECORD

Figure 2.17 Orient Origine Point definition of the tool

Step 5 — X Direction Point. We will now define the orientation and direction of the
X axis. For this step and the next, it is more practical to move in the WORLD system, in

order to ensure that we move the tool's OZ axis horizontally.

| SETUP Frames JOINT 10 %
Tool Frame Setup/ Six Point 6/7 e
Frame Number: 1 ! e
X: 0.0 wiE 0.0 Z:

W: 0.0 P: 0.0 R:
Comment = %% %k ko kdkdk kb ko kdokok ko

Approach point 1: RECORDED

Approach point 2: RECORDED :

Approach point 3: RECORDED :

Orient Origin Point: RECORDED L -

b pirection poinc. [r—————» X

Z Direction Point: UNINIT
Active TOOL SMNUTOOLNUM[1] = 1 SHIFT + F5: RECORD
[TYPE] [METHOD] FRAME MOVE TO RECORD

0.0
0.0

Figure 2.18 Definition of X Direction Point of the tool

Step 6 — Z Direction Point. To give the direction in Z, it is necessary to re-position
on the point of origin of the orientation. To do this, place the cursor on the «Orient Origine
Point» line and then press SHIFT + F4: MOVE_TO. The robot will reposition itself on the

point memorized in step 4. To define the direction and the sense of the Z axis.

|SETUP Frames JOINT 10 %
Tool Frame Setup/ Six Point 7/7
Frame Number: 1
X: 0.0 Y: 0.0 Z: 0.0
W: 0.0 =N 0.0 R: 0.0
Commeryt @ % s e o d s o ok ok e ok ek ok
Approach point 1: RECORDED
Approach point 2: RECORDED
Approach point 3: RECORDED
Orient Origin Point: RECORDED
X Dire iop Poipt: RECORDED
H UNINIT
Active TOOL SMNUTOOLNUM[1] = 1
[TYPE] [METHOD] FRAME MOVE TO RECORD

45

+7.
b

SHIFT + F5: RECORD

Figure 2.19 Definition of Z Direction Point of the tool

When the 6 points are memorized, the X, y, z coordinates of the new TCP and the w,

p and r orientations of the new tool are displayed in the upper part of the window.

Tool Frame Setup/ Six Point
Frame Number: 5
X: 30.0 ¥: 50.3 Z: 145.2

e ment. T
Comment:

Approach point 1: USED
Approach point 2: USED
Approach point 3: USED
Orient Origin Point: USED
X Direction Point: USED
Z Direction Point: USED

Active TOOL $MNUTOOLNUM[1] = 1
[TYPE] [METHOD] FRAME

|SETUP Frames JOINT 10 %

1/7

Figure 2.20 Tool origin definition screen by 6-point method

Direct input method of values. In this method, the coordinates and orientation of the

USER reference with respect to the WORLD are perfectly known. The coordinates will be

entered by hand in the next window:

[P

dIne

O 1N

User Frame Setup/ Direct Entry

Frame Number: 5

1 Comment : m

2 X: 0.000

3 Y 0.000

4 Z: 0.000

5 W: 0.000

[P: 0.000

T R: 0.000
Configuration: HNDE, O,

Active UFRAME SMNUFRAMENUM[1] = 1
[TYPE] [METHOD] FRAME

0 3%
1/7

MOVE TO RECORD

Figure 2.21 Tool origin definition screen by direct input method

46

User-defined reference system. A USER FRAME user reference system is a three-

dimensional and Cartesian reference system on which all the positions of a finished TP

program are memorized. The TCP moves and reorients based on that system whenever we

move the robot in USER mode. If no user reference system is defined, by default, the

positions will refer to the WORLD coordinate system.

The figure below represents a custom reference system achieving a user-modified

work environment:

Figure 2.22 User-defined reference system (UFRAME)

47

Configuration methods. In order to define a user reference system, we can do it using
the following instructions: MENU - SETUP - F1: [TYPE] - FRAMES - F3: [OTHER] -
USER — ENTER.

(LD Jme N
User Frame Setup/ Direct Entry 1/9
Comment
khkkkkkkkkkhkh
khkkkkkhkkhhhkk
khkkkkkhkkhhhkk
khkkkhkkhkkhhhkk
khkkkkkhkkhhhkk
khkkkkkhkkhhhkk
khkkkhkkhkkhhhkk
khkkkhkkkkkhhk
. khkkkkhhkkhhhhk
Active UFRAME SMNUFRAMENUM[1] = 1
[TYPE] DETATL [OTHER] CLEAR SETIND >

L.DO’.J--]O\U'IPLA.JME

coocooc oo o oM
coocoooo oo
oo oo oo
= R e R R = e =
coocooocoo ool
[B e R e R e e R

Figure 2.23 UFRAME configuration methods screen 1

We will access the previous screen and we can configure the specific tool with the
cursor: F2:DETAIL - F2:METHOD.

(TP Jme I 0 %
User Frame Setup/ Direct Entry 1/7
Frame Number: 5

1 comment: [HEESTTTTSTRROTRRIIN

=] on ok Wk

X
Y
Z:
W:
P-
R:
Configuration: N

Active UFRAME SMNUFRAMENUM[1] = 1
[TYPE] [METHOD] FRAME MOVE TC RECORD

Figure 2.24 UFRAME configuration methods screen 2

We will now choose one of the three learning methods to define the user reference.
The origin of the reference system will move to the desired location and the position and
orientation following the three defined directions. 3 Points we will select from the menu:
F2: METHOD - THREE POINT. With this method we will define two intersecting lines
that determine a plane, with a fixed origin at the crossing point and Z perpendicular to the

48

defined plane. Orient Origine Point - we will memorize the origin point to determine the

custom reference per user.
With the cursor we will move and determine each of the values to define.

EIUR Fra

User Frame Setup/ Three Point 2/4
Frame Number: 1

X: 0.0 Y: D.0 Z: 0.0

W: 0.0 P: D.0 R: 0.0

Comment : Fkdkddkddddkdhdhddidk
Orient Drigin Point: UONINIT

X Direction Point: ONINIT
Y Direction Point: UONINIT
Active UFRAME SMNUFEAMENUM[1] = 1 SHIFT + F5 - RECORD

[TYPE | [METHOD] FRAME MOVE TO RECORD

Figure 2.25 Orient Origin Point configuration

We then indicate the direction and sense of the X axis by memorizing a point that

belongs to + X.

''''''

EIUD

User Frame Setup/ Three Point 3/4

Frame Number: 1
x: 0.0 Y: 0.0 Z: 0.0 i
W: 0.0 P: 0.0 R: 0.0 . 1'

Commert @ % kb dod dodod oo deodeode el e ok

Orient Origin Point: RECORDED
X Direction Point: UNINIT
Y Direction Point: UNINIT

Active UFRAME SMNUFRAMENUM[1] = 1 SR COR
[TYPE] [METHOD] FRAME MOVE TO RECORD SHIFT + F5: RECORD

Figure 2.26 X Direction Point configuration

This last step determines the orientation and direction of the Y axis and finally, by

calculation, that of the Z axis. The memorized point must be a point that belongs to the Y

axis. Final state of the window:

49

ETUF Frames X :
User Frame Setup/ Three Point 1/4
Frame Number: 1

X: 1474.6 Y: 425.0 IZ: -8.6 -
W: -0.9 @ P: 0.5 R: B89.9 v

Comment [ETTETTTTTTTTTTION
Orient Origin Point: USED
X Direction Point: USED
Y Direction Point: TUSED

Active UFRAME SMNUFRAMENUM[1] = 1 - - :
[TYPE] [METHOD] FRAME SHIFT + F5: RECORD

Figure 2.27 Y and Z Direction Points configuration

When the 3 points are memorized, the X, y, z coordinates of the origin and the w, p,
r orientations of the axes of the new reference system are displayed in the upper part of the
window. These coordinates are given with respect to WORLD (Figure 1.27).

Routine programming instructions with registers and position registers. The
variables available to use are: registers (real (32 bits) or integer) and position records (points
In joint coordinates, points in Cartesian coordinates or matrices). These are global variables
(all programs have access to all registers and position registers).

The registers has a maximum of 256 (configurable) and they allow to be commented
with a name. Records can be defined in the following ways:

— Direct: R [1] = 2 -> the value is stored directly in R [1];

— Indirect: R [R [1]] = 5 -> the affected register depends on the value contained in R

[1]. If R [1] = n, therefore the value 5 is stored in R [n].

In a register it is possible to store the result of an arithmetic operation: R [n] = [value]
[operator] [value]. The [operator] can be:

— sum (+);

— subtraction (-);

— multiplication (*);

— division (/);

— integer division (DIV);

— rest (MOD).

50

The [value] can be:

— constant;

— analog input-output Al [n] / AO [n];

— digital input-output DI [n] / DO [n];

— group input-output GI [n] / GO [n];

— robot input-output RI [n] / RO [n];

— register R [n];

— element of a position register PR [i, J].
To insert into a program -> F1: [INST] -> Registers. To display the list of registers and their
content -> DATA -> F1: [TYPE] -> Registers.
The position records store a point. Position records can be defined in the following ways:

— Direct: PR [1] = P [1] -> the point is stored directly in PR [1];

— Indirect: PR [R [1]] = P [3] -> the affected position register depends on the value

contained in R [1]. If R [1] = n, then the point P [3] is stored in PR [n].

You can store a point in a position register: PR [n] = [point] [operator] [point]. The
[operator] can be:

— sum (+);

— subtraction (-).
The [period] can be:

— position P [n];

— position register PR [n];

— current position of the robot in degrees axis by axis JPOS;

— current position of the robot in Cartesian LPOS.
The position records are also accessible element by element. For example, the j coordinate
of PR [i] is defined by PR [i, j]. And PR [1,2] = 250 -> the Y coordinate of PR [1] is
initialized to 250mm.

Or indirectly, we have R [1] = and R [2] = 2. If we save coordinates like PR [R [1],

R [2]] = 250 -> the Y coordinate of PR [1] is initialized to 250mm. Each position and
orientation is therefore independently accessible. To insert into a program 1: [INST] ->

o1

registers. To display the list of registers and their content DATA -> F1: [TYPE] -> Position
Registers.
Conditional jump instructions allow you to jump (or loop) to a label in the same
program if (and only if) certain conditions are true. F1: [INST] -> F/ SELECT.
IF statement performs a jump based on a true condition: IF [valuel] [operator]

[value2] [jump]. The [valuel] can be:

— register R [n];

— analog inputs-outputs Al [n] / AO [n];

— digital inputs-outputs DI [n] / DO [n];

— group inputs-outputs GI [n] / GO [n];

— robot inputs-outputs RI [n] / RO [n].
The [operator] can be:

— comparison (=);

— differentiation (<>);

— minor (<);

— major (>);

— less than or equal (<=);

— greater than or equal (=>).
The [value2] can be:

— constant;

— ON;

— OFF;

— register R [n];

— analog inputs-outputs Al [n] / AO [n];

— digital inputs-outputs DI [n] / DO [n];

— group inputs-outputs GI [n] / GO [n];

— robot inputs-outputs RI [n] / RO [n].
The [jump] can be:

— JMP LBL [n];

52

— CALL program.
SELECT instruction performs one or more jumps depending on the value of a register.
Structure: SELECT R [n] = [valuel], [jump], [value n], [jump], ELSE, [jump].
The [values] can be:
— constant;
— register R [n].
The [jumps] can be:
— JMP LBL [n];
— CALL program.
Do not forget the ELSE instruction, since it takes into account the rest of the possible values
of the R [n] register.
Waiting instructions delay the execution of a program by a specified time or until a
condition is true: F1: [INST] -> WAIT.
Timing — delays the execution of a program for a specified time. Duration is
expressed in seconds; there is a minimum of 0.01 seconds WAIT [time].
The [time] can be:
— constant;
— register R [n].
Wait for a condition delays the execution of a program until the condition is met.
With structure: WAIT [valuel] [operator] [value2] [time]. The [valuel] can be:
— register R [n];
— digital inputs-outputs DI [n] / DO [n];
— robot inputs-outputs RI [n] / RO [n].
The [operator] can be:
— comparison (=);
— differentiation (<>).
The [value2] can be:
— constant;
— ON;

- OFF;

— register R [n];
— digital inputs-outputs DI [n] / DO [n];

— robot inputs-outputs RI [n] / RO [n].

The [time] can be:

— FOREVER -> wait while the condition is not met
— TIMEOUT LBL [n] -> wait the time specified in the timeout variable ($
WAITTMOUT), then jump to "label n™ if the condition has not been met.

As a peripheral 1/0 we have registers (OUP). Peripheral input registers summary is in Table

1.3.

Table 1.3 Input registers (UI)

Name Instructions
The immediate stop signal turns servo power off by the software. The
_ *IMSTP input is on in the normal status. When this signal is turned
*IMSTP input : .
off, the following processing is performed:
UI[1] (Always _)
bled) — An alarm is generated and the servo power is turned off.
enabled.
— The robot operation is stopped immediately. Execution of the
program is also stopped.
The temporary stop signal specifies a temporary stop from an external
device. The *HOLD input is on in the normal status. When this signal
_ is turned off, the following processing is performed:
*HOLD input] o
— The robot is decelerated until its stops, then the program
UlI[2] (Always o
execution is halted.
enabled.)
— If ENABLED is specified at "Break on hold” on the general
item setting screen, the robot is stopped, an alarm is generated,
and the servo power is turned off.

54

*SFSPD input
UI[3] (Always

The safety speed signal temporarily stops the robot when the safety
fence door is opened. This signal is normally connected to the safety
plug of the safety fence door. The *SFSPD input is on in the normal
status. When this signal is turned off, the following processing is
performed:
— The operation being executed is decelerated and stopped, and
execution of the program is also stopped. At this time, the feed

rate override is reduced to the value specified for

enabled.) $SCR.$FENCEOVRD.

— When the *SFSPD input is off and a program is started from the
teach pendant, the feed rate override is reduced to the value
specified for $SCR.$SFRUNOVLIM. When jog feed is
executed, the feed rate override is reduced to the value specified
for $SCR.$SFJOGOVLIM. When *SFSPD is off, the feed rate
override cannot exceed these values.

The RESET signal cancels an alarm. If the servo power is off, the
Fault RESET | RESET signal turns on the servo power. The alarm output is not
UI[5] canceled until the servo power is turned on. The alarm is canceled at
the instant this signal falls in default setting.
This is an external start signal. This signal functions at its falling edge
when turned off after being turned on. When this signal is received, the
following processing is performed:
START input — When FALSE is selected for START for CONTINUE only on

UI[6] (Enabled
in the remote

state.)

the Config system setting screen, the program selected using the
teach pendant is executed from the line to which the cursor is
positioned. A temporarily stopped program is also continued
(Default).

— When TRUE is selected for START for CONTINUE only on
the Config system setting screen, a temporarily stopped program

55

Is continued. When the program is not temporarily stopped, it

cannot be started.

These signals allow the robot to be controlled remotely by means of an operator
panel (UOP) or PLC. The functions of the UOP outputs (Ul[n] UO[n]) are predefined and
can be wired on digital modular boards or configured through fieldbus boards (Interbus,
Profibus, Devicenet) 18 inputs and 20/24 outputs (4 optional) can be connected (minimum

8 inputs or outputs). Peripheral output registers summary is in Table 1.4.

Table 1.3 Output registers (UO)

Name Instructions

SYSRDY is output while the servo power is on. This signal places the
robot in the operation enable state. In the operation enable state, jog

feed can be executed and a program involving an operation (group) can

SYSRDY _
be started. The robot enters the operation enable state when the
output UO[2] _ _ . e
following operation enable conditions are satisfied:
— The ENBL input of the peripheral device 1/O is on.
— The servo power is on (not in the alarm state).
The input accept enable (command enable) signal is output when the
following conditions are satisfied. This signal indicates that a program
including an operation (group) can be started from the remote
CMDENBL
controllers.
input UO[1]

— The remote conditions are satisfied.

— The operation enable conditions are satisfied.

— The mode is continuous operation (single step disable).
PROGRUN PROGRUN is output while a program is being executed. It is not

output UO[3] | output while a program is temporarily stopped.

PAUSED PAUSED is output when a program is temporarily stopped and waits
output UO[4] | for restart.

56

HELD output | HELD is output when the hold button is pressed or the HOLD signal is
UOI5] input. It is not output when the hold button is released.
FAULT is output when an alarm occurs in the system. The alarm state
FAULT output | _ .
UO[6] is released by the FAULT_RESET input. FAULT is not output when a
warning (WARN alarm) occurs.

To get to the robot's input and output configuration screen, we must press: MENU -

| / O and pressing

F1: [TYPE] we see the different types of inputs and outputs (Figure 1.33).

I/0 Digital Out JOINT 10 % _—
0L /32 T/0 Digital Dut JOINT 10 &
RANCE SLOT START DT # SIM 5 1/256
1 DO[f 1- 8] m 2 1 pof 1] O ad |]
2 Do[3- 16] 1 2 3 DO[2] U OFF []
3 DO[L 17- 24] 2 1 1 DO[31 © OFF []
4 DO[25- 32] 2 1 9 DO[4] U OFF |]
5 DO[33- 40] 1] o o DO[51 U OFF [1
7 00l 45- s&1 0 o o oL 61 U O |]
- 0 7D O)
9 DO[65- 721 0 0 0 pO[9] U OFF |]
[TYPE] MONITOR IN/OUT DETAIL HELP 3| por 101 © OFF []
[TYDPE] VERIFY = [TYPE] CONFIG IN/OUT oM OFF

Figure 2.28 1/O peripheral registers configuration screens

In any input and output screen, if we press F2 [CONFIG] we enter their

configuration screen.

The parameters of these 1/0O are the same as those of the digital 1/0. Note that the

ranges of these groups cannot be overlapped on the 1 / O map. For configuring cell interface

I/0 appears we need press the MENU key and select 1/O, then press F1, [TYPE] and select

Cell Interface. The cell input screen or cell output screen appears. The cell input screen is

shown below as an example in the Figure 1.34. The display contents differ depending on

the program start method.

S7

I/0 cell Inputs
1/1
INFUT SIGNAL TYPE # SIM STATUS
1 Tryout Mode DI[0] © ek
|[TYFE]| CONFIG | IN/OUT l S3IM | UNSIM> | =

Figure 2.29 Configuring cell interface 1/0

To switch between the input screen and the output screen, press F3, IN/ OUT. The
cell output screen is shown below in the Figure 1.35. The display contents differ depending

on the program start method.

I/0 cell Outputs
1/10
Cutput signal Type # SIM STATUS
1 set if INPUT SIMULATED DO[0]O ke ke
2 Set if OUTPUT SIMULATED DO[ol]u dokk
3 OVERRIDE = 100 Dol oj]u ek
4 In cycle DoO[o]Ju ok ke
5 Abort Program DO[o]Ju ke
6 Tryout Status Do[0o]Juo e ke
7 Heartheat signal DO[0o]Juo ok ke
8 MH Fault Do[0]uU kwk
9 MH RAlert Do[0]U ke
10 Bobot motion G1 Do[0o]Juo e ke
[TYFE] CONFIG ‘ IN/OUT ‘ 3IM ‘ TUN3IM

Figure 2.30 Output screen

We can see robot configuration summary from the system configuration screen. To
obtain a summary of the configuration of the robot, we will access as follows through the
TPE controller.

s ™
system/Config JOIRT 30%
1/27
1l Use HOT START: FALSE
2 1/0 power fail recovery: RECOVER ALL
3 Autoexzec program [ok ek]
for Cold start:
4 Rutoexec program [Frdkadrn]
for Hot start:
5 HOT START done signal: pO[0]
6 Restore selected program: TRUE
7 Enable UI signals : TRUE
8 START for CONTINUE only : FALSE
9 CSTOPI for ABORT : FALSE
10 Abort all programs by CSTOPI : FALSE
11 PROD_START depand on PHSTROBE :FALSE
12 Detect FAULT RESET sigunal : FALL
13 Use PPABN signal : <*GROUPS+>
14 WAIT timecut : 30.00 Bec
15 RECEIVE timecut : 30.000 sec
16 Return to top of program : TRUE
17 Original progrom name (Fl) : [PRG 1
18 original program name (F2) : [MAIN]
19 Original program name (F3) : [SUB 1
20 Original program name (F4) @ [TEST]
21 Qriginal program name (FS5) @ [#r¥%wsw]
22 Default logical command : <*DETAIL*>
23 Muximum of ACC instructiom 1 150
24 Minimum of ACC instruction : 0
25 WJNT for default motion i hddwd
26 Auto display of alarm menu : FALSE
27 Porce Message : EMABLE
28 Reset CHARIN FAILURE detection : FALSE
2% Allow Force I/0 in AUTO mode : TRUE
30 Allow chg. ovrd. in AUTO mode : TRUE
31 signal to set in AUTO mode DOUT [0]
32 signal to set in T1 mode DOUT [01
33 signal to set in T2 mode DOUT [01
34 signal to set if E-STOF DOUT [01
35 Hand broken : <WGROUPS*>
36 Remote / Local setup : Remote
37 External I/0 (OM : Remote) 1 DI [0]
\%[mE] [CEQICE] y.

Figure 2.31 Summary of robot configuration

Profibus network configuration screen access by using keys:

— <Menu> 6 Setup;

— F1[TYPE] O NEXT 7 PROFIBUS;

— F3[OTHERY].
Where:

— 1 Slave- Slave profibus configuration

— 2 Master- Configuration

— 3 Bus Param.- Configuration of the profibus parameters.

of the profibus of the master.

58

— 4 Slave Param. - Configuration screen of the parameters of the different slaves of the

robot.

59

Inside the "Slave Param™ screen. Pressing F2 [DETAIL] we enable/disable the slave,
configure its address, set the name, input and output bytes, flags. Configuration of inputs
and outputs:
— Digital I / O:
e Rack- Address of the robot's I / O card (66 Master; 67 Slave);
e Slot- Physical place where the I / O card is located;
e Range- Number of “associated” I/ O;
e Start- Bit number at which the 1 / O range begins.
— Groups:
e Rack- Address of the robot's I / O card (66 Master; 67 Slave);
e Slot- Physical place where the | / O card is located;
e Range- Number of “associated” I/ O;
e Start- Bit number at which the 1 / O range begins.

To configure a Payload we will have to access the system screen <Menu> 0 NEXT
-6 SYSTEM - F1 [TYPE] - 6 MOTION. We set the weight, the position of the center of
gravity and assign a name to it. We have up to a maximum of 10 different payloads.

In case of Profibus the information transmission system that greatly simplifies the
installation and operation of industrial machines and equipment used in production
processes.

In Payload the weight of the “robotic doll” including the weight of the EOAT (End
of Arm Tool) and the part. The "payload” is characteristic of each robot model and allows
us to choose the robots suitable for the previously specified processes.

Macros Settings - a MACRO is a program that performs a specific operation whose
execution can be commanded by:

— Activation of a user key of the Teach Pendant (UK [n]). Group Mask (*; *; *; *; *)
— Activation of a user key of the teach pendant SHIFT + (SU [n])

— Activation of a controller user key (option) (SP [n])

— Selecting an item from the MANUAL FCTNS menu (MF [n])

— CALL instruction TPE Macro Keys

60

RUN instruction
The activation of an input (DI [n] / RI [n]). To enlarge $ MACROMAXDRI.

The activation of a Ul [n] input.

To create a Macro, the following steps must be performed:

Press the SELECT key.
Press F2: CREATE.
We give a name to the macro.
We press the F2 key: DETAIL.
In section 2 (Subtype), press F $: CHOICE and select the MACRO option and press
END.
We edit the macro that we have created and write the code that we want to be executed
when we call this macro, for example from a program.
Later we configure the macro, for that we will press:
1) MENU
2) 6 SETUP
3) F1: TYPE
4) 3 MACRO
In the “Macro Command” screen, we place the cursor on Program.
We press F4: CHOICE and the list of programs will appear (we choose the one
defined)
We place the cursor on the Assign column, and press F4: CHOICE.

We select MF, so that the macro can be called from another program.

61

TooL | UK[T]

ToOOL UK 2]

HOVE | UK [3]

SuU [d]

STATUS

R -
SU[F] su] SUI[5]

Uk indicates that only the key must be pressed
Sl indicates that SHIFT and the key must be pressed

Figure 2.32 Direct macro execution buttons

Axis limit adjustment. There are 3 types of axis travel limitation: software limits,
electrical limits and mechanical limits.
Software limits — these are the first limits the robot encounters (if they are correctly defined).
When a software limit is reached, the robot does not fail, it simply stops and does not allow
movement in that direction. To be able to move the robot again, it is sufficient to move the
robot in reverse. If we want to access the image screen, we must proceed as indicated below:

1) MENU

2) O-NEXT

3) 6-SYSTEM

4) F1- [TYPE],

5) Axis limits.

62

M\Axis imits JOINT 10 %
AXIS GROUP LOWER UPPER 1/16
1 1 90.00 dg
2 1 -50.00 90.00 dg
3 1 ~130.00 205.00 dg
4 1 ~360.00 360.00 dg
5 1 ~125.00 125.00 dg
6 1 ~360.00 360.00 dg
7 0 0.00 0.00 mm
8 0 0.00 0.00 mm
9 0 0.00 0.00 mm
[TYPE]

Figure 2.33 Software limits

For software limit modifications to be taken into account, the controller must be
shutdown and rebooted.

Mechanical limits - it is possible to set certain mechanical limits depending on the
axes and the robot model. I1f a mechanical limit is reached, the electrical limits and software
limits must be verified. An engine overconsumption collision alarm will occur.

Remote program start via Ul: to use the UOPs, the following protocol must be
respected:

- Configure the UOP system signals.

- Wire the mandatory system signals and those that are desired to control the
installation.

- For the input signal Ul [6: START] to take effect, two conditions must be met:

Enable Ul signals:

1) MENU

2) O-NEXT

3) 6-SYSTEM

4F1: TYPE

5) 5-CONFIG

6) ENABLE Ul SIGNALS to TRUE.

The robot has to give us the output signal UO [1: CMD ENABLE] = ON:
When does this situation occur?

63

1- Ul [1: * IMSTP] = ON, no external software emergency is received.

2- Ul [2: * HOLD] = ON, no external program stop is received.

3- Ul [3: * SFSPD] = ON, no program stop associated with a start with a predefined
speed in a variable is received.

4- Ul [8: * ENABLE] = ON, enabling robot movements is allowed.

5- Key T1, T2, AUTO is in AUTO mode, which means that the external hardware
safeguards are enabled.

6- Controller in REMOTE mode, allowing the robot to start from a remote system,
for example a start button associated with input Ul [6: START] that will generate a pulse
that will have its effect on the falling edge. For this R-J2 and R-J3 the LOCAL / REMOTE
key must be positioned in REMOTE. In the R-J3i controller we must configure in Menu, 0-
Next, 6-System, F1: TYPE, Config, line 36, Option, Local / Remote = Remote

7- System variable $ RMT_MASTER = 0 if it is not. MENU, O- NEXT, 6-
SYSTEM, F1: TYPE, 2- VARIABLES.

8- Make sure that the option “Start For Continue Only” is set to false: MENU, O-
NEXT, 6- SYSTEM, F1: TYPE, 5- CONFIG, START FOR CONTINUE ONLY to
“FALSE”. (if it was “True”, set it to False and then OFF / ON for it to take effect, or modify
the variable $ SHELL_CFG. $ CONT_ONLY = FALSE)

9- Teach Pendant in OFF and in non-STEP conditions (step by step).

10- UO [2: SYS READYT] = ON, the robot has no fault. Fault reset: Reset of external
faults via software through the UI’s. Reset of external faults via hardware (External Emerg,
Fence Open, ...)

11- FCTN, 1-Abort All, Select, select the program to start.

12- Ul [6: Start] has its effect on the robot with a falling edge.

2.2 Programming in the simulator software editor

Thanks to the Roboguide HandlingPRO simulation tool, and the graphical software
interface, we can carry out the programming of the robot following the application menus
with a much more comfortable and visual environment than programming using TPE. In the

following section, everything related to the use of the simulation interface, functionalities

64

and ultimately the offline programming of a robotic process using the HandlingPRO
simulation tool of the Roboguide software will be discussed.
Workcell Wizard — represent based steps through the material handling application:

choosing robot model, controller, gripper, machines.

& Workcell Creation Wizard X
Step 9 - Summary
Wizard Navigator Review your choices before finishing the wizard
1: Process Selection Itis the users responsibility to validate -
HandlingPRC --the integrity of data exchanged from a
2: Workcell Name Roboguide robot to any other robot.
HandlingPRO1 e
3: Rebot Creation Method Process: HandlingPR(
Create from scratch - Workeell Name: HandlingPR(
4: Robot Software Version - Virtual Robet Controller- V3.1
V.10 Application Teol: Handling To
5: Robot Application/Tool -1--Robot Model:
HandlingTool {H552) Group 1: R-2000iCi165F (H721)
6: Group 1 Robet Model ~I-- Robet Options:
R-2000iC/165F (H721) £ User Selected:
7- Additional Motion Groups - FRL Params (R651)
{none) = Auto-Selected for Basic Simulation-
8: Robot Options Ascii Program Loader (R796)
See summary page - PC Interface (RE41)
9: Summary Virtual Robot (FVRC)
= Robot -
Basic Dictionary (English) (H521) v
[Use robotlibrary defaults found in group definition fies
@ Hereare all the selections you've madein the wizard. Make sure everything is correct foryour
simulation, then press Finish to apply fiem

FAN UC Cancel =Back Finish Help

Figure 2.34 Workcell Wizard

Navigation in software is provided by:
— Menu - represents based operations.
— Toolbar — sets of shortcut icons for the basic menus.
— Status bar - representing a position of the current robot, tools and icons which perform
operations (such as modifying a robot position, undoing the robot’s jogging).
— Workcell Browser — provides review and changing of each detail of the workcell that

can be expanded, checked and modified.

65

B% HandlingPRO - Evaluation - (29 days left) - HandlingPRO1 Menu -] X
File Edit Vi Robot Teach Test-Run
RS 58 (@& b - 2 (e th | B L | Mg O | Toolbar
RRAQ T 8B ES P = BB
‘BEad - > [FEn ¢
B
&l Back Fwd Add ECe
w3 HandlingPRO Workcell
- Robot Controers
=-8
| Programs
@8 GP:1-R-2000iC/E5F
[Fies
[sobs
3} @]Vumbles
B Machines
#¢ Fixtures
6 Parts
A obstacles
& Workers
g Profiles
&' Dimensior
2 Targets
a'l'arge&cm ps
S5 Cables
P Fixed Nozzles
External Devices
- 4D Edit Views
o} (Sensorunls
ROBOGUDE Favorites
Robot Controller1 2 |< No robot errors > &0z | GP: 1- R-2000iC/165F [i- .-

Figure 2.34 Roboguide Software

The main configurations of the robot can be carried out from the application using

mainly the main menu bar, the toolbars and the “Cell Browser” menu.

File Edit “iew Cel Robot Teach Test-Run Project Tools ‘Window Help

DEd BT ?

b NS LES & BRARE e > 0w a g
[RAQ 4w § 58,8 g | (7w |

Figure 2.35 HandlingPRO Roboguide Software Quick Access Bars

In the first bar (main menus) we can distinguish the main menus that the application
consists of (File, Edit, View, Cell, Robot, Teach, Test-Run, Project, Tools, Window and
Help), whose names indicate the menu which we can access. In each of them we can see the
different options that they consist of.

The second bar shows us the file options, the "Undo" and "Redo" buttons and finally
the visibility of the "Cell Browser" and "Navigator”, as well as access to the help of the
current window.

The third bar shows us the quick access buttons to the most used functionalities and
the most useful quick bars (Teach tool selection, Moveto Retry, Jog Coodinates Quick Bar,

66

Gen Override Quick Bar, Teach Quick Bar, Moveto Quick Bar, Target tools) . We also have
buttons for interaction with the graphic environment (Draw features on parts, Hand, Work
Envelope, Teach Pendant, Robot Alarms, Robot Browser and KCL). The following set of
buttons allows us to control the execution of our simulation and even generate an AVI video
file (Record, Play, Pause, Stop, Fault Reset, Fault Reset and Position Edit).
Each of the quick buttons and menus that they access in the application is detailed

below:

— File options - they allow to create, open or load a simulation file.

— Undo/Redo - allow undo and redo the actions carried out in the simulation.

— Cell Browser - main menu where to configure each of the simulation objects.

File Options
O

Undo / Redo

k)

Cell Browser

Fi-
Figure 2.36 Quick buttons 1

=

= :;_‘ SimPRO Material Handling Workcell
+ Fixtures
+ 0fp Pars
=1 B/ Robot Controllers
- B |Robet Cantraller!
= Ef GP: 1 - R-2000i4./200F
(@) Targets
+- ¥ Tooling
+ L85 UserFrames
[} Files
Jobs
+ 1] Programs
+ E@] Variables
ﬁ} Obstacles
+ @ Profiles

= Dimensions
I@) Targets
g;’a'; Target Groups

% Machines

Figure 2.37 Image of the “Cell Browser” menu

67

Navigator - this menu tells us step by step each of the actions to be able to program
a simulation.

Define the Cell | Define the Cell | Define the Cell
Teach TP Programs I Teach TP Programs

1. Start New Cell, or

Fun Froduction

B. Add a Simulation Pragram

Open Existing Cell 8 PunTPP am
ith T T . Fun rogr
. Edit Robot Properies 7. Teach with Teach Taol

9. Profile TP Program Runs
. Add a Partto the Cell

. Edit End of Arm Tooling

{5 T S SC R o |

. Add a Fixture to the Cell, or

Add an Obstacle to the Cell

Teach TP Frograms

Run Production Rurn Production

Figure 2.37 Image of the “Navigator” menu

Help current window - shows the help menu of the window in which we are working
at any given moment. Teach Tool Selection - allows blocking or unblocking the use of the
learning tool by selecting the graphical environment. It facilitates the use of the tool since
the rest of the objects in the environment are disabled. This method is equivalent to defining
points using “teach by nose”. Move to Retry - enables or disables the retry of the “MoveTo”
function if it fails. Jog Coordinates Quick Bar - shows or hides the quick bar of the robot

movement coordinate system.

Help current Move to Retry
window I

?

Jog
Teach Tool Coordinates
Selection Quick Bar

- pes

Figure 2.38 Quick buttons 2

Jog Coord

5
World

g—?.
ool
b

A,

JocFm

Jog Modifiers

Teach Tool

W
Ny
Jeint
)

Ny

Linsar

Coord

=

Figure 2.39 Image of the “Jog Coordinates Quick Bar” menu

68

Override Quick Bar - shows or hides the override speed setting bar. Teach Quick

Bar - show or hide the quick learning bar.

P——
Teach

Override Quick
Bar SGE
E l?:c;d
Teach Quick Moih
Bar

5 (&
|.fT'.‘ MoweTo

Figure 2.40 Image of the “Teach Quick Bar” menu

MoveTo Quick Bar - shows or hides the quick robot movement bar to certain surfaces,

edges, vertices.

69

Surface

=)
Face

e
Edge

MoveTo Quick
==
Bar Vertex

& s

==
Arc Ctr.

TP Point

MoveTo

lP] >

Figure 2.40 Image of the “MoveTo Quick Bar” menu

Target Tools - shows the toolbar for the configuration of the different positions (objectives)

to be configured.

Target Tools
@l Surface

Figure 2.41 Image of the “Target Tools” menu

Draw features on parts - allows to draw different lines, shapes and surfaces on some objects

in the simulation.

70

Lines
Patterns Patterns
|
& Inv Patterns
Edge Line @
& W g
Freehand Inverse
Line @
- Triangle T@
Surface Inverse
Draw features Fit Line @
on parts % @
o L X1
nverse
© Curve E
: 24
@ Z Inverse
. 5@
@ Inverse
L
Patterns U Inverse |
Inv Patterns Inv Pattemns
Edit Edit Edt |

Figure 2.42 Image of the “Draw features on parts” menu

Open/Close Hand - it offers us the possibility of opening and closing the tool
configured in the robot's TCP. Work Envelope - shows the scope or range of movement
allowed for the robot with which we are performing the simulation.

Open/Close
Hand

Work Envelope

Teach Pendant

Figure 2.42 Image of the menus reated to the tool

Teach Pendant - shows or hides the Virtual Teach Pendant provided by the HandlingPRO

simulation tool.

Edt

Seloct

M Meew
oFE 0K
L)

FEET | Z
L _— |

7 =) 9 | Tooll
4 5 E | Tool2
tove
U 2 g hien

Gel

g - * Up
Porh /0 | Slatuz

[ata

HEH

Fctn

B E B
- - -
- - -
- - =] - 5
- HandlingTool (N A - HandlinaTool (N. A% - Hand | ineTool (N A
- - -
— Ve 4055 - & 4065 — Ve 4085
- Copyright 2005, All Rights Rezerved - Copyright 2006, Al Richts Reserved - Copyright 2006, All Rights Rezerved
mm [FANUCTLTD, FANUC Robotics &merica, Inc. mm [FARUC LTD, FANUC Robotics Arerica, [no mm [FANUCTLTD, FANUC Robotics fwrerica, Inc.

Licensed Software . Your use constitutes o LICENSED SoTiware . Your Use COnsLiluTEs Licensed Software . Tour use constitutes
== lyour scceptance. This product protected poul acceptznce. This product protectes "= lyour scceptance. Thiz product protected
m= by zeveral .5, patents. m= by zeveral U 8. palenis. = by zeveral U.5. patents.
- - -

| TYFE | LICENSE FATENTS [TYFE] LICEWSE FATENTS HELF | TYFE | LICEMSE FATENTS

| n | om] m] e J w[[| me| 2] m] w] m] | ||] n] 2] s] J -

Curent Positice, GF: 1 - R-200002/200F wirtual Robot State
Group [GF: 1 - A-2000i/200F =]

@ Cad Stat

TP keyPad | Curent Pskion | Witual Flobet Settings |

@ Jort
oz N 230 gz 0033 dey U3 0000 deg
CUSER J4| 0000 deg JS| 000 deq JE| 2240 deg
MaveTo J
Felalive |

File Dievica Path:

FLFY: Path |E:\ A iztemancbacbal_1sippt

MC Ptk Ly sistamarchiickal_Tamel

Hazsl to Datauks

TP keyPad Curent Prsition [Yirlud Fiobol Seitings

TP Kew"ad | Cuent Poskion itual Robot Setings

Figure 2.42 Image of the “Teach Pendant” menu

Robot Alarms - shows or hides the robot's alarm console.

Robot Alarms

A

IT [Alarm Text Code Severity | Time
23:49:48 -~
36 MotorSpd lim/DVC[G:1 A:4) SRYO0-171 3170572011
37 MotorSpd lim/DVC[G:1 A:3) SRYO0-171 312’?]:::?:;.?1
38 Speed limits used [G:1) MOTN-056 3]2;]:;;:;.:31
23:47:44
39 HOLD signal from SOP{UOP is lost SYST-034 31/05/2011
Reset Reset Reset Reset Reset Reset
23:47:26
11 Position not reachable MOTN-018 3170572011
Reset Reset Reset Reset Reset Reset
| Show only active alarms

Figure 2.43 Image of the “Robot Alarms” menu

71

Robot Browser - shows or hides the robot browser to show general information, input and

output and monitoring of some indicators of the controller.

72

L T ——
3 - » 3
Szl Ll2 IR
! :
TR T Physical VO Panel
| sy WEBSERVER o Per e
F. U Hostaame: ROBOT = EARROBOTNL| Digtal Ingut
Robot No: FOO000
Robotics Fide N:-:: fRSTD[FAULTSTM FAN Uc Rack:

Date: 110602 Time: 20:16:52

CONTACT INFORMATION
(Sales/Parts/Service)

FANUC Ltd,
FANUC Robotics America, Inc. (800-47-ROBOT)

Figure 2.44 Image of the “Robot Browser” menu

Record AVI - makes possible to obtain a video in AVI format of the simulation. Cycle Start
- starts the simulation cycle with the sequential execution of the instructions. Hold - pause
the simulation. Abort - abort the process simulation. Fault Reset - resets the set of errors

obtained in the simulation execution.

Record AVI

b Abort

Cycle Start
» Fault Reset

Fs

Hold
1]

Figure 2.44 Image of menus for recording video

Run Panel - shows or hides the simulation run panel.

73
Run Panel m

T Run P
e[|| m| a
b =
Record Run Hold Abort Reset
Run-Time Refresh Rate [updates/sec)
.......... 4 0 OO
1 5 10 30 125
Choppier Motion, Smoother Motion,
Shorter Playback, Longer Playback,
Average Values Instantaneous Yalues

=\ This setting controls how robot motion looks in
\l) the 3D world when a program is running - it will
not change reported cycle times.

Options
[V Coliision Detect

v Collect TCP Trace
I Run Program In Loop

[Taught Path Visible

[Hide Windows

¥ Refresh Display o

[Compress AVI AV1 Size (pixels)
1024x768 4 |

[Simulation Time on AV Num Colors
[16-8its (65535) ~|

Figure 2.45 Image of the “Run Panel” menu

Position Edit - shows the window for editing the position of the different points defined in
the instructions. It also allows you to edit and redefine them in a comfortable way.
Position Edit [T R

Program Lines

m T-JF1]100% FINE ACC1 25 .
2 JP{2]100% CNT100

3 WAIT 0.50[sec) E
& Pickup [CAJA) Fiom [Soportel') With [GP- 1 -UT: 1 [PINZAY)

& LP[3] 200mm/sec CNT100ACCSD

£ J PL4]100% FINE

7 JP{5]100% FINE

8 JF{6]100% CNT100

% Drop [TAJA') From [GP: 1-UT- 1 [PINZAY) On [Bass]

104 P 7)100% ENTI00

11:J P 8] 100% CNT100

12 4 P[9100% ENTI00

13 WAIT 0.50(sec)

14: Pickup [TAJA] From [SoporteZ] With [GP: 1-UT: 1 [PINZA))
15 J P 10]100% CNT100

1E- 1 P 1111003 FIME
4 m

-

[~ Show Motion Lines Only 3D Select Muliple Positions

Position Adjustments
® 0000 v [100003 z [10000

w [10004 P [w0 R [100

BumpRelative [Robolword |

ok | [Hee]

Figure 2.46 Image of the “Position Edit” menu

Zoom Options - it offers the options to enlarge view, zoom out and window zoom. Center
View Selected Object - centers the selected object on screen. Change Camera Direction - it
makes it possible to change the camera in the direction of the three axes of the environment
coordinate system. View Options - provides the option to change the front, side, rear, and

overhead views of the simulation environment.

74

Zoom Options Change Camera
Direction
I =

Center View) _
Selected Object View Options

4

e éj He +B ,@ @‘

Figure 2.47 Image of menus for visual representing

View WireFrame - changes the presentation of the simulation showing the edges of the
objects.

View
WireFrame

&

Figure 2.48 Image of the “View WireFrame”menu

MeasureTool - displays the measurement tool-menu.

75

MeasureTool m
LR Measurement
From To
Snap to Entity v| Snapto Enitity -
Distance
v [v X
* Relative to [From] v Y. |
Relative to Workcel 0
v Al compoments vﬁle W
Os| .
H.
Help |

Figure 2.49 Image of the “MeasureTool”’menu

Mouse Commands - show or hide special combinations and mouse commands.

Mouse
Commands

|

Figure 2.50 Image of the “Mouse Commands”menu

Once the quick access buttons have been specified, we will describe the
functionalities of the Roboguide application accessible through the main menus of the
application. These allow us to perform all the functions of the simulation application, in
addition to the functions of the buttons on the quick access bar.

The main menus of the application will be described below and the actions they
allow to perform in the simulation will also be described. Description of main menus. File -
it is the menu that allows you to manage the files of the simulations.

From it we can handle the options of creating a new simulation, opening a saved
simulation job, saving the work done for the current simulation and other file management
tasks. Among them, we highlight the option of exporting the work to the IGES data standard

of CAD design programs using the “Export” option, thus generating a file with the extension

76

type “.igs” to be imported into a CAD application. It should be noted among the options that
of "Package cell", which is the utility that we must use to be able to take a simulation job
from one computer to another with Roboguide installed, since the options of "restore save
point" "save cell" and " open cell ”are for simulation jobs of the same equipment. To load
this simulation package onto a new computer, we can do it by double clicking on the “.frw”

file (in our case SistemaROB.frw).

Mew Cell

Open Cell

Restore Cell Save Point

Save Cell "SisternaROB"

Save Cell "SisternaROB" As

Package Cell >
Wiew File

Recent Files >
Export >

C:\Documents and SettingsiadministradoriMy Workcells\SistemaR OB\ SistemaR OB Frwm

Exit

Figure 2.51 Image of the “File”menu

Edit - is the standard object edit dropdown. The options offered are those of "undo”,

"redo", "cut", "copy", "paste" and "delete" to apply them to any object in the simulation

environment.

Figure 2.51 Image of the “Edit”menu

View - this menu shows all the display options of the simulation environment. We
can configure the view modes described above in the quick access buttons, in addition to

the movement configuration quick access bars. We highlight the option "Program Details"

77

that offers us different options for viewing details related to the robot, configured EOATS

and additional movement options.

Cell Browser
Mavigator
Zoom In
Zoom Out
Zoom Window
Orthogonal Yiews »
Center on Selected Object
Full View
v Wire-frame
Perspective
Program Details »
Quick Bars »

Mouse Commands

Figure 2.52 Image of the “View”menu

Cell - the menu contains all the options related to the simulation (work cell) and the

objects that it may have. From this menu we can add the aforementioned objects, such as

robots, fixed elements, moving parts, obstacles and objectives. In this set of options, when

defining a new object, we can choose to load a CAD design file from the predefined library,

custom CAD designs made by the user, and typical geometric bodies, such as cubes,

cylinders and spheres. Among the options, we highlight the “I/O interconnectons” that allow

interconnecting the input and output interfaces between robots, and the “Workcell

Properties” that show general configuration properties of the cell.

Add Robaot

Add Part 4
Add Fixture 4
Add Obstacle »
Add Target Group

Check for CAD file updates
Restart All Controllers - Cold Start

1/O Interconnections
Workcell "SistemaROB" Properties

Figure 2.52 Image of the “Cell”’menu

78

Robot - the menu indicates the options we can choose to handle the robot in question.
We have access to the “Teach pendant” console to make this configuration, in addition to
using the rest of the menus and the “teach tool”. The “teach tool” is the main tool for TCP
movement, which will allow us to define points in space and reach objectives in a simple
way, in order to later obtain the coordinates and adjust the movement with greater precision.
For this we can use the TP interface or the program definition menu "Teach progl program”,
which we will explain in the next point. We will be able to find several of the quick access
buttons, and as a noteworthy option that of “Robot GP1: Properties model”, which will allow

us to access the configuration options of the selected robot.

Lock Teach Tool Selection
Show Work Envelope

Teach Pendant
alarms
‘\Web Browser

Close Hand
Restart Controller r

Robat "GP: 1 - R-2000i4/200F" Properties

Figure 2.53 Image of the “Robot”menu

Teach - the “teach” menu shows us the options that we have to carry out the
programming of the movements and actions that the robot can carry out in the different
simulation programs. We can add a simulation program, a program through the “teach

pendant” console, or load an already defined program.

Add Simulation Program

Add TP Program

Load Program

Save all TP Programs »

Draw Park Features
Teach Program "Progl”

Program "Progl” Properties

Figure 2.54 Image of the “Teach”menu

79

We also have access to the "draw part features™ menu described above in the quick
access bars, as well as two new menus, "Teach Program ProgX" which will allow us to

access the main programming menu.

Backward

Forward

€ .

MoveTo

- B coves
X rﬂn'l Y rnrn £ mm

& 2: L P[2] 200mm/sec FINE
4 3 WAIT 0.50(sec)
24| 4: Pickup (CAJA') From ['Soportel’) With [GP: 1 - UT: 1 [PINZA))
4| 5 LP[3]200mm/sec FINE ACC50
S| 6 JPL41100% FINE
Q| 7 JP[5]100% FINE
2| 8 JPI61100% CNT100
& 9: Drop ['CAJA') From ('GP: 1 - UT: 1 [PINZA)') On [‘Base')
10: J P[71100% CNT100 =l

+

+,

+/

+,

-+,

+

-+,

P

Figure 2.55 Image of the “Teach Program”menu

And "Program ProgX Properties" which shows us the configuration options for the

selected Program.

I pragi, Robot Controlleri X

General |
General
Narme I Prog [Keep Visible
Description |
Sub Type Iﬁ Simulation EJ

- Group Mask and Simulation Settings

oS uTest [# 0T 1 PNze) v

UFrame: &) UF: 0 -
Payload: | &F PLST 1D ~|

uli]

[ignoePause [Wie Protect
ok | Cancel | peb | Hep |

Figure 2.56 Image of the “Program Properties”menu

80

Test-run - the drop-down offers us the different simulation execution options. We

can access the execution panel, execution configuration and execution options.

Run Panel
Run Configuration
Fun Options L

Profiler
Dty Eskiration

Figure 2.57 Image of the “Test-run” menu

Among the options we can find some functionalities, among which we can highlight
the "Collision Detect", which analyzes the possible collisions that may occur during the

execution of the simulation.

Run Panel
Run Configuration
v Collision Detect
v Collect TCP Trace
Run Program In Loop
Taught Path Visible
Hide Windows
v Refresh Display
v Compress AVI
Simulation Time on AYI

Profiler
Duty Estimation

Figure 2.58 Image of the “Run Options” of the menu “Test-run”

Project - the menu offers us an alternative way to access the development options
for the controller used. The options that appear are equivalent to the right-click menus of
the “Cell Browser” development buttons. We highlight the “Export” and “Import” options,
which allow us to massively export and import simulation files, programs and system

configurations to the simulation application or to the production robot.

81

add Files
Recent Files >
Set Default Folder

Build 3
Import L4
Expork 4

Figure 2.58 Image of the main menu "Project"

Tools - allows us to access the default directory of the selected robot to treat the
associated files, and also gives us access to a configuration menu of general options, such
as the creation of templates in point definition sentences, image refresh time in "teach time",

configuration of object colors, definition of application work paths.

Toals

Explaore "SistemaROB" Folder

Options

Figure 2.59 Image of the main menu "Tools"

Window - offers us the possibility of changing the application interface types, being

able to define a simpler or more complex graphical interface, through the option “3D Panes".

30 Panes bk

Minirmize &l
Show all

Reset 'Don't Show. ..

Figure 2.60 Image of the main menu "Window"

Help - shows the different help options that the program offers.

82

Contents
Help on Current Window

Reqister HandlingPRO
Transfer HandlingPRO License

About

Figure 2.61 Image of the main menu "Help"

2.3 Positioning error of industrial robots

The positioning accuracy of industrial robots is determined by the design features of
the mechanical unit, geometric errors, errors of control systems and feedback sensors, as
well as thermal errors and errors caused by the action of gravity forces. Also, some error is
caused by the impossibility of the robot control system to recognize the difference in two
positions, the conditional distance between which is less than the robot's digit capacity.
When performing a technological operation, the actual position of the movement of the
center point of the working tool (TCP) differs from the calculated one. Its position, speed
and acceleration at any point of the trajectory realized by it in the general case may not
coincide with the calculated ones.

Geometric errors include deviations of the linear dimensions of the links and the
shape of their longitudinal axes from the specified values. As a result of the presence of
technological errors arising in the manufacture of parts of the links, as well as errors arising
during the operation of the mechanical unit (temperature, power and wear), the actual
dimensions of the links that determine the position of the TCP in space differ from the ideal
ones, on the basis of which the calculation algorithms were compiled and the actual position
of the working body differs from the calculated one. Such errors are called primary errors,
and the effect of each such error on the value of the positioning error of the industrial robot
TCP point can be determined independently of the effect of other primary errors. The
resulting positioning error is calculated in accordance with the superposition principle.

To implement the movement of the working body, it is necessary from the control system
with the help of autonomous motors to set movements for several or all links of the
mechanical block of an industrial robot. Since the control system and motors operate with

errors, as a result, the control is carried out inaccurately and the actual movements of the

83

links differ from the calculated ones. Robots have a number of error sources that affect the
accuracy, these include but are not limited to:
— Commissioning errors, such as the definition of the: tool center point (TCP) offset,
workpiece and robot spatial relationship.
— Manufacturing/mechanical errors, such as: linkage length, axis perpendicularity,
eccentricities, linkage elasticity, backlash.
— Dynamic & inertia-based errors.
— Temperature based errors: robot warm-up, ambient temperature influences.

One of the most cost effective, and high impact methods for improving a robotic
application is to accurately measure the relationship between the robot base position, the
tool center point of the end-effector and the workpiece. Taking each in turn:

The robot base is the origin of the robot. In practice, it is the starting point for any
forward kinematics calculations; however, it is essentially impossible to measure directly.
The physical robot base does not coincide with the same robot base used in motion control.

The tool centre point is the frame on the end-effector that is used to interact with the
work-piece; this could be a gripper, spindle or weld nozzle. The TCP needs to be defined in
six degrees of freedom (6DOF) from the manufactured end of the robot (the tool flange). A
CAD/drawing nominal is often used to define the TCP. Otherwise, robots have a built-in
routine that can derive the TCP. Both methods are likely to introduce inaccuracy.

The workpiece is the object (or objects) that the robot process is interacting with.
Robots use routines for locating the part relative to the robot base, but again, this is a
relatively subjective process that can vary depending on how the operator programs it.

The geometric relationship between these parameters can be determined using large
volume metrology tools, with minimal time and cost impact to significantly enhance the cell
accuracy.

The most common manipulators today are anthropomorphic and resemble a human
hand. Low load capacity and low accuracy are due to the architecture of the existing
manipulators and, in particular, the sequential arrangement of their links. Each of them
carries the weight of the subsequent segment in addition to the payload, so they are subjected

to large bending moments, which increases the stiffness requirements and therefore leads to

84

an increase in mass. A significant source of positioning errors is the violation of the specified
geometric relationships between the link axes. The sequential arrangement of the links
together with the requirement for their rigidity implies that the moving parts of the robot
have a significant mass. As a result, during high-speed movements, the manipulator is
influenced by inertial forces, centrifugal forces and Coriolis forces, which complicates the
control of the robot. The robots' accuracy is determined by the positioning errors of the TCP
characteristic point and the errors of its angular orientation.

Positioning errors are determined by technological deviations in the dimensions of
the manipulator links, gaps in the kinematic pairs of the manipulator and drive mechanisms,
deformations (elastic and temperature) of the links, as well as errors of the control system
and feedback sensors.

The transition matrix Tn connecting the TCP {T} coordinate system and the world
coordinate system {B} can be represented as follows:

T, = AjA,A5 .. Ay, (2.1)

A; = Rot(Z,0;) - Trans(0,0,d;) - Trans(a;, 0,0) - Rot(X, a;) (2.2)

where A; - matrix of transformation of coordinates between links i -1 and i of the kinematic

chain, a; - is the length of the i-link of the kinematic chain, «; - is the angle of the i-link of

the kinematic chain, d; - is the deviation of the i-link of the kinematic chain, and 8; is the
angle of rotation of the i-joint.

Equation (2.2) implies that A; depends on 4 parameters. In the case of free rotation,
the angle 6; - is a variable of parameters, while the other three are fixed. And for a swivel
mechanical block, the angle yroui is the joint coordinate. Differentiation of equation (2.2)

gives:

_ 04;
- 6ai

04; 04; 04;
dAi Aai + a_aiA(li + a_alAdl + a_alAel = Aié‘Ai , (23)

where Aa; — offset a;, Aa; — offset «;, Ad; — offset d; and A8, — offset 6;. In this way we

received § A; — matrix of the errors A;:
0 =6z =6y —dx{

l l
A A A
6Al' — 62i 0 _dxi _6yl) (24)
5z dx{ 0 5z
[0 0 0 0 J

85

In this matrix dx*,dy;,dz - positioning errors during transition from i-1 to i, and
Sxi*, 8y, 5z —angle errors. With these errors in mind, the transformation model between
the working and world coordinate system is:

T,+dT, = (A; + dA)) (A, + dA,)) (A5 + dA3) ... (A, + dA,) =[TL,(4; + d4;) (2.5)

If we neglect the high-order differential term, we get:

AT, = Tp X1 (Uis1864:Uf) = ToST, (2.6)
where 8T, — matrix of the errors, T,, and U} = A;A,A; ... A,. According to differential
Kinematics:

0 -6z, Oy, dx,
5Ty = TLaWlabAUL) = | O S T o), @)
0 0 0 0

where dx,,, dy,, dz, - errors in the position of the coordinate system {n} with respect to the

coordinate system {0}, and 6x,, 8y,, 6z, — angle errors. In this way, the final expressions
for positioning errors are:

d, = [dx,, dy,, dz,]" (2.8)

On = [6%n, 6, 62,]" (2.9)

The working coordinate system of the robot is tied to the base of the robot, relative

to which the reference position of the entire mechanical unit is set. The measurement of the

positioning accuracy of the robots was carried out using a laser tracker, with the measuring

marks installed in several places on the measuring unit attached to the flange of the robot's

wrist.

86

Figure 2.30 Measurement scheme of the absolute positioning accuracy of the mechanical

unit of an industrial robot Fanuc

We used the Fanuc R-2000iC / 165F robot as a test robot. Robots of this type are
among the most demanded in the world. With high productivity and lifting capacity ranging
from 100 to 300 kilograms, these robots are a versatile solution for a huge range of tasks.
Each of these robots contains a six-axis mechanical unit and a control cabinet. Geometric
errors of the Fanuc R-2000iC / 165F robot are presented in the table below:

Table 2.1 Geometric errors of the Fanuc R-2000iC / 165F robot

AXis Aa (mm) Ad (mm) Ao (radians) | A (radians)
1 0.25 -0.78 1.61-10° 3.43-10*

2 -0.22 0.05-10* 1.94-10° -1.07-10°3

3 -0.7 -0.03-10* -0.5:10* 4.45-10*

4 0.18 -0.13 -6.89-10° 1.01-10°

S 1.21-107 -0.23-10° 3.2:10* -3.34-10*

6 -2-10° 0.05 -7.34-10* 4.65-10°

2.4 Conclusions

After analyzing the methods proposed by the Roboguide software, it was decided to
use the Roboguide Simulation Programs and editor. This application offers us an intuitive
and very complete editor, which allows programming of programs through a graphical
environment, in active experiment mode. Also, the analysis of the positioning accuracy of
the industrial robot Fanuc has shown that the selected robot will have sufficient accuracy.

The great advantages of this editor are that it allows creating robotic programs in a
more comfortable way than in a TPE terminal and offers the great advantage of evaluating
the cycles of work cell processes “offline”. By using the animations generated by the
simulation program, controlling the various factors that can interfere with our simulation
without having to suffer them in a real environment (incorrect or impossible trajectories,
collisions, points out of reach) we can track and correct in real time all movements of the

robot, this is fully consistent with the purpose of this work.

87

3 ROBOTIC SYSTEM SIMULATION

3.1 Workeell design

To carry out the process design we will take into account the specifications defined

in section 1.5, composing a typical work cell, with characteristics of an industrial

environment.

Several zones are defined within the system, through which the manipulated objects

are going to be transferred according to the state of the robotic process. We therefore denote

four differentiated areas that are:

Position of the robot. The coordinate origin for the robotic system will be
defined in this position.

The box storage area. Boxes will be supplied through an automatic system in
a storage, and by means of the manipulator action, their positions will be
interleaved in the three levels as a FIFO queue.

The storage area for part 1. Parts will be provided through an automatic
system in tables and will be removed once used, through the same automatic
system.

The work area. A certain job will be carried out with the objects transferred

to the area by a manipulator robot.

Table area for Partl

Figure 2.61 Design of the robotic system work cell

Work area
|

—

Box storage area

3.2 Automatic process diagram. Petri net

88

The robotic process state diagram is made up of four available actions and seven

supported positions in the “world” of the robotic manipulator.

The actions of the process are:

- Capture of "Box";

- Capture of "Partl1";

- Deposit of "Box";

- Deposit of "Part1".

The positions allowed in the manipulator environment are:

- Storagel,;
- Storage 2;
- Storage3;

- Base (Work area);

- Table 1;

- Table 2.
The process itself will consist of the following steps in order of execution:
- Initial position.*
- Positioning in "Storage 1".
- Capture of "Box".
- Positioning in "Base".
- Deposit of "Box".
- Positioning in "Storage 2".
- Capture of "Box".
- Positioning in "Storage 1".
- Deposit of "Box".
- Positioning in "Storage 3".
- Capture of "Box".
- Positioning in "Storage 2".
- Deposit of "Box".
- Positioning in "Table2"
- Capture of "Part1".
- Positioning in "Base".
- Deposit of "Part1".
- Positioning in “Table1”.
- Capture of "Partl1".
- Positioning in "Table2"
- Deposit of "Part1".
- Waiting position. *
- Positioning in "Base".
- Capture of "Box".
- Positioning in "Storage 3".
- Deposit of "Box".
- Positioning in "Base".
- Capture of "Partl".

89

90

- Positioning in "Tablel".

- Deposit of "Part1".

- Final position. *

The positions marked with an asterisk indicate that the point of that position exactly
coincides in the defined space (start, wait and end).

Following the execution flow, we can compose the graph of the Petri net, which is
divided into the four possible states (actions for capturing and depositing the objects) and
the 7 transactions (positioning in the different manipulation spaces). Below is the mentioned

industrial process through the design of the Petri net:

‘ Storage ‘ ‘ Storage2 ‘ ‘ Storage3 | ‘ Base ‘ ‘ Table1 ‘ Table2 ‘ ‘ Start/Wait'/End
A A

L

Figure 2.61 Petri net diagram of the robotic system

3.3 Presentation of the manipulator
The Fanuc R-2000iC/165F manipulator has been chosen to carry out the process.
Fanuc's R-2000iC robot series is the latest generation of heavy duty robots with high

industrial performance. We can highlight the performance, safety and handling of this

91

model, ensuring the highest reliability. The 165F model is the standard model, of a wide
range with minor modifications according to the needs of the processes to be carried out.

Equipped with 6 axes, with a maximum load of 165 kg, it offers a maximum reach
2655 mm, with a repeatability of + 0.05 (based on 1SO9283). The 165F model is the standard
model of a wide range with minor modifications according to the needs of the processes to
be carried out.

Thanks to the payload capacity of this robot model and the degrees of freedom
provided by the 6 axes it has, we have a manipulator that is perfectly adapted to the process
we want to implement. These characteristics make this model a very versatile robot to reach
a large number of trajectories and provides the system with a great capacity to be able to be

expanded without significant repercussions.

Figure 2.61 Robot FANUC R2000iC Series
The following images show the robot drawings with the general measurements
specified by different views and details of the R2000iC / 165F robot.

92

Working range e
4-M10 tap depth1s
50 140, 155.5 67
1l f '
| +185° \ et \ _ ',
| 212 tap depthzo 2 f &M10 tap depth1 5 % II
M [.] \ N. |
o —— | o i,
| B —— K |
| ____————J.'f—____ — T—1_] L
b— '. R) II
I'. -185° a225 | 170| 170f _____""8——__5_5__ f
| \-\ ;EIJL:%p?ep:hlﬁ - F ™~
(Dain sides)
Figure 2.61 Working range of the robot FANUC R2000iC Series
~ '*-\._hx
J5 axis
GG (E rotation center
/’J-
R_
L
/ 4 R r e
f — Tt \ =
|'I - T Motion range Y ”
/ n | g of the J5 axis \
r\ | —| rotation center \
. 796 , 312. = \
]
ua A/ /
= /
| 2 ;
3 St 6-M12 tap dipth 20
1l |
a2l s 25|[[25] 2s]]] 25 l]
. 11751975 E
2-M12 tap depth 18 “"---Hx - =
1919 - 2655

Figure 2.61 Measurements of the robot FANUC R2000iC Series

3.4 Automatic system implementation
Once the industrial process to be programmed has been specified, we will develop

the FANUC Robotics Roboguide HandlingPRO virtual software simulation environment.

93

For the development of the simulation project we will use the evaluation version 9
(Rev. H) for Windows 10.

B2

HandlingPRO ™

FANUC
O I O ROBOGUIDE - Material Handling Plug-In
l Version 9 (Rev.H)

Build ID: 9.10145.00.23

q The HandlingPRO Material Handling plug-in allows users to create 3D
workcells and teach simple pick-and-place programs. These

programs can then be run and profiled for cycle time, path accuracy,
and process visualization.

4 - Evaluation - (21 days left)
Gopyright 82000-2019 System Information

FANUC Corporation, FANUC America Corporation
FANUC AllRights Reserved oK

Figure 2.61 Information window of Roboguide HandlingPRO virtual software

FANUC Robotics Roboguide HandlingPRO virtual software simulation
environment allows you to develop software for each specific situation with the possibility
of its future implementation in the physical control system presented in the figure below.
An important advantage is the ability to set up and test in a simulation environment, which

eliminates the risks of working with physical equipment during development and testing.

94

START / STOP i -
AND EMERGENCY NEj '3!3!!.“0 CABINET R J3|B
it RiesemnardveraiEranssapi Sk stara Sy s Sleimmmm s i
i i [Firer | !
1
: 24\De Switch :
i : Transformer |- -] 2‘".2“‘ .
:) Rear panel 210 VARG, = ‘) '
- Master | Ethernet - ! !
1| INTERBUS . CPU “PSU v !
g ! & A ‘ awe i
Bo—rl—08H 2 !
= 1 Slave Axis control DRAM POWeII' (imerhus) i
= N Mearyin du Wi !
1 ‘ (6 or 8 axis) 2l supply ;
: . : : ;
| Y. i
y s
210 VAC !
FSSB :
i “
! "y
: J
iw > e
' Lo
; | RP1 -
: = v
: i i
EMG signals 4
: 200VAC _ | i ROBOT
! from - &5 210 VAC i
1 transformer ﬂ ————————————————————— > |
1 210VAC _ _ i
Y from ig” i o
! PSU gl 1) ! 1
1 P i
4v0¢ - _ _ !
: Braking resistors '
1
| ;
! Optical I
! 1

<GE=DD" finer

Figure 2.61 Fanuc robot’s control system

3.5 Definition and configuration of the robot and the controller
To start using the application, once installed in the operating system we must create
a new work cell. We can use the File> New Cell menu, or use the “navigator” menu, which

will guide us step by step to start our 3D simulation.

95

& Waorkcell Creation Wizard *
Step 1 - Workcell Name
‘Wizard Navigator Enter a name for the new workcell
1: Workcell Name MName: MasterProjectas
HandlingPRO2
2: Robot Creation Method Existing Workcells
3: Robot Software Version AS MASTER

4: Robot Application/Tool i
HandlingPRO1

5: Group 1 Robot Model anding

6: Additional Motion Groups REIED

7- Robot Options Master Project A3

8: Summary

Delete ltem

Aworkcell musthave a unigue name. Ifthe name you enter is already in the list of existing
warkeells, thetextwill turn red and youwill mot be ableto continue.

FANUC Gancel ot el

Figure 3.1 “Step 1” work cell creation wizard

From this screen we have the option of being able to eliminate the work cells that
are not necessary, once their programming and simulation have been carried out. We will
give a name to the "WorkCell" and we will go to the next menu window. On this screen we
will be able to choose between: creating a new robot using the HandlingPRO default
configuration; create a robot with the last used configuration; create a robot from a backup
file or make a copy of an existing job.

We will use the first option, since it allows us to modify the configuration options a
posteriori if necessary for the simulation. The following figure shows the wizard screen

referring to this point:

96

& Waorkcell Creation Wizard *
Step 2 - Robot Creation Method

‘Wizard Navigator Select the method to create a robot.

1: Workcell Name

MasterProjectAS @ Create a new robot with the default HandlingPRO config.

2: Robet Creation Method () Create a new robot with the last used HandlingPRO config.

3: Robot Software Version

4: Robot Application/Tool O Create arobot from a file backup.

5: Group 1 Robot Model

6: Additional Motion Groups

7- Robot Options = |
8: Summary

O Create an exact copy of an existing robot

g‘i
@ The robot configuration will be initialized with the standard seledions for HandlingPRO
FANUC o | [[

Figure 3.2 “Step 2” work cell creation wizard

In the third screen of the wizard it is necessary to choose the version of the robot
controller software offered by the application. We have different versions developed by the
manufacturer FANUC. When the application is installed, the software versions of the
controller to be installed are requested, of which we have configured versions 9.10, 9.0, 8.30

and 8.13. To carry out our simulation we have chosen version 8.30.

§° Worlecell Creation Wizard

Wizard Navigator

1: Workcell Name
MasterProject AS

2: Robot Creation Method
Create from scratch

3: Robot Software Version

4: Robot Application/Tool

5: Group 1 Robot Model

6: Additional Motion Groups

7- Robot Options

8: Summary

FANUC

Step 3 - Robot Software Version

Select the software version to be loaded on the robot
W8.10 - R-30iB Plus, 5.10145.19.05

V5.00 - R-30iB Plus, 9.0055.03.06

VB.30-R-30iB |, 8.30291.48.03

VB8.13-R-30iB | 81326.15.05

There are multiple versions ofthe Virlual Robot Controller software that can be us ed for your
simulation. Selectthe version youwish to usefrom thelistabove.

Cancel <Back Mext= Help

97

Figure 3.3 “Step 3” work cell creation wizard

In the screen shown below we can choose the application package that we are going
to use. In this case it is the “HandlingTool” package (H552), which will allow us to simulate

a “pick and place” process. “Set Eoat later” will allow us to choose robot’s tool later, in the

procces of robot’s configuration.

§° Workcell Creation Wizard

Wizard Navigator

1: Workcell Name
MasterProject AS

2: Robot Creation Method
Create from scratch

3: Robot Scoftware Version
Va.30

4: Robot Application/Tool

5: Group 1 Robot Model

6: Additional Motion Groups

7- Robot Options

8: Summary

FANUC

Step 4 - Robot Application/Tool
Select the Application/Tool package to be loaded
HandlingTool (H552) Default Ecat CAD Library

LR HandlingTool (H551)

LR Tool (H548)

MATE SpotTool+ (H573) =
j(

SpofTool+ (H550)

Default

Eoat history

@ Set Eoat later

This listrepresents all ofthe Application/Tools thatare valid forthe process and confroller
version you have selected

Cancel <Back Mext=

98

Figure 3.4 “Step 4” work cell creation wizard

In step five of the wizard we can choose the robot that we are going to use to carry
out the process applied to the industrial plant. After a preliminary study of the physical
needs, we will choose the model that best suits our requirements.

We have chosen the R2000iC/165F robot model for having a good load capacity and

being one of the most versatile in terms of mobility.

2 Workcell Creation Wizard X

Step 5 - Group 1 Robot Model

Wizard Navigator Select the primary robot model for this controller
1: Workcell Name Showthe robot model variation names
MasterProjectAS
2- Robot Creation Method Type Order Num Description &
Create from seratch &7 Robot H721 R-2000iC/165F
33:;";’[}"‘ Software Version Z* Robot H724 R-2000iC/185R
i Robot HTZ0 R-Z0O0IC/Z10F
& icali ool g Robot H7Z7 R-Z000iC/210L
HandiingTool (H552) ohe -
5: Group 1 Robot Model gﬂ Robot H723 R-2000iC/210R
6- Additional Motion Groups gg Robot H731 R-2000iC/210WE
7- Robot Options ga Robot HTZ9 R-2000IC/220U
8: Summary ga Robot H725 R-2000iC/270F
offfUnde.. Haod Rail Unit
ga Robot HB54 ROBOWELD 100i8
gs Robot HES0 ROBOWELD 120iB
gﬂ Robot H851 ROBOWELD 120iB/10L
W
[] Add Extended Axis | Set axis later
This listcontains all ofthe robots thatare available for group 1 based on the selections you
have made so far. Please select one.

FAN U C Cancel <Back Mext=

Figure 3.5 “Step 5 work cell creation wizard

In the next step, the application allows us to define "movement groups", adding more
robots to the cell in addition to the one already selected. It even allows us to create several
movement groups with different robots in each of them.

This option can be reconfigured once in the application and according to the needs,

so we have selected a single robot to be able to add it later from the application.

99

&* Warkcell Creation Wizard *
Step 6 - Additional Motion Groups
Wizard Navigator Select robots and positioners for additional motion groups, if any
1: Workcell Name Show the robot model variation names
MasterProject AS
2: Robot Creation Method Type Order Num Groups Description)
Create from scratch ff Undefined HET7 (Any) 1-Axis Servo Positioner Compact type (Solid type, 1000k
3: Robot Software Version - . ")
V8.30 ’Pusrtluner H87T 2 1-Axis Servo Positioner Compact type (Solid type, 1000k
4: Robot Application/Tool @Pos'ﬂ:iuner H&7? 3 1-Axis Servo Positioner Compact type (Solid type, 1000k
Handling Tool (H552) ’Pcls'rtiuner HETT 4 1-Axis Servo Positioner Compact type (Solid type, 1000k
5: Group 1 Robet Model &Undeﬂned H878 (Any) 1-Axis Servo Positioner Compact type (Solid type, 1500k ¥
R-2000C/165F (H721) < 2
6: Additional Motion Groups T
7- Robot Options Type Order Num Description
8: Summary = Pal (none)
3 P (none)
4 x (none)
5 . (none)
6 > (none)
7 > (none}
8 x (none)
£ >
@ This listcontains all oftherobots thatare available for group 1 based on the selections you
have made so far. Pleaseselect one.

FAN UC Cancel <Back Next=

Figure 3.6 “Step 6 work cell creation wizard

Next we will define the specific FANUC software modules that we will load directly
onto the robot controller. These are functionalities that this module offers, such as: vision
systems integrated in the 2D or 3D manipulator, various sensors, tools for collision

treatment, measurement systems, special machines.

§° Workcell Creation Wizard

Wizard Navigator

1: Workcell Name
MasterProject A5

2: Robot Creation Method
Create from scratch

3: Robot Software Version
va.30

4: Robet Application/Tool
Handling Toal {(H552)

5: Group 1 Robot Model
R-2000IC/165F (H721)

6: Additional Motion Groups
{none)

7- Robot Options

8: Summary

FANUC

Step 7 - Robot Options
Chooserobot software options

Software Options | anguages Advanced

@) Sort by Name

O Sort by Order Mumber l:l

[+ Ascii Program Loader (R796 s
PC Interface (R641

(14D Graphics (R764)

14D Graphics Import (R825)
[CJAB-RIO Irt (pc104) (R576
[[JAccu & Stiff Enh Pack (J674)

[Accu Cur Pos Out (J673)
[JAccuCal? (RE35)

[Accuracy Package (R811)

[[J Adapt Ctrl (R505)

[Adiust Poirt {J550)

[Adv. Constant Path (J831)

[Advanced DCS Package (R859)

[Advanced EIP Package (R860) w

required or notsupported by HandlingPRO, are disabled and their selection stalus cannot be

@ Available options are determined by the selections you have madeso far. Options that are
changed.

Cancel =Back Mext=

Figure 3.7 “Step 77 work cell creation wizard

100

In the last screen of the wizard we will obtain a summary of the options determined

in the previous stages. Once the different parameters have been reviewed, we finish creating
the robot in the simulation software.

§° Workcell Creation Wizard

Wizard Navigator

1: Workcell Name
MasterProject AS

2: Robet Creation Methed
Create from scratch

3: Robet Scftware Version
Va.30

4: Robot Application/Teol
Handling Tool (H552)

5: Group 1 Robot Model
R-2000iC/165F (H721)

6: Additional Motion Groups
{none)

7- Robot Options
See summary page

8: Summary

FANUC

Step & - Summary
Review your choices before finishing the wizard

------- It is the users responsibility to validate
------- the integrity of data exchanged from a
------- Roboguide robot to any other robot.

------- Workcell Name: MasterProjectA!

------- Virtual Robet Controller: V8.3

------- Application Tool: Handling To

(-~ Robot Model-

- Group 1: R-2000iC/165F (HT21)

(- Robot Options:

- User Selected:

. .-FRA Params [R650)

Auto-Selected for Basic Simulation:
------- Ascii Program Loader (RT96)
--PC Interface (R641)
- Virtual Robot (FVRC)

- Robet Languages:

i..... Basic Dictionary (English) (H521)

Use robotlibrary defaults found in group definition files

Hereare all the selections you've madeinthe wizard. Make sure everything is correctfor your

@ simulation, then press Finish to apply fhem.

Cancel =Back

Figure 3.8 “Step 8 work cell creation wizard

101

Finally, we observe that the simulation software initializes the virtual controller of

the robot as it has been configured. It will define the initial values of the internal variables

of the system, the previously loaded functionalities, the virtual "teach pendant”. Once the

initialization process is finished, the configured options are available in the virtual 3D work

environment.

After having created the robot object, we will start working with it by checking its

properties settings, using the menu accessible with the right mouse button in the “Cell

Browser” window.

n

starting Robot Controller!: Init Start

L

"Checking (Multi-Tasking) "

i (Auto Software Update)
(Mixed logic) "

(Prog Mum Selection)
(Extended Error Log)
(Vigion Library) "
(iRCalih. Standard)
(Vigion Core) "
(Virtual Rokhot) "
(VCalibration Common)
(Weh Plus) "

(Wision B3P CEXRC) "
(Camera |sF) "
(Wision SP CEUI) "
(Common calik UIF)

"Checking
"Checking
"Checking

=l

H
—
—
1
—
—
—
—
—
—
—
—

"Checking

|PRE?|

Virtual Rebot Status
E’% Creating or recreating Virtual Robot Simulator ...

| (=TI

Figure 3.9 Initialization of the robot controller

§° GP: 1 - R-2000iC/165F, Robot Controller

=)

Other
r Information
| Robot Controllert |

Model R-2000iCHB5F Serialize Robot

Mame

[visible [] EdgeVvisible

Teach Tool Visible Radius L

[wire Frame]
Transparent Opague

Programs visible when controlleris not selected
EnableJointJog Tools

] 0.000|deg

Location Work Envelope
[] show Wark Envelops
* m (®) UTool Zer
v L () CurrentUToaol
z 0.000{mm Colligion VO
—
W 0.000| deg

R 0.000|deg

Rotate Base CAD

0o

[] Show robot collisions | ...
f8 [LockAll Location Values

o

a oK

Cancel Help

Figure 3.10 Robot configuration properties menu

103

As we can see in the previous figure, the most important properties of the robot that
we can edit are: the name of the robot, the visibility options during the “teach run”, the
transparency or opacity, the visualization of the collisions and the position in the
environment of the cell.

The steps defined below will allow configuring the different objects that will make

up the work environment for the simulation, following the robotic cell design scheme.

3.6 Definition of manipulated objects (PARTYS)

Once the robot is configured, we will define the properties of the parts that are going
to be manipulated during the simulation. To carry out this action we will use the main menu
“Cell Browser” and on the drop-down “parts” we will select, with the right button of the
mouse, the option “add a part”. The menu shows us different objects to load as manipulated.
It also allows us to load a predefined part of the application, a custom part and different
geometric bodies (box, cylinder and sphere).

In this case we have defined two parts by choosing the “box” form, which will serve
as an example of a manipulated object.

Once the aforementioned parts have been created, we must configure them with the
"Properties™ option, accessing again with the right button from the "Cell Browser" menu. In

the following figure we visualize the configuration screen of the “BOX” part.

i Part] =]
General Image

Appearance

Mame BOX |

CAD File |

Type Box Color. - &
"
.
|:|‘.".|re e Transparent Opaque

Physical Characteristics Scale

Mass kg Sizein X mm
Sizein ¥ e
Sizein £ mm

Parts are special objects in thatthey are only

@ visible onthe partrack orwhen assignedto
fixtures ortoaling. They cannot befresy
dragged around the cell.

2 DK Cancel Apply Help

104

Figure 3.11 Properties menu of the “BOX”” object

We check that this menu allows us to configure the name of the object, the CAD
file in the event that we load a CAD image file, the type of object (box in this case), color,
opacity, mass and size defined in the x, y, z axes.

Similarly we define the second manipulated object called “PART1”, and we access

to its properties window:

i Part] =

General |mage

Appearance

Name [paRT1 |

CAD File = |
Type Box Color, - G
v
L Transparent Opague
Physical Characteristics Scale

Mass ka Sizein X mm
Size in Y mm
Sizein Z mm

Parts are special objects in thatthey are only
visible on the part rack orwhen assignedto
fixtures ortooling. They cannot be fredy
dragged around the cell.

2 oK Cancel Apply Help

Figure 3.12 Properties menu of the “PART” object

Once the parts that will be manipulated in the simulation have been defined, the

configuration of these objects in the “Cell Browser” will be as follows:

105

- _ » 35
Eack

Fwd Add

ECea

|_:_|- Robot Controllers

Proegrams

*E op1-namocest

----- m Tooling

|ijiles

Jobs
[PP Variables

P Box

Figure 3.13 Definition of manipulated objects in the simulation (parts)

3.7 Tool definition and configuration (UTOOL)

In this section, a tool will be added to the robot's TCP to be able to manipulate the
objects defined in the “parts” menu. To define an EOAT (End of Arm Tool) tool, access the
“Cell Browser” menu, in the “tooling” option, we will define a new “UTOOL” for this.

When we open the “tooling” drop-down we check that the robot allows the definition

of different “UTOOLs” (In the simulation software we have found eleven possible tools).

= .
Proegrams

B8 GP:1-R-2000iCHE5F
Elm Tooling

....... # UT:2 (Eoat2)
....... f UT: 3 (Eoat3)
....... f UT: 4 (Eoatd)
....... f UT5 (Eoats)
....... f uT 6 (Ecats)
....... UT:7 (EoatT)
....... f UT: 8 (Eoatd)
....... UT: 9 (Eoatd)
....... f uT 10 (Eoat10)
- 14 UserFrames
[].....' Dressouts
Targets

L] Files

Jobs

B Variables

Figure 3.14 “Tooling” menu of HandlingPRO simulation software

106

The procedure to define a tool is carried out by choosing one of the "UTOOL"
defined in the "Cell Browser". The right button of the mouse allows us to access the option
“Eoatl Properties”.

Within the menu, in the "General™ tab, we will name the tool to define, we will load
the primary CAD file of the tool (since if it is a prehensile tool, we will have a secondary
CAD file in the "closed" state), we will position the tool in TCP with the desired offset
("offset™), we will define the mass of the tool and the scale used in the graphic environment.

% UT:1 (HAND1), GP: 1 - R-2000iC/165F, Robot Co... [wam|

Feature Prog Setftings Feature Poz Dfits
App/Ret Feature Pos Offsets
Collizion Avoidance Calibration Spray Simulation

General Trace UTOOL MoveTo Paris Simulation

Appearance

Name [HAND1 |

CAD File | C:\ProgramData\FANUC\ROBOGUIDE | | =5 || &7

Visible Keep Visible Colar aa

] wire Frame
L
Transparent Opague
Location Physical Characteristice
X 0.000| mm IMass 10.00| kg
N 0.000| mm Seale
z 0.000| mm Scale ¥ 0.850000
W -50.000(deg Scale¥ 0.50000
P 0.000| deg scale? 0.50000
R 0.000|deg

Show collisions

[] Lock All Location Values

-

a o

Cancel Ap phy Help

Figure 3.15 Definition of characteristics in the "General" tab

In the UTOOL tab we will define the actuation point of the gripper. Due to the
displacement in the tool configuration, we will define the reference system of the actuation
point to specify the movements of the robot so that the gripper can be properly positioned
on the objects to be manipulated.

To carry out this operation, we will insert the coordinates directly into the reference
system relative to the gripper or use the “Use Current Triad Location” functionality to

establish the current point defined with the robot movement tool as the reference system.

107

In this configuration tab, optionally, we can also define the normal that the system
will provide us by default to use the movement option "Move Robot Normal-to-surface"
using the Ctrl-Shift-Click key combination.

In this case we will leave the value defined for the default normal on the -Z
coordinate axis. The "current triad location” method is based on taking the TCP coordinates
after positioning the robot with the "teach tool selection”, equivalent to the "teach by nose"

system of a real robotic system.

% UT:1 (HANDI), GP: 1 - R-2000iC/165F, Robot Co... [m3m|
Feature Prog Setftings Feature Pos Dftts
App/Ret Feature Pos Offsets
Collision Avoidance Calibration Spray Simulation
General Trace UTOOL MoveTo Parts Simulation

uTooL
X 0.000 mm [] Edit UTOOL
N 0.000 mm
Z 550.000|mm
W 0.000|deg
P 0.000 deg
R 0.000 deg
0K Cancel Apph Help

Figure 3.16 Definition of characteristics in the "UTOOL" tab

In the next tab we define the parts that this tool can manipulate. We have previously
defined the parts in the “parts” menu to be able to assign them to the tool that we are defining
and that they can be manipulated in the simulation.

For each of the defined parts we must define the "offset” when the tool is acting on
it. In our case, as it is a part handling process, we have to define the “offset” of the part when
it is being “grabbed” by the gripper that is going to rotate or move it, according to the
movement defined in the program. .

The "offset" can be defined in the relative system x, y, z, in addition to the orientation
with the angles w, p, r.

108

To edit the "offset", we must check the box "Edit part offset”, choose one of the parts
defined in the system through the drop-down menu, and then we can enter the values of the
variables x, y, z, w, p, I.

We can also define if we want this part to be visible in the learning time “teach time”

and / or in the simulation time “run time”.

% UT: 1 (HANDT), GP: 1 - R-2000iC/165F, Robot Co...

Feature Prog Settings Feature Pos Ditts
App/Ret Feature Pos Offsets
Collision Avoidance Calibration Spray Simulation
General Trace UTOOL MoveTo Parts Simulation

Parts. The number of Parts

Export

Part Offset
[] Edit Part Offset

0.000 mm
=
0.000 mm
-90.000 deq

0.000 deg

D WM o= N < x

0.000 deg

(@ Mo Part v
MoveTao Record

Visible at Teach Time
Visible atRun Time

0K Cancel Apply Help

Figure 3.17 Definition of characteristics in the "parts" tab

Finally, we will define the characteristics of the "Simulation™ tab, which will allow
us to control some aspects of the tool during simulation time.

109

UT:1 (HANDT), GP: 1 - R-2000iC/165F, Robot Co...

Feature Prog Settings Feature Pos Dflts
App/Ret Feature Pos Offsets
Coliizion Avoidance Calibration Spray Simulation
General Trace UTOOL MoveTo Parts Simulation

Parts Part Settings
Name
Aftach Delay sec
@ sox
@ rarT Detach Delay sec
Presence /O
| Robot Cantrollert v|
R o] 1=]oFF «
o[of1=[o

Gripper Settings
Funciion | ¥ Material Handling - Clamp vl

Actuated | C:\ProgramData\FANUC\ROBOGUID| | 25
CAD

2 0K Cancel Ap ply Help

Figure 3.18 Definition of characteristics in the "Simulation™ tab

In this tab we will define the default capture and deposit times of the different
defined pieces. We will also configure the function of the tool used (in our case “Material
Handling - Clamp”) and we will associate an “acted” CAD image, which will allow us to
animate the tool when it changes to the secondary state in a manipulation of any of the parts
or parts. In the simulation, as it is a gripper, the primary state would be the gripper open and
the "actuated" state would correspond to the gripper in the closed state with the captured

part.

3.8 Creation and configuration of fixed parts (FIXTURES)

The definition of the fixed parts of the system is essential for the manipulation of the
different parts in the cell. In these fixed parts we will position the objects that will be used
in the process.

Each of the pieces defined in the previous section must be linked to the fixed parts
so that the software can recognize the situation of these objects. Ultimately, these fixed parts
will be the objectives of the manipulation, that is, they will support the pieces that must be
captured and they will be the supports whose upper surface will receive the manipulated

pieces.

110

We will therefore define, with the following procedure, the fixed parts of the
simulation following the design of the robotic system of the cell: we will access the
configuration menu using the main window of the “Cell Browser” and we will choose the

option “Add a Fixture”, using the right click on the “Fixtures” menu.

“« = 9
E-:l Back Fwd Add F e a
UT: 1 (HAND1) ~
UT. 2 (Eoat2)

UT: 3 (Eoat3)
UT: 4 (Eoatd)
UT: & (Eoat5)
UT: & (Eoats)
UT: 7 (Eoat?)
UT: & (Epatd)
UT: 9 (Eoat9)
UT: 10 (Epat10}

=t =t =t =k =k =k =k =k =F 3k

....... L1 Files

B Variables
'% Machines
Fixtures
= % Paris
- @ BOX
- @ PARTY

Figure 3.19 Creation of “fixtures” from the “Cell Browser” menu

We will select the geometric body "box™ and configure it according to the images

shown below:

111

Partz Simulation Spray Simulation
General Image Calibration
Appearance

Name [STORAGE1

|

CAD File

e[z~ Joonr WS
|

[visible

. 1 Ll 1 Ll 1 1 1
D T ST Transparent Opague

Location Size

X mm Size in X mm
v mm Sizein¥ mm
= mm Sizein £ mm
w [oumiaes
o d [+] Show robot collisions Izl
: eg
[] Lock All Lacation Values
R 0.000(deg

[J'gnere mouse control

| ok || cancer | [zppy | [Hep |

Figure 3.20 Configuration of the "General" tab of the fixed part "storagel"

We will access the "General™ tab and the following actions will be carried out: we
will name this "fixture" as "Supportl", we will select it as "visible", we will define the visual
aspects such as color, opacity or transparency, the scale used in the environment of the cell
and the position in relation to the position of the robotic arm.

We will also configure that, in the event of a collision of the robot with this fixed
part, the alarm is indicated in the “run time” period. For this we will use the tab "Show robot
collisions".

In the next tab "Calibration™ we can see all the calibration options offered by the
simulation software. Roboguide is able to generate calibration programs automatically if

connection with a real robot is available from the application.

112

STORAGET =
Partz Simulation Spray Simulation
General ||'|'|age Calibration
Object To Be Calibrated
STORAGE1 o

Calibration Method

(® Use TP () Direct Entry Method
General
Controller | [F] Robot Controller v |
i Group |§’=‘ GP: 1 - R-2000iC/166F V|

Step 1: Teach in 30 World

Create Calibration Pragram, Teach in 30 Waord

Step 2: Copy & Touch-Up in Real World
Store Points, Copy to MC, Touch Up in Real Word

Step 3: Calibrate from Touch-Up
Load Touched-Up Program, Calibrate Object

2 oK Cancel Help

Figure 3.21 Configuration of the tab “Calibration” of the fixed part “Support1”

The "Parts" tab will allow us to define each of the parts associated with this fixed
part. We will be able to select the object from the set of parts defined in the system and
position it in the fixed part as specified in the cell design, thus adapting the future real
environment with the simulation software.

To position the selected parts we will define the values x, y, z, w, p, r. We can also

configure the visibility of these parts during the “teach time” and the “run time”.

113

STORAGET

General Image: Calibration
Parts Simulation Spray Simulation
Parts The number of Parts

Delete
Export

Part Offset
[] Edit Part Offset

x 0.000 mm

0.000 mm

[swofor

0.000 deg

0.000 deg

0.000 deg

| ¥ Robot .HAND1) w

MoveTa Record

Visible at Teach Time
Visible at Run Time

] Show collisions I:l

| OK | | Cancel | Apply

Figure 3.22 Configuration of the “Parts” tab of the fixed part “Storagel”

In the last tab "Simulation™ we will define the options of the fixed part in the period
of "run time". In this menu, only the parts selected in the “Parts” tab will appear and we can
define for each of them whether they can be captured and/or positioned, as well as the delay

times for these two actions during the simulation time.

Parts
Parts

General

Image Calizration

Simulation

Name
i BOX

Spray Simulation
Part Simulation
Allow partto be picked

Create Delay 5 BC

Allow part to be placed

Destroy DeIaYs ec

Presence M0
| E RobotControllert |

o[of 1=|oFF
er| o 1=| 0|

Part Random O ffset

Disabled ~|
pon 0.000 mm
e 0000 mm
T4 0.000 mm
W+ 0.000 |deg
(=T 0.000|deg
R+ 0.000|deg

[RobotControllen
&¥ GP: 1 - R-2000iC/185F
PRI 1)1

Figure 3.23 Configuration of the "Simulation™ tab of the fixed part

114

Following the procedure described, we define two more fixed parts, called

"Storage2" and " Storage3", which will be the same as the already defined " Storagel™,

except in height. We will define different values of the Z coordinate variable for each of the

supports, following the scheme of the designed system.

In addition to these fixed parts labeled "StorageX", we will create a fixed part of the
"Work Zone" called "Base™. And two more fixed parts “Table1” and “Table2”, equal to each

other, that will serve as support for the "Part1" objects.

The following shows the configuration of this fixed part in the simulation software,

having in each one of the images each tab of the properties menu:

- BASE [l
| General Calibration Parts Simulation Spray Simulation
Appearance
Mame |BASE |
CAD File =) B
Type | Cylinder | Color l:l o]
[Visible]
"
|:|‘.".|reFrﬂme Transparent Opaque
X 1844.000| mm Diameter | 2000.000 mm
¥ -506.000 mm | ength 500.000) mm
Z 250.000 mm
W 50.000 deg
Show robot collisions | ...
P 0.000| deg .
Lock All Location Values
R 0.000| deg
[1gnere mouse control
a2 OK Cancel Help

X

»

Figure 3.24 Configuration of the “Base” fixed part

Next step is position configuration of the parts “Part1” and “Box”.

, S
1 BASE [m3m]| | BASE |
General Calibration Parts Simulation Spray Simulation General Calibration Parts Simulation Spray Simulation
Parts The number of Parts Parts The number of Parts
M® - M@ Box -
M@ paRT! Mo X
Add Add
Export Export
Part Offset Part Offset
[] Edit Part Offset [[] Edit Part Offset
X -328.000 mm X
Y 375.000 mm Y
Z -215.000 mm Z
W 0.000 deg N 0.000 deg
P 90.000 | deg P 90.000 deg
R 0.000 deg R 0.000 deg
¥ Robot..HAND1) v ¥ Robot ..HAND1) v
MoveTo MoveTo
Visible at Teach Time Visible at Teach Time
[A] visible atRun Time Visible atRun Time
Show collisions Show collisions
2 OK Cancel Help) OK Cancel Help

Figure 3.25 Configuration of the “Box” and “Part1” fixed parts on “Base”

115

116

Finally, we define two other fixed parts “Tablel” and “Table2”, which will
correspond to the supports of the “Part1” objects, which are equal to each other, saving the

defined position of each support. The configuration of these fixed parts will be as follows:

L s o
4
' Fixturel (e Fixturel
Parts Simulation Spray Simulation Parts Simulation Spray ;mulalion
General Image Calibration General Image Calibration
Appearance Object To Be Calibrated
TABLE1 v

Name [TABLE! |
CAD File 3| |8

Calibration Method

@ Use TP (O Direct Entry Method
e @0 Jconr [@
General
Visible [}
: TPP Name CAL1| TP
[wire Frame Transparent Opaque
Controller [[Robot Controlleri v|
Grow [§° GP:1-R-2000iC/185F v]
X 583.000 mm Sizein X 700.000| mm
Step 1: Teach in 3D World

7 1444.000 mm Size in 7

S 00.000 fmm Create Calibration Program, Teach in 30 World
z 500.000 | mm R

zeinZ | 500.000 :

= L o Step 2: Copy & Touch-Up in Real World
w 0.000 deg

[] Show robot colisions | ... Store Points, Copy to MC, Touch Up in Real World
P 0.000|deg

4] Lock All Location Values Step 3: Calibrate from Touch-Up
R -20.437 deg

Load Touched-Up Program, Calibrate Object

[] lgnore mouse control

OK Cancel Apply Help El OK Cancel A Help

Figure 3.26 Configuration of the “TableX” fixed part

For the part, which will be related to “TableX” fixed part, we use only “Part1”.

Configuration is shown below:

= TABLE2

General
Parts

~]@ BOX
-] PART1

& OK

Image

Parts Simulation

Cancel

Calibration
Spray Simulation
The number of Parts

1
Add

Export

Part Offzet
[] Edit Part Offset

X 0.000 mm
Y 0.000 mm
z 100.000|mm
W 0.000 deg
P 0.000 deg

R 0.000 deg

[¥ Robot HAND1) ~

MoveTo

[~] visible at Teach Time
[+ Visible at Run Time
[show collisions

Help

General Image Calibration
Parts Simulation Spray Simulation
Parts Part Simulation
Name] Allow partto be picked
@ PARTY Create Delay 1.00]sec

Allow part to be placed

Destroy Delay 1.00|sec

Presence Ii0
| & RobotControllert |

nl} 0| 1= OFF =~
GI[0] 1=| 0

Part Random O ffset
Disabled w
Wote- 0.000 |mm
e 0.000 |mm
Z+- 0.000 mm
Wi 0.000 deg
P4 0.000 |deg
R+ 0.000 deg

ff] RobatControllert
gs GP: 1 - R-20008CH185F
PR[1)1

s

!

oK

Cancel Help

Figure 3.27 Configuration of the “Partl” on “TableX”

117

Once all the fixed parts that will be included in the system have been defined, if we

review the “Cell Browser” menu, we can see that the configuration of the “Fixtures” option

is as follows:

E| Jobs

....... '% Machines

| Fixtures
....... BASE
- TABLE1

----- Variables

- STORAGE1
- STORAGE2
- STORAGE3
e TABLEZ

....... ﬁt Obstacles

[+
------- AR Workers

Figure 3.28 Setting the fixed parts in the “Cell Browser” menu

118

3.9 Definition of user reference system (UFRAME)

In the same way as in TP programming, in the HandlingPRO simulation software
we can also create reference systems defined by the user "user frames", as long as the needs
of the program require it for the convenience of defining points and certain movements (such
as an inclined surface defined in the robot's working environment).

In the simulation, we consider that it is not necessary to define any inclined plane,
since the predefined reference system allows us to identify the points easily. The possible
"UFRAME" defined in our program would be a translation of the current reference system
so that it would be relative to a position closer to a target, part or object of the robot's working
environment. For this reason, we have defined a UFRAME, the result of a translation of the
initial reference system, without performing any rotation in any of the coordinate axes.

This new “user-defined” reference system has been positioned in the fixed part
(fixture) of the “work zone” of the program.

To define a new UFRAME we must access the "UserFrames" drop-down menu
through the "Cell Browser" menu. Using the right button menu, we access "Uframel

Properties" where we will configure the new user reference system.

L7 UR: 1 (UFrameT), GP: 1 - R-2000iC/165F, Rob... [mtdm]

General

Appearance

Name |UFrame1 |

Atftached ﬁg GP: 1 - R-2000iC/165F

Color I:I G

UFrame Data

2045.000|{mm

-479.001|mm

137.000|{mm

/| Edit UFrame
180.000|deg

0.000|deg Invert Z Around: o

@ T oS M=k

-50.000|deg Use Current TCP
Location

Z oK Cancel Apply Help
— i,

Figure 3.28 Definition of UFRAME as a new reference

119

In the UFRAME configuration window, we will define the name of the new
reference system, the robot to which it is associated, the color and the position of the new
reference system. This position can be entered with the values in the positions X, y, z and
with the angles w, p, r, or by using the button "Use current TCP Location", defining the
UFRAME in the position where the TCP of the robot at a certain time in the 3D tool
environment.

The UFRAME definition menu also allows us to use the coordinates relative to the
robot to define the new coordinate system, or not to use any reference, all in the “Show

Reference” option.

3.10 Creation of the program

After creating each of the objects in the robot's work environment, we begin with
the implementation of the robotic process program.

To program the movements of the system, we will use the tools offered by the
application, through the “Teach Program” menu. The definition of points and actions is the
basis for developing the manipulator's work algorithm. As an additional utility, we will use
the virtual console "Teach Pendant" to be able to do tests by directly entering some
coordinates in the "Current Position" tab and later being able to store said position as a new
point within the program.

We will therefore explain the point definition method for programming the
manipulator:

Backward

wijaccizs v

= |

Inst

S A G
MoveTo

Record Touchup Forward

ur o DR conric: [N

2: L P[2] 200mm/sec FINE

3: WAIT 0.50(sec)

4: Pickup ['CAJA) From [‘Soporte1”) With [GP: 1 - UT: 1 [PINZA))

5: L P[3] 200mm/sec FINE ACC50

6: J P[41 100% FINE

7: J P[5] 100% FINE

8 J P[6] 100% CNT100

9 Drop (‘CAJA’) From (GP: 1 - UT: 1 (PINZA)) On [Base’)
10: J P[71100% CNT100 =]

PLRPILIPIL|PELL0

Figure 3.29 Appearance of the “Teach Program” menu

120

When accessing the “Teach Program” menu (through the “Teach” main menu), you
will find the interface for defining the points and actions to compose the desired trajectories.

At the top of the window is the header with the different configuration options for
this definition of points and actions. In the central and lower part we see the space reserved
for the defined instructions, which make up the program. The definition buttons at the top
are as follows:

Record - button used to define a point in the program with the current position of the
robot. We can modify the position of the robot with the “Teach Tool” by moving the green
sphere of this tool (which marks the reference origin of the tool) to be able to use this
position in the definition of the point. To define the positions with this button, there is a very
useful tool that is the quick access bar "Move To Quick Bar", since it allows us to reach
faces, vertices, centers and edges of the various objects defined in the cell.

It also allows us to define the X, y, z coordinates, and the rotation angles w, p, r, with
respect to the chosen reference system (in our case the one defined for the “Hand” tool). We
can modify the values of these variables using the “Teach Tool” or generate a new point
with the values started at zero, using the drop-down menu on the right side of the button.

J_" -
Record

JIF[...] 100% FINE
JP[...]100% CNT100

L P[...] 2000mm/sec FINE
LP[...] 2000mm)sec CMT100

Figure 3.30 Appearance of the button “Record

Touchup - this button allows us to define a point in space by pressing later in the 3D
graphic environment of the “teach mode”. It behaves similarly to the "Record" button, but
it does not capture the position variables of the current situation of the robot, but of the
subsequent placement of the mouse.

L
eV -

Tuuchup N

121

Figure 3.31 Appearance of the “Touchup” button

MoveTo - the button offers the possibility of moving the robot to any point defined
in the system program, or to any of the positions established in the “Fixtures” menu with

the definition of some object (“part”) associated with the drop-down.

MS:ETD
CAaJA @Soportel
CAJA @Base
CA14 @SoporteZ
CAJA @Soporte3
Piezal @Base
Piezal @Fixturel
Piezal @Fixture2

Figure 3.32 Appearance of the “MoveT0” button

Forward - allows the robot to advance step by step through the points defined in the
movements algorithm. With this tool we can visualize the sequence of defined movements
with greater comfort.

Forward

Figure 3.33 Appearance of the “Forward” button

Backward - allows the robot to go back step by step through the points defined in
the movement algorithm. With this tool we can view the sequence of defined movements
more comfortably in the same way as with the "Forward" button.

Backward

Figure 3.33 Appearance of the “Backward” button

Inst - makes it possible to insert an action into the program without having to define
a point directly. It offers us the possibility of capturing an object previously defined in the

“Parts” menu (“Pickup”); deposit a defined object on a previously created support

122

(“Fixture”) (“Drop”), insert a wait instruction with a defined time (“Wait”) and make a call

to another program defined with the “Call” instruction.

Figure 3.34 Appearance of the “Backward” button

Inst
Pickup
Drop

WAIT 0,10(sec)
WAIT 0.50(sec)
WAIT 1.00(sec)
WAIT 2.00(sec)

CALL ...
|

After having reviewed the buttons on the header, the format for defining the points

of the process program will be explained. The positions belonging to the “world” of the

robot are defined following the format specified in the previous section “TPE

programming”:

Position data format

=}
PR

N

Pli] J%

J

I\
Motion format
J

L
C
A

Figure 3.35 Statement format for defining positions

Position data

UF0 UTA
X 1300374 w: 10,000
Y. -342992 P: 20000
Z: 956.895 R: 40.000
CONF: N, U T,0,0,0

Feedrate
1to 100%
1 to 2000 mm/sec
1 to 12000 cr/min
0.1 to 4724 4 inch/min
1to 272 degfsec
1to 3200 sec
1 to 32000 msec

CNTk

/\

' Positioning path
FINE
CNT 0 to 100

The first field of the sentence indicates the type of movement, and allows us to

choose the movement options: linear, which is precise from the beginning to the end

following a defined path; and the link (join), which moves the TCP to each of the defined

123

points linking the movements with each other. The following fields indicate "the type of
position" and "the position™ of the program we are defining.

The fourth field determines the speed with which the movement is to be performed.
Depending on whether the movement is linear (L) or link (J) we can determine the speed
more precisely (in mm / sec) or more generally (in%) respectively.

The fifth field indicates the type of completion of the process. This can be continuous
(CNT) or precise (FINE).

Next point
P3

CNTO
CNT 50
CNT 100

-' Startpoint
! P1

Figure 3.36 Types of motion completion

The last field is optional and determines the dynamics of the movement. In the case
of the “Teach Program” menu, we can choose the ACC option, which determines the
acceleration / deceleration rate when moving from one point to another. To define an action

in the menu, such as capturing an object or depositing it, we must current as follows:

E\ Simulation Program Editor - Robot Controller] - PROG_1 @
U < S = I = [e S B
Record Touchup MoveTo Forward Backward Inst Mone Mone
a - « r X ,;_f' (7]

1: Pickup { [JIze0d

el ¢ STORAGE!

(TI0I8 & GP:1-UT: 1 (HAND1)

% 2: L P[1] 2000mm/zec FINE

124

Figure 3.36 Definition of action "Pickup"

& Sirnulation Program Editor - Robot Controller] - PROG_1 @
~ . = 8B B D 88
Record Touchup MoveTo Forward Backward Inst Mone Mone
P « o | X < @
% 1: Pickup ('BOX') From ('STORAGE1") With ("GP: 1- UT: 1 (HAND1)")

2. Drop(

Fal Y GP:1-UT: 1 (HAND1)

] - B -

Figure 3.36 Definition of action "Drop"

To determine a manipulation action we must first define the object created in the
“Parts” menu that we want to manipulate, the specific tool from the “Tooling” menu with
which we want to work and the fixed part determined in “Fixtures” where we want to
perform the action.

To create a point, we will use the menu of the virtual “Teach Pendant” “Current
Position™ as a tool, since it allows us to move the robotic arm to a point in the robot's space,
as long as it is allowed in its range of motion.

This option allows us to do tests before recording a point and visualize that the
desired position is possible, and consequently that the robot is positioned to reach the point

that we are defining. The menu of the virtual "Teach Pendant" is as shown below:

125

%! Robot Controllert
|
o JOTNT
j Frame: 1 Tool: 1
|
— Configuration: W U T, 0O, O, 0
% 25 185 o 214 .2¥Y0 . 307 .000
= Wl -.000 pe -.000 r: —-80.000
- |
|
[—]
|
- |
[TYPE 1| JNT LUSER WORLD
Current Position, GP: 1 - R-2000iC/M 65F x
Growp | GP: 1 - R-2000iG/185F |
(@ Joint
Oxyz ¥ [15398|deg J2[19.378]deq J3[-28.782] deq
Quser J4[0000ldeg Js[61218|deg Js[15398 deg
MoveTo % Config: NUT, 0,0,0

Relative

I

Figure 3.37 TPE “Current Position” menu

This menu offers three ways of entering data to reach a specific position with TCP.
First, we can specify the degrees of each of the axes (Joint); second, the XYZ coordinates
and WPR rotations of the point to be reached with respect to the base reference system; or
third, the XYZ coordinates and WPR rotations in a user reference system (UFRAME).

Having analyzed the tools for the definition of positions and creation of the
algorithm of the process, the definition of some example points in reference to

approximations to some objects of the work cell will be described below. Approach to
deposit “BOX” in “Storagel":

E\ Sirulation Program Editor - Robot Contreller] - PROG_MAIM

A Y € S ™ B D

Record vTouchup MoveTo Forward Backward

-vir}(_,fa

—
%
MNone

> .

Inst

-

2 P21 [mmisec NN (NoACC) ~

(No OFFSET) w

S0 P 1 - R-2000iC/165F ~

Representatio @ Joint @ O User

St [il off off o

S 1428 999 Rulyl

X . A 1391.000 0yl Z 143.000 Rudut
w 0.000 sk P 0.000BEs] Y -00.000GEs]

T

Figure 3.37 Definition of position for the approach to "Storagel”

Approach to capture “BOX” from “Storage3”:

126

& Simulation Program Editer - Robot Controller - PROG_MAIN

e - E . = &=

Record Touchup MoveTo Forward Backward

a - 1.}{,5‘&

.

Inst

-

26: J P[14] 100% CNT100

27 P[15| 2000 FNE - oACE) ~

{No OFFSET) W

el IV P 1 - R-2000iC/165F w

ﬁepresentatic- ® Loin® O User
S Ml o of o

b 1428.999ulyl

28: WAIT 0.50{sec)

[Am PNl SR o AT A A LA SC ML 1T 4 S0 a R

Figure 3.37 Position definition for the approach to "Support3"

Positioned to deposit "BOX" in "Storage2":

127

E‘ Simulation Program Editor - Rebot Controller! - PROG_MAIM

-~ X E . = =

Recaord Touchup MoveTo Forward Backward

< e I X [E e @

o .

Inst

-

{No DFFSET) v
eIETT I G- 1 - R-2000iC/165F ~

Representatio @ Joint @ /ol O User

_= conric W@ T B E B

1885000 gl

L 34; WAIT 0.50(sec)
3| 35: Drop('BOX) From ("GP:1-UT: 1 (HAND1)) On (' STORAGEZ')

A BIATT A FA -

33: P[1B] B misec GRS (MOACC) ~

Figure 3.37 Definition of position to deposit "BOX" in "Storage2"

128

Robot positioning errors in the simulation environment for the position to deposit "BOX" in

"Storage2" are defined in the table below:

Table 3.1 Robot positioning errors for deposit "BOX"

X (mm) Y (mm) Z (mm) W (deg)

P (deg)

R (deg)

129

Planned 1429 1895 -57 0 0 -90
Real 1428.999 | 1895 -57 0 0 -90
A 0.001 0 0 0 0 0

Approach to capture "Partl" in "Table2":

Robot positioning errors in the simulation environment for the position to deposit "Part1" in

& Simulatien Program Editer - Rebet Contreller] - PROG_MAIN

W - E . =B =

Record vTouchup MoveTo Forward Backward

a - 1)}(_,5"&

¥ 9T TP ET] TOUF T T TO0

-

ﬁ

Inst

40: P[22] mmisec

(No OFFSET) ~
Grow
Representatio @ Joirt @ O User

conric MO W B E

(no ACC) ~

X . b .
41: WAIT 0.50(sec)

42: Pickup ('PART1’) From ['TABLEZ')

Figure 3.37 Definition of position to capture "Partl" in "Table2"

"Table2" are defined in the table below:

Table 3.1 Robot positioning errors for deposit "Part1"

130

X (mm) Y (mm) Z (mm) W (deg) P (deg) R (deg)
Planned -1992.340 | 2676.215 | 246.625 0 0 -14.350
Real -1992.342 | 2676.215 | 246.624 0 0 -14.348
A 0.002 0 0.001 0 0 0.002

Position on "Base" after depositing "Part1":

131

{4, Simulation Program Editor - Robot Contreller] - PROG_MAIN
-.-.- b xfg b @ - 5.) - : - : -
Record Touchup MoveTo Forward Backward Inst Mone Mone
- vl X < @

a7: [N Pr2e1 R moevvse- TS (MO ACC)
(No OFFSET)

cIlIT- B P 1 - R-2000iC/165F

arlel O User
c;mm:_::lil:lﬂ:lﬂ

Representatio @ Jgint @

246 624uly

s 1
:{mm A I

|
!

4| 48: WAIT 0.50(sec)

% 49: Drop ('PART1') From 'GP:1-UT: 1 (HANDM)') On 'BASE')
(0| en smiarr o eneoo o e

Figure 3.37 Definition of position to deposit "Part1" on "Base"

Robot positioning errors in the simulation environment for the position to deposit "Part1"

on "Base" are defined in the table below:

Table 3.1 Robot positioning errors for the positioning on "Base"

X (mm) Y (mm) Z (mm) W (deg) P (deg) R (deg)
Planned 277 529 246.625 0 0 90
Real 276.999 529 246.624 0 0 90
A 0.001 0 0.001 0 0 0

Approach "Tablel" to capture "Part1™:

132

{4, Simulation Program Editor - Robot Controller] - PROG_MAIN |
o~ & (. = . 3 .8 .
Record Touchup MaoveTo Forward Backward Inst MNone Mone
-t X IEe @ |

ES BUT WATT US0TSET] ~

51: L P[27] 400mmisec FINE TOOL_OFFSET,PR[1]
52: J P[28] 100% CNT100

{No OFFSET) v

EILIT N P 1 - R-2000iC/165F e

Representatio @ Joint @ O User

S M mnl o off o
Y -1523.001 (LR 1462 000 (LN 246 624l

Figure 3.37 Definition of position to capture "Part1l” from "Tablel"

Robot positioning errors in the simulation environment for the position to capture "Part1"

from "Tablel" are defined in the table below:

Table 3.1 Robot positioning errors to capture "Part1" from "Tablel"

133

X (mm) Y (mm) Z (mm) W (deg) P (deg) R (deg)
Planned -1923 1462 246.625 0 0 20.437
Real -1923.001 | 1462 246.624 0 0 20.437
A 0.001 0 0.001 0 0 0

An important condition in software development is to avoid collisions between the

robot and the environment, other parts and other robots. In the study in this work, a linear

vertical approximation to each object was used, which is part of the general algorithm for

developing software for a robotic system. P[8], P[17], P[18] on the figure below are the

positions from which we linearly approached the object to avoid collisions and ensure the

correct movement of the detail.

Blue line shows us paths along the positions indicated in the code.

Figure 3.37 Definition of the positions for linear vertical approximation

134

Figure 3.37 Trajectories according to positions

3.11 Simulation of the process

With the robotic system fully realized and the position definition algorithm
completed, we run the simulation of the process to monitor the programmed system and
each of the planned actions to be performed in the robotic cell.

Using the buttons on the quick access bar, or through the “Run Panel” menu, located
in the “Teach” main menu, we can run the simulation to view the complete process,
obtaining information on possible collisions, erroneous movements, or inaccuracies in
approximations of arm movements. In this way, we will visually identify errors and easily
correct them before they appear in the real production system, since the proactive effect of

working virtually is one of the main advantages of simulation systems.

135

The “Run Panel” menu allows you to control various aspects of the simulation, to

be able to adjust it according to the needs that affect the supervision of the system.

P Run Panel

>

ﬂ
n_ || Hold |

=]

| 01

| | ®
_MAIN LINE 27| | Recerd.
GRAM

Elapsed
Simulation Time

209 sec

l“g
rt || Reset

Simulation Rate

=|

Synchronize Time

Slow

1 5

Medium Fas

Run-Time Refresh Rate (updates/sec)

10 30 125

Display

-

ion Pi [Refresh Display
Collision Detect

[Set View During Run
[[] Show Joint Cirdes

oy
|l

Control

-

[] Abort on Fault

[Run Programin Loop

[] PostCollision and Cable Break to Controller

[Collection P

[] Collect Reducer Info
[] Collect Power Info
[CollectDuty Info

Figure 3.37 Simulation using Run Panel

The "Run Panel” menu consists of the run buttons at the top, and various
configuration options at the center and bottom of the window.

In the “Run time refresh rate” part we can configure the number of “frames” or
images per second that the process simulation will show, thus configuring the fluidity of the
simulation animation.

In "Options" we can activate or deactivate some specific options, which are detailed
below:

- Collision detection.

- Definition of the TCP trace (arm trajectories).

- Play in a loop ("loop™ mode).

- Tracing of points defined in the program.

- Hide windows in simulation.

- Update screen.

- Compress AV video file.

136

Once the simulation is visualized, we will correct the collisions that occur, the errors
and the mismatches detected in the process. We will redefine the “problem” points to
achieve the process with the positions and the desired precision.

In this way we will adjust all the trajectories of the robotic process of the industrial

system to obtain the final program.

Figure 3.37 Final trajectories

3.12 Conclusions

The task and goals of our robotic system were outlined. Accordingly, the robot
controller was configured and the simulation environment was created. Thus, we have a
ready-made, debugged simulation model ready for research and testing before direct
implementation into the real system.

The Roboguide application allows to perform the Calibration of the system

automatically if we have the robot connected to the simulation application. It would be time

137

to perform the calibration and upload the program in the real environment (“upload”) by

exporting the program. Finally, we would have the robotic cell ready to go into production.

138

4 EXTENSION OF THE WORK CELL

4.1 Robotic cell redesign

With the robotic cell programmed and assembled in production, it may be the case
that it is necessary to expand the system, due to needs that may arise in the industrial process.
We will then have to redesign the cell, even if it is in full production and with all systems at
full capacity.

That is why, to implement the robotic system extension, we will reuse the design
and programming made in the Roboguide HandlingPRO simulation tool previously.

The reprogramming of the work cell using software will allow us to redesign the
new system without having to intervene in the real environment, which is operating in
production. In this way, we will minimize the impact on the industrial plant's work chain.

After we have completed the design and implementation of the process, we will
monitor the new system as was done with the first cell; We will correct any faults,
misalignments and collisions that may appear, thus ensuring the full functionality of the new
system in the virtual environment.

To expand the cell, a second manipulator will be configured, in addition to adding
new fixed parts that intervene in the system and a new part to be manipulated, in addition to
the objects already defined in the previous process.

It is intended to control the movements of the two manipulators so that they can both
work simultaneously, and without collisions with each other, completing the process in an
efficient way and controlling the workspaces of both robots (adjusting with special care the
area common work, which will be the area where the greatest problems may arise).

Next, the procedure carried out to carry out the expansion of the work cell already

defined in the previous sections will be presented.

We face the redesign starting from the initial work cell, adjusting the new work

needs in the system and composing a new cell that meets the aforementioned requirements.

139

An additional “Robot2” manipulator is added to the existing system, two new work
areas, and two of the three box supports are eliminated, leaving the cell design as shown in

the following figure:

| 1
Box storage area

|
Work area | ' n

] i f
Additional work area

Robot2

Robot1 ———

Part2 storage area

Table area for Partl

|

Figure 4.1 Expansion and redesign of the work cell

The new zones are:

- The zone of the additional manipulator. The new robot “Robot2” is located in this
space, which is integrated into the work cell.

- The storage area of Part 2. This area will provide a new part to the system, which
will intervene in the new defined areas.

- The additional work area. It is destined for a new mechanized action. Pieces will
be moved to be handled and treated, to later be returned to the main work area.

The new state diagram will consist of six possible actions and six allowed positions.
The execution of these actions and the positioning at these points will be carried out
simultaneously between the two manipulators, synchronizing the movements to avoid any
collision that may occur in the environment of the work cell. The actions of the new process

are:

140

- Capture of "Box";

- Capture of "Partl1";

- Capture of "Part2";

- Deposit of "Box";

- Deposit of "Part1";

- Deposit of "Part2".
The positions allowed in the manipulator environment are:

- Storagel;

- Base (Work area);

- Table 1;

- Table 2;

- Storage A,

- Base A.

The new process will consist of the following steps, specified for each manipulator:

Table 4.1 - Algorithm of movement for each robot

Robot 1: Robot 2:

- Initial position.* - Initial position.*

- Positioning in "Storagel"”. - Positioning in "StorageA".
- Capture of "Box". - Capture of "Part2".

- Positioning in "Base". - Positioning in "Base".

- Deposit of "Box" - Deposit of "Part2"

- Positioning in "Table2" - Waiting position.

- Capture of "Part1" - Positioning in "Base"

- Positioning in "Base". - Capture of "BOX"

- Deposit of "Part1" - Positioning in "BaseA".
- Positioning in “Tablel”. - Deposit of "BOX"

- Capture of "Part1" - Waiting position.

- Positioning in "Table2" - Positioning in "BaseA"

141

- Deposit of "Part1".

- Waiting position. *

- Positioning in "Base".

- Capture of "Box".

- Positioning in "Storagl".
- Deposit of “Box™.

- Positioning in "Base".

- Capture of "Part1".

- Positioning in “Table1”.
- Deposit of "Part1".

- Final position. *

- Capture of "BOX"

- Positioning in "Base".
- Deposit of "BOX"

- Capture of "Part1"

- Positioning in "BaseA™.
- Deposit of "Part1"

- Standby position.

- Positioning in "BaseA™
- Capture of "Part1"

- Positioning in "Base".
- Deposit of "Part1"

- Capture of "Part2"

- Positioning in "SupportA"

- Deposit of "Part2".

- Final position. *

Thanks to the execution sequences of the two manipulators, through the analysis of

actions and positions of the system, we can generate the new Petri net graphs (separated for

each manipulator to facilitate reading).

It is worth mentioning the introduction of a new waiting state, used by “Robot2” at

some points in the process to avoid collisions with “Robot1”.

142

N
\\‘

/
g w o

Part2
Deposit

Figure 4.1 Petri net for the "Robot1" movements

Part2
Capture

Start/Wait/End

Storage ‘ | BaseA ‘ Base ‘ Tablet ‘ ‘ Table2 ‘ ‘ StorageA ‘ /._\
Intermediate wait

Figure 4.1 Petri net for the "Robot2" movements

143

4.2 Cell configuration with additional robot

To configure the new cell, first we must add a new manipulator to the work
environment, using the "Cell Browser" menu and on the "Robot Controllers” menu, using
the right mouse button, we will choose the option "Add Robot". Next, the robot creation
wizard will appear, already used in the first creation of “Robotl”, where we must choose
the option “Create a copy of an existing robot”. In this way we will obtain a robot just like
the previous one to be able to start configuring the new cell. First of all we must configure
the position of this new robot, since it will appear in the same position as the first
(overlapped).

Then we must redefine the UTOOL tool used for this second robot. We use the
"Gripper" tool already defined above. Finally, we will create the rest of the objects in the
environment of the new cell. In the "Cell Browser" menu on the "Parts" button, we use the

right mouse button to choose the "Add Part" option, configuring it as indicated below:
@ PART2

General |mage

Appearance

Mame PARTZ |

CAD File £3
Type Biox Color - O
L)
D LLLTH S EITE Transparent Opaque
Physical Characteristics Scale

Mass kg Sizein X mm
Sizein Y mm ™
Sizein Z mm .

@ Parts are special objects in thatthey are only

visible onthe partrack orwhen assigned to
fixtures ortooling. They cannot be freey
dragged around the cell.

2 OK Cancel Ap ply Help

Figure 4.1 Properties menu of the object "Part2"

144

Storage creation for "Part2" is in the "Cell Browser" menu on the "Fixtures" button,

we use the right mouse button to choose the "Add Fixture" option, configuring it as indicated

'~ STORAGEA @ . STORAGEA General Image Calibration
Parts Simulation Spray Simulation
D - - - General Image Calibration
Parts Simulation Spray Simulation =L o par ol
e \ - - Parts Simulation Spray Simulation Name [Allow partto be picked
enera Image Calibration Parts The number of Parts —— TR 250]sec
Appearance ~[]@ BOX g
@ paRT1
MName ‘STORAGEA ‘ L@ ParT2 Add [A Allow part to be placed
Destroy Delay 0.50/sec
CAD File = | i’f‘: Export :l
Type | @ Box v | Color. - (o) Part Offset Presence 110
o ' Edit Part Offset [Robat Controllert v‘
[visible
) X 0.000 (mm ot | o] 1=|oFF
[] wire Frame L &
Transparent Opaque ¥ |—|u.uuo . GI[o] 1= o]
. 400.
Location Scale Z I 00 UUD|mm Part Random Offset
Disabled ~
: w 0.000(deg
X 2421177 mm Sizein X | 700.000| mm ; > 000l
P 0.000(deg -
\) =
Y M3728)mm gizeiny | 550.000] mm o [oowlies 000 mm
000 mm
= 700.000jmm gieinz | 500.000 mm =
w 0.000| deg (@ No Part v Pa- 0.000|deg
Show robot collisions | ... - v00ldeq
P 0.000| deg = 2]
. -] Lock All Location Values S
[1gnore mouse control [] Visible atRun Time Robot Controllert
Show collisions #* GP: 1 - R-2000iC165F
PR[11
a OK Cancel Help a oK] Help & = — -
ancel elp

Figure 4.1 Properties menu of the object "StorageA”

Creation of the additional work zone "BaseA" is going by selecting the fixed part

"Base" in the "Cell Browser" menu, or selecting the "Base™ object in the 3D graphic

environment, we can choose the "Copy Base" option to later use "Paste Base" and

reconfigure it according to the required needs. We must configure the position of the new

fixed part, in addition to the label, to start configuring the rest of the options. We will

configure this new base as indicated in the following images:

-]l BOX
LA PARTY |17

L@ parT2 [Add | [Detete |

The number of Parts

Part Offset

] Edit Part Offset

X -328.000 mm
' 485,822 |\mm
£ -250.000 mm
W -80.000 | deg
P 90.000 deg
R 0.000 deg

| % Robot _HAND1) v|

MoveTa Record

[+] visible at Teach Time
[+] visible at Run Time

[] Show collisions Izl

| ok || cancel | | Appy | | Help |

Figure 4.1 Configuration of objects located on the fixed part "Base"

145

146

General Calibration Parts = Simulation Spray Simulation

Parts Part Simulation
Mame [+] &llow partto be picked
i@ BOX Create Delay 5._:,.;
i PARTY
il PARTZ

Allow part to be placed

Destroy Delay seu:

Presence /O
| B RobotControllert v |

o[o] 1=oFF ~
e[of1=| 0|
Part Random Offzet
Disabled L
A 0.000 mm
¥ 0.000 mm
Fi 0.000 mm
W - 0.000 deg
P+ 0.000 |deg
R+- 0.000 deg

[ReobotControllert

gﬁ- GP: 1 - R-2000iC/185F

PR] 1]

Figure 4.1 Configuration of the simulation options of the fixed part "Base"

4.3 Creation of the extended program

Following the definition of the sequence of actions and movements set forth in
section 4.1, we proceed to implement each of the positions and each of the interactions with
the objects manipulated by the two robots.

Before starting to implement the manipulator algorithms, we must place special
emphasis on the possibility of collisions between the two and control this situation at all
times. By the simulation tool and its collision detection, we will be able to redefine the
programs at any time and have this collision situation in the cell under control.

The following image shows the collision zone of the arms of the system, outlined

with a black line:

147

Figure 4.1 Collision zone between manipulators in the system

Always keeping in mind the possibility of collision, we will then define the positions
and actions by implementing the algorithms of both robots. Below are some points defined
in the simulation tool, illustrated with the 3D environment screenshots. Approach to
"StorageA" to capture "Part2":

148

4, Simulation Program Editor - Robot Controller2 - PROG_R2 (3]
T < 2 I = T G- I e T -
Record Touchup MoveTo Forward Backward Inst Mone MNone
a - i by o @
1: J P[11100% CNT100 A
2: JP[2] 100% CNT100

(No OFFSET) v

ST P 1 - R-2000iC/165F w

Representatio @ Joirt @ O User

conric M T | B E

X mm b 1255.657 full Z B2 mm
w deg P 0.000 G2 R deg

WAIT 0.10{sec)

Q
=)

<

Pickup ('PARTZ') From (' STORAGEA') With ('GP: 1- UT: 1 (HAND1)')

A

L P[4] 200mm/sec FINE

1 BT R1 AnN®. T NTAMN M

B

Figure 4.1 Definition of position for the approach to "StorageA"

Robot positioning errors in the simulation environment for the approach to "StorageA" are
defined in the table below:

Table 3.1 Robot positioning errors for the approach to "StorageA"

149

X (mm) Y (mm) Z (mm) W (deg) P (deg) R (deg)
Planned -1689.965 | 1255.655 |-214.005 |0 0 -26.683
Real -1689.964 | 1255.657 |-214.006 |0 0 -26.683
A 0.001 0.002 0.001 0 0 0

Approach to “BaseA” to capture “BOX™:

]
et

r E

*

L)

(Mo OFFSET) w

el OGP 1 - R-2000iC/H165F

Representatio @ Jqint @

X

Q FL L]

mm

WAIT N A eaed

& Simulation Program Editor - Robot Controller? - PROG_R2

oL A (R) > . % .8 .

Record Touchup MoveTo Forward Backward Inst Mone Mone

- - « v | X d‘" e
L 45 WAIT 0.10(sec) A
% 16: Pickup ("BOX') From ('BASE') With ("GP:1-UT: 1 (HAND1)")
L 47: WAIT 0.10(sec)
L 18: L P[11] 300mmisec FINE
3 19: JP[12] 100% CNT100

: [rs R movsec

arle O User

CONFIG IEII!II!II!I

(no ACC)

rd 142 632 fuly

S

Figure 4.1 Definition of position for approach to "BaseA"

150

Robot positioning errors in the simulation environment for the approach to "BaseA" are

defined in the table below:

Table 3.1 Robot positioning errors for the approach to "BaseA"

X (mm) Y (mm) Z (mm) W (deg) P (deg) R (deg)
Planned 590.965 2461.235 | 146.682 0 0 -22.155
Real 590.964 2461.236 | 146.682 0 0 -22.155
A 0.001 0.001 0 0 0 0

Deposit of “Part1” on “Base”:

151

Pl a]]

E . 1
E
B
S
£
E
£
&
£
=
= =
L E
E
=
C

{4, Simulation Program Editor - Robot Controller2 - PROG_R2 5
~ . % | CE . = . & . % .
Record Touchup MoveTo Forward Backward Inst MNone Mone

a 1»}{,5'&

LT 39: L P[22] 2000mmisec FINE -
40: .J P[23] 100% CNT100

(Mo OFFSET)

elT I CP- | - R-2000iC/165F i

Representatio @ Joint @ O User

conric [N [T @ B E

LS 250801 7l Al 3147 5630l k4 245 623uly
w 0.000 B2 P 0.000 B2 Y 157.545 k]
. 42: WAIT 0.10({sec)
E 43: Pickup ("PART1") From ('BASE') With ("GP: 1- UT: 1 (HAND1)'")

! 44: WAIT 0.10({sec)

%
45: L P[25] 300mm/sec FINE W

velvee

Figure 4.1 Definition of the position for "Partl" on "Base"

Robot positioning errors in the simulation environment for the position for "Partl" on

"Base" are defined in the table below:

152

Table 3.1 Robot positioning errors for the position for "Partl” on "Base"

X (mm) Y (mm) Z (mm) W (deg) P (deg) R (deg)
Planned -2508.015 | 3147.570 | 246.625 0 0 157.845
Real -2508.017 | 3147.568 |246.623 |0 0 157.845
A 0.002 0.002 0.002 0 0 0

When we have the programs implemented for the two manipulators, we will proceed
to simulate the trajectories and check if collisions occur, to later correct the erroneous
defined points, approaches to fixed parts, movement speeds and waiting times in the
execution of the process.

The following image shows the implementation of the system with the definitions
of the programs of the two robots (“Prog R1” and “Prog R2”).

Figure 4.1 Image of the expansion of the system, implemented in "Prog_R1" and "Prog_R2"

4.4 System simulation. Testing

153

With the new robotic system fully realized, we run the simulation of the process to
supervise the programmed system and check the possible collisions, supervising the critical

area where these “interferences” between the manipulators can occur.

) v
e “[»|n| ma
A Record Run Hold Abort Reset
9
Elapsed
q Simulation Time 426 sec
[Simulation Rate |
Synchronize Time
Synchronize Time
Slow. Medium Fast
Run-Time Refresh Rate (updates/sec)
§ 1 5 10 30 125
I Display -
Refresh Display Hide Windovs
i E Collision Detect E Set View During Run
Taught Path Visible [[] Show Joint Circles
H [Control a|
4
’ [] Abort on Fault [] Run Program In Loop
[[] PostCollision and Cable Break to Controller
g c -
9 v/| Collect Profile Data (also enables pick/place animations)
V| Collect TCP Trace Collect Reducer Info
@) Show Lines Only CollectPower Info

Figure 4.1 Image of the middle of the work cell’s simulation sequence

After numerous tests and various adjustments in the process, the script is completed

without getting any collision between the robotic arms.

e

Record

Run

Hold

Abort

Reset

Elapsed
Simulation Time

923 sec

Simulation Rate

|

Synchronize Time

Synchronize Time

Slow

Medium Fast

Run-Time Refresh Rate (updates/sec)

1 5

10

Display

[] Refresh Display
[Collision Detect

TaughtPath Visible

Hide Windows
[Set view During Run
[] ShowJoint Circles

Control

[J Abort on Fault

[] RunProgramIn Loop

[] PostCollision and Cable Break to Controller

Collection

/| Collect Profile Data (also enables picki/place animafions)

0 O

Figure 4.1 Image of the end of the work cell’s simulation sequence

4.5 General software development methodology

After the conducted research, we can outline a general methodology for developing
software for robotic systems using industrial robots. Each item is a stage, the development
of which ensures the successful implementation and correct use of the software. The
methodology is presented below:

- A detailed study of software that will be used in the development or testing of a
simulation model of an industrial system. Its main features, capabilities and tools.

- Development of a graphical layout of elements that reflects the real location of
each element in the robotic system. This helps to start software development correctly. This
scheme will subsequently be introduced into the simulation model of the robotic system.

- Building a process diagram of a robotic system. It is recommended to use the “Petri
net” diagram. The entire industrial process is represented as possible states (actions for
capturing and depositing the objects) and transactions (positioning in the different
manipulation spaces). Thus, we can represent each position and movement of the robot in a
convenient graphical diagram for a better understanding of the work and, directly, the task

of this robotic system. It should be noted that a separate process diagram must be developed

155

for each robot in the system, otherwise the diagram will be too cumbersome, which makes
it difficult to understand the structure of the process.

- The choice of a robot in accordance with the task set by the system. Like Fanuc,
almost all companies offer a wide variety of robots. It is very important to choose a robot in
accordance with the tasks set by the system. Such as payload capacity, maximum reach,
degrees of freedom and other characteristics that are important for the correct
Implementation of a robot in a given industrial process.

- Definition and configuration of the robot and the controller. It is necessary to
choose the version of the robot controller software offered by the application. We have
different versions developed by the manufacturer FANUC. Each version has its own
characteristics and sets of tools, it is important to configure the controller in accordance with
the set of functions that will need to be used to successfully build a simulation system.

- Definition of manipulated objects. Once the robot is configured, we will define the
properties of the parts that are going to be manipulated during the simulation.

- Tool definition and configuration. In this section, a tool will be added to the robot's
TCP to be able to manipulate the objects defined in the “parts” menu. In the UTOOL tab we
will define the actuation point of the gripper. Due to the displacement in the tool
configuration, we will define the reference system of the actuation point to specify the
movements of the robot so that the gripper can be properly positioned on the objects to be
manipulated.

- Creation and configuration of fixed parts. The definition of the fixed parts of the
system is essential for the manipulation of the different parts in the cell. In these fixed parts
we will position the objects that will be used in the process.

- Definition of user reference system. In the same way as in TP programming, in the
HandlingPRO simulation software we can also create reference systems defined by the user
"user frames", as long as the needs of the program require it for the convenience of defining
points and certain movements (such as an inclined surface defined in the robot's working
environment).

- Creation of the program. After creating each of the objects in the robot's work

environment, we begin with the implementation of the robotic process program. We can

156

program the movements of the system by using the tools offered by the application, for
example, through the “Teach Program” menu. The definition of points and actions is the
basis for developing the manipulator's work algorithm. As an additional utility, we will use
the virtual console "Teach Pendant" to be able to do tests by directly entering some
coordinates in the "Current Position" tab and later being able to store said position as a new
point within the program.

- Simulation of the process. With the robotic system fully realized and the position
definition algorithm completed, we run the simulation of the process to monitor the
programmed system and each of the planned actions to be performed in the robotic cell.

- Testing and fixing bugs, collisions. With the new robotic system fully realized, we
run the simulation of the process to supervise the programmed system and check the possible
collisions, supervising the critical area where these “interferences” between the
manipulators can occur.

- Implementation of the developed software in a real robot. Simulation software
Roboguide from Fanuc allows you to integrate successfully developed software directly into
a real robot controller that is part of a developed robotic system.

Upon successful completion of all stages of the developed methodology, we receive

the correct software, which is completely ready for implementation in a real robotic system.

4.6 Conclusions

By using the simulation tools, we have been able to analyze any robotic process,
virtually, before having the entire real system deployed. We have simulated a "pick and
place" type process, characteristic of the industrial sector, checking its operation, monitoring
the movement trajectories, evaluating the entire process globally and in particular we have
analyzed and verified each one of the specific actions of the system.

Therefore, we can say that we have met the objectives proposed at the beginning,
since we have managed to efficiently determine and correct the incidents that could have

arisen in an implementation carried out directly on a real environment.

157

The concept of simultaneous engineering has also been analyzed, and its application
to industrial simulation environments has been evaluated. We have been able to verify that
it adapts perfectly to the way of working of this engineering concept.

The mathematical aspects of the movements of translation and rotation of a reference
system have been introduced, in order to understand the fundamentals of the movements of

the manipulator in the work cell.

158

5 SOLUTION FOR THE TRANSMISSION OF INFORMATION BETWEEN PLC
AND ROBOT

A programmable logic controller PLC is used in industrial automation engineering
to automate electromechanical processes, such as the control of machinery or assembly
lines. Unlike general-purpose computers, the PLC is designed to handle input and output
signals and manage processes sequentially.

The PLC has a real-time data management system, where the output results must be
produced in response to the input conditions within a limited time, otherwise it will not
produce the desired result, among its basic and primary functions is include the sequential
control of the processes by manipulating the different actions.

Regarding the operation of these controllers, it is highly accepted due to the high robustness
that these components present, either at the high temperatures or the noise that exists in the
installation.

Among the advantages of these teams is the possibility of saving time in the
preparation of projects, being able to carry out modifications without additional costs.
Another advantage of these teams is their size, since they are quite small if we compare
them with a PC with similar characteristics, they also have a fairly cheap maintenance, due
to the possibility of changing the parts or modules that are affected by a defect. What
supposes a very big economic saving in labor and materials.

PLCs are usually classified by their size, there are 3 different modes, the small ones
with a number of inputs / outputs less than 500, the medium ones with a number of inputs /
outputs greater than 500 and less than 5000, and the large ones with a number of inputs /
outputs greater than 5000. For this reason, having a large number of inputs and outputs, the
PLC needs a control capable of managing all the actions and communications of the system
and therefore a modular design has been chosen, in this way the necessary modules that we
need in the application can be added.

The following table shows a representation of the architecture made by the different
modules that exist in the PLC:

159

Table 5.1 Architecture made by the different modules in the PLC

OPERATION PER BIT 0,08us

WORKING MEMORY 150Kbyte

DIGITAL CHANNELS >1000

ANALOG CHANNELS >100

TEMPERATURE ~30°C

POWER SUPPLY 24VDC

MODULABLE >10 stations

PROGRAMMING LANGUAGES LAD and SCL
COMMUNICATIONS PROFINET, PROFIBUS y RS232

After the study of the PLCs has been chosen Siemens among the most used PLCs in
the market (Siemens, Omron and Telemecanique brands) and because it has more favorable
quality / price benefits. This PLC has features that sufficiently meet the specifications
detailed above. It should also be noted that the TIA Portal programming software is one of
the most powerful and easy to work with, therefore it is the best possible choice even if the
price is the highest. Next, we will detail the specifications of it.

The PLCs SIMATICS7-1500 series is a new generation of PLCs and these
controllers are programmed using the TIA Portal software, being one of the best
programming platforms for PLCs, in terms of the range they occupy we can assure that they
are between a medium-high level . One of the best advantages of this PLC is the possibility
of expanding the work memory with the insertion of a Flash Epron card of up to 8MB, which
gives the controller the possibility of managing a large number of data or variables.

The controller design integrates very interesting devices, such as; a visualization
display capable of indicating and diagnosing the operation of the CPU and its modules. The
display can be attached and detached from the CPU during its operation and has a protection
system by means of a password.

Regarding communication, the PLC integrates a PROFINET interface in each CPU,
which ensures very short response times and high precision in the behavior of the PLC. The
equipment also has a Web Server that gives the ability to view information in real time.
Within the 1500 range there are four types of PLCs capable of working or configuring to
the needs of the system we need, these models are:

160

— Standard CPUs: These CPUs are characterized by their modularity, which have a
process module, input-output modules and communication modules.

— Compact CPUs: These CPUs integrate a number of inputs and outputs together with
the process module. There is also the possibility of expanding the configuration with
input-output and communication modules.

— Safety CPUs: These CPUs are ideal for those safety applications since they are based
on a cat.4 safety structure, both in inputs and outputs and information management.

— Extreme conditions CPUs: This type of CPUs are capable of working in temperature
conditions between -40C° to 70°C and in very high humidity conditions.

Regarding the choice of our application, we will opt for the standard CPU, since it meets
the needs of the system and the price is lower than the other options, as for the benefits of

the chosen CPU, they are detailed in the following table:

Table 5.2 The benefits of the chosen CPU

OPERATION PER BIT 0,04us

WORKING MEMORY 300Kbyte

DIGITAL CHANNELS 2048

ANALOG CHANNELS 2048

TEMPERATURE 40°C

POWER SUPPLY 24VDC

MODULABLE 32 stations

PROGRAMMING LANGUAGES LAD and SCL
COMMUNICATIONS PROFINET, PROFIBUS y RS232

161

PS CPU Digital 10 Analog 10 M Support
I:[p j} i -T- -T- profile
U internal
K T A i ! ? A 1§ T A = ? A 1§ 1; A | ’\Dllaltnaternal
| | ¢ | v [v I v
Bus Bus Bus Bus Bus
interconnection interconnection interconnection interconnection interconnection
_: Electronics Electronics
| PN 1| PB || Power Process Process Communication
V e i electronics | electronics HH interface HH
PE M S M 2 P
(t:)) Monitor = Monitor Monitor
connection connection connection

Figure 5.1 Electrical configuration PLC 1500

Tetens | L Surheaiece) osi s AN ET P} 0
I

I dGowmrnen & X0 X 90t SEGEG S e o i ve b BR X
[re——
500 B ERREE S S0 PGATY LN AT
-
i tin g Cnesion
(8 e
@ wasl o [
94w - N ——
a Tl S
.’ Segrents 1. 100 K08y W
* iy wr |
° B - |
-— e
P
s st Rsckaie Vo
0
e ez
.
s
e g

CPU 1500 MODULQOS IN-OUT SOFTWARE TIA PORTAL

Figure 5.2 Siemens PLC working environment

Safety controllers offer a simple and flexible solution to make a design in the safety
of machines or facilities. These safety controllers constitute a modular hardware platform
with a high range of modules to perform different tasks, one of their main advantages is that
they are easy to operate and can be easily integrated with all the components of the safety
controller. These relays have an easy and very versatile user interface, capable of inserting
different types of safety at any time, such as; emergency mushrooms, photoelectric barriers,

scanners, etc.

162

The software has a system of permissions per user, this system attributes, depending
on the user, a hierarchy within the program, for example, the first user can only see the
program without making any type of modification, the second user can open the program
and simulate it, while the third user can open, simulate and modify the program.

With this type of security, infringements produced by unqualified operators in the creation
of security systems are avoided. Commissioning is simple and fast, saving additional time
and therefore money.

In addition, it complies with a maximum safety level and avoids the possibility of
error masking and unnecessary emergency stops in the machines, which always entails a
reduction in productivity and possible risks produced with these types of stops. These
systems also have a checksun system so that if an operator changes the programming of the
control unit, it is possible to know when and how it occurred. The characteristics that the

safety relay must meet are the following:

Table 5.3 Safety characteristics

CATEGORY 4
PERFOMANCE LEVEL PLe

USE TIME >10 years
COMMUNICATION Profinet 0 RS232
TEMPERATURE 30°C

POWER SUPPLY 24VDC
MODULABLE >5 stations

If we compare diferent safety relays, it is observed that the Sick programmable relay
Is the most widely used and are the ones that best adapt to the needs of the handling cell,
therefore it will be the chosen relay. It’s characteristics are defined below.

The Sick safety controller is a central programming element based on category 4
safety. This controller is very easy to configure and assemble since it is modular and you
only have to insert modules depending on the needs we have in the system. . The modules
that we can find in these devices range from control, emergency stops, restoration function

and feedback controls.

163

The programming interface of this programmable safety relay is Flexi Soft Designer,
this interface is very simple and powerful since it allows to simulate the safety system before
loading it into the CPU, having this possibility we can see if it is necessary to carry out a
ticket expansion or check if security is optimal for our application. In the following table we

see the characteristics that the Sick relay meets:

Table 5.4 Safety characteristics

CATEGORY 4
PERFOMANCE LEVEL PLe

USE TIME 20 years
COMMUNICATION Profinet
TEMPERATURE 50°C
MODULABLE 12 stations

| b 14 - I 4
S .” 3 ~
- shademioSiCK .
i caamans s s [- 5
e [T

SOFTWARE FLEXI SOFT
FX3-CPU3 MODULOS IN-OUT DESIGNER

Figure 5.3 Sick programmable safety relay working environment

Solution for the transmission of information between the PLC and the Safety Relay is carried
out by the Profinet communication protocol, this type of communication has 4 notable
characteristics such as:

— Sturdiness;

— Reliability;

— Simple wiring;

Fast network diagnostics.

164

Therefore, the communication system chosen to replace the Profinet protocol must
provide the same parameters as the previous one. Regarding the communication between
the PLC and the Robot, a digital communication system is used, this system is carried out
by means of digital inputs on free potential, that is, by means of relays and without
exchanging the voltage sources of each device we exchange the necessary data. In this
method we have to bear in mind that sometimes a single bit will indicate a certain action
while sometimes it will be necessary to group inputs or outputs 8 by 8, to perform bytes in
communication,

This method is not very reliable since if for any reason the signal of a bit fails or is
lost, the information we want to send or receive will not be correct. Solution for PLC and
Safety Relay is defined below. In these devices it is advisable to use the Modbus system or
the Profibus system, these communication protocols are widely used both in the Siemens
PLC and in the safety relay, so making a change to the system can be done easily and
quickly. These protocols are detailed below:

- Modbus / TCP: it is a 7th level communication protocol, with a master / slave
structure, the operation is very similar to Profinet, all the devices have a unique
address, when sending the message all the devices are listening but only the
equipment where the message is destined acquires the datagram.

- Profibus: This protocol works in a different way since communication is done
through a differential voltage system. With this system, each device has an
address, but they all share the same bus and all the peripherals also read the entire
datagram, although it is only executed by the peripheral where it is addressed.

Advantages of the Modbus protocol:

- Easy to implement.

- Data without restrictions.

- Wiring with RJ45.

Advantages of the Profibus protocol:
- Cyclical and fast bus.
- Ideal for connections of real-time reading systems.

- Connection of networks in parallel.

165

Regarding the chosen system, it must be taken into account that the corresponding
communication cards must be installed in the PLC as well as in the Safety Relay, either
Profibus or Modbus. Regarding the wiring, in the Modbus system it would not be necessary
to make any changes since the connections are through the RJ45 connector, which is the
same as the one used in the Profinet system.

On the other hand, if the Profibus system is used, all connections must be changed
to DB9 connectors, and it is also advisable to change the wiring to that corresponding to the
Profibus system. Solution for PLC and Robot is defined next.

For this communication a digital communication by bits is used, this type of
communication is not too secure, therefore it is advisable to change to a Profinet type
communication, Profinet communication is ideal to carry out the transfer of information and
have all the communications of the cell welding with the same protocol. Advantages of the
Profinet protocol:

- High security of communications.

- Ethernet communication compatibility.

- Remote connection capacity through an industrial network, (VPM).

The only drawback in implementing this type of communication with the current
system is installing a Profinet module in the robot and changing the wiring from the robot
to the PLC.

166

EVALUATION OF RESULTS AND CONCLUSIONS

For the development of this final master's degree project, the operation of the
FANUC Roboguide simulation application has been learned and analyzed, one of the most
used tools in real environments to carry out the “offline” programming of industrial robotic
cells. An industrial robot, used in productive environments, with high performance and wide
versatility in robotic production lines, has been chosen, thanks to its degrees of freedom,
payload capacity and handling range.

A work cell has been programmed, defining each of the positions and each of the
actions carried out by the manipulators. For this, the tools available in the visual interface
offered by the simulation application (teach mode) have been used, to later simulate the
entire process using the same tool (run mode).

With the simulation of the process, we have specified position errors in the system,
improved the precision of approaches to objects, detecting collisions produced with objects,
fixed parts and other robots in the environment. These detected errors have been corrected
in the simulation tool itself, to later carry out more tests and adjust the system until the
required performance is achieved.

The work cell has been redesigned representing an extension of the system, adding
a second manipulator in addition to new objects. The possibility of collision between the
manipulators in the expansion of the cell has been analyzed and controlled and it has been
learned to master this situation, implementing the programs of both without collisions
occurring.

Possible extensions to this system would be: integration with a vision system for
automatic positioning, integration with sensors to perform mechanized tasks dependent on
the input and output registers and the application of a simulation tool similar to a robot to

be able to implement and perform system calibration with actual position.

Appendix A

Robotic system software for the first simulation

A.1 Main program
/PROG PROG_MAIN

IATTR

OWNER = MNEDITOR;

COMMENT ="

PROG_SIZE = 4637,

CREATE = DATE 20-09-03 TIME 11:20:46;
MODIFIED = DATE 20-09-03 TIME 11:20:46;
FILE_NAME =,

VERSION =0;

LINE_COUNT = 109;

MEMORY _SIZE =4957;
PROTECT = READ_WRITE;
TCD: STACK SIZE =0,

TASK_PRIORITY =50,

TIME_SLICE =0,

BUSY_ LAMP_OFF =0,

ABORT_REQUEST =0,

PAUSE _REQUEST =0;
DEFAULT_GROUP =1,%** %
CONTROL_CODE = 00000000 00000000;
/MN
IFANUC America Corp. ;
IROBOGUIDE Generated This TPP ;
IRun SimPRO.cf to setup frame and ;
UTOOL_NUM[GP1]=1;
UFRAME_NUMI[GP1]=1;

167

6:J P[1] 100% FINE ACC125 ;

7:L P[2] 200mm/sec FINE ;

8: WAIT .50(sec);

9: I'Pickup ('BOX") From ('STORAGE1';
10: 'WAIT 0.00 (sec) ;

11: WAIT .50(sec) ;

12:L P[3] 200mm/sec FINE ACC50 ;
13:J P[4] 100% FINE ;

14:J P[5] 100% FINE ;

15:L P[6] 400mm/sec FINE ;

16: WAIT .50(sec) ;

17: 1 Drop ('BOX") From ('GP: 1 - UT:;
18: 'WAIT 0.00 (sec) ;

19: WAIT .50(sec) ;

20:L P[7] 200mm/sec FINE ;

21:J P[8] 100% CNT100 ;

22:L P[9] 200mm/sec FINE Tool_Offset,PR[1]

23: WAIT .50(sec) :

24: 1 Pickup ('BOX") From (STORAGE?' ;

25: 'WAIT 0.00 (sec) ;
26: WAIT .50(sec) ;
27:L P[10] 200mm/sec FINE ;

28:] P[11] 100% CNT100 Tool_Offset,PR[1]

29:L P[12] 200mm/sec FINE ;

30: WAIT .50(sec) ;

31: ! Drop ('BOX") From ('GP: 1 - UT:;
32: 'WAIT 0.00 (sec) ;

33: WAIT .50(sec) ;

34:L P[13] 400mm/sec FINE ;

35:J P[14] 100% CNT100 ;

168

169

36:L P[15] 200mm/sec FINE ;

37: WAIT .50(sec) ;

38: ! Pickup ('BOX') From (STORAGE3';

39: IWAIT 0.00 (sec) ;

40: WAIT .50(sec) ;

41:L P[16] 200mm/sec FINE ;

42:) P[17] 100% CNT100 ;

43:L P[18] 200mm/sec FINE ;

44: WAIT .50(sec) ;

45: 1 Drop ('BOX") From ('GP: 1 - UT:;

46: 'WAIT 0.00 (sec) ;

47 WAIT .50(sec) ;

48:L P[19] 200mm/sec CNT100 ;

49:J P[20] 100% CNT100 ;

50:J P[21] 100% CNT100 ;

51:L P[22] 200mm/sec FINE ;

52: WAIT .50(sec) ;

53: ! Pickup ('PART1") From (TABLE2';

54: 'WAIT 0.00 (sec) ;

55: WAIT .50(sec) ;

56:L P[23] 200mm/sec FINE Tool Offset,PR[1] ;
57:J P[24] 100% CNT100 ;

58:J P[25] 100% CNT100 Tool_Offset,PR[1] ;
59:L P[26] 200mm/sec FINE ;

60: WAIT .50(sec) ;

61: ! Drop (PART1") From (GP: 1-U;

62: 'WAIT 0.00 (sec) ;

63. WAIT .50(sec) ;

64:L P[27] 400mm/sec FINE Tool_Offset,PR[1] ;
65:J P[28] 100% CNT100 ;

o1

170

66:L P[29] 200mm/sec FINE ;

67: WAIT .50(sec) ;

68: ! Pickup (PARTL1") From (TABLEL';
69: 'WAIT 0.00 (sec) ;

70: WAIT .50(sec) ;

71:L P[30] 400mm/sec FINE ;

72:J P[31] 100% CNT100 ;

73:L P[32] 400mm/sec FINE ;

74. WAIT .50(sec) ;

75: ! Drop (PARTL1") From (GP:1-U;
76: 'WAIT 0.00 (sec) ;

77. WAIT .50(sec) ;

78:L P[33] 2000mm/sec FINE ;

79:J P[34] 100% CNT100 ;

80: WAIT 2.00(sec) ;

81:J P[35] 100% CNT100 ;

82:L P[36] 100mm/sec FINE ;

83: WAIT .50(sec) ;

84: ! Pickup ('BOX") From ('BASE") Wi ;
85: IWAIT 0.00 (sec) ;

86: WAIT .50(sec) ;

87:L P[37] 100mm/sec FINE ;

88:J P[38] 80% CNT100 ;

89:L P[39] 100mm/sec FINE ;

90: WAIT .50(sec) ;

91: ! Drop ('BOX") From ('GP: 1 - UT:;
92: 'WAIT 0.00 (sec) ;

93. WAIT .50(sec) ;

94:L P[40] 200mm/sec FINE Tool_Offset,PR[1] ;
95:J P[41] 100% CNT100 ;

96:L P[42] 200mm/sec FINE

97: WAIT .50(sec) ;

98: ! Pickup (PARTL') From (BASE') ;

99: 'WAIT 0.00 (sec) ;
100: WAIT .50(sec) ;

101:L P[43] 80mm/sec CNT100 ;

102:J P[44] 80% CNT100 ;

103:L P[45] 100mm/sec FINE

104: WAIT .50(sec) ;

105: ! Drop (PARTL') From (GP: 1-U;

106: 'WAIT 0.00 (sec) ;
107: WAIT .50(sec) ;

108:L P[46] 200mm/sec FINE

109:] P[47] 100% CNT100 ACC50

A.2 Definitions of positions for the main program

/POS
P[1{
GP1:
UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P[2{
GP1:
UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P[3I{

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, = -700.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, Z = 143.000 mm,
0.000 deg, R = -90.000 deg

171

GP1:

UF

-1, UT: 1,

1429.000 mm,
0.000 deg, P =

1, UT: 1,

-271.000 mm,
0.000 deg, P =

-1, UT: 1,

-223.000 mm,
0.000 deg, P =

-1, UT: 1,

-223.000 mm,
0.000 deg, P =

1, UT: 1,

-223.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, Z = -510.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, Z = -510.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, = -583.820 mm,
0.000 deg, R = -180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z= 147.180 mm,
0.000 deg, R = -180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z = -317.820 mm,
0.000 deg, R = -180.000 deg

172

GP1:

UF:1,UT:1,
X = 1429.000 mm,

W =
j
PIOK
GP1:

0.000 deg, P =

UF:1,UT:1,
X = 1429.000 mm,

W =
¥
P[10{
GP1:

0.000 deg, P =

UF:1,UT:1,
X = 1429.000 mm,

W =
Y
P11
GP1:

0.000 deg, P =

UF:1,UT:1,
X = 1429.000 mm,

W =
¥
P[12]{
GP1:

0.000 deg, P =

UF:1,UT:1,
X = 1429.000 mm,

W =
¥
P[13]{

0.000 deg, P =

173

CONFIG:'NUT,O0,0,0,
Y = 1895.000 mm, Z = -659.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1895.000 mm, Z= -57.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1895.000 mm, = -570.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, Z = -410.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, Z = 143.000 mm,
0.000 deg, R = -90.000 deg

GP1:

UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P[14){
GP1:
UF:1,UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P[15
GP1:
UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
Y
P[16]{
GP1:
UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P17
GP1:
UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2

P[18]{

CONFIG:'NUT,O0,0,0,
Y = 1391.000 mm, Z = -600.000
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z = -675.000
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, = -257.000
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, = -630.000
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1895.000 mm, Z = -442.000
0.000 deg, R = -90.000 deg

mm,

mm,

mm,

mm,

mm,

174

GP1:

UF :
X =
W =
2
P[19K
GP1:
UF:
X =
W =
2
P[20){
GP1.
UF :
W =
2
P[21
GP1:
UF:
X =
W =
2
P[22
GP1:
UF :
X =
W =
2

P[23{

1,UT:1,
1429.000 mm,
0.000 deg, P =

1, UT: 1,
1429.000 mm,
0.000 deg, P =

1,UT:1,
-266.100 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

175

CONFIG:'NUT,O0,0,0,
Y = 1895.000 mm, Z= -57.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1895.000 mm, Z = -571.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 3093.450 mm, = -295.370 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, Z = -432.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0',
Y = 2676.210 mm, Z= 246.620 mm,
0.000 deg, R = -14.350 deg

GP1:
UF :
X =
W =
2
P[24
GP1:
UF :
X =
W =
2
P[25)
GP1.
UF :
X =
W =
2
P[26]{
GP1:
UF:
X =
W =
2
P27
GP1:
UF :
X =
W =
2
P[28

1,UT: 1,
-1992.340 mm,
0.000 deg, P =

1,UT: 1,
-1571.440 mm,
0.000 deg, P =

1, UT: 1,
277.000 mm,
0.000 deg, P =

1, UT: 1,
277.000 mm,
0.000 deg, P =

1, UT:1,
277.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, Z = -262.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,D0,0,0,
Y = 1311.340 mm, Z = -262.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, = -895.380 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z= 246.620 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z = -699.380 mm,
0.000 deg, R = 190.000 deg

176

GP1:

UF :
X =
W =
2
P29
GP1:
UF:
X =
W =
2
P[30K
GP1.
UF :
X =
W =
2
P[31K
GP1:
UF:
X =
W =
2
P[32{
GP1:
UF :
X =
W =
2

P[33{

1,UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

CONFIG:'NUT,0,0,0,
Y = 1462.000 mm, Z= -536.380 mm,
0.000 deg, R= 20.440 deg

CONFIG:'NUT,D0,0,0,
Y = 1462.000 mm, Z = 246.620 mm,
0.000 deg, R = 20.440 deg

CONFIG:'NUT,O0,0,0,
Y = 1462.000 mm, Z = -496.380 mm,
0.000 deg, R = 20.440 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, = -324.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, Z= 246.620 mm,
0.000 deg, R = -14.350 deg

177

GP1:
UF :
X =
W =
2
P[34K
GP1:
UF :
X =
W =
2
P[35
GP1.
UF :

W =
¥
P[36]{
GP1:
UF:

W =
Y
P[37){
GP1:
UF:
X =
W =
¥
P[38]{

1,UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
-1100.700 mm,
0.000 deg, P =

1, UT:1,
-223.000 mm,
0.000 deg, P =

1, UT: 1,
-223.000 mm,
0.000 deg, P =

1, UT:1,
-223.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, Z = -463.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 1618.260 mm, Z = -630.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, = -607.820 mm,
0.000 deg, R = -180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z= 147.180 mm,
0.000 deg, R = -180.000 deg

CONFIG:'NUT,0,0,0,
Y = 529.000 mm, Z= -426.820 mm,
0.000 deg, R = -180.000 deg

178

GP1:

UF:1,UT:1,
X = 1429.000 mm,

W =
j
P[39
GP1:

0.000 deg, P =

UF:1,UT:1,
X = 1429.000 mm,

W =
¥
P[40]{
GP1:

0.000 deg, P =

UF:1,UT:1,
X = 1429.000 mm,

W =
Y
P[41{
GP1:

0.000 deg, P =

UF:1,UT:1,
X= 277.000 mm,

W =
¥
P[42]{
GP1:

0.000 deg, P =

UF:1,UT:1,
X= 277.000 mm,

W =
¥
P[43]{

0.000 deg, P =

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z = -800.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,D0,0,0,
Y = 2400.000 mm, Z = -257.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, = -790.000 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, = -376.380 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z= 246.620 mm,
0.000 deg, R = 190.000 deg

179

GP1:

1

UF:
X =
W =

P[44]{
GP1:

1

UF:
X =
W =

P[45{
GP1:

}

UF:
X =
W =

P[46]{
GP1:

};

UF:
X =
W =

P[47){
GP1:

/[END

UF:
X =
W =

1,UT: 1,
277.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT:1,
-720.710 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0,
Y = 529.000 mm, Z = -289.380 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,D0,0,0,
Y = 1462.000 mm, Z = -440.380 mm,
0.000 deg, R = 20.440 deg

CONFIG:'NUT,D0,0,0,
Y = 1462.000 mm, Z = 246.620 mm,
0.000 deg, R = 20.440 deg

CONFIG:'NUT,0,0,0,
Y = 1462.000 mm, = -334.380 mm,
0.000 deg, R= 20.440 deg

CONFIG:'NUT,0,0,0,
Y = 1311.330 mm, Z= -715.380 mm,
0.000deg, R= 20.440 deg

180

Appendix B

Robotic system software for the extended simulation

B.1 List of programs
/PROG PROG_R1

B.2 First robot’s program
B.2. Listing of the program
/PROG PROG_R1

IATTR

OWNER = MNEDITOR;

COMMENT ="

PROG_SIZE = 3449;

CREATE = DATE 20-09-05 TIME 13:45:04;
MODIFIED = DATE 20-09-05 TIME 13:45:04;
FILE_NAME =,

VERSION =0;

LINE_COUNT =79;
MEMORY _SIZE =3761;
PROTECT = READ_WRITE;
TCD: STACK_SIZE =0,
TASK_PRIORITY =50,
TIME_SLICE =0,
BUSY_LAMP_OFF =0,
ABORT_REQUEST =0,
PAUSE_REQUEST =0;
DEFAULT GROUP = 1%***;
CONTROL_CODE =00000000 00000000;
IMN

181

182

1: 'TFANUC America Corp. ;

2: IROBOGUIDE Generated This TPP ;
3: IRun SimPRO.cf to setup frame and ;
4: UTOOL_NUMI[GP1]=1;

5. UFRAME_NUMI[GP1]=1;

6:J P[1] 100% CNT100 ;

7:JP[2] 100% CNT100 ;

8:L P[3] 200mm/sec FINE ;

9: WAIT .50(sec) ;

10: ! Pickup ('BOX") From (STORAGEL';
11: 'WAIT 0.00 (sec) ;

12: WAIT .50(sec) ;

13:L P[4] 200mm/sec FINE ;

14:J P[5] 100% CNT100 ;

15:L P[6] 400mm/sec FINE ;

16: WAIT .50(sec) ;

17: 1 Drop ('BOX") From ('GP: 1 - UT:;
18: 'WAIT 0.00 (sec) ;

19: WAIT .50(sec) ;

20:L P[7] 400mm/sec FINE ;

21:J P[8] 100% CNT100 ;

22:L P[9] 400mm/sec FINE ;

23. WAIT .50(sec) ;

24: 1 Pickup (PART1') From (TABLE2';
25: 'WAIT 0.00 (sec) ;

26: WAIT 1.50(sec) ;

27:L P[10] 400mm/sec FINE ;

28:J P[11] 100% CNT100 ;

29:L P[12] 200mm/sec FINE ;

30: WAIT .50(sec) ;

183

31: ! Drop (PARTL") From ('GP: 1-U;
32: IWAIT 0.00 (sec) ;

33: WAIT .50(sec) ;

34:L P[13] 200mm/sec FINE ;

35:J P[14] 100% CNT100 ;

36:L P[15] 200mm/sec FINE ;

37: WAIT .50(sec) ;

38: ! Pickup (PARTL1") From (TABLEL';
39: IWAIT 0.00 (sec) ;

40: WAIT .50(sec) ;

41:L P[16] 200mm/sec FINE ;

42:] P[17] 100% CNT100 ;

43:L P[18] 200mm/sec FINE ;

44: WAIT .50(sec) ;

45: 1 Drop (PARTL") From ('GP: 1-U;
46: IWAIT 0.00 (sec) ;

47 WAIT .50(sec) ;

48:L P[19] 200mm/sec FINE ;

49:J P[20] 100% CNT100 ;

50: WAIT 1.00(sec) ;

51:J P[21] 100% CNT100 ;

52:L P[22] 400mm/sec FINE ;

53: WAIT .50(sec) ;

54: 1 Pickup (‘BOX') From ('BASE') Wi ;
55: 'WAIT 0.00 (sec) ;

56: WAIT .50(sec) ;

57:L P[23] 200mm/sec FINE ;

58:J P[24] 100% CNT100 ;

59:L P[25] 200mm/sec FINE ;

60: WAIT .50(sec) ;

184

61: ! Drop ('BOX') From (‘GP: 1 - UT: ;
62: 'WAIT 0.00 (sec) ;

63: WAIT .50(sec) ;

64:L P[26] 200mm/sec FINE ;

65:J P[27] 100% CNT100 ;

66:L P[28] 400mm/sec FINE ;

67: WAIT .50(sec) ;

68: ! Pickup (PARTL) From ('BASE") ;
69: 'WAIT 0.00 (sec) ;

70: WAIT .50(sec) ;

71:L P[29] 200mm/sec FINE ;

72:J P[30] 100% CNT100 ;

73:L P[31] 400mm/sec FINE ;

74. WAIT .50(sec) ;

75: 1 Drop (PARTL1") From (GP:1-U;
76: 'WAIT 0.00 (sec) ;

77. WAIT .50(sec) ;

78:L P[32] 400mm/sec FINE ;

79:J P[33] 100% CNT100 ;

B.2.2 Definitions of positions for the program
/POS
P[1{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X = -720.710 mm, Y = 1311.330 mm, Z = -715.380 mm,
W= 0.000deg, P= 0.000deg, R= 20.440 deg
2
P[2{
GP1:

1
P[3K

UF:
X =
W =

GP1:

1
P[41{

UF:
X =
W =

GP1:

};
P[5{

UF:
X =
W =

GP1:

}
P[6){

UF:
X =
W =

GP1:

};
P[7I{

UF:

W =

GP1:

1, UT: 1,
1429.000 mm,
0.000 deg, P =

1,UT: 1,
1429.000 mm,
0.000 deg, P =

1, UT: 1,
1429.000 mm,
0.000 deg, P =

1,UT: 1,
-223.000 mm,
0.000 deg, P =

1, UT:1,
-223.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0',
Y = 2400.000 mm, Z = -792.320 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z = -257.320 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z= -728.320 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,0,0,0,
Y = 356.000 mm, Z = -635.140 mm,
0.000 deg, R = -180.000 deg

CONFIG:'NUT,Q,Q0,Q0,
Y = 356.000 mm, Z = 146.860 mm,
0.000 deg, R = 180.000 deg

185

UF :

W =
2
P[8I{
GP1:
UF :
X =
W =
2
P[O{
GP1:
UF:
X =
W =
2
P[10
GP1:
UF:
X =
W =
2
P[11K
GP1:
UF:
X =
W =
2
P[12{
GP1:

1, UT:1,
-223.000 mm,
0.000 deg, P =

1,UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
277.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, = -579.140 mm,
0.000 deg, R = 180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.220 mm, Z = -878.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, Z = 246.620 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.220 mm, Z = -801.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, Z = -577.380 mm,
0.000 deg, R = 190.000 deg

186

UF :
X =
W =
2
P[13K
GP1:
UF :
X =
W =
2
P[14
GP1:
UF:
X =
W =
2
P[15
GP1:
UF:
X =
W =
2
P[16]{
GP1:
UF:
X =
W =
2
P17
GP1:

1, UT: 1,
277.000 mm,
0.000 deg, P =

1,UT: 1,
277.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0',
Y = 356.000 mm, Z= 246.620 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, Z = -479.380 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT, 0,0, 0,
Y = 1462.000 mm, Z= -684.380 mm,
0.000 deg, R= 20.440 deg

CONFIG:'NUT,O0,0,0,
Y = 1462.000 mm, Z = 246.620 mm,
0.000 deg, R = 20.440 deg

CONFIG:'NUT,0,0,0,
Y = 1462.000 mm, Z= -560.380 mm,
0.000deg, R= 20.440 deg

187

UF :
X =
W =
2
P[18
GP1:
UF :
X =
W =
2
P[19K
GP1:
UF:
X =
W =
2
P[20){
GP1:
UF:
X =
W =
2
P[21
GP1:
UF:
X =
W =
2
P[22
GP1:

1, UT:1,
-1992.340 mm,
0.000 deg, P =

1,UT: 1,
-1992.340 mm,
0.000 deg, P =

1, UT: 1,
-1992.340 mm,
0.000 deg, P =

1,UT: 1,
-223.000 mm,
0.000 deg, P =

1, UT:1,
-223.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0',
Y = 2676.210 mm, = -561.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, Z= 246.620 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 2676.210 mm, = -636.380 mm,
0.000 deg, R = -14.350 deg

CONFIG:'NUT,O0,0,0,
Y = 1204.000 mm, Z = -607.140 mm,
0.000 deg, R = -180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, Z = -764.140 mm,
0.000 deg, R = 180.000 deg

188

UF:1, UT:1,
= -223.000 mm,
W= 0.000deg, P=
Y
P[23{
GP1:
UF:1, UT:1,
X = -223.000 mm,
W= 0.000deg, P=
2
P[24){
GP1:
UF:1,UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P[25
GP1:
UF:1,UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
Y
P[26]{
GP1:
UF:1, UT:1,
X = 1429.000 mm,
W= 0.000deg, P=
2
P27

GP1:

CONFIG:'NUT,0,0,0,
Y= 356.000 mm, Z= 146.860 mm,
0.000 deg, R = 180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, Z = -585.140 mm,
0.000 deg, R = 180.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z = -727.320 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z = -257.320 mm,
0.000 deg, R = -90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 2400.000 mm, Z = -736.320 mm,
0.000 deg, R = -90.000 deg

189

UF :
X =
W =
2
P[28
GP1:
UF :
X =
W =
2
P29
GP1:
UF:
X =
W =
2
P[30K
GP1:
UF:
X =
W =
2
P[31K
GP1:
UF:
X =
W =
2
P[32{
GP1:

1, UT: 1,
277.000 mm,
0.000 deg, P =

1,UT: 1,
277.000 mm,
0.000 deg, P =

1, UT: 1,
277.000 mm,
0.000 deg, P =

1, UT: 1,
-1923.000 mm,
0.000 deg, P =

1, UT:1,
-1923.000 mm,
0.000 deg, P =

CONFIG:'NUT,O0,0,0',
Y = 356.000 mm, Z = -628.380 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, Z= 246.620 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 356.000 mm, Z = -535.380 mm,
0.000 deg, R = 90.000 deg

CONFIG:'NUT,O0,0,0,
Y = 1462.000 mm, Z = -697.380 mm,
0.000 deg, R = 20.440 deg

CONFIG:'NUT,O0,0,0,
Y = 1462.000 mm, Z= 246.620 mm,
0.000deg, R= 20.440 deg

190

UF:1,UT:1, CONFIG:'NUT,0,0,0,
X =-1923.000 mm, Y = 1462.000 mm, =
W= 0000deg, P= 0.000deg, R= 20.440 deg

Y
P[33
GP1:

UF:1, UT:1, CONFIG:'NUT,Q0,0,Q0,
X =-1077.780 mm, Y = 1776.960 mm, Z = -428.380 mm,
W= 0.000deg, P= 0.000deg, R= 20.440 deg

2

/IEND

B.3 Second robot’s program
B.3.1 Listing of the program
/PROG PROG_R?2

IATTR

OWNER = MNEDITOR;

COMMENT ="

PROG_SIZE = 4130;

CREATE = DATE 20-09-05 TIME 13:45:20;

MODIFIED = DATE 20-09-05 TIME 13:45:22;
FILE NAME =
VERSION =0;
LINE_COUNT = 95;
MEMORY _SIZE = 4378;
PROTECT = READ_WRITE;
TCD: STACK_SIZE =0,
TASK_PRIORITY =50,
TIME_SLICE =0,
BUSY_LAMP_OFF =0,

-576.380 mm,

192

ABORT_REQUEST =0,

PAUSE _REQUEST =0;
DEFAULT_GROUP =1****
CONTROL_CODE = 00000000 00000000;
/MN

1: 'TFANUC America Corp. ;

2: IROBOGUIDE Generated This TPP ;
3: IRun SimPRO.cf to setup frame and ;
4: UTOOL_NUMI[GP1]=1;

5. UFRAME_NUMI[GP1]=1;

6:J P[1] 100% CNT100 ;

7:JP[2] 100% CNT100 ;

8:L P[3] 200mm/sec FINE ;

9: WAIT .10(sec);

10: ! Pickup (‘(PART?2") From ('STORAGE ;
11: 'WAIT 0.00 (sec) ;

12:L P[4] 200mm/sec FINE ;

13:J P[5] 100% CNT100 ;

14:L P[6] 300mm/sec FINE ;

15: 1 Drop (‘'PART2') From ('GP: 1-U ;
16: 'WAIT 0.00 (sec) ;

17:L P[7] 300mm/sec FINE ;

18:J P[8] 100% CNT100 ;

19: WAIT 1.00(sec) ;

20:J P[9] 100% CNT100 ;

21:L P[10] 500mm/sec FINE ;

22: WAIT .10(sec) ;

23: 1 Pickup ('BOX") From ('BASE') Wi ;
24: IWAIT 0.00 (sec) ;

25: WAIT .10(sec) ;

w

193

26:L P[11] 300mm/sec FINE ;

27:J P[12] 100% CNT100 ;

28:L P[13] 300mm/sec FINE ;

29: WAIT .10(sec) ;

30: ! Drop ('BOX") From ('GP: 1 - UT:;
31: 'WAIT 0.00 (sec) ;

32: WAIT .10(sec) ;

33:L P[14] 500mm/sec FINE ;

34:J P[15] 100% CNT100 ;

35: WAIT 1.00(sec) ;

36:J P[16] 100% CNT100 ;

37:L P[17] 500mm/sec FINE ;

38: WAIT .10(sec) ;

39: ! Pickup ('BOX') From ('BASEA") W ;
40: 'WAIT 0.00 (sec) ;

41: WAIT 2.00(sec) ;

42:L P[18] 300mm/sec FINE ;

43:J P[19] 100% CNT100 ;

44:1L P[20] 300mm/sec FINE ;

45: WAIT .10(sec) ;

46: ! Drop ('BOX") From ('GP: 1 - UT:;
47: 'WAIT 0.00 (sec) ;

48: WAIT .10(sec) ;

49:L P[21] 500mm/sec FINE ;

50:L P[22] 2000mm/sec FINE ;

51:J P[23] 100% CNT100 ;

52:L P[24] 500mm/sec FINE ;

53: WAIT .10(sec) ;

54: 1 Pickup (PART1') From (‘BASE") ;
55: IWAIT 0.00 (sec) ;

(@]

194

56: WAIT .10(sec) ;

57:L P[25] 300mm/sec FINE ;

58:J P[26] 100% CNT100 ;

59:L P[27] 300mm/sec FINE ;

60: WAIT .10(sec) ;

61: ! Drop (PARTL1") From (GP:1-U;
62: 'WAIT 0.00 (sec) ;

63: WAIT .10(sec) ;

64:L P[28] 500mm/sec FINE ;

65:J P[29] 100% CNT100 ;

66: WAIT 2.00(sec) ;

67:J P[30] 100% CNT100 ;

68:L P[31] 500mm/sec FINE ;

69: WAIT .10(sec) ;

70: ! Pickup (PARTL1") From ('BASEA) ;
71: 'WAIT 0.00 (sec) ;

72: WAIT .10(sec) ;

73:L P[32] 300mm/sec FINE ;

74:J P[33] 100% CNT100 ;

75:L P[34] 300mm/sec FINE ;

76: WAIT .10(sec) ;

77. 1 Drop (PARTL1") From (GP: 1-U;
78. 'WAIT 0.00 (sec) ;

79: WAIT .10(sec) ;

80:L P[35] 500mm/sec FINE ;

81:J P[36] 100% CNT100 ;

82:L P[37] 500mm/sec FINE ;

83: WAIT .10(sec) ;

84: ! Pickup (PART2") From ('BASE') ;
85: IWAIT 0.00 (sec) ;

195

86: WAIT .10(sec) ;

87:L P[38] 300mm/sec FINE ;

88:J P[39] 100% CNT100 ;

89:L P[40] 300mm/sec FINE ;

90: WAIT .10(sec) ;

91: ! Drop (‘(PART2") From (GP:1-U;
92: 'WAIT 0.00 (sec) ;

93: WAIT .10(sec) ;

94:L P[41] 500mm/sec FINE ;

95:J P[42] 100% CNT100 ;

B.3.2 Definitions of positions for the program
/POS
P[I1K
GP1:
UF:1, UT:1, CONFIG:'NUT,O0,0,0,
X = -903.620 mm, Y = 1631.980 mm, Z = -715.380 mm,
W= 0.000deg, P= 0.000deg, R= 88.290 deg

2
P[2K
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,0,0,
X =-1689.960 mm, Y = 1255.660 mm, Z = -814.010 mm,
W= 0.000deg, P= 0.000deg, R= -26.680 deg
2
PIB{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X =-1689.960 mm, Y = 1255.660 mm, = -214.010 mm,

W= 0.000deg, P= 0.000deg, R= -26.680 deg

UF:1,UT:1,
X =-1689.960 mm,
0.000 deg, P =

UF:1,UT:1,
-1789.800 mm,
0.000 deg, P =

UF:1, UT:1,
-1789.800 mm,
0.000 deg, P =

UF:1,UT:1,
X =-1789.760 mm,
0.000 deg, P =

UF:1,UT:1,
-1998.110 mm,
0.000 deg, P =

196

CONFIG:'NUT,O0,0,0,
Y = 1255.660 mm, Z = -882.010 mm,
0.000 deg, R = -26.680 deg

CONFIG:'NUT,O0,0,0,
Y = 2692.100 mm, Z = -653.000 mm,
0.000 deg, R = -22.200 deg

CONFIG:'NUT,O0,0,0,
Y = 2692.100 mm, Z = -14.000 mm,
0.000 deg, R = -22.200 deg

CONFIG:'NUT,O0,0,0',
Y = 2692.070 mm, Z = -644.010 mm,
0.000 deg, R = -22.150 deg

CONFIG:'NUT,Q0,Q0, 0,
Y = 2090.210 mm, = -749.010 mm,
0.000 deg, R = -22.150 deg

197

Y
P[OK
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X =-2696.570 mm, Y = 2684.480 mm, Z= -368.890 mm,
W= 0.000deg, P= 0.000deg, R = -112.150 deg

Y
P[10
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X =-2696.570 mm, Y = 2684.480 mm, Z= 146.860 mm,
W= 0.000deg, P= 0.000deg, R= -112.150 deg
2
P[11
GP1:
UF:1,UT:1, CONFIG:'NUT,D0,0,0,
X =-2696.570 mm, Y = 2684.480 mm, Z = -310.140 mm,
W= 0.000deg, P= 0.000deg, R= -112.150 deg
2
P[12){
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,0,0,
X = 590.960 mm, Y = 2461.240 mm, Z= -671.320 mm,
W= 0.000deg, P= 0.000deg, R= -22.150 deg
2
P[13{
GP1:

UF:1, UT:1, CONFIG:'NUT,O0,0,0,
X = 590.960 mm, Y = 2461.240 mm, Z= 142.680 mm,
W= 0.000deg, P= 0.000deg, R= -22.150 deg

198

Y
P[14]){
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X = 590.960 mm, Y = 2461.240 mm, Z = -654.320 mm,
W= 0.000deg, P= 0.000deg, R= -22.150 deg
Y
P[15
GP1:
UF:1,UT:1, CONFIG:'NUT,Q,0,0,
X = -300.010 mm, Y = 2824.020 mm, Z = -654.320 mm,
W= 0.000deg, P= 0.000deg, R= -22.150 deg
2
P[16]{
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X = 590.960 mm, Y = 2461.240 mm, Z = -572.320 mm,
W= 0.000deg, P= 0.000deg, R= -22.150 deg
2
P17
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,0,0,
X = 590.960 mm, Y = 2461.240 mm, Z= 142.680 mm,
W= 0.000deg, P= 0.000deg, R= -22.150 deg
2
P[18]{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X = 590.960 mm, Y = 2461.240 mm, = -657.320 mm,

W= 0000deg, P= 0.000deg, R= -22.150 deg

199

Y
P[19
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X =-2696.570 mm, Y = 2684.480 mm, Z = -366.140 mm,
W= 0.000deg, P= 0.000deg, R= -112.150 deg
Y
P[20){
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X =-2696.570 mm, Y = 2684.480 mm, Z= 146.860 mm,
W= 0.000deg, P= 0.000deg, R= -112.150 deg
2
P[21
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X =-2696.570 mm, Y = 2684.480 mm, Z = -321.140 mm,
W= 0.000deg, P= 0.000deg, R= -112.150 deg
2
P[22]{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,0,0,
X =-2508.020 mm, Y = 3147.570 mm, Z = -360.380 mm,
W= 0.000deg, P= 0.000deg, R= 157.850 deg
2
P[23){
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X =-2508.020 mm, Y = 3147.570 mm, = -360.380 mm,

W= 0.000deg, P= 0.000deg, R= 157.850 deg

200

Y
P[24]{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X =-2508.020 mm, Y = 3147.570 mm, Z= 246.620 mm,
W= 0.000deg, P= 0.000deg, R= 157.850 deg
Y
P[25)
GP1:
UF:1,UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X =-2508.020 mm, Y = 3147.570 mm, Z = -130.380 mm,
W= 0.000deg, P= 0.000deg, R= 157.850 deg
¥
P[26]{
GP1:
UF:1,UT:1, CONFIG:'NUT,Q0,0,0,
X = 847.400 mm, Y = 3091.030 mm, Z = -831.380 mm,
W= 0.000deg, P= 0.000deg, R= 67.850 deg
¥
P27
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,0,0,
X = 847.400 mm, Y = 3091.030 mm, Z= 246.620 mm,
W= 0.000deg, P= 0.000deg, R= 67.850 deg
2
P[28]{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X = 847.400 mm, Y = 3091.030 mm, = -731.380 mm,

W= 0000deg, P= 0.000deg, R= 67.850 deg

201

Y
P[29){
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X = -5730 mm,Y = 2183.770 mm, Z = -731.380 mm,
W= 0.000deg, P= 0.000deg, R= 67.850 deg
Y
P[30){
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X = 847.400 mm, Y = 3091.030 mm, Z = -932.380 mm,
W= 0.000deg, P= 0.000deg, R= 67.850 deg
2
P[31K
GP1:
UF:1,UT:1, CONFIG:'NUT,0,0,0,
X = 847.400 mm, Y = 3091.030 mm, Z = 246.620 mm,
W= 0.000deg, P= 0.000deg, R= 67.850 deg
2
P[32{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,0,0,
X = 847.400 mm, Y = 3091.030 mm, Z = -653.380 mm,
W= 0.000deg, P= 0.000deg, R= 67.850 deg
2
P[33{
GP1:
UF:1, UT:1, CONFIG:'NUT,Q0,Q0,Q0,
X =-2508.020 mm, Y = 3147.570 mm, = -264.380 mm,

W= 0.000deg, P= 0.000deg, R= 157.850 deg

UF:1,UT:1,
X =-2508.020 mm,
0.000 deg, P =

UF:1,UT:1,
-2508.020 mm,
0.000 deg, P =

UF:1, UT:1,
-1789.760 mm,
0.000 deg, P =

UF:1,UT:1,
X =-1789.760 mm,
0.000 deg, P =

UF:1, UT:1,
-1789.760 mm,
0.000 deg, P =

202

CONFIG:'NUT,0,0,0,
Y = 3147570 mm, Z= 246.620 mm,
0.000 deg, R= 157.850 deg

CONFIG:'NUT,O0,0,0,
Y = 3147.570 mm, Z = -363.380 mm,
0.000 deg, R = 157.850 deg

CONFIG:'NUT,O0,0,0,
Y = 2692.070 mm, Z = -738.010 mm,
0.000 deg, R = -22.150 deg

CONFIG:'NUT,O0,0,0',
Y = 2692.070 mm, Z= -14.010 mm,
0.000 deg, R = -22.150 deg

CONFIG:'NUT,Q0,Q0, 0,
Y = 2692.070 mm, = -687.010 mm,
0.000 deg, R = -22.150 deg

Y
P[39K
GP1:
UF:1,UT:1,
X =-1689.960 mm,
W= 0.000 deg, P =
Y
P[40]{
GP1:
UF:1, UT:1,
X =-1689.960 mm,
W= 0.000deg, P=
¥
P[41){
GP1:
UF:1, UT:1,
X =-1689.960 mm,
W= 0.000 deg, P =
¥
P[42){
GP1:
UF:1,UT:1,
X =-1037.840 mm,
W= 0.000deg, P=
2
/END

CONFIG:'NUT,O0,0,0,
Y = 1255.660 mm, Z = -888.010 mm,
0.000 deg, R = -26.680 deg

CONFIG:'NUT,O0,0,0,
Y = 1255.660 mm, Z = -214.010 mm,
0.000 deg, R = -26.680 deg

CONFIG:'NUT,O0,0,0,
Y = 1255.660 mm, Z = -923.010 mm,
0.000 deg, R = -26.680 deg

CONFIG:'NUT, 0,0, 0,
Y = 1513250 mm, Z= -923.010 mm,
0.000deg, R= -26.680 deg

203

