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Purpose. To provide a simple and clear approach to kinematic analysis and motion computations useful to those
who may wish to program and employ nice delta robots.

Methodology. A circle and sphere intersection model is used to describe positioning of the elements, which allows
obtaining the analytical solution for the forward and inverse kinematics problem. For the verification of the proposed
solution, the results were processed configuring the mechanical model of the kinematic system using SimMechanics
Blocks in MATLAB/Simulink environment, which allows simulating various geometric configurations and reactions
to mechanical stress and develop effective control strategies.

Findings. A mathematical expression describing the movement of the end-effector of the delta robot taking into
account the mutual positioning of the elements of the kinematic system is obtained. A synthesis algorithm that is
convenient for scaling and replication in automatic mode of operation is proposed.

Originality. For the first time, the solution was obtained that takes into account the mutual positioning of the elements
and the parameters of the linear dimensions of the mechanism with the involvement of IT technologies and real equipment.
The distinctive feature of the proposed solution is the adaptation to the control system of the electromechanical system.

Practical value. A parallel robot consisting of three arms connected to universal joints at the base is most effective
when it is necessary to perform a quick displacement along a complex or simple trajectory while simultaneously chang-
ing the coordinates x, y and z. This fact makes the task actual to develop an algorithm for obtaining mathematical ex-
pressions for the simultaneous control of the electric motors of the delta robot. The obtained mathematical expressions
for the inverse and forward kinematics problem are the first step in developing a control system that ensures the coor-
dination and consistency of required displacements of all executive bodies in accordance with a specified program,
which is understood as the set of requirements to ensure the implementation of the technological process.

Keywords: delta-robot, inverse kinematics, forward kinematics, electromechanical system

Introduction. Recently, parallel manipulators have re-
ceived increasing amount of research focused on their
design and development due to their high speed, preci-
sion and stiffness. Nowadays Clavel’s 3-RRR Delta ro-
bot is one of the most widely used designs in industrial
applications like packaging, medical and pharmaceuti-
cal industry, and surgery. The requirements on machin-
ery continuously increase resulting in higher demands for
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performance, energy efficiency and complexity of the in-
stalled plants. The tasks of control, diagnosis and mea-
surements are important for correct behavior. Thus, the
accuracy of the considered model is crucial for future be-
havior prediction as well as quality improvement.
Analysis of the recent publications. The fundamental
issue both in kinematic and dynamic model of any mech-
anism is mobility. Concerning the delta robots, it is by far
the main parameter. One depends on the relationship be-
tween the design parameters such as the number of links
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and joins, the constraints. Before proceeding to any analy-
sis or design, the number of degrees of freedom is always
determined. The paper [1] suggests a new matrix meth-
od, that always gives the correct results compared to con-
ventional approaches like Grubler and Kutzbach formu-
las, but it is more complex and requires high computa-
tional efforts. As a proof, the method was applied to the
mechanisms like the four-bar planar linkage, augment-
ed 4-bar linkage, university of Maryland manipulator,
Cartesian parallel manipulator and delta robot and or-
thoglide robot scheme. The results obtained using dif-
ferent methods for these mechanisms were compared and
effectiveness of the suggested matrix approach was shown.
The number of degrees of freedom for delta robot to be
considered in this paper is calculated to be 3.

The design process of the parallel robot consists of the
following stages: kinematics analysis, dynamic optimiza-
tion and path tracking control. This paper deals with ki-
nematics. Kinematic analysis is one of the first steps in
the design of most industrial robots. Kinematic analysis
allows the designer to obtain information on the posi-
tion of each component within the mechanical system.
This information is an inevitable part for subsequent dy-
namic analysis along with control paths.

There are many methods devoted to this problem such
as an analytical solution using geometric method [2], where
a problem is simplified to defining intersection point of
two circles and then transforming the coordinated systems
to get the final solution. In paper [3] the main part is de-
voted to proper determination of kinematic parameters
leading to a desired workspace, but the kinematics anal-
ysis is also briefly given using similar approach requiring
solution of multiple coupled nonlinear algebraic equa-
tions. There are also iterative methods based on neural net-
work algorithms as described in paper [4]. This work pro-
poses a methodology using the ability of adaptive neuro-
fuzzy inference system to solve an inverse kinematics prob-
lem. The network applies known combination of least
squares as well as back-propagation gradient descent search
algorithm for training the neurons the input-output map
of the inverse kinematics. This solution is quite complex,
but still acceptable as an alternate approach to solving the
inverse kinematics problem. An approach based on prob-
ability theory with special focus on the Levenberg-Mar-
quardt algorithm is presented in [5]. The parameter esti-
mation of the dynamic system is based on Functional
Mock-up Interface and the underlying optimization prob-
lem the Ceres Solver is utilized. The results seem promis-
ing. There are also different numerical algorithms like real
coded genetic algorithms, polynomial methods and so
on. Recently, research on haptic devices for application in
rehabilitation and virtual reality has become popular; for
example, paper [6] where an interesting approach to kine-
matics of delta robot is presented very briefly. And the
current paper addresses this point and investigates the ki-
nematics problem in a numerical study using similar ap-
proach with the purpose of obtaining simple mathemati-
cal expressions that are suitable for implementation with
conventional control systems. The efficient dynamic po-
sition control of the actuators could be performed in each
direction using methodologies described in paper [7].
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Unsolved aspects of the problem. It is necessary to take
into account the fact that the obtained equations describ-
ing the motion of the elements of the kinematic system
of the delta robot are to be implemented based on low-
performance digital devices. A distinctive feature of the
proposed solution is the dependence between the nu-
merical values characterizing the instantaneous position
of the kinematic system and their graphical interpreta-
tion, providing also the possibility of solving the inverse
kinematics problem when the equations of the kinemat-
ic system of the delta robot are obtained from predefined
coordinates in space.

Objective of the article. It is required to develop a sim-
ple and clear method for kinematic analysis for both for-
ward and inverse kinematics problems using geometric
constructions describing accurately the mutual position-
ing of the robot chains for efficient control in order to en-
hance the dynamic behavior.

Presentation of the main research and explanation of sci-
entific results. Now let us proceed with the examination of
the inverse and direct kinematics with the help of geometric
constructions. These are pretty easy to understand follow-
ing this paper. In order to build a parallel delta robot, two
main problems have to be solved. The first problem is deter-
mining the corresponding angles of each of three arms, in
case the desired position of the end effector is known to set
each motor in proper position. Such a process is called an
inverse kinematics. And the second problem, knowing the
angles, the end effector position has to be determined for
example, to make some corrections of its current position.
It is called forward kinematics. Theoretical part of parallel
delta robot kinematics comes further.

Inverse kinematics. The kinematic model of a parallel
delta robot in three-dimensional Cartesian coordinate
system with origin at point 7;,(0, 0, 0) and axis lines X, ¥
and Z, oriented by arrows, is shown in Fig. 1.

Top and bottom planes of the robot are presented as
equilateral deltas. Top plane is stationary. Control mo-
tors are mounted on it at points 7, 7, and 7;. Bottom
plane is movable. Point B, is the position of the end ef-
fector. All physical dimensions in Fig. 1 are determined
by design of the robot.

Let us consider a part of the robot model containing
arm 7, H, and projections of H,B, along X and Z axes of
the coordinate system in Fig. 2. The target angle o, is

2 /XU'}M 2/

Fig. 1. Kinematic model of the parallel delta robot
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Fig. 2. XZ plane

defined as the arctangent of the ratio of the arm 7,H,
projections on the axes Xand Z. Let us see how these pro-
jections can be defined. The robot is designed in such a
way that 7} H, can only rotate in XZ plane forming a circle
with the center at point 7 and radius r,. As opposed to
T,, H,and B, are universal joints, which means that H, B,
can rotate freely round point B, forming sphere with ra-
dius r,. Intersection of this sphere and XZ plane is a cir-
cle with the center at point B). So, in order to define the
projections, it is necessary to compose a system of equa-
tions consisting of two equations of circles with centers
at points 7, B/ and radiuses r,, H,B| respectively.
The general view of the system is as follows

(X, - Xy )2+(ZH. ~Z, )2:|T1H1|2 n
(XHI _XB; )2 +(ZH1 _ZBf )2 :|H1B]'|2 |

where X H» X and X are projections of points H,, T;
and B/, respectlvely, on X axis. Z Ho Z; and Z, are pro-
jections of points H,, T| and B, respectlvely, on Z axis.
For this purpose, the lacking unknowns are to be
found. The length of line segment connecting the center
of the bottom delta B, to its vertex B1: |BOB1 | =htan 30°.
Then, point B, has the next coordinates B,(x, + btan 30°).
So, coordinates of point B/ are B/(x, + btan30°, 0, z).
Coordinates of point 7 : T\(¢/2tan30°, 0, 0). Now the
length of B, B{ can be defined as | BB, | =

ing the length of the arm B, H, and length of line seg-
ment B, B|, the length of H B can be found as

|HlB{|:\I|BlH1|2 _|BIB1I 2 =\ = V-

The data obtained above is sufficient to compose the
desired system of equations. Substituting the data into (1),
we obtain

¥, Finally, know-

(Xy, @/ 2tan30°) +(2,, ) =12

(X —xo—btan30') +(2, —z,) =7 —
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The next step is to designate the left-hand side and
the right-hand side arguments of the system of equa-
tions (2) as r2 =r2, ;2 -y} =r}, x; = (t/2)tan30°, x,=
=x, + btan 30° and open all brackets. Then the system of
equations looks like

2 2, 72 2
Xy —2Xy X +x +Zy =h

3
Xlzﬂ—ZXHlx2+x22+Z]2]] ©)

27,2, +g =15

Subtract from the first equation of the system (3) the
second equation, make some math manipulations and
then rewrite the system as

{XH, (2x2—2x,)+2zmzo=r]2—r22+x22+z§ @)

2 2 2 _ 2
XH, —2XH]x1+x1 +ZH1 =r

Make the following designations in the first equation
of (4), a; =2x, — 2x,q="r> —r2 +x3+28 and b, = 2z,
Afterwards, resolve this expression relatively Z H,

—a X
Z, :u_ 5)
1 bl

Substitute (5) into the second equation of the system
(4) in order to get an expression resolved relatively X u,

a? qga
X12‘11 (1+b—12J+XHI (—2’51 —2b—2'J+
i i
2
+| x} +q——r12 =0.
b

We have got a quadratic equation, let us reduce it to
a common view. For the sake of simplicity, designate the
equation coefficients as follows a=1+a? /b?, b=
= —2(x] +qa, /bf), c=x}+q*/ b} —r2. The final view
of quadratic equation

ale +bXy +c=0,

where X, represents an unknown, and a, b and c are the
coeﬁ‘lcwnts of the equation. To find roots of this equa-
tion, firstly, the discriminant of the quadratic equation that
is often represented using as upper case D must be found

D=b>—4ac.

A quadratic equation with real coefficients can have
either one or two distinct real roots, or two distinct com-
plex roots. In this case the discriminant determines the
number and nature of the roots. There are three cases:

If D <0, the equation possesses no solutions for our
problem, which means that the desired position of end ef-
fector is beyond the region of admissible displacements
(i.e. workspace).

Otherwise if D = 0, then there is exactly one real

root. It can be found as X, =—b/2a.
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Otherwise D >0, then the equation possesses two
roots, which can be calculated as —b+\/5 /2a and

-b —\/B /2a . The choice for our problem is the root
with the most positive value.

The next step is to substitute the calculated value of
X H, into (5). Thereby X H, and Z ,are both defined. This

fact allows calculating the target angle

Such algebraic simplicity comes from a good choice
of the reference frame. To pursue even further this ad-
vantage and find the two remaining angles we use the sym-
metry of deltas and just simply rotate the coordinate sys-
tem by dint of the next rotation matrix

R- cosf sinB
| —sin® cosO |’
which rotates points in the XY-Cartesian plane counter-
clockwise through an angle 6 (6 = 120° to get o, and 6 =
240° to get a;) round Z-axis of the Cartesian coordinate
system. To perform a rotation using the given matrix, the
position of the point must be represented by a column

vector, containing its coordinates x, and y,. The rotated
vector is obtained by using the matrix multiplication

Xy | | cos® sin6 || x,
vy | |-sin® cosO ||y, |
Thus, the coordinates x,, and y, of the end-effector
position B, after rotation

ro__ H .
X, =X,Cc080+ y,sin0;

Yy =—X,sin0+ y,cos6.

Substituting these coordinates into the system of equa-
tions (2) instead of x; and y,, the remaining angles o, and
a3 can be calculated easily using the same technique.

Forward kinematics. Now let us examine the forward
kinematics via geometric constructions. The solution of
this problem is based on similar, but not quite identical
geometry. As mentioned earlier H,, H,, Hs, B, B,, B; are
the so-called universal joints. It means that arms H,B,,
H,B, and H;B; can rotate freely around points B, B, and
Bs, respectively, forming spheres with radiuses ;. There-
by, the most obvious and simple way to determine the
position of the end effector knowing angles a.;, o, and o3
beforehand is to compose a system of equations for these
three spheres, one of the solutions of which will be the
point B, containing the coordinates of the end effector.
Firstly, as angles a;, o, and o3 are known, the coordinates
of universal joints H,, H, and H; have to be determined

HI(OT1 +r,.cosa,,0,r, smal);
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u —[OT2 +r,cosa2Jsin30°
2 [OT2 +r,cosa2]cos30°,r,sin(x2 ’

—[OT3 +7, cosa3]sin30°
’ —[OT3 +r;cosa3]cos300,r;sin(x3 '

In order to obtain point B, from as a root of the sys-
tem of equations for the spheres, its centers must be shift-
ed as shown in Figs. 3 and 4.

According to Fig. 4 coordinates of shifted centers of
the spheres are

H{(OT1 +r,cosa, —btan30°,0,7 sina, );

2

,[—[OTz +1,cosa., —btan30°]sin30° ]

[OT2 + 1, coso, — btan30°]cos30°,r, sina,

3

,[—[0T3 +7,C050, —btan30°]sin30° J

[OT3 +7,C050,4 —btan30°]cos30°,r, sino,

For the sake of simplicity, we designate the coordi-
nates of these points as Hl'(xl,yl,zl), H (xz,yz,z2 ),
H; (x3,y3,z3 ) Then the general view of the system of
equation for the spheres appears like

Mathematical manipulations with this system come
further with the purpose of obtaining simple expressions
for roots calculation that could be used in programming
and simulation without any issues. Firstly, let us open all
brackets in each equation of the system (6) and group up
similar variables

X2+ 2% =200 =228 =1 X — 35 Q)
X2+ yP 2 =200, =290, — 225, =1~ X5 -y =255 (8)

71,1000 y

Eﬂ/)(g,}/g,Zg/

Fig. 3. Direction of spheres centers shift
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Fig. 4. View of top delta in XY plane

x2 4yt 422 =200 - 2yy; — 22 =1 —xi—yi-z3. (9)

Subtract (7—8)
2x(x2 -X )+ 2yy, +21(z2 -z ) =
==X} X+ T
Subtract (7—9)
2x(x3 —xl)+ 2yys + 2Z(Z3 -z)=
=—x{ -z +x}+yi+73.
Subtract (8—9)
2x(x3 —x2)+2y(y3 —y2)+2z(z3 _12) =
=—X]-yi - +x;+yi+z3.
Let us introduce the following designation
O =x7+y/ +3].

Taking into account the above manipulations and just
introduced designation the set of equations looks like

(0,-0)/2  (10)
(-0)/2;
))=(0:-0,)/2. (12)

x(x2 —xl)+yy2 +z(z2 —zl):
x(x3 —x1)+yy3 +z(z3 —zl)z
x(x3 —x2)+y(y3 y2)+z(z3

Continue further mathematical manipulations with
equations (10—12). Subtract (10—11)

x[xz XX _xl]Jrz[Zz 4% _le:
b)) M3 by V3
=Q2_Q1 Q3 Y
2y, 2y,

Represent this expression with respect to x as
x=az+b, (13)

where

110

=% X
al ( 3 122 lj/dl,
V3 Vs

b = Q2 Ql Q3 Ql /d
b 2y, 2)’3 v

X=X

d, =22 Y37 X
Y Y3

Now subtract (11—12)

y Vi=) =z =2
y 3 BTh | BT BTh |
X3 =X X3=X, X3 =X X3=X,

Q3 - Q1 Q3 - Q2

- 2(x3 —xl) 2(x3 —xz).

Represent this expression with respect to y as

y=az+b,, (14)

where
372 X% .
a,=| —-——1\/d,;
X3 =Xy X3—X

Q3_Q2
- /dy;
(x3 —xl) 2(x3 —xz)J !

Y BT
X3 =X X3—X,;

dy=

Finally, substitute (13) and (14) into (7). After open-
ing all brackets and grouping similar variables the ex-
pression looks as follows

[alz +al +l]z2 +2[al(b1 —x1)+azb2 —ZIJZ+
+|:(b1 —xl)2 +b} +7} —r,}]:o.

So, we get quadratic equation which can be represent-
ed in common view as

az? +bz+c=0,

where z represents an unknown, and a, b and c are the
coeflicients of the equation. To find roots of this equa-
tion, firstly, the discriminant of the quadratic equation
must be found just like it was done in the section de-
scribing inverse kinematics problem. If D >0, then the
equation possesses two roots, which can be calculated as

-b+ \/B /2a and —b— \/B / 2a. The choice for our prob-
lem is the root with the most positive value of z.

The next step is to substitute the calculated value into
(13) and (14). Thereby the two remaining coordinates x
and y are both defined and the problem of forward kine-
matics is solved.

Conclusions. The problem of inverse and direct kine-
matics with the help of geometric constructions is exam-
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ined. The mathematical expressions describing the move-
ment of the end-effector of the delta robot taking into
account the mutual positioning of the elements of the
kinematic system are obtained. It is claimed that the
simplest analytical solution to the inverse and direct ki-
nematics problems for high speed delta robots has been
exposed for the first time herein. The proposed solution
can be adapted to the control system of the electrome-
chanical system. The future work will be devoted to the
development of the algorithms for the simultaneous
control of the electric motors of the delta robot to per-
form quick displacements along complex or simple tra-
jectories.
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Meta. Po3pobutu npoctuit i 4iTKuii miaxia ao Ki-
HEeMaTUYHOTO aHaJlizy Ta O0UMCIEHb PYXY, KOPUCHUX TSI
THX, XTO Oaxkae mporpamMmyBaTH il BUKOPUCTOBYBATU J€JTb-
Ta-poOOTH.

Metoauka. [{J1s1 orucy no3ullioHyBaHHSI €JIEMEHTIB
BUKOPHUCTOBYETHCSI MONIEb TIEPETUHY KoJja Ta cepu,
110 JO3BOJISIE OTPUMATH aHANITUIHE PIlICHHS TS 3a/1a-
Yi IpsIMOI i1 3BOPOTHOI KiHEMATUKU. [1J1s1 mepeBipKu 3a-
MPOTIOHOBAHOTO PillIeHHS pe3yabTaTh OyJn 00pobeHi
MpU HaJalITyBaHHI MEXaHiYHOI MoJesi KiHeMaTUYHOL
CUCTEMU 3 BUKOPUCTAHHSIM OJIOKiB 6ibmioTek SimMe-
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chanicsy cepemoBuitti po3podoku MATLAB/Simulink, 110
Jla€ 3MOTY iMiTyBaTH pi3Hi FeOMETPUYHI KOH}Iryparlii i
peaxliii Ha MeXaHiuHi BILUTUBU, a TAKOXK PO3pO0JISTU epek-
TUBHi CTpaTerii KEpyBaHHSI.

Pe3ynbTaTu. OTpyiMaHO MaTeMaTUYHUI BUpPaA3, 110
OIHMCYE pyX poOOUOro opraHa jaeabra-podoTta 3 ypaxy-
BaHHSIM B3a€EMHOTO MO3MILIIOHYBAaHHS €JIEMEHTIB KiHe-
MaTUYHOI CUCTeMU. 3aIIPOTIOHOBAHO aJITOPUTM CUHTE-
3y, 3pYYHUH 71T MacITaOyBaHHSI i TUPaXKyBaHHS B aB-
TOMAaTUYHOMY PEXHMi pOOOTH.

HaykoBa HoBU3HA. YTiepiiie Oy710 OTPUMAHO pillleH-
HS, 110 BPaXOBY€E B3aEMHE PO3TALIyBaHHS €JIEMEHTIB i
napameTpu JiHIHHUX PO3MipiB MeXaHi3My i3 3aJlyyeH-
Hsim I'T-TexHomorii i peaabHOTO 00JMagHaHHS. BigMiH-
HOIO PUMCOIO 3aMIPOITIOHOBAHOTO PIllIEHHST € aIaNTallisl 10
CHCTeMU KepyBaHHS €JICKTPOMEXaHIYHOIO CUCTEMOIO.

IIpakTryna 3nauuMmicTs. [lapanenbHuit podoT, 110
CKITAIAEThCS 3 TPHOX BaXKeJliB, MPUETHAHUX 32 JOITOMO-
rol0 KapJaHHUX LIApHipiB 10 OCHOBHU, € HAWOLIbII edeK-
TUBHUM, KOJIM HEOOXiTHO LIBUIKO 3AiiCHIOBATHU Tepe-
MilLIEHHSI TIO CKJIaJHilt a00 MPOCTili TpaeKTOPii, ogHOYAC-
HO 3MiHIOIOUM KOOpIMHATHU X, ¥ Ta Z. Lleit akT podoutsb
aKTyaJbHUM 3aBIaHHS PO3POOKHU aITOPUTMY OTPYMAHHS
MaTeMaTUIHUX BUPA3iB IUISI OMHOYACHOTO YIIPABIiHHS
€JIeKTPOIBUTYHAMH JIebTa-poboTa. OTprMaHi MaTeMa-
TUYHI BUpa3u [JIsl 3a0a4i IPsIMOI 11 3BOPOTHOI KiHEMATUKU
€ TIepIIMM KPOKOM y CTBOPEHHI CUCTEMU KEPYBAHHSI, 110
3a0e3neuye KOOpAMHALLIIO Ta Y3rOMKEeHICTbh HEOOXiTHUX
NepeMillieHb YCiXx BUKOHABYMX OPraHiB BilMOBIIHO 10
MEeBHOI ITPOrPaMM, SIKa PO3YMIETHCS SIK CYKYITHICTb BUMOT
110710 3a0e3neyeHHs! peastizallii TeXHOJIOTiYHOTO MPOLIECy.

KimouoBi ciioBa: desvma-pobom, 360pomua Kinemamu-
Ka, npsama KinemMamuka, eneKmpomexaniuna cucmema

Iens. PazpaboTaTh MpoCcTOii M YETKUI MOAXO K 3a-
Jlaye KNHEMaTUYeCKOrO aHaIn3a 1 BbIYUCIICHUI TBU-
SKEHMUSI, TIOJIE3HBII TS TEX, KTO JKeJlaeT MporpaMMUpO-
BaTh U MCIOJIb30BaTh A€JbTa-POOOTHI.

Metomuka. /{7151 onicaHus MO3ULIMOHUPOBAHMS BJle-
MEHTOB UCTIONIb3YEeTCSI MOZEb MEPECEUCHNsT OKPY>KHOCTH
1 cpepbl, KOTOpasI IIO3BOJISIET ITOJTYUYNTh aHATUTUIECKOE
pelIeHNe TS 3aIaYH IIPSIMOit M 00paTHO KWHEMATUKH.
15t IpOBEPKM TIPEIOKEHHOTO PEIIeHUsT Pe3yIbTaThl
ObLUTM 00pabOTaHbI MPU HACTPOIKE MEXaHUUYECKON MO-
JIeJTM KMHEMAaTUYECKOI CHCTEMBI C UCTTOJIb30BaHUEM 0J10-
KoB O6ubanoreku SimMechanics B cpene pa3paboTKu
MATLAB/Simulink, koTopast 1aeT BO3MOKHOCTb UMU-
TUPOBATh PA3INYHBIC TCOMETPUICCKIE KOH(MUTYpAITUT
1 peakIny Ha MEXaHNIECKIE BO3ICMCTBHUS, a TAKKE pa3-
pabateiBaTh 3(D(EKTUBHBIC CTPATETUN YIIPABICHUS.

Pe3ynbTatel. [TonyyeHo MaTeMaTUUeCKOE BbIpaXKe-
HUe, ONMChIBaloOllee IBMXKeHUE pabovero opraHa nejib-
Ta-poboTa ¢ YUeTOM B3aMMHOTO MO3UIIMOHUPOBAHUS
3JIEMEHTOB KMHEMaTUUeCKOM cucTeMbl. [IpemtoxeH an-
TOPUTM CUHTE3a, YIOOHbINI 1151 MaCILITAOUPOBAHUS U TU-
PaXMPOBAHUST B aBTOMAaTUYECKOM PEXKMME PaOOTHI.

Hayuynas noBusna. BriepBbie ObLIO ITOJTyY€HO pellie-
HHE, YIUTHIBAIOIIEe B3aMMHOE PACIIONIOXKEHIE DIIEMEH-
TOB U MapaMeTphbl TUHEHHBIX pa3MEepPOB MeXaHU3Ma C
npusiieueHrueM M T-TexHOJOrUil U peaabHOro 00opy-
noBaHust. OTIUYMTETBHON Y€PTOM TTPEIOKEHHOTO pe-

111




IHOOPMALINHI TEXHONOTII, CACTEMHUA AHANI3 TA KEPYBAHHA

LLIeHUs SIBJISIETCSI afanTalusl K CUucTeMe YIpaBJeHUs
3JIEKTPOMEXaHUYECKOUN CUCTEMOIA.

IIpakTyeckasi 3HayMMoCThb. [TapanenbHbIii poooT,
COCTOSILIMI U3 TPEX PhIYAroB, MPUCOEAUHEHHBIX C TO-
MOIIbIO KapJAHHbBIX LIAPHUPOB K OCHOBAHUIO, SIBJISIET-
cs1 Hanboree 3(pheKTUBHBIM, KOTIa HEOOXOIMMO OBICTPO
OCYILIECTBJISITh IEPEMELLICHUE T10 CJIOKHOM WX IIPOCTOM
TPaeKTOpUU, OTHOBPEMEHHO U3MEHSISI KOOPAMHATHI X,
Y U Z. OTOT haKT AenaeT aKTyaJabHOM 3am1auy pa3padoT-
KM aJIrOpUTMa MOJYYEHUSI MATEMATUUYECKUX BbIPpAXE-
HUK 111 OMHOBPEMEHHOTIO YNPAaBJIECHUS 3JEKTPOIBU-
rarejisiMM fieJisTa-podora. [TomydyeHHbIe MaTeMaTUYECKUe
BbIpaXKeHUsI TSI TIPSIMOM U 0OpaTHOM 3a1a4 KWHEMaTH-
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Purpose. To construct and analyze electromechanical system model for hydrotransport used at factories, that will
be able to take into account changes related to equipment wear, and also produce the accumulation of technical changes
caused by the exploitation of the pipeline system.

Methodology. The dynamic model of the electromechanical system of hydrotransport is developed on the basis of
data about physical parameters of hydrotransport systems, received empirically. It is based on the methods for identi-
fication of dynamic systems in the form of differential equations for elements of the inside-factory hydraulic transport
technological object.

Findings. A model of the electromechanical system of hydrotransport is developed. Verifications of homogeneity
by the Fisher’s and Bartlett’s criteria showed the homogeneity of the estimates of the variance of reproducibility. For
the Fisher’s criterion rating was 2.59; for the Bartlett’s criterion verification showed that the coefficient is significant
at the level less than 0.02, and this is indicating the reliability of the calculation of the correlation matrix.

Originality. For the first time a model for systems of the hydraulic transport, based on the Jeffcott’s multi-mass
rotor models, was applied. While modelling, wear of equipment in process is taken into account.

Practical value. Efficiency of usage of Jeffcott’s multi-mass rotor models based model, has been proven. It allows
describing the behavior of an object in specific technological regimes reliably and improves efficiency of the pro-
cesses.

Keywords: dynamic modeling, Jeffcott’s rotor, multi-mass model, hydrotransport
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