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Abstract

The proliferation of computer-oriented and information digitalisation technologies has be-
come a hallmark across various sectors in today’s rapidly evolving environment. Among
these, agriculture emerges as a pivotal sector in need of seamless incorporation of high-
performance information technologies to address the pressing needs of national economies
worldwide. The aim of the present article is to substantiate scientific and applied ap-
proaches to improving the efficiency of computer-oriented agrotechnical monitoring sys-
tems by developing an intelligent software component for predicting the probability of
occurrence of corn diseases during the full cycle of its cultivation. The object of research
is non-stationary processes of intelligent transformation and predictive analytics of soil
and climatic data, which are factors of the occurrence and development of diseases in
corn. The subject of the research is methods and explainable AI models of intelligent
predictive analysis of measurement data on the soil and climatic condition of agricul-
tural enterprises specialised in growing corn. The main scientific and practical effect of
the research results is the development of IoT technologies for agrotechnical monitoring
through the development of a computer-oriented model based on the ANFIS technique
and the synthesis of structural and algorithmic provision for identifying and predicting
the probability of occurrence of corn diseases during the full cycle of its cultivation.
Keywords: IoT, ANFIS, explainable AI, agrotechnical monitoring, disease prediction,
crop.

1 Introduction

1.1 Relevance of the topic

The current trends in the agro-industrial sector
imply the need to continuously search for scientif-

ically based methods to enhance the efficiency of
growing agricultural crops in the open-field. Such
need results primarily from the global negative dy-
namics of environmental factors and the limitations
of soil and climatic resources [1]. Crop preserva-
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tion agrotechnical challenges throughout the crop
cultivation cycle are critical in determining and
maintaining the long-term export potential of many
countries worldwide, not only in years of unex-
pected yield deviation due to adverse weather con-
ditions but also in favourable years.

It is worth noting that a wide range of com-
puter and information technologies for various pur-
poses is currently used in the cultivation of various
types of agricultural crops. To date, most of the
technologies used are intellectualised by integrat-
ing functional components based on artificial in-
telligence methods and tools. Taking into account
the significant theoretical and applied achievements
in the field of intelligent systems for agrotechnical
purposes, it should be noted that the theory of de-
velopment and use of information intelligent tech-
nologies to support decision-making on preventive
measures to preserve crop yields is currently being
actively developed and formed [2]. Thus, the topic
of the article is relevant and the significance of the
expected scientific and applied result is the devel-
opment of information technologies for distributed
aggregation and intelligent analysis of soil and cli-
matic data. This will allow for precise diagnosis and
prediction of the probability of occurrence of corn
diseases during the full cycle of its cultivation.

The main socio-economic effect of the research
conducted in this article is the substantiation of
ways of software and technical modernisation of
domestic agricultural production facilities to in-
crease the indicators of investment attractiveness,
food security and export potential of Ukraine while
decreasing the risks of food crisis in countries re-
liant on the volume of cereal crops production in
Ukraine.

1.2 Review, critical analysis and systemati-
sation of modern literature sources

Based on the statistical analysis of data accu-
mulated by the globally recognised FAO [3, 4], the
most popular crops grown in the world in open-field
conditions were identified. Cereals are the most
commonly cultivated crops in the global agricul-
tural practice. Their production has risen by a third
over the last 20 years.

As of 2021 (the most recent update of available
data) the total yield has exceeded 3 billion tonnes

[4]. In turn, the commonly produced cereals in the
countries of Eastern, Southeastern and Central Eu-
rope are wheat, corn and barley. The trend in the
dynamics of yields, areas used for cultivation and
specific yields worldwide according to FAO [3] is
shown in Figure 1.

The data shown in Figure 1 confirms the global
trend of steady dynamics in the popularity of cereal
crop cultivation across diverse agroclimatic con-
ditions and countries worldwide, emphasizing the
need to synthesise scientific and applied approaches
to crop preservation and rational use of resources
and fertilisers during the full cycle of cultivation.

a) Yield

b) Area harvested

c) Specific yield

Figure 1. Statistical data on the cultivation of the
most popular cereals worldwide
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Table 1. Up-to-date technologies for intelligent analysis of time series of distributed measurement
monitoring results

Title of the technique Purpose of use References
Artificial neural networks This technique is commonly utilised for problem-

solving in prediction, decision-making, image
recognition, optimisation, and data mining. De-
pending on the complexity of the mathematical
provision, it can be deployed in systems based on
cloud, fog and edge architectures.

[5–13]

Fuzzy logic It is used to solve decision-making support and
data mining problems in expert monitoring, con-
trol and management systems of various archi-
tectures and levels of complexity, including those
based on microprocessor devices.

[14–17]

Adaptive neuro-fuzzy inference
system

It is an integral solution of artificial neural net-
works and fuzzy logic. One can be used to
solve problems of prediction, optimisation and
data mining in monitoring, control and manage-
ment systems where the input data is implicitly
specified. Depending on the complexity of the
mathematical provision, it can be deployed in sys-
tems based on cloud, fog and edge architectures,
including those built on microprocessor devices.

[18–22]

Genetic algorithms They are used to solve a wide range of tasks re-
lated to artificial intelligence and machine learn-
ing, such as optimisation, regression and approxi-
mation, pattern recognition, decision-making, etc.
GAs are mainly used at the modelling and optimi-
sation stages in the synthesis of architectural so-
lutions for intelligent information and computer-
oriented monitoring and control systems.

[23, 24]

TinyML This technique is utilised in solving machine
learning tasks related to classification and pre-
diction while considering the constraints of
lightweight hardware and software suitable for
deployment on low-cost microcontroller devices
for use in automatic monitoring and control sys-
tems.

[25–27]
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Table 2. Up-to-date scientific and applied advances in the development and research of explainable AI

Subject of development and research Results obtained References
A unified taxonomic approach to the
methods of XAI based on the analysis
of concepts and approaches in modern
research.

More than 50 most cited review articles on XAI meth-
ods, metrics and method characteristics were identified
and summarised into a single structured taxonomy of
XAI methods.

[28]

A systematic meta-review of challenges
and directions for future research in the
field of XAI.

An approach to presenting the difference between the
terms ”explainability” and ”interoperability” was pro-
posed. Significant challenges and future directions of
XAI research arising from the selected 73 articles were
identified.

[29]

Analysis of the growing field of XAI
with the aim of systematically sum-
marising concepts and approaches to
explanability and evaluating XAI meth-
ods.

A significant number of scientific studies were clus-
tered using a hierarchical system that classifies theo-
ries and concepts related to the concept of explainabil-
ity and approaches to evaluating XAI methods.

[30]

Methods and solutions for ensuring the
explainability and interpretability of ar-
tificial intelligence, in particular for ma-
chine learning models.

A number of solutions were provided for tasks that
require explainability and interpretability, and various
methods and approaches to ensuring transparency of
decision-making by artificial intelligence and machine
learning models were covered.

[31]

Methods from the field of XAI to un-
derstand and explain the predictions ob-
tained from artificial intelligence and
machine learning models in agricultural
sciences, in particular, to study the im-
pact of various factors on crop yields.

New patterns between conditions and corn yields were
identified. It was also found that the use of XAI can
improve trust and clarity in the application of artificial
intelligence in agriculture.

[32]

Factors influencing the adoption of ar-
tificial intelligence systems by agri-
cultural farmers using the technology
adoption model and the theory of
planned behaviour.

It was shown that the perception of behavioural control
has the greatest impact on the adoption of artificial in-
telligence systems in agriculture, followed by the per-
sonal position of farmers on the use of such systems.
The modelled relationships explain 59 % of the total
variation in adoption. The results of the study point
to several possible directions and implications for in-
creasing the adoption of AI systems in agriculture.

[33]

Vital system, which uses low-cost sen-
sors and combines them with a highly
efficient decision-making system based
on artificial intelligence.

A fuzzy rule-based system has been developed that ef-
ficiently makes irrigation decisions for fields. Com-
pared to other open-field agriculture systems, the re-
searched and developed system uses the XAI ap-
proach, providing maximum efficiency and increased
interpretability.

[34]

AI and XAI methods used in the context
of Industry 4.0.

An overview of the main AI and XAI methods
and their application in Industry 4.0 are provided
and prospects and challenges for future research are
pointed out.

[35]

Artificial intelligence and deep learning
methods for detecting and classifying
plant diseases in agriculture.

The use of Inception V3 and ResNet-9 models on the
Plant Village and New Plant Disease datasets for dis-
ease detection and classification was proposed. XAI
methods, such as LIME and Grad-CAM, were also
used to understand the work of deep learning models.

[36]
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One possible approach to adjusting cultivation
regimes by practitioners in the agricultural sector
is to use modern intellectualised information tech-
nologies for aggregating and precision analysis of
measurement data with real-time decision-making
support.

As of today, a significant amount of qualitative
research findings are available on the development
of methods and software and hardware implemen-
tation of tools and models for processing time- and
space-distributed measurement data, as shown in
Table 1.

When substantiating the selection of intelligent
technology for aggregation and transformation of
agrotechnical monitoring data to identify the prob-
ability of occurrence and development of crop dis-
eases, the following characteristics of the monitor-
ing object were taken into account:

– the input data is not clearly defined, but is the
result of a generalisation of expert experience in
the field of open-field agriculture;

– the main tasks of transformation: precision de-
tection, prediction and decision-making support;

– the ability to deploy data aggregation and trans-
formation software on low-cost microprocessor
and sensor devices.

Given the applied specifics of the research prob-
lem being solved, an analysis of current scientific
and applied advances in the development and appli-
cation of explainable AI (XAI) in creating intelli-
gent monitoring and control systems is necessary,
as summarised in Table 2.

Thus, based on a detailed analysis of the results
of the logical generalisation of known intelligent
data transformation technologies (see Tables 1 and
2), taking into account the characteristic features of
the monitored object, as mentioned above, it was
found that it is advisable to conduct the research of
the article using the ANFIS technique.

It is worth noting that the ANFIS technique
is currently widely used in the construction of in-
telligent technical systems with decision-making
support, including for agrotechnical purposes, as
shown in Table 3.

It is also important to stress the fact that as of
today, the scientific literature contains a significant

number of research findings on solving the prob-
lems of plant disease identification using artificial
intelligence methods. However, most of these stud-
ies are based on the technology of using artificial
neural networks for identifying and recognising pat-
terns in graphic images [42–46]. Given the sig-
nificant qualitative scientific and practical achieve-
ments presented in the above articles, it is also note-
worthy that such a technology based on graphic im-
age recognition has several limitations in terms of
the possibility of its practical integration into cur-
rently used low-cost agrometeorological stations as
software and hardware nodes. That is, the software
and hardware solution under development should
be implemented as a functional component of the
intellectual transformation of data on the soil and
climatic condition of agricultural production facili-
ties based on microprocessor devices as part of the
currently used IoT networks for agrometeorological
monitoring without any fundamental modification
of their architecture.

Another fundamental requirement for the devel-
opment is the aggregation and processing of data in
near real-time with the ability to predict the proba-
bility of a particular disease, and most image recog-
nition systems can detect and classify crop diseases
that have already occurred, rather than predict the
probability of their occurrence.

Therefore, the anticipated scientific and practi-
cal advancement of the known methods and tech-
nologies of intelligent data transformation for iden-
tifying and predicting the probability of disease oc-
currence in crops is as follows: taking into account
typical agroclimatic conditions and the dynamics of
soil and climatic factors when developing a com-
puter model; consideration of many years of expert
experience in the field of open-field crop produc-
tion (including the specific influence of soil and cli-
mate factors depending on the types of crops culti-
vated and the differentiation of common plant dis-
eases depending on the agroclimatic zones of culti-
vation) during the formal description of the stages
of data aggregation and processing; the potential to
integrate the developed computer model as a soft-
ware and functional module based on low-cost mi-
croprocessor devices into currently used agromete-
orological stations, which increase the efficiency of
their use through the practical transition to fog- and
edge-computing technologies.
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Table 3. Examples of the use of the ANFIS technique in the construction of intelligent technical systems
for various purposes

Subject of development and research Application area References
A computer model of an adaptive automatic tem-
perature and humidity control system for the
greenhouse growing area.

Protected ground vegetable
growing

[37]

IoT technology for adaptive regulation of acidity
and nutrient content in hydroponic irrigation so-
lution.

Protected ground vegetable
growing

[38]

An optimised computer model of a decision-
making support system for the selection of con-
struction machines.

Technical machines in the con-
struction industry

[39]

Computer technology for heart disease prediction
with decision-making support.

Medicine [40]

Embedded microcomputer device for intelligent
control of the drip irrigation system using alter-
native energy sources.

Crop production [41]

1.3 Aim, object, subject and structure of
the research

The aim of the present article is to substantiate
scientific and applied approaches to improving the
efficiency of computer-oriented agrotechnical mon-
itoring systems by developing an intelligent soft-
ware component for predicting the probability of
occurrence of corn diseases during the full cycle of
its cultivation.

The object of research is non-stationary pro-
cesses of intelligent transformation and predictive
analytics of soil and climatic data, which are fac-
tors of the occurrence and development of diseases
in corn.

The subject of the research is methods and XAI
models of intelligent predictive analysis of mea-
surement data on the soil and climatic condition of
agricultural enterprises specialised in growing corn.

The article is structured as follows: Section 1
provides details on the relevance of the topic, out-
lines the direction of research, and the current state
of the subject area along with explaining the scien-
tific and practical novelty of the results obtained;
Section 2 contains information on the materials,
methods and approaches used in the research; Sec-
tion 3 presents the main quantitative and qualita-
tive results of the research; Section 4 contains in-
formation on promising areas for future research;
the conclusions containing the quantitive and qual-

itative results are drawn in Section 5.

1.4 Scientific and practical significance of
the obtained results

The scientific and applied significance of the re-
sults of the article lies in the development of IoT
technologies for agrotechnical monitoring through
the development of the explainable AI model and
the synthesis of structural and algorithmic pro-
visions for identifying and predicting the proba-
bility of occurrence of typical corn diseases dur-
ing the full cycle of its cultivation. The devel-
oped computer model is based on the ANFIS tech-
nique for transforming real-time soil and climatic
data. In contrast to known models, it is compati-
ble with most low-cost agrometeorological stations
currently in operation. The hardware basis for the
deployment of the developed model is low-cost mi-
croprocessors and sensor devices, and the informa-
tion basis is measuring signals from sensors of soil
and climatic parameters of agricultural crop pro-
duction enterprises. Therefore, the implementation
of the studied software and hardware solution does
not necessitate a fundamental change in the archi-
tecture of currently used agrometeorological moni-
toring systems and networks, which corresponds to
current trends in the development of fog and edge
computing technologies [47].
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2 General approaches, materials
and research methods

2.1 Approaches to the research

The methodological basis for solving the scien-
tific and applied problem is an integral approach us-
ing the following methods and techniques: logical
generalisation and critical analysis of known scien-
tific research and expert data; structural and algo-
rithmic synthesis of information technologies; com-
puter modelling; theory of adaptive neuro-fuzzy in-
ference systems; theory of identification of nonlin-
ear dynamic systems.

The primary research results were acquired
through a computer experiment using the Matlab &
Simulink environment in the specialised laborato-
ries of Dnipro University of Technology (Dnipro,
Ukraine).

The experimental data utilised in the research of
this article were acquired with the help of:

– own implemented computerised weather station
[48];

– Metos by Pessl Instruments weather station us-
ing the FieldClimate IoT platform, access to
which was provided by Metos Ukraine LLC.

2.2 Model limitations

The developed computer-oriented model based
on XAI takes into account the following factors and
parameters:

– crop type: corn;

– diagnosed diseases: Fusarium Head Blight, Leaf
Blight Helminthosporium turcicum (Southern
Corn Leaf Blight, Northern Corn Leaf Blight);

– agroclimatic zone of experimental data acqui-
sition: the northern steppe of Ukraine (arid
and warm zone; hydrothermal coefficient ranges
from 0.7 to 1.0; typical annual temperature sum
ranges from 2900 ◦C to 3300 ◦C);

– informative soil and climatic parameters: air
temperature, air relative humidity, precipitation
and time of leaf wetness of agricultural crops.

2.3 The structure of the computer-
oriented model

The generalised structure of the computer-
based model developed for the predictive analysis
of the probability of disease occurrence in corn is
presented in this Subsection (see Figure 2). The
ANFIS technology was used as the basis for the
construction of the computer-oriented model un-
der study. The decision was made due to the spe-
cific details of the problem being studied. Namely,
there is a significant number of input parameters
such as air temperature, air humidity, precipitation,
and time of leaf wetness. The regularity of the in-
fluence of these parameters on the output function
(i.e., the probability of the occurrence of the dis-
ease) is based on empirical evidence drawn from
many years of expert experience in the field of ce-
real crops. Additionally, the choice of ANFIS tech-
nology is influenced by the specifics of the research
problem in terms of mathematical substantiation. It
involves multi-parameter dynamic nonlinear regres-
sion analysis with data extrapolation.

Figure 2. Block diagram of a computer-oriented
model of predictive analysis

The symbols in Figure 2:

1. Air temperature (u1): this parameter, expressed
in degrees Celsius, reflects the prevailing ther-
mal conditions in the corn-growing environ-
ment. It is a key factor that determines the
growth and reproduction of fungi, thereby hav-
ing a significant impact on the likelihood of dis-
ease.
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2. Relative humidity (u2): measured as a percent-
age, the relative humidity parameter determines
the moisture content of the atmosphere. It is
generally recognised that high humidity levels
promote the development and spread of fungal
infections, making this parameter informative in
ANFIS technology studies.

3. Precipitation (u3): measured in millimetres, it
reflects the amount of moisture. Excessive pre-
cipitation can lead to prolonged wetting of agri-
cultural crops, which creates a favourable envi-
ronment for the development of pathogens.

4. Leaf wetness time (u4): expressed in minutes,
leaf wetness is a direct indicator of the length of
time that leaves remain wet. Longer periods of
leaf moisture increase the likelihood of disease,
which determines the importance of taking this
parameter into account during ANFIS technol-
ogy studies.

In addition, the model includes a feedback
mechanism through the output signal of ANFIS (y),
which means the probability of occurrence of dis-
ease in percentage terms. This mechanism is in-
cluded in the model based on the fact that the prob-
ability of occurrence of disease in crops depends not
only on the momentary values of the input physico-
chemical parameters but also on the preceding val-
ues of the input and output model parameters within
a specific timeframe. Incorporating feedback al-
lows the model to adapt and improve predictions by
utilising previous data, thereby enhancing its over-
all predictive capabilities.

By taking into account the main environmen-
tal factors (air temperature and relative humidity,
precipitation and leaf wetness time), as well as us-
ing the adaptive capabilities of the ANFIS architec-
ture, this model is potentially suitable for account-
ing for the intricate relationship between these vari-
ables and the probability of occurrence of specific
types of diseases in specific types of crops. Hence,
this makes it possible to develop and research hard-
ware and software solutions for detecting the proba-
bility of occurrence of diseases, taking into account
the diversity of cultivated crops, their growing cy-
cles and the intricacy of the interrelationships be-
tween soil and climatic parameters.

The implementation of the ANFIS technology
under study will allow for an increase in the effi-
ciency and promptness of decision-making for prac-
titioners in the field of open-field crop production
through the use of software and hardware decision-
making support tools for planning agrotechnical
measures for growing agricultural crops.

2.4 Algorithm of neuro-fuzzy transforma-
tion technique

Taking into account the theoretical and applied
features of the research problem and prior expe-
rience in developing applied information systems
based on fuzzy logic [16, 17, 49], the Takagi-
Sugeno algorithm (type 1) was chosen as the base-
line algorithm.

The structural-algorithmic framework of AN-
FIS meets the criteria of the research problem of
predicting the probability of occurrence of crop dis-
eases, which is described in this article, due to its
hybrid nature, combining the strengths of fuzzy
logic and neural networks. This combination en-
ables the model to take into account the intricate re-
lationships between environmental factors and the
probability of occurrence of the disease underlying
the model. The architecture optimises its parame-
ters through iterative learning, ensuring that the out-
put of the system agrees with accurate estimates of
the probability of disease occurrence.

The following physical variables were selected
as input variables in the respective ranges (see Sec-
tion 2.4 for details): air temperature (u1 – from
−10.9 ◦C to 35.6 ◦C), relative humidity (u2 – from
27 % to 99 %), precipitation (u3 – from 0 mm to
5.7 mm), leaf wetness time (u4 – from 0 min to
60 min), probability of disease occurrence (y – from
0 % to 100 %).

The next step is the process of fuzzification, the
process of converting crisp (numerical) input values
into fuzzy sets. Each input characteristic xi is as-
sociated with a set of membership functions (MFs)
that determine the degree of membership of the in-
put data in each fuzzy set. In the present study,
Gaussian membership functions are used.

A fuzzy rule base defines the relationship be-
tween fuzzy input sets and output sets. Each fuzzy
rule corresponds to a combination of fuzzy input
feature sets. For a Sugeno-type ANFIS, the rule has
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the form: IF x1 is A1 AND x2 is A2 AND ... AND xn

is An THEN y = f (x1, x2, ..., xn), where A1, A2, . . .
An – are the selected membership functions for each
input feature, and y = f (x1, x2, ..., xn) – represents a
linear function of the inputs.

For each input combination, the membership
values of the fuzzy sets in the antecedent (IF) part
of the rules are determined based on the fuzzified
inputs. This indicates how much each rule is ‘acti-
vated’ by the input data.

The activated rules contribute to the final output
through a weighted average. The weights are calcu-
lated based on the rule’s activation strength and the
linear function defined in the consequent (THEN)
part of the rule.

The weighted values obtained from the previ-
ous step are then normalised to ensure that the sum
of the weights equals 1. This step ensures that the
output of the system remains interpretable and con-
sistent.

The normalised weighted outputs from all the
rules are summed up to produce the final output of
the ANFIS system. The fuzzy result is converted
back to a crisp value to facilitate interpretation. In
this study, the ‘wtaver’ was used for defuzzification,
which is the weighted average of all rule outputs.

The model training process involves the use of
previous data on the probability of occurrence of a
specific disease and relevant environmental condi-
tions. Through in-depth learning, the ANFIS sys-
tem adjusts its membership functions and rules to
reflect the intricate interactions between the input
data and the probability of occurrence of the disease
in the output. In this article, the following learning
algorithm was used: Hybrid, Clustering method –
Subtractive Clustering.

2.5 Experimental data

In this Subsection, a detailed overview of the
experimental data collected and utilised to train
and validate the proposed computer-oriented model
based on XAI for predicting the probability of dis-
eases occurrence during corn cultivation is pre-
sented. The data covers the period from 12 Septem-
ber 2022 to 31 July 2023 and includes the main
input parameters such as air temperature, rela-
tive humidity, precipitation and leaf wetness time.
The data sampling time is 60 minutes. In addi-

tion, the probabilities of infection with the main
types of corn diseases: Fusarium Head Blight,
Helminthosporium turcicum Leaf Blight (Southern
Corn Leaf Blight, Northern Corn Leaf Blight) were
carefully recorded and analysed. These probabil-
ities were determined by practitioners with exper-
tise in open-field agriculture through a combination
of field observations and laboratory analyses, which
created a broad data set for model validation. The
data presented in Figure 3 covers the change of sea-
sons and environmental dynamics that play a key
role in shaping the probability of diseases occur-
rence. The selected timeframe provides a thorough
understanding of the correlation of climatic factors
and their relationship to disease occurrence at dif-
ferent stages of corn growth.

Correlation matrices (see Figures 4, 6, 8) and
scatter plots (see Figures 5, 7, and 9) were cre-
ated to identify intricate relationships between input
parameters and disease probabilities. These visual
representations serve as tools to identify potential
correlations and trends in the data.

By analysing the correlation matrices for Fusar-
ium Head Blight and Helminthosporium turcicum
Leaf Blight, the environmental factors that pre-
dominantly contribute to the disease were identi-
fied. Strong correlations can identify leading in-
dicators of disease probability, which can help de-
termine agricultural management strategies. Thus,
from Figure 4, it can be seen that the correlation co-
efficient between air temperature and the probabil-
ity of occurrence of the disease is negative. While
for other parameters, the coefficients are positive.
This indicates that with increasing temperature, the
probability of occurrence of the disease decreases.
From Figures 6 and 8 it can be seen that all of the
aforementioned parameters have a positive correla-
tion coefficient with Southern Corn Leaf Blight and
Northern Corn Leaf Blight.

Scatter plots provided the authors with a visual
representation of the relationship between all pos-
sible variables, where each data point represents a
particular dimension in the data set. These results
were used to solve the model identification problem
(see Subsection 3.1).

The occurrence and development of Fusarium
Head Blight is highly dependent on climatic condi-
tions during flowering. If the surrounding environ-
ment is warm and humid, the risk of spore occur-
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Figure 3. Measurement data for Fusarium Head Blight and Leaf Blight Helminthosporium turcicum
(Southern Corn Leaf Blight, Northern Corn Leaf Blight)

rence and further development of the corresponding
corn disease is significantly increased [50]. South-
ern Corn Leaf Blight is a widespread disease of corn
worldwide. Precipitation, air temperature and rel-
ative humidity are crucial for the occurrence and
development of the disease. An environment with
high temperatures (from 20 ◦C to 32 ◦C) and high
levels of relative humidity are factors that increase
the risk of the disease occurrence. High risks of
Northern Corn Leaf Blight are observed during
moderate air temperatures (from 18 ◦C to 29 ◦C),
high relative humidity and significant dew during
the corn vegetation period. Dry and sunny climatic
conditions reduce the risk of Southern Corn Leaf
Blight and Northern Corn Leaf Blight [51].

Figure 4. Correlation matrix for FHB

Figure 5. Scatter plot for FHB

The experimental data form the foundation for
the creation of training and validation datasets for
training and testing the predictive capabilities of the
proposed and developed computer-oriented model
based on XAI. For Fusarium Head Blight, the train-
ing set was selected from 12 September 2022 to
31 May 2023. The validation set is from 01 June
2023 to 31 July 2023. For the two types of Leaf
Blight Helminthosporium turcicum, the training set
was selected from 12 September 2022 to 30 June
2023. The validation set is from 01 July 2023 to 31
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The experimental data form the foundation for
the creation of training and validation datasets for
training and testing the predictive capabilities of the
proposed and developed computer-oriented model
based on XAI. For Fusarium Head Blight, the train-
ing set was selected from 12 September 2022 to
31 May 2023. The validation set is from 01 June
2023 to 31 July 2023. For the two types of Leaf
Blight Helminthosporium turcicum, the training set
was selected from 12 September 2022 to 30 June
2023. The validation set is from 01 July 2023 to 31
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July 2023. These data groups were selected based
on a preliminary statistical analysis to maximise the
consideration of the seasonality factor in the model
development.

The adaptability and accuracy of the model can
be assessed by correlating the input parameters with
the probability of disease occurrence and examining
the associated trends. Such data-driven validation
ensures the relevance of the model and its applica-
bility in real-world scenarios, thus increasing its re-
liability as a tool for predicting the probability of
occurrence of diseases in corn cultivation.

Figure 6. Correlation matrix for South CLB

Figure 7. Scatter plot for South CLB

Figure 8. Correlation matrix for North CLB

Figure 9. Scatter plot for North CLB

The resulting visualisations, including scatter
plots and correlation matrices, illustrate how the
probability of disease occurrence is affected by
changes in each input variable. In this way, the
influence of each factor can be intuitively under-
stood by the authors. It should also be noted that
enriching the dataset with additional raw data, as
mentioned in the discussion Section, would further
enhance the overall understanding of these relation-
ships.

Therefore, research on the development of AN-
FIS technology is imperative and should be based
on the principle of decomposition of the research
task.

The process involves identifying informa-
tive parameters and the corresponding regression
model, creating a simulation model in a com-
puter modelling environment, training the identified
model, validating the results of the computer exper-
iment, and performing qualitative and quantitative
analysis of the results. Finally, it involves identify-
ing promising areas for future research.

3 Research results

3.1 System identification

The main results of the nonlinear model identi-
fication of the dynamic system based on experimen-
tal data (Subsection 2.5) using an adaptive neuro-
fuzzy inference system (ANFIS) are presented in
this Subsection.
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In order to use ANFIS for identification, it was
first determined which variables should be used as
input arguments for each disease type separately.
In essence, a ‘black box’ modelling is performed:
a case where it is not possible to obtain an exact
mathematical representation of the system for phys-
ical reasons, and hence the shape of the model and
its numerical characteristics are extracted from the
data. In this case, the mathematical basis of the
developed identification model is the approach to
the identification of nonlinear systems [52], taking
into account the results of a priori correlation anal-
ysis of the data (see Subsection 2.5). For Fusarium
Head Blight, 23 input factors were used in this ar-
ticle based on preliminary analysis: y(k-1), y(k-2),
y(k-3), y(k-6), y(k-7), y(k-8), y(k-9), u1(k-1), u1(k-
2), u1(k-3), u1(k-4), u2(k-1), u2(k-2), u2(k-3), u3(k-
1), u3(k-2), u3(k-3), u4(k-1), u4(k-2), u4(k-3), u4(k-
7), u4(k-8), u4(k-9). The parameter y(k) was used as
the output of the system. These parameters include:
the output function with a recency in the range from
1 to 9 hours; air temperature with a recency in the
range from 1 to 4 hours; relative humidity with a re-
cency in the range from 1 to 3 hours; precipitation
with a recency in the range from 1 to 3 hours; and
leaf wetness time with a recency in the range from
1 to 9 hours. Such attributes of the identification
model were established through a priori qualitative
analysis of experimental data (see Figure 3) and test
computer experiments of the system identification
model.

Based on the computer identification experi-
ment, the number of model inputs was chosen to
be seven (two inputs for y, two inputs for u4, and
one for u1, u2 and u3). Afterwards, a sequential for-
ward search was performed on the inputs. In the
process, combinations of input variables are suc-
cessively selected to minimise the root mean square
error (RMSE). A graph for all combinations of in-
puts for the training and validation samples sorted
by decreasing RMSE is shown in Figure 10.

According to the search results y(k-1), y(k-6),
u1(k-4), u2(k-1), u3(k-3), u4(k-1) and u4(k-7) were
selected as inputs since the model with these inputs
has the lowest training RMSE of ±4.33 % and val-
idation RMSE of ±5.32 %.

Figure 10. Error for corresponding combinations
of inputs for FHB

The next step in model identification was to de-
termine the training parameters. Subtractive clus-
tering is a fast, one-pass algorithm for estimat-
ing the number of clusters and cluster centres in a
dataset. The cluster influence range was set to 0.5.
This value indicates the range of influence of the
cluster when the data space is considered as a unit
hypercube. Specifying a small cluster radius typi-
cally results in the creation of many small clusters
in the data. This, in turn, leads to the generation
of a FIS with a large number of rules. These nu-
merous rules might make it easier to explain the be-
haviour of the model but could also make it more
complex and harder in terms of parametrisation and
analisys. On the other hand, using a large cluster
radius creates fewer, larger clusters in the data, re-
sulting in fewer rules in the FIS. This can make the
model more computationally efficient but might re-
duce its sensitivity and interpretability of the output
function because the resulting rules are more gener-
alised. Thus, a balance between interpretability and
model performance should be sought.

An important advantage of using the clustering
method for rule discovery is that the resulting rules
are better suited to the input data than rules gen-
erated without clustering. This adjustment reduces
the total number of rules when the input data is
high-dimensional. This approach was used on the
basis that the implemented model should be further
integrated into low-cost microcontroller devices in
the form of embedded software, which corresponds
to the applied principles of fog and edge computing.

To improve the FIS performance, the system
was optimised using the anfis function. A train-
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in the data. This, in turn, leads to the generation
of a FIS with a large number of rules. These nu-
merous rules might make it easier to explain the be-
haviour of the model but could also make it more
complex and harder in terms of parametrisation and
analisys. On the other hand, using a large cluster
radius creates fewer, larger clusters in the data, re-
sulting in fewer rules in the FIS. This can make the
model more computationally efficient but might re-
duce its sensitivity and interpretability of the output
function because the resulting rules are more gener-
alised. Thus, a balance between interpretability and
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An important advantage of using the clustering
method for rule discovery is that the resulting rules
are better suited to the input data than rules gen-
erated without clustering. This adjustment reduces
the total number of rules when the input data is
high-dimensional. This approach was used on the
basis that the implemented model should be further
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the form of embedded software, which corresponds
to the applied principles of fog and edge computing.

To improve the FIS performance, the system
was optimised using the anfis function. A train-
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ing period of 100 epochs was used (see Figure 11).
Also, during this experiment, training with vali-
dation sampling was immediately set up to detect
overfitting when the validation error starts to in-
crease while the training error continues to decrease
(see Figure 12).

Figure 11. Training error for FHB

In Figure 11 it is shown that the learning er-
ror continues to decrease even at epoch 100. How-
ever, this tendency is insignificant from epoch 90
onwards.

In Figure 12 it is shown that the lowest value
of the data validation error occurs at epoch 36. Af-
ter this point, it increases slightly, even though an-
fis continues to minimise the error compared to the
training data. This pattern is a sign of overfitting.
Depending on the specified accuracy to error, the
validation error plot can also indicate the ability
of the model to generalise the test data. Based on
the training results, the system whose settings cor-
respond to the 36th training epoch was selected,
with a training RMSE of ±4.06 % and a valida-
tion RMSE of ±4.50 %. The performance of the
model shows a slight improvement on the training
data, and slightly better on the validation data.

For Southern Corn Leaf Blight, a limit of 21
input factors was set: y(k-1), y(k-2), y(k-3), y(k-
6), y(k-7), y(k-9), u1(k-1), u1(k-3), u1(k-4), u2(k-1),
u2(k-2), u2(k-3), u3(k-1), u3(k-2), u3(k-3), u4(k-1),
u4(k-2), u4(k-3), u4(k-7), u4(k-8), u4(k-9). The out-
put of the system is y(k). A plot for all combina-
tions of inputs for the training and validation sam-
ples sorted by decreasing training RMSE is shown
in Figure 13.

Figure 12. Validation error for FHB

Based on the search results, y(k-1), y(k-9), u1(k-
4), u2(k-3), u3(k-1), u4(k-1) and u4(k-9) were se-
lected as inputs, since the model with these inputs
has the lowest training RMSE of ±6.02 % and val-
idation RMSE of ±13.07 %.

The result of FIS performance improvement
over the training period of 100 epochs is shown in
Figures 14 and 15.

Based on the results of model training for
Southern Corn Leaf Blight, the system correspond-
ing to the 97th training epoch was selected, with a
training RMSE of ±5.92 % and a validation RMSE
of ±13.62 %.

Figure 13. Error for corresponding combinations
of inputs for South CLB
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Figure 14. Training error for South CLB

Figure 15. Validation error for South CLB

For Northern Corn Leaf Blight, the input can-
didates and training parameters are identical to the
Fusarium Head Blight case.

In Figure 16 it is shown a plot for all combina-
tions of inputs for the training and validation sam-
ples sorted by decreasing training RMSE.

According to the search results, y(k-1), y(k-9),
u1(k-2), u2(k-3), u3(k-3), u4(k-3) and u4(k-8) were
selected as inputs since the model with these inputs
has the lowest training RMSE of ±3.06 % and val-
idation RMSE of ±6.92 %.

The result of FIS performance improvement
over the training period of 100 epochs is shown in
Figures 17 and 18.

Based on the results of training the model for
Northern Corn Leaf Blight, the system whose set-
tings correspond to the 51st training epoch was se-
lected, with a training RMSE of ±2.94 % and a val-
idation RMSE of ±6.28 %.

Figure 16. Error for corresponding combinations
of inputs for North CLB

Figure 17. Training error for North CLB

Figure 18. Validation error for North CLB

Thus, the results of the identification of the
model under study made it possible to refine (ex-
pand) the list of input parameters to improve the
accuracy of predictive analytics of the probability
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of occurrence of corn diseases. In the identified
model, in addition to the primary soil and climatic
parameters (temperature and relative humidity, pre-
cipitation and leaf wetness), the values of the output
function (probability of disease occurrence) and in-
put soil and climatic parameters at previous points
in time are used as input values, which include:

– for FHB: air temperature with a 4-hour delay,
relative humidity with a 1-hour delay, precipita-
tion with a 3-hour delay, leaf wetness time with a
1-hour and 7-hour delay, and the output function
(probability of FHB disease occurrence) with a
1-hour and 6-hour delay;

– for South CLB: air temperature with a delay of 4
hours, relative humidity with a delay of 3 hours,
precipitation with a delay of 1 hour, leaf wet-
ness time with a delay of 1 hour and 9 hours, and
the output function (probability of occurrence of
South CLB disease occurrence) with a delay of
1 hour and 9 hours;

– for North CLB: air temperature with a delay of 2
hours, relative humidity with a delay of 3 hours,
precipitation with a delay of 3 hours, leaf wet-
ness time with a delay of 3 hours and 8 hours,
and the output function (probability of occur-
rence of North CLB occurrence) with delays of
1 hour and 9 hours.

The performed feature importance analysis con-
firmed that all physical and chemical parameters
(air temperature, relative humidity, precipitation
and leaf wetness) are influential for disease pre-
diction. During the analysis, the permutation im-
portance technique was partially applied to iden-
tify appropriate combinations of input variables for
the ANFIS model. In addition, the determination
of appropriate time delays for the selected variables
was emphasised. In particular, a sequential search
was carried out, limiting the investigation to de-
lays between (k-1) and (k-10). This limitation was
imposed due to the significant computational load
on a typical personal computer. Consequently, fur-
ther investigation in this regard remains a poten-
tial avenue of research. Thus, the specific list of
informative attributes of the predictive computer-
oriented model is determined by the type of diag-
nosed disease. This approach was implemented in

the form of computer models in Matlab & Simulink
(see Subsection 3.2).

3.2 ANFIS computer models

Based on the results of the identification of in-
formative parameters (see Subsection 3.1), the cor-
responding Type-1 Sugeno systems were created in
the Fuzzy Logic Designer app for each type of dis-
ease (see Figure 19).

The ANFIS models (see Figure 19) assimilate
four key input parameters, namely air temperature
(u1), air relative humidity (u2), precipitation (u3),
and leaf wetness time (u4), as well as the values of
identified soil and climatic parameters and the out-
put function (y) at previous time points. The com-
bination of these input data with a delay of a fixed
number of sampling periods (the sampling step is
60 minutes), taking into account the previous data
on the probability of occurrence of a particular dis-
ease (see Section 3.1), serves as the information ba-
sis for the functioning of the developed model for
detecting the probability of occurrence of a partic-
ular type of corn disease. The output of the models
is the probability of occurrence of the disease (y),
expressed in percentage terms. This result encapsu-
lates the cumulative effect of the input parameters
on the probability of occurrence of the disease in
corn crops.

a) ANFIS model for FHB

b) ANFIS model for South CLB
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c) ANFIS model for North CLB

Figure 19. Developed ANFIS models

Thus, the developed ANFIS models establish
the relationship between input parameters and the
probability of occurrence of diseases, providing
practical information for making management de-
cisions in agriculture.

In addition, through an iterative learning pro-
cess, the ANFIS model optimises its membership
functions and rules, allowing it to accurately reflect
intricate relationships between inputs and outputs.
This mechanism, influenced by experimental data
and system identification, allows the model to refine
its predictions over time, ensuring its adaptability to
dynamic environmental conditions. The simulation
models presented in Figure 19 serve as a functional
basis for the computer experiment to validate the
ANFIS model for detecting the probability of oc-
currence of a specific disease in corn, as described
in detail in Section 3.4.

3.3 Fuzzification of input and output vari-
ables

The procedure for fuzzification of input and
output variables is implemented in the Fuzzy Logic
Designer environment of the Matlab & Simulink
application package according to the procedure de-
scribed in Subsection 2.4 ‘Algorithm of neuro-
fuzzy transformation technique’.

A Sugeno fuzzy system was created using
membership functions derived directly from the
data clusters found by Subtractive clustering of the
input and output data. Each input and output vari-
able contains one membership function for each
cluster. The input variables use Gaussian member-
ship functions. The number of phasing terms in the
input variables is 3 for each Fusarium Head Blight
parameter, 4 for each Southern Corn Leaf Blight pa-
rameter, and 4 for each Northern Corn Leaf Blight
parameter. The output variables use linear mem-

bership functions. The coefficients for the original
linear function are given in Tables 4–6.

The coefficients in Tables 4–6 are associated
with each cluster and are responsible for convert-
ing fuzzy input data into crisp output. The physical
meaning of these coefficients is the partial sensitiv-
ity coefficients of the output function to the input
parameters. In combination with the Gaussian form
of the fuzzy terms, they allow for precise predic-
tions that are tuned to the specific characteristics
of the relationship between the inputs and outputs
of each cluster. The inclusion of these coefficients
increases prediction accuracy and improves the ca-
pacity of the model to account for intricate relation-
ships between input parameters and the probability
of occurrence of a disease.

The obtained results of fuzzification are the in-
formation basis for further research on the valida-
tion of computer models with further qualitative and
quantitative analysis of the results.

3.4 Results of the computer experiment

As a result of the systematisation of the results
obtained in Subsections 3.1–3.3 of the study of the
intelligent software component for predicting the
probability of occurrence of diseases of corn dur-
ing the full cycle of its cultivation based on the
ANFIS technique, a series of computer simulation
tests were conducted in the Fuzzy Logic Designer
environment of the Matlab & Simulink application
package, in which the predicted values of the prob-
ability of disease occurrence are compared with the
actual data. The results of these tests are time series
plots, as shown in Figures 20, 21, 24, 25, 28, 29;
comparison of actual and predicted data, as shown
in Figures 22, 23, 26, 27, 30, 31, as well as a
comprehensive comparison of performance indica-
tors based on the following statistical distribution
estimates: mean absolute error (MAE), root mean
square error (RMSE) and coefficient of determina-
tion (R2), as shown in Table 7.

To evaluate the accuracy of the proposed model
the following metrics were used:

MAE =
1
n

n

∑
i=1

|yi − ŷi| ;

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2;
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c) ANFIS model for North CLB

Figure 19. Developed ANFIS models

Thus, the developed ANFIS models establish
the relationship between input parameters and the
probability of occurrence of diseases, providing
practical information for making management de-
cisions in agriculture.

In addition, through an iterative learning pro-
cess, the ANFIS model optimises its membership
functions and rules, allowing it to accurately reflect
intricate relationships between inputs and outputs.
This mechanism, influenced by experimental data
and system identification, allows the model to refine
its predictions over time, ensuring its adaptability to
dynamic environmental conditions. The simulation
models presented in Figure 19 serve as a functional
basis for the computer experiment to validate the
ANFIS model for detecting the probability of oc-
currence of a specific disease in corn, as described
in detail in Section 3.4.

3.3 Fuzzification of input and output vari-
ables

The procedure for fuzzification of input and
output variables is implemented in the Fuzzy Logic
Designer environment of the Matlab & Simulink
application package according to the procedure de-
scribed in Subsection 2.4 ‘Algorithm of neuro-
fuzzy transformation technique’.

A Sugeno fuzzy system was created using
membership functions derived directly from the
data clusters found by Subtractive clustering of the
input and output data. Each input and output vari-
able contains one membership function for each
cluster. The input variables use Gaussian member-
ship functions. The number of phasing terms in the
input variables is 3 for each Fusarium Head Blight
parameter, 4 for each Southern Corn Leaf Blight pa-
rameter, and 4 for each Northern Corn Leaf Blight
parameter. The output variables use linear mem-

bership functions. The coefficients for the original
linear function are given in Tables 4–6.

The coefficients in Tables 4–6 are associated
with each cluster and are responsible for convert-
ing fuzzy input data into crisp output. The physical
meaning of these coefficients is the partial sensitiv-
ity coefficients of the output function to the input
parameters. In combination with the Gaussian form
of the fuzzy terms, they allow for precise predic-
tions that are tuned to the specific characteristics
of the relationship between the inputs and outputs
of each cluster. The inclusion of these coefficients
increases prediction accuracy and improves the ca-
pacity of the model to account for intricate relation-
ships between input parameters and the probability
of occurrence of a disease.

The obtained results of fuzzification are the in-
formation basis for further research on the valida-
tion of computer models with further qualitative and
quantitative analysis of the results.

3.4 Results of the computer experiment

As a result of the systematisation of the results
obtained in Subsections 3.1–3.3 of the study of the
intelligent software component for predicting the
probability of occurrence of diseases of corn dur-
ing the full cycle of its cultivation based on the
ANFIS technique, a series of computer simulation
tests were conducted in the Fuzzy Logic Designer
environment of the Matlab & Simulink application
package, in which the predicted values of the prob-
ability of disease occurrence are compared with the
actual data. The results of these tests are time series
plots, as shown in Figures 20, 21, 24, 25, 28, 29;
comparison of actual and predicted data, as shown
in Figures 22, 23, 26, 27, 30, 31, as well as a
comprehensive comparison of performance indica-
tors based on the following statistical distribution
estimates: mean absolute error (MAE), root mean
square error (RMSE) and coefficient of determina-
tion (R2), as shown in Table 7.

To evaluate the accuracy of the proposed model
the following metrics were used:

MAE =
1
n

n

∑
i=1

|yi − ŷi| ;

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2;
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Table 4. Coefficients of the ANFIS model output function for Fusarium Head Blight

Input Cluster1 Cluster2 Cluster3
extra coefficient 1.047 0.3066 1.03
y(k-1) -0.01584 0.04864 -0.05155
y(k-6) 1627 3298 -1.5
u4(k-1) -0.00605 0.005124 -0.01502
u4(k-7) 0.01749 0.008965 0.0956
u1(k-4) 0.005681 -0.0016 0.135
u2(k-1) 1.379 -4.52 0.04577
u3(k-3) -0.4342 -0.05988 78.27

Table 5. Coefficients of the ANFIS model output function for Southern Corn Leaf Blight

Input Cluster1 Cluster2 Cluster3 Cluster4
extra coefficient -1728 -9175 -0.5165 0.812
y(k-1) -510.2 -227.7 0.01905 0.1412
y(k-9) -1114 2172 -0.6571 -0.1249
u4(k-1) 42.47 -42.56 -0.06345 0.09056
u4(k-9) 0.009674 0.05373 0.1225 0.2887
u1(k-4) -0.0008521 0.03742 0.02445 -0.007766
u2(k-3) -2.149 55.35 -19.39 0.4443
u3(k-1) 0.06405 -2.612 1.212 6.292

Table 6. Coefficients of the ANFIS model output function for Northern Corn Leaf Blight

Input Cluster1 Cluster2 Cluster3 Cluster4
extra coeffi-
cient

1.253 1.408 0.2345 0.8651

y(k-1) 0.02065 0.02942 0.0503 0.1478
y(k-9) -2.406 93.65 -0.05027 -0.04665
u4(k-3) -553.7 -14.47 -0.02527 0.008054
u4(k-8) 0.001263 0.02038 0.07957 0.06213
u1(k-2) 0.0001716 0.01448 0.006851 0.01
u2(k-3) 0.3012 4.254 10.77 -0.5421
u3(k-3) -0.01968 -1.009 0.4468 1.799
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R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳ)2 ,

where yi is the observed data, ŷi is the predicted data
and ȳ is the mean value of the observed data.

Figure 22. FHB: Actual disease % vs predicted
disease % for training data

Figure 23. FHB: Actual disease % vs predicted
disease % for validation data

Figure 26. South CLB: Actual disease % vs
predicted disease % for training data

Figure 27. South CLB: Actual disease % vs
predicted disease % for validation data

Figure 30. North CLB: Actual disease % vs
predicted disease % for training data
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R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (yi − ȳ)2 ,

where yi is the observed data, ŷi is the predicted data
and ȳ is the mean value of the observed data.

Figure 22. FHB: Actual disease % vs predicted
disease % for training data

Figure 23. FHB: Actual disease % vs predicted
disease % for validation data

Figure 26. South CLB: Actual disease % vs
predicted disease % for training data

Figure 27. South CLB: Actual disease % vs
predicted disease % for validation data

Figure 30. North CLB: Actual disease % vs
predicted disease % for training data
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Figure 20. FHB: Training data (solid), ANFIS Prediction (dots)

Figure 21. FHB: Validation data (solid), ANFIS Prediction (dots)

Figure 24. South CLB: Training data (solid), ANFIS Prediction (dots)

Figure 25. South CLB: Validation data (solid), ANFIS Prediction (dots)
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Figure 28. North CLB: Training data (solid), ANFIS Prediction (dots)

Figure 29. North CLB: Validation data (solid), ANFIS Prediction (dots)

Figure 31. North CLB: Actual disease % vs
predicted disease % for validation data

The results of a computer experiment demon-
strate the potential of the model to predict the prob-
ability of diseases occurrence in corn cultivation.
By comparing predicted and actual data, analysing
performance indicators, and identifying time dy-
namics, this Section demonstrates the ability of the
ANFIS-based model to predict disease probability
and proactively manage agriculture.

Thus, through a series of computer experiments,
the effectiveness of building software and hard-
ware for predicting corn diseases based on pre-
cision monitoring of soil and climatic parameters
with their subsequent transformation using the AN-

FIS technique was proved. It was also found that in
order to accurately and efficiently detect the proba-
bility of occurrence of corn diseases, it is necessary
to use a specific set of informative input attributes
for each type of disease, including consideration of
their previous dynamics, as described in detail in
Subsection 3.1.

Table 7. Performance Metrics Comparison for
Various Datasets

Metric Type of
dataset

FHB South
CLB

North
CLB

MAE, % training 0.76 1.36 0.56
validation 0.72 5.57 2.3

RMSE, % training ±4.06 ±5.92 ±2.94
validation ±4.5 ±13.62 ±6.28

R2 training 0.96 0.75 0.8
validation 0.8 0.61 0.7

The proposed scientific and technical invention
allows software implementation of a system of pre-
cision analysis of measurement data with real-time
decision-making support, taking into account a sig-
nificant number of functional interrelationships of
soil and climatic factors of a wide range of crops
grown in different periods of their vegetation.
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Figure 28. North CLB: Training data (solid), ANFIS Prediction (dots)

Figure 29. North CLB: Validation data (solid), ANFIS Prediction (dots)

Figure 31. North CLB: Actual disease % vs
predicted disease % for validation data

The results of a computer experiment demon-
strate the potential of the model to predict the prob-
ability of diseases occurrence in corn cultivation.
By comparing predicted and actual data, analysing
performance indicators, and identifying time dy-
namics, this Section demonstrates the ability of the
ANFIS-based model to predict disease probability
and proactively manage agriculture.

Thus, through a series of computer experiments,
the effectiveness of building software and hard-
ware for predicting corn diseases based on pre-
cision monitoring of soil and climatic parameters
with their subsequent transformation using the AN-

FIS technique was proved. It was also found that in
order to accurately and efficiently detect the proba-
bility of occurrence of corn diseases, it is necessary
to use a specific set of informative input attributes
for each type of disease, including consideration of
their previous dynamics, as described in detail in
Subsection 3.1.

Table 7. Performance Metrics Comparison for
Various Datasets

Metric Type of
dataset

FHB South
CLB

North
CLB

MAE, % training 0.76 1.36 0.56
validation 0.72 5.57 2.3

RMSE, % training ±4.06 ±5.92 ±2.94
validation ±4.5 ±13.62 ±6.28

R2 training 0.96 0.75 0.8
validation 0.8 0.61 0.7

The proposed scientific and technical invention
allows software implementation of a system of pre-
cision analysis of measurement data with real-time
decision-making support, taking into account a sig-
nificant number of functional interrelationships of
soil and climatic factors of a wide range of crops
grown in different periods of their vegetation.
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This, in turn, makes it possible to integrate the
proposed algorithm into low-cost microcontroller
devices in the form of embedded software that
meets the applied principles of fog and edge com-
puting.

4 Discussion and suggestions for
future investigations

The main scientific and practical effect of the
research results is the development of IoT technolo-
gies for agrotechnical monitoring through the de-
velopment of the computer-oriented model based
on the ANFIS technique and the synthesis of struc-
tural and algorithmic software for identifying and
predicting the probability of occurrence of corn dis-
eases (Fusarium Head Blight, Southern Corn Leaf
Blight, Northern Corn Leaf Blight) during the full
cycle of its cultivation. This model can be used
as an embedded IoT monitoring software, which
allows for real-time decision-making support for
practitioners in the field of open-field crop produc-
tion. The physical principle of the developed model
is based on the intelligent analysis of soil and cli-
matic data (air temperature in the previous time in-
tervals with a delay from 1 to 4 hours, relative hu-
midity and precipitation in the previous time inter-
vals with a delay from 1 to 3 hours, leaf wetness
time in the previous time intervals with a delay from
1 to 9 hours, according to the type of diagnosed
disease) coming from the corresponding distributed
sensors of physical and chemical quantities. It is
also worth emphasising that the developed model
assumes the use of an output function (the probabil-
ity of a particular type of disease occurrence) in pre-
vious time intervals with a delay from 1 to 9 hours,
depending on the type of diagnosed disease, as an
input argument. Discussing the impact of missing
inputs, it should be noted that the model perfor-
mance may degrade if one or two critical inputs
are missing. This emphasises the importance of
data completeness and the potential consequences
of data gaps in agrotechnical monitoring systems.

This method differs from the well-known ap-
proaches based on image recognition, as it is de-
signed to predict the probability of diseases occur-
rence and prevent them. Image recognition can
only diagnose and classify diseases that have al-
ready emerged in agriculture. Thus, the integra-

tion of the developed model in the form of embed-
ded software into the currently used computerised
agroclimatic weather stations allows them to signif-
icantly expand their functionality by implementing
decision-making support for planning agrotechnical
procedures during the full cycle of growing various
types of crops. Typical agrotechnical procedures
that can be planned and implemented on the basis
of the developed model are: optimal planning of
sowing time, selection of the optimal types of fer-
tilisers, selection of the optimal time of fertilisation,
soil irrigation, etc.

Promising priority areas for further research on
this information technology are: additional research
to expand the dataset and include a wider range of
crops and types of diagnosed diseases; consider-
ation of fertilisation practices, irrigation strategies
and other agronomic measures to obtain a holistic
view of the dynamics of disease probability; long-
term experimental tests in real-world conditions in
different climatic zones; comprehensive technical
and economic assessment of the investment attrac-
tiveness of implementing the solutions. The most
informative attributes that require priority research
to improve the developed model by introducing ad-
ditional weighting factors when assessing the final
probability of occurrence of crop diseases are:

– taking into account the currently implemented
agrotechnical measures: spatial isolation of
crops, liming of soils and crop rotation;

– taking into account the physical and mechani-
cal measures implemented, such as soil warming
before sowing;

– taking into account the chemical pesticides used
in the cultivation of cereal crops.

In addition, the priority areas include those re-
lated to the study of the influence of input physic-
ochemical values on the reliability of plant disease
detection at the quantitative level:

– partial dependency plots can be used to show the
effect of individual input signals on the predic-
tion while keeping other inputs constant. This
can provide a clear view of how changes in spe-
cific environmental factors affect the probability
of disease occurrence;
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– sensitivity analysis can be used to assess the
robustness of the model to variations in input
signals. This can involve perturbing input val-
ues within a certain range and observing the re-
sponse of the model to analyse how sensitive or
insensitive the model is to variations in each in-
put signal. Moreover, it can be used to determine
which input variables have the most significant
impact on the prediction result;

– in addition to quantitative analysis, qualitative
insights into domain knowledge can be gained
by explaining why certain input signals may
have a greater influence on disease prediction
based on agronomic or environmental princi-
ples. This can add depth to the understanding
of the behaviour of the model;

– case studies or real-world examples that demon-
strate the practical implications of the predic-
tions of the model can be conducted to show how
changes in specific input signals have resulted in
different disease outcomes in actual agricultural
scenarios.

Research in the above areas will improve the ad-
equacy, adaptability and scale of crop disease diag-
nosis, which will have a positive impact on the in-
vestment attractiveness and long-term sustainability
of the agricultural sector by increasing the innova-
tion component of the agricultural sector.

5 Conclusions

An important problem of developing scientific
and applied provisions for improving the efficiency
of computer-oriented agrotechnical monitoring sys-
tems by developing the intelligent software compo-
nent for predicting the probability of disease occur-
rence in corn during the full cycle of its cultivation
based on the ANFIS as the explainable AI technique
has been solved in this article.

The main results of the article are: a review,
critical analysis and systematisation of modern sci-
entific and applied achievements in the field of tech-
nology for intelligent analysis of time series of mea-
surement monitoring results; a computer-oriented
data processing model based on the ANFIS tech-
nique, which, unlike the known ones, takes into ac-
count the simultaneous influence of a set of soil and

climatic parameters of crop production enterprises,
their previous dynamics, as well as the prehistory of
the output parameter (probability of disease occur-
rence), which allowed to detect the probability of
occurrence of such diseases in corn with the value
of the coefficient of determination on the validation
data: Fusarium Head Blight – 0.8, Southern Corn
Leaf Blight – 0.61 and Northern Corn Leaf Blight
– 0.7; developed and studied a model for identi-
fying computer model parameters that takes into
account possible combinations of input and output
data with a delay of a fixed number of sampling pe-
riods, which allowed to establish a set of the most
influential parameters with the lowest error values
of 4.33 % on the training sample for Fusarium Head
Blight, 6.02 % for Southern Corn Leaf Blight and
5.92 % for Northern Corn Leaf Blight; computer
models were developed in Matlab and Simulink,
which allowed a series of computer experiments
where the predicted values of the probability of dis-
ease occurrence are compared with actual data to
be carried out. The models are dynamic and can
adapt to changing environmental conditions. Fur-
thermore, the models could be scaled to the input
data set.

Finally, a set of promising areas of research
to improve the adequacy, adaptability and scalabil-
ity of the developed computer-oriented model using
XAI for diagnosing crop diseases has been substan-
tiated in the article.
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sponse of the model to analyse how sensitive or
insensitive the model is to variations in each in-
put signal. Moreover, it can be used to determine
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impact on the prediction result;
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have a greater influence on disease prediction
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nosis, which will have a positive impact on the in-
vestment attractiveness and long-term sustainability
of the agricultural sector by increasing the innova-
tion component of the agricultural sector.

5 Conclusions

An important problem of developing scientific
and applied provisions for improving the efficiency
of computer-oriented agrotechnical monitoring sys-
tems by developing the intelligent software compo-
nent for predicting the probability of disease occur-
rence in corn during the full cycle of its cultivation
based on the ANFIS as the explainable AI technique
has been solved in this article.

The main results of the article are: a review,
critical analysis and systematisation of modern sci-
entific and applied achievements in the field of tech-
nology for intelligent analysis of time series of mea-
surement monitoring results; a computer-oriented
data processing model based on the ANFIS tech-
nique, which, unlike the known ones, takes into ac-
count the simultaneous influence of a set of soil and

climatic parameters of crop production enterprises,
their previous dynamics, as well as the prehistory of
the output parameter (probability of disease occur-
rence), which allowed to detect the probability of
occurrence of such diseases in corn with the value
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where the predicted values of the probability of dis-
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XAI – Explainable artificial intelligence

References
[1] Food and Agriculture Organization of the

United Nations: Climate change and food
security: risks and responses. Available at:
fao.org/3/i5188e/I5188E.pdf [Accessed 14 June
2023].

[2] R. Lopez-Lozano, B. Baruth, An evaluation
framework to build a cost-efficient crop mon-
itoring system. Experiences from the exten-
sion of the European crop monitoring sys-
tem, Agric. Systems, 168, 2019, pp. 231–246.
doi.org/10.1016/j.agsy.2018.04.002.

[3] FAOSTAT: Crop and livestock products. Avail-
able at: fao.org/faostat/en/#data/QCL [Accessed
18 June 2023].

[4] FAO: Agricultural production statis-
tics 2000 – 2021. Available at:
fao.org/3/cc3751en/cc3751en.pdf [Accessed
20 June 2023].

[5] M.F. Mushtaq, U. Akram, M. Aamir, H. Ali,
M. Zulqarnain, Neural Network Techniques
for Time Series Prediction: A Review,
JOIV: International Journal on Informat-
ics Visualization, 3 (3), 2019, pp. 314–320.
dx.doi.org/10.30630/joiv.3.3.281.

[6] E. Funes, Y. Allouche, G. Beltrán, A. Jiménez,
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