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PREFACE

The primary object of Dynamics to be gained by the student is a thorough grasp
of fundamental principles. In most cases it is impossible to go beyond this object in
the time available for the course. In the preparation of this textbook, the aim has been
to present the fundamental principles in as clear and simple a manner as possible, and
to enforce them by a sufficient number of illustrative examples.

The study of Dynamics, as presented in this manual, is founded upon a course in
Statics and Kinematics. It is assumed, moreover, that the students have already
become familiar with the fundamental ideas of force, energy and work through such
preliminary courses of General Physics. The mathematical training required for using
the book is that usually implied by an elementary knowledge of Differential and
Integral Calculus.

In short, this textbook presents the subject of Dynamics in that relation to other
subjects which have become established in the curricula of the technical universities.
It should be emphasized, however, that the manual includes, for purposes of review, a
discussion of the fundamental notions and many problems involving these notions.
Attention may be called to the arrangement in the text. This arrangement is founded
upon experience in teaching the subject for many years in the National Mining
University of Ukraine. This manual is based on a Short Course of Theoretical
Mechanics by S.M. Targ (Foreign Languages Publishing House, Moscow) [1] and
prepared for foreign students and for those who study some subjects of the curricula
in English.

The opinion is sometimes expressed that the needs of different classes of
students require essentially different methods of treating the subject. This view, so far
as it refers to the fundamental parts of an elementary course of Dynamics, is not
shared by the author of this textbook. For all students, the matter of first importance
is the clear understanding of fundamental general principles and the ability to apply
them. That is why there are included in the text some of problems suggested for
independent work on the course. These problems are taken from [2]. They were
chosen with an eye to ensure a clear comprehension of the dynamical phenomena,
and they embrace all the main methods of Dynamics. In order to assist the students’
work the examples of the problem solutions contain the relevant instructions.

The author hopes that this manual may be useful to students of technical
specialties interested in advancing their knowledge of Dynamics. If this book is in
any degree successful in meeting the needs of students of engineering, it is hoped that
it may be of service also to those pursuing the subject for its intrinsic scientific
interest or as a preparation for the study of other engineering disciplines.

The author should be greatly obliged to those who may make use of the book if
they would point out any defects or obscurities in the text or would offer suggestions
for its improvement.



INTRODUCTION

This text 1s intended for the first course in the study of Theoretical Mechanics,
and its part, Dynamics, usually taken by engineering students in the sophomore or
junior year. It is assumed that the student has completed the basic courses in physics,
calculus, statics, and kinematics.

The purpose of the study of Dynamics is twofold. First, students must be
introduced to the basic ideas and concepts used in the area of Dynamics. This
includes a thorough treatment of the basic ideas of mass, acceleration, force, energy,
work, mechanical system, measures of mechanical interaction and motion,
differential equations of motion, and so on. These ideas are emphasized and kept in
focus throughout this text, with careful study of how their combination leads to
specific theories about motion of material bodies.

Second, students need ample practice in applying these theories to practical
situations. Relatively simple problems are examined in this text to analyze motion.
Both of these goals require continual awareness of all the notions that are necessary
parts of Dynamics, to understand and avoid situations where application of theory is
unwarranted.

A traditionally difficult aspect of developing a Dynamics text has been in
striking a balance between theory and the many practical applications that are
important to students who will go on to use the knowledge in actual practice.

A major goal is to keep the basic ideas clearly in focus when developing theory
or applying the results of the theory to actual situations. In experience, a careful
separate treatment of each of the basic ideas provides an excellent framework for the
study of elementary theories in Dynamics.

Section 1 presents an overview of the typical areas of application of Dynamics.
The three basic ideas of Dynamics, force, mass, and acceleration, are introduced. The
laws and problems of Dynamics are formulated.

The main goal of Dynamics can be stated roughly as follows. Given the loads
applied to the body, what is the law of its motion? Discussions in Section 2 involve
using differential equations of particle motion to determine its law of motion.

Section 3 is devoted to the study of characteristic features of motion, i.e.,
vibrations. The main notions and conclusions are discussed in detail. The
phenomenon of resonance is considered.

Section 4 has auxiliary character for the study of System Dynamics. Some of
important concepts are introduced and discussed.

So called general theorems of Dynamics for particle and mechanical system are
covered in Section 5. In order to consider these theorems, many concepts are
introduced. Using theorems solves the basic problem of Dynamics without
integrating differential equations of motion in many practical applications.

Some elements of Analytical Mechanics are considered in Section 6. This
Section studies principles of Dynamics which represent general approach to the
dynamic and static problems.



Section 7 deals with Lagrangian techniques for developing differential equations
of motion for mechanical system. The advantages’ of Lagrange’s equations are
demonstrated in detail. Very likely, this Section is the most important from the
practical point of view.

All Sections except Section 4 contain examples of problems solution.

There are problems for self-instruction with examples of their solution in
Section 8. These, more challenging problems, are intended to assist the students in
understanding and applying the basic ideas.



1. LAWS AND PROBLEMS OF DYNAMICS

1.1. Basic Concepts and Definitions

Dynamics is that section of mechanics which treats of the laws of motion of
material bodies subjected to the action of forces.

The motion of bodies from a purely geometrical point of view is discussed in
kinematics. Unlike kinematics, in dynamics the motion of bodies is investigated in
connection with the acting forces and the inertia of the material bodies themselves.

The concept of force as a quantity characterizing the measure of mechanical
interaction of material bodies is introduced in the course of statics. But in statics we
treat all forces as constant without considering the possibility of their changing with
time. In real systems, though, alongside of constant forces a body is often subjected
to the action of variable forces whose magnitudes and directions change when the
body moves. Variable forces may be both applied (active) forces and the reactions of
constraints.

Experience shows that variable forces may depend in some specific ways on
time, on the position of a body, or on its velocity (examples of dependence on time
are furnished by the tractive force of an electric locomotive whose rheostat is
gradually switched on or off, or the force causing the vibration of a foundation of a
motor with a poorly centered shaft; the Newtonian force of gravitation or the elastic
force of a spring depend on the position of a body; the resistance experienced by a
body moving through air or water depends on the velocity). In dynamics we shall
deal with such forces alongside of constant forces. The laws for the composition and
resolution of variable forces are the same as for constant forces.

The concept of inertia of bodies arises when we compare the results of the action
of an identical force on different material bodies. Experience shows that if the same
force is applied to two different bodies initially at rest and free from any other
actions, in the most general case the bodies will travel different distances and acquire
different velocities in the same interval of time.

Inertia is the property of material bodies to resist a change in their velocity under
the action of applied forces. If, for example, the velocity of one body changes slower
than that of another body subjected to the same force, the former is said to have
greater inertia, and vice-versa. The inertia of a body depends on the amount of matter
it contains.

The quantitative measure of the inertia of body, which depends on the quantity
of matter in the body, is called the mass of that body. In mechanics mass m is treated
as a scalar quantity which is positive and constant for body. The measurement of
mass will be discussed in the following article.

In the most general case the motion of a body depends not only on its aggregate
mass and the applied forces, the nature of motion may also depend on the dimensions
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of the body and the mutual position of its particles (i.e., on the distribution of its
mass).

In the initial course of dynamics, in order to neglect the influence of the
dimensions and the distribution of the mass of a body, the concept of a material point,
or particle, is introduced.

A particle is a material body (a body possessing mass) the size of which can be
neglected in investigating its motion.

Actually any body can be treated as a particle when the distances traveled by its
points are very great as compared with the size of the body itself. Furthermore, as
will be shown in the dynamics of systems, a body in translational motion can always
be considered as a particle of mass equal to the mass of the whole body.

Finally, the parts into which we shall mentally divide bodies in analyzing any of
their dynamic characteristics can also be treated as material points.

Obviously, the investigation of the motion of a single particle should precede the
investigation of systems of particles, and in particular of rigid bodies. Accordingly,
the course of dynamics is conventionally subdivided into particle dynamics and the
dynamics of systems of particles.

1.2. The Laws of Dynamics

The study of dynamics is based on a number of laws generalizing the results of a
wide range of experiments and observations of the motions of bodies, i.e., laws that
have been verified in the long course of human history.

The First Law (the Inertia Law): a particle free from any external influences
continues in its state of rest, or of uniform rectilinear motion, except in so far as it is
compelled to change that state by impressed forces.

The motion of a body not subjected to any force is called motion under no
forces, or inertial motion.

The inertia law states one of the basic properties of matter: that of being always
in motion. It establishes the equivalence, for material bodies, of the states of rest and
of motion under no forces.

A frame of reference for which the inertia law is valid is called an inertial
system (or, conventionally, a fixed system). Experience shows that, for our solar
system, an inertial frame of reference has its origin in the center of the sun and its
axes are pointed towards the so-called "fixed" stars. In solving most engineering
problems a sufficient degree of accuracy is obtained by assuming any frame of
reference connected with the earth to be an inertial system.

The Second Law (the Fundamental Law of Dynamics) establishes the mode in
which the velocity of a particle changes under the action of a force. It states: the
product of the mass of a particle and the acceleration imparted to it by a force is
proportional to the acting force, the acceleration takes place in the direction of the
force.

Mathematically this law is expressed by the vector equation:

ma = F. (1.1)

11
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The second law of dynamics, like the first, is valid only for an inertial system. It
can be immediately seen from the law that the measure of the inertia of a particle is
its mass, since two different particles subjected to the action of the same force receive
the same acceleration only if their masses are equal; if their masses are different, the
particle with the larger mass (i.e., the more inert one) will receive a smaller
acceleration, and vice-versa.

A set of forces acting on a particle can, as we know, be replaced by a single
resultant R equal to the geometrical sum of those forces. In this case the equation
expressing the fundamental law of dynamics acquires the form

ma = Rorma = ), F,. (1.2)

Measure of mass. Eq. (1.2) makes it possible to determine the mass of a body if
its acceleration in translational motion and the acting force are known. It has been
established experimentally that under the action of the force of gravitation P all
bodies falling to the earth (from a small height and in vacuum) possess the same
acceleration g, this is known as the acceleration of gravity or of free fall. Applying
Eq. (1.2) to this motion, we obtain m g = P, whence

m = g (1.3)
Thus, the mass of a body is equal to its weight divided by the acceleration of

gravity g.

The Third Law (the Law of Action and Reaction) establishes the character of
mechanical interaction between material bodies. For two particles it states: two
particles exert on each other forces equal in magnitude and acting in opposite
directions along the straight line connecting the two particles.

It should be noted that the forces of interaction between free particles (or bodies)
do not form a balanced system, as they act on different objects.

The third law of dynamics, which establishes the character of interaction of
material particles, plays an important part in the dynamics of systems.

1.3. The Problems of Dynamics for a Free and a Constrained Particle

The problems of dynamics for a free particle are: 1) knowing the equation of
motion of a particle, to determine the force acting on it (the first problem of
dynamics); 2) knowing the forces acting on a particle, to determine its equation of
motion (the second, or principal, problem of dynamics).

Both problems are solved with the help of Eq. (1.1) or (1.2), which expresses the
fundamental law of dynamics, since they give the relation between acceleration, 1.e.,
the quantity characterizing the motion of a particle, and the forces acting on it.

In engineering it is often necessary to investigate constrained motions of a
particle, 1.e., cases when constraints attached to a particle compel it to move along a
given fixed surface or curve.

In such cases we shall use, as in statics, the axiom of constraints, which states
that any constrained particle can be treated as a free body detached from its
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constraints provided the latter is represented by their reactions AN . Then the
fundamental law of dynamics for the constrained motion of a particle takes the form

ma =) F; + N, (1.4)
where F§ denotes the applied forces acting on the particle.

For constrained motion the first problem of dynamics will usually be: to
determine the reactions of the constraints acting on a particle if the motion and
applied forces are known. The second (principal) problem of dynamics for such
motion will pose two questions: knowing the applied forces, to determine: a) the
equation of motion of the particle and b) the reaction of its constraints.

1.4. Solution of Problems

Problem 1. A balloon of weight P descends with acceleration a. What weight
(ballast) Q must be thrown overboard in order to give the balloon an equal upward
acceleration?

Solution. The forces acting on the falling balloon are its weight P and the

buoyancy force F (Fig. 1). Hence, from Eq. (1.2)

P
—a=P-—F.
g
After the ballast has been thrown out (Fig. 1), the

weight of the balloon becomes P — @, the buoyancy g4
force remaining the same. Hence, taking into account that
now the balloon is rising, we have

P-Q
7 a=F—(P—-0Q).
Eliminating the unknown force F from the
equations, we obtain
0= 2P
=—73
1+ ”

Problem 2. A lift of weight P (Fig. 2) starts ascending with acceleration a.
Determine the tension in the cable.
Solution. Considering the lift as a free body, replace the action of the constraint

I (the cable) by its reaction T. From Eq. (1.4) we obtain
P
/k —a=T-P,
g

whence
i a
4 T=P(1+ 5).
ﬁ If the lift starts descending with the same
acceleration, the tension in the cable will be
a
PV T=pP(1-2)

Fig.2
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Problem 3. The radius of curvature of a bridge at point A 1s R (Fig. 3).
Determine the pressure exerted on the bridge at A by a motor car of weight P moving
with a velocity v.

Solution. The normal acceleration of the car at point A is

a, = —.
n R

Acting on it are the force of gravity P and the
reaction of constraint N. Then, from Eq. (1.4),

P v?
——=P—N,
g R
whence
UZ
a, N=Pp (1 B g_R)
Fig.3

The pressure on the bridge is equal to N in
magnitude but is directed downward.

Problem 4. A crank of length / (Fig. 4) rotates with a uniform angular velocity w
and translates the slotted bar K of weight P along slides 1,1.
Neglecting friction, determine the pressure exerted by the slide
block A4 on the slotted bar.

Solution. The position of the bar is specified by its
coordinate x = [ cos wt. Eq. (1.4) for the motion of the bar in
terms of its projection on x axis gives ma, = Q. But

d?x " ,
a, = ——— = —lw* coswt = —w*x,
dt?
P2 P 2
whence, as Q,, = —Q, —5 @ x =-0Q, ngw X.

Thus, the pressure of the slide block on the slotted bar is
proportional to its coordinate x.

2. DIFFERENTIAL EQUATIONS OF MOTION FOR A PARTICLE
AND THEIR INTEGRATION

2.1. Rectilinear Motion of a Particle

We know from kinematics that in rectilinear motion the velocity and
acceleration of a particle are continuously directed along the same straight line. As
the direction of acceleration 1s coincident with the direction of force, it follows that a
free particle will move in a straight line whenever the force acting on it is of constant
direction and the velocity at the initial moment is either zero or is collinear with the
force.

14
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Consider a particle moving rectilinearly under the action of an applied force
R = ) F;. The position of the particle on its

R— Z F path is specified by its coordinate x (Fig. 5). In

o M K this case the principal problem of dynamics is:
T > . knowing R, to find the equation of motion of
R S ) the particle x = f(x). Eq. (1.2) gives the
Fig. 5 relation between x and R. Projecting both

sides of the equation on axis Ox, we obtain

d?x

ac?’
Y. Fiex- (2.1)

Eq. (2.1) is called the differential equation of rectilinear motion of a particle. It
is often more convenient to replace Eq. (2.1) with two differential equations
containing first derivatives:

ma,=R, = Y Fj, oras a, =
d?x
dtz

dv,

M= =3 Fyy, (2.2)
d !
— =7, (2.2")

Whenever the solution of a problem requires that the velocity be found as a
function of the coordinate x instead of time ¢ (or when the forces themselves depend

on x), Eq. (2.2") is converted to the variables x. As % = % % = %vx Eq. (2.2)
takes the form
dvy
mv, == = 3 Fyy. (2.3)

The principal problem of dynamics is, essentially, to develop the equation of
motion x=f(¢) for a particle from the above equations, the forces being known. For
this it is necessary to integrate the corresponding differential equation. In order to
make clearer the nature of the mathematical problem, it should be recalled that the
forces in the right side of Eq. (2.1) can depend on time ¢, on the position of the

particle x, or on the velocity v, = %. Consequently, in the general case Eq. (2.1) is,

mathematically, a differential equation of the second order in the form
d?x dx
C=o(tx). (2.4)
The equation can be solved for every specific problem after determining the
form of its right-hand member, which depends on the applied forces. When Eq. (2.4)
is integrated for a given problem, the general solution will include two constants of
integration C; and C; and the general form of the solution will be

x = f(t,Cy, Cy). (2.5)

To solve a concrete problem, it is necessary to determine the values of the
constants C; and C,. For this we introduce the so-called initial conditions.
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Investigation of any motion begins from some specified instant called the initial
time #=0, usually the moment when the motion under the action of the given forces
starts. The position occupied by a particle at the initial time is called its initial
displacement, and its velocity at that time is its initial velocity (a particle can have an
initial velocity either because at time /=0 it was moving under no force or because up
to time #=0 it was subjected to the action of some other forces). To solve the principal
problem of dynamics we must know, besides the applied forces, the initial conditions,
1.e., the position and velocity of the particle at the initial time.

In the case of rectilinear motion, the initial conditions are specified in the form

att =0, x = xg, Uy = Vy. (2.6)

From the initial conditions we can determine the meaning of the constants C;

and C,, and develop finally the equation of motion for the particle in the form
x = f(t,x9,Vp). (2.7)

The following simple example will explain the above. Let there be acting on a
particle a force Q of constant magnitude and direction. Then Eq. (2.2) acquires the
form

m—— = Q,.

As Q,=const., multiplying both members of the equation by dr and integrating,
we obtain

v =Et 4. (2.8)
Substituting the value of v, into Eq. (2 2"), we have
dx _ O, +C
dt m 1
Multiplying through by dt and integrating once again, we obtain
= B2 L O+ G (2.9)

This is the general solution of Eq (2 4) for the specific problem in the form
given by Eq. (2.5).

Now let us determine the integration constants C; and C, assuming for the
specific problem the initial conditions given by (2.6). Solutions (2.8) and (2.9) must
satisfy any moment of time, including =0. Therefore, substituting zero for ¢ in Egs.
(2.8) and (2.9), we should obtain v, and x,, instead of v, and x, i.e., we should have
vy=C;, x, = C,.

These equations give the values of the constants C; and C,, which satisfy the
initial conditions of a given problem. Substituting these values into Eq. (2.9), we
obtain finally the relevant equation of motion in the form expressed by Eq. (2.7):

= > 242 4yt + x,, (2.10)
We see from Eq. (2.10) that a partlcle subjected to a constant force performs

uniformly variable motion. This could have been foreseen; for, if Q = const.,
a = const., too. An example of this type of motion is the motion of a particle under
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the force of gravity, in which case in Eq. (2.10) % = g and axis Ox is directed
vertically down.

2.2. Curvilinear Motion of a Particle

Consider a free particle moving under the action of forces Fq, F5, ..., F,,. Let us
draw a fixed set of axes Oxyz (Fig. 6). Projecting both members of the equation (1.2)

d?*x _d%y _d?z bia;
204y = 55,0, = 5 We obtain
the differential equations of curvilinear motion of a body in terms of the projections

on rectangular Cartesian axes:

on these axes, and taking into account that a, =

dZ dZ d2
M= =% Fx, M=% =NFyy, m— =3 Fy,. 2.11)
As the forces acting on the particle may depend on
‘ y time, the displacement or the velocity of the particle, then
F £ by analogy with Eq. (2.4), the right-hand members of Egs.

(2.11) may contain the time ¢, the coordinates x, y, z of the
dx dy E

dt’at’at
7 Furthermore, the right side of each equation may include
all these variables.
Fig.6 Eq. (2.11) can be used to solve both the first and the
second (the principal) problems of dynamics. To solve the
principal problem of dynamics we must know, besides the acting forces, the initial
conditions, 1.e., the position and velocity of the particle at the initial time. The initial
conditions for a set of coordinate axes Oxyz are specified in the form: at =0,
X=X Y = Yo, Z = Zg,
Uy = Uy, Vy = Uy, Uz = Vyo- (2.12)
Knowing the acting forces, by integrating Eq. (2.11), we find the coordinates x,
v, z of the moving particle as functions of time ¢ i.e., the equation of motion for the
particle. The solutions will contain six constants of integration Cj,Cs, ..., Cg, the
values of which must be found from the initial conditions (2.12). An example of
integrating of Eqgs.(2.11) is given in §2.3.

particle, and the projections of its velocity

by

2.3. Motion of a Particle Thrown at an Angle to the Horizon in a Uniform
Gravitational Field

Let us investigate the motion of a projectile thrown with an initial velocity vy at
an angle a to the horizon, considering it as a material particle of mass m, neglecting
the resistance of the atmosphere, assuming that the horizontal range is small as
compared with the radius of the earth and considering the gravitational field to be
uniform (P = const.).
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Place the origin of the coordinate axes O at the initial position of the particle,
¥ direct the y-axis vertically up, the x-axis in the
plane through Oy and vector vy, and the z-axis
perpendicular to the first two (Fig. 7). The angle
between vector vy and the x-axis will be a.

Draw now moving particle M anywhere on
its path. Acting on the particle is only the force
of gravity P, the projections of which on the

coordinate axes are P, =0,P =-P=
-mg, P, = 0.
Substituting these values into Eq.(2.11) and
2
noting that % = %, etc., after eliminating m, we obtain:

dv dv dv

—x =0, —y = —g, z = O

dt dt dt

Multiplying these equations by dt and integrating, we find v, = Cy, v, =
—gt + Cy, v, = C5.
The initial conditions of our problem have the form
atx =0,y=0,z=0;
Uy = Vg COS «, vy, = Vysina, v, = 0.
Satisfying the initial conditions, we have
C; =vycosa, C, =vysina =0,C3 = 0.
Substituting these values of C;, C; and C; in the solutions above and replacing

dx dy dz . .
Uy, Uy, Uy by 0 g Wearrive at the equations
dx—v cosa dy—v sina tdZ—O
at = 0 P gt =Y

2
Integrating, we obtain x = vy tcosa+C,, ¥y = vptsina — % + Cs, z = C.

Substituting the initial conditions, we have C, = C5 = C; = 0. And finally we
obtain the equations of motion of particle M in the form
2
X = vy tcosa, y=v0tsina—%,2=0. (2.13)
From the last equation it follows that the motion takes place in the plane Oxy.

Knowing the equations of motion of a particle it is possible to determine all the
characteristics of the given motion by the methods of Kinematics.

1. Path. Eliminating the time ¢ between the first two of Egs. (2.13), we obtain
the equation of the path of the particle:
gx?

=xtana — ———.
y 2v3cosZa

(2.14)

This is an equation of a parabola the axis of which is parallel to the y-axis. Thus,
a heavy particle thrown at an angle to the horizon in vacuum follows a parabolic path.
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2. Horizontal Range. The horizontal range is the distance OC=X along the x-
axis. Assuming in Eq. (2.14) y=0, we obtain the points of intersection of the path
with the x-axis. From the equation

x(tana— 9% )=0

2v2cosa

we obtain
X, =0, x, = 2v§cos;atan @

The first solution gives point 0, the second point C. Consequently X = x, and

finally
2
X = v;"sin 2a. (2.15)

From Eq. (2.15) we see that the horizontal range X is the same for angle p,
where 2=180°—2a, i.e., if f=90°— a. Consequently, a particle thrown with a given
initial velocity v, can reach the same point C by two paths: flat (low) (@<45°) or
curved (high) (f=90°— a>45°). With a given initial velocity v, the maximum
horizontal range in vacuum is obtained when sin 2a = 1, i.e., when angle a =45°.

2
3. Height of path. If in Eq. (2.14) we assume x = %X = 1;70 sin a cos a, we obtain
the height H of the path:

2
H= :—;sinza. (2.16)

4. Time of flight. 1t follows from Eq. (2.13) that the total time of flight is defined
by the equation X = v,T cos a. Substituting the expression for X, we obtain

T = %sin a. (2.17)
At the maximum range angle a *=45°, all the quantities become respectively
Xxr=% e =¥ gy
g’ g’ 49"

2.4. Solution of Problems

Problem 5. A load of weight P starts moving from rest along a smooth
horizontal plane under the action of a force R the magnitude of which increases in
proportion to the time, the relation being R=kt.

o M " Develop the equation of motion for the load.
_.J ia « Solution. Place the origin O in the initial
i position of the load and direct the axis Ox in the
Fig. 8 direction of motion (see Fig. 8). Then the initial

conditions are: at /=0, x=0 and v, = 0. Draw the load
in an arbitrary position and the forces acting on it. We have R, = R = kt, and Eq.
(2.2) takes the form
Pdv _
gdt
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Multiplying through by dt, we immediately separate the variables and obtain
kg t?
Uy = ?? + Cl'
Substituting the initial values into this equation, we find that C; = 0. Then,

.. d
substituting d—’: for v,, we have
dx kg ,»
— =-=¢2,
dt 2P
Multiplying through by dt we again separate the variables and, integrating, we
find

Substitution of the initial values gives C, = 0, and we obtain the equation of
motion for the load in the form
— kg
6P

x t3.

Problem 6. Neglecting the resistance of the air, determine the time it would take
a body to travel from end to end of a tunnel AB dug through the earth along a chord
(Fig. 9). Assume the earth’s radius to be R = 6,370 km.

Note. The theory of gravitation states that a body inside the earth is attracted
towards the centre of the earth with a force
F directly proportional to the distance r
from the centre. Taking into account that, at
r =R (i.e., at the surface of the earth),
force F is equal to the weight of the body
(F =mg), we find that inside the earth

F = %r, where ¥ = MC 1s the distance of

point M from the centre of the earth.

Solution. Place the origin O in the Fig. 9
middle of the chord 4B (where a body in the tunnel would be in equilibrium) and
direct the axis Ox along OA. If we assume the chord to be of length 2a, initial
conditions will be: att = 0,x = a and v, = 0.

The forces acting on the body in an arbitrary position are F and N.
Consequently,

m, m
YF =—Fcosa=—"Ircosa=—"Ix,
kx R R

as it 1s evident from the diagram that r cos a = x.

We see that the acting force depends on the coordinate x of point M. In order to
separate the variables in the differential equation of motion, write it in the form (2.3).
Then, eliminating m and introducing the quantity

9 = k2,
R

we obtain

dvx 2
— = —k*“x.
X dx

Multiplying through by dx, we separate the variables and, integrating, obtain
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2 2
v X
_x=k2_+61.
2 2

From the initial condition, at x = a, v, = 0; hence C; = %kzaz. Substituting
this expression of C;, we have
Uy = +kva? — x2,
As in the investigated position the velocity is directed from M to O, v, < 0, and
the sign before the radical should be minus. Then, substituting % for v,, we have

d
d—f = —kVa? — x2.
Separating the variables, we write the equation in the from

dx
kdt = — ==

and integrating, we obtain
kt = arc cosg + Cs.
Substituting the initial data (at /=0, x=a) in this equation, we find that C, = 0.
The equation of motion for the body in the tunnel is
X = acoskt.
Thus, the body is in harmonic motion with an amplitude a.
Now let us determine the time t; when the body will reach the end B of the

tunnel. At B the coordinate x = —a. Substituting this value in the equation of motion,
we obtain cos kt; = —1, whence kt; = mand t; = % But we have assumed k = %.

Calculating, we find that the time of the motion through the tunnel, given the
conditions of the problem, does not depend on the length of the tunnel and is always
equal to

t, = n\/gz 42 min 11 sec.

Let us also find the maximum velocity of the body. From the expression for v,
we see that v = v,,,,, at x =0, 1.e., at the origin O. The magnitude of the velocity is

_ _ )

If, for example, 2a = 0.1R = 637 km, then v,,,4, = 395 m/sec = 1,422 km/h.

Problem 7. A boat of weight P=400 N is pushed and receives an initial velocity
vo = 0.5 m/sec. Assuming the resistance
of the water at low velocities to be
proportional to the first power of the
velocity and changing according to the
equation R = uv, where the factor
U = 9,3 N-sec/m, determine the time in
which the velocity will drop by one-half
and the distance the boat will travel in
that time. Determine also the distance the

boat will travel till it stops.
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Solution. Let us choose the origin O to coincide with the initial position of the
boat, pointing the axis Ox in the direction of the motion (Fig.10). In this case the
initial conditions will be: at =0, x=0 and v, = v,. Draw the boat in an arbitrary
position with the acting forces P, N, and R.

Calculating the projections of the acting forces, we find that

2 Fyxy = —R = —pw.

To determine the duration of the motion, we write differential equation. Noting
that v, = v, we have

Pav _

gdt Hv.
Separating the variables, we obtain

d

= =-Hgt,

P
whence, integrating, we have
Inv=—-%¢+ C.
P

Substituting the initial values, we have C; = In v, and finally

p Vo

t =—In—

ug v

The required time t;, is determined by assuming v = 0.5v, .We see that in this
case the time does not depend on the value of v,. AsIn2 = 0.69,

t, = L1n2 ~ 3 sec.
1g

To determine the distance, it is best to write the differential equation of motion
in the form (2.3), as it immediately establishes the relation between x and v. We thus
obtain

Py _
g dx 1,
whence, eliminating v and separating the variables, we find
dv = - dx,
P
and consequently
v=-— %‘gx + C;.

Since at x = 0 the velocity v = v, then C; = v, and finally

P
X =—ly— V).
= (v~ v)

: : : P
Assuming v = 0.5v,, we find the required displacement: x; = ﬁ ~ 1.1 m.

To find the distance travelled by the boat till it stops, in the last equation we
PUO
assume v = 0. Then x, = i 2.2m.
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3. VIBRATION OF A PARTICLE

3.1. Free Harmonic Motion

The study of vibrations is essential for a number of physical and engineering
fields. Although the vibrations studied in such different fields as mechanics, radio
engineering, and acoustics are of different physical nature, the fundamental laws hold
good for all of them. The study of mechanical vibrations is therefore of importance
not only because they are frequently encountered in engineering but also because the
results obtained in investigating mechanical vibrations can be used in studying and
understanding vibration phenomena in other fields.

We shall start with examining free harmonic motion of a particle. Consider a
particle M (Fig.11) moving rectilinearly under the action of a restoring force F
directed towards a fixed centre O and proportional to the distance from that centre.
The projection of F on the axis Ox is

E, = —cx. (3.1)
0 F W T We see that the force F tends to return the
: ] particle to its position of equilibrium 0, where F = 0,
e B which is why it is called a "restoring" force. Let us
Fig. 11 derive the equation of motion of the particle M.
Writing the differential equation of motion (2.1), we
obtain
d?x
m—— = —cx.
dt?
Dividing both sides of the equation by m and introducing notation
% = k2, (3.2)
we reduce the equation to the form
d?x
mﬁ+k2x = 0. (33)

Eq. (3.3) is the differential equation of free harmonic motion. Referring to the
theory of differential equations, as the roots of a characteristic equation of the type of
Eq. (3.3) are imaginary, its general solution will be

x = C; sinkt + C, cos kt, (3.4)
where C; and C, are constants of integration.
If we replace C; and C, by constants a and «, such that C; = acosa and
C, = asin a, we obtain
x = a(sinkt cos a + cos kt sin ) or
x = asin(kt + a). (3.5)
This is another form of the solution of Eq. (3.3) in which the constants of
integration appear as a and «, and which is more convenient for general analyses.
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The velocity of a particle in this type of motion is
dx

Uy == ak sin(kt + a). (3.6)

The vibration of a particle described by Eq. (3.5) is called simple harmonic
motion.

The quantity a, which is the maximum distance of M from the centre of
vibration, is called the amplitude of vibration (Fig. 12). The quantity ¢ = kt + a is
called the phase of vibration. Unlike the coordinate x, the phase ¢ defines both the

position of the particle at any given time and the
direction of its subsequent motion.
- The quantity & is called the angular, or
. circular, frequency of vibration. The time T in
/‘it\ /\ /\ , which the moving particle makes one complete

\/ oscillation is called the period of vibration. In

a

b Tl

one period the phase changes by 2=
Consequently, we must have kT=27z whence the
Fig. 12 period .

T =2 (3.7)

The quantity v, which is the inverse of the period and specifies the number of

oscillations per second, is called the frequency of vibration:
1k

T 2m
It can be seen from this that the quantity & differs from v only by a constant
multiplier 2z Usually we shall speak of the quantity & as of frequency.

The values of @ and « are determined from the initial conditions. Assuming that,
at t=0, x=x, and v,=v, we obtain from Egs. (3.5) and (3.6) x, = asina and%" =

a cos a. By first squaring and adding these equations and then dividing them, we

obtain
v2 kx
a= /—°+x2, tana = —2.
" 0
Vo

Note the following properties of free harmonic motion:

1) The amplitude and initial phase depend on the initial conditions;

2) The frequency k, and consequently the period 7, do not depend on the initial
conditions and are invariable characteristics for a given vibrating system.

It follows, in particular, that if a problem requires that only the period (or
frequency) of vibration be determined, it is necessary to write a differential equation
of motion in the form (3.3). Then 7 is found immediately from Eq. (3.7) without
integrating.

Consider the next example: a weight is attached to end B of a vertical spring AB
and released from rest (Fig.13). Determine the law of motion of the weight if the
elongation of the spring in the equilibrium condition is Jd; (the static elongation of
the spring).
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Place the origin O of the coordinate axis in the position of static equilibrium of
the system and direct the axis Ox vertically down. The elastic
force F = c|Al|. In our case Al = §;; + x, hence
E. = —c(65t + x).
Writing the differential equation of motion, we obtain

Y s

4}

d?x
7 m— = —c(6s¢ +x) + P.
F

But from the conditions of the problem the gravitational force
P =mg = cd; (in the position of equilibrium force P is balanced

by the elastic force cdg;). Introducing the notation %= Si = k2,
st

Fig. 13 we reduce the equation to the form
g.

dzx 2 _
F +k°x = 0,
whence immediately we find the period of vibration

T =27 = o |95t
k NP

Thus, the period of vibration is proportional to the square root of the static
elongation of the spring (this holds good also for a load vibrating on an elastic beam,
where & is the static deflection of the beam).

The solution of the obtained differential equation is

x = C; sinkt + C, cos kt.
dx
— =
kC; coskt — kC, sin kt, substituting the initial conditions, we obtain C, =
—04, €4 = 0. Hence, the amplitude of vibration is §5; and the motion is according to
the law

From the initial conditions, at (=0, x=04,andv, =0. 4s v, =

x = —0g cos kt.

We see that the maximum elongation of the spring in this motion is 24;.

This solution shows that a constant force P does not change the type of motion
under the action of an elastic force F but only shifts the center of the vibrations in the
direction of the action of the force by the quantity §4.(without the force P the
vibration would, evidently, be about B).

3.2. Damped Vibration

Let us see how the resistance of a surrounding medium affects vibrations,

v assuming the resisting force proportional to the first
5 LA " r power of the velocity: R = —uw (the minus indicates

that force R is opposite to v). Let a moving particle be
acted upon by a restoring force F and a resisting force R

25
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(Fig. 14).

d : . : .
Then E, = —cx, R, = —uv, = —,ud—): and the differential equation of motion is
mEr = e — &
dtz Har

Dividing both sides by m, we obtain
ax 2, —
dtz +2b + k<x =0, (3.8)

where = kz, == 2b. (3.9)
m

m
It is easy to verify that k and b have the same dimension (sec™'), which makes it

possible to compare them.
Eq. (3.8) is called the differential equation of damped vibration. The solution of
Eq (3.8) can be found by passing to a new variable z through the equality x = ze ",

Then
%ze‘bt(g—bz); %= e‘bt(ﬁ—Zb + b?z )

Substituting these expressions and the expression of x 1nt0 Eq. (3.8), and after
the necessary computation, we obtain

dtz 2+ (k2 — b?)z = 0. (3.10)

Let us consider the case when k>b, 1.e., when the resistance 1s small as
compared with the restoring force. Introducing the notation

k = Vk2 — b2, (3.11)
we see that Eq. (3.10) coincides with Eq. (3.3).Consequently, z = a Sin(Et + a) or,
passing to x,

x = ae Ptsin(kt + a). (3.12)

The expression (3.12) gives the solution of differential equation (3.8). The

quantities a and a are constants of integration and are determined by the initial
conditions.

Vibrations according to the law (3.12) are called damped because, due to the

multiplier e ?¢, the value of x decreases with time and tends to zero. A graph of such

vibrations is given in Fig. 15. The graph shows that

I the vibrations are not periodic, though they do show
oL F a f:ertgln repetition. For example, a partlcle
AR~ J— oscillating about a centre O returns to that centre at
/:R H"““’fz = mmmn certain intervals T equal to the period of sin(kt +
& el
0 : NG 4 a).
AP cgpytt B Therefore, the quantity
=" Te-ae ~ 21
-k T—7—m (3.13)
[

is conventionally called the period of damped
vibration. Comparing, Egs. (3.13) and (3.7), we see
that T > T,i.e., that resistance to vibration tends to increase the period of the

Fig. 15
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vibration. When however, the resistance is small (b < k) the quantity b? can be
neglected in comparison with k? and we can assume T ~ T. Thus, a small resistance
has no practical effect on the period of vibration.

The time interval between two successive displacements of an oscillating
particle to the right or to the left is also equal to T. Hence, if the maximum
displacement x, to the right takes place at time ¢; the second displacement x, will be
at time 1, = ¢;+T, etc. Then, by Eq. (3.12) and taking into account that kT = 2m, we
have

x; = ae P1sin(kt; + a),
x, = ae PG* D sin(kt, + kT + a) = x.e7"T.

Similarly, for any displacement x,,,; we will have x,,,; = x,e " T Thus we find
that the amplitude of vibration decreases in geometric progression. The denominator
of this progression e T is called the damping decrement, and the modulus of its
logarithm, i.e., the quantity bT, the logarithmic decrement.

It follows from these results that a small resistance has practically no effect on
the period of vibration, but gradually damps it by virtue of the amplitude of vibration
decreasing according to a law of geometric progression.

When the resistance is large and b > k, the solution of Eq. (3.10) contains no
trigonometric functions. The particle no longer oscillates but instead, under the
influence of the restoring force, gradually approaches the position of equilibrium.

3.3. Damped Forced Vibrations. Resonance

Consider the motion of a particle on which are acting a restoring force F, a
damping force R proportional to the velocity (see § 3.2), and a disturbing force Q,
whose projection on the axis Ox is Q, = Q, sin pt. The differential equation of this
motion has the form

d?x dx .
m-——=-cx—pd_—+ Qo sin pt.

Dividing both sides of the equation by m, assuming % = P, and taking into
account the expression (3.9), we obtain

2

S +2bZ+ k?x = Qg sinpt. (3.14)
Eq. (3.14) is the differential equation of damped forced vibration of a particle.

Its general solution, as is known, has the form x=x;+x, where x; is the general

solution of the equation without the right side, i.e., of Eq. (3.8) [at £>b this solution is

given by Eq. (3.12)], and x,, is a particular solution of the complete equation (3.14).

Let us find the solution x, in the form

Xy = ASln(pt _B);
where 4 and f are constants so chosen that Eq. (3.14) should become an identity.
Differentiating, we obtain
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% = Ap cos(pt — B), d;:zz = —Ap? sin(pt — p).

Substituting these expressions of the derivatives and x; into the left side of Eq.
(3.14) and introducing for the sake of brevity the notation pt — f =1 (or pt = Y+
), we obtain

A(—p?+k?) siny + 2bpA cos Y=P,(cos  siny + sin  cos ).

For this equation to be satisfied at any value of ¢, 1.e., at any instant of time, the

factors of siny and cosiy in the left and right sides should be separately equal.

Hence,

A(k? —p?) = Pycosf, 2bpA = P,sinp.
First squaring and adding these equations, and then dividing one by the other,

we obtain:
A= J(kz_pz”)"zﬂbzpz, tanp = 7% (3.15)
As x=x;+x,, and the expression x; is given by Eq. (3.12), we have the final
solution of Eq. (3.14) in the form
x = ae Ptsin(kt + a) + Asin(pt — B). (3.16)
Here a and a are constants of integration determined from the initial
conditions, and the expressions for 4 and B are given by Egs. (3.15) and do not

depend on the initial conditions. These vibrations are compounded of natural
vibration [the first term in Eq. (3.16); Fig. 16 a] and forced vibration [the second
term in Eq. (3.16); Fig. 16 b]. The natural vibration of the particle in such a case was

discussed in § 3.2. It was established that it is transient
x and is damped fairly quickly, and after a certain
. ~na ' interval of time ¢, called the transient period, can be
S neglected. A curve showing the transient vibration is
given in Fig. 16 c. For practical purposes it can thus be
assumed that after a certain transient period a particle
will vibrate according to the law

x = Asin(pt — B).

This is steady-state forced vibration, a sustained
periodic motion with amplitude 4 defined by Eq.
(3.15) and a frequency p equal to the impressed
frequency. The quantity [ characterizes the phase shift
of forced vibration with respect to the disturbing force.
Let us investigate the results obtained. First let us
introduce the notation

Po

p b Q
;zl’;:h'ﬁ:fZSO’ (3.18)

where A is the frequency ratio, 4 a quantity characterizing the damping effect, §, the
magnitude of the static deflection of a particle under the action of force Q.

Then, dividing the numerator and denominator of Eq. (3.15) by k2, we obtain
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2hA
1-22

_ So
— J(-A2)z+an222’

It can be seen from Eq. (3.19) that 4 and /S depend on two dimensionless
parameters A and /. Graphs of this relation for certain values of / are given in Fig. 17.
The values of 8y, 4 and /& can be computed for each specific problem from its
conditions, and the values of 4 and p determined from the respective graphs or Egs.
(3.19).

These graphs (and equations) also show that by altering the frequency ratio 1 we
can induce forced
vibrations of  different
amplitude.

tanf =

(3.19)

ﬂ_.'"a,
il AN

When the resistance
1s very small (as ordinarily
in the atmosphere) and A is
not close to unity, it is
possible in Egs. (3.19)
assume approximately 7 ~
0. In this case we obtain

~_ %0 . p o
A~ B

0(atA< 1), B=
180° (at 1 > 1).

Let us consider also
the following special cases: 1) If the frequency ratio A 1s very small (p < k), then,
assuming as an approximation A = 0, we obtain from Eq. (3.19) A = §,. The vibration
in this case has an amplitude equal to the static deflection §, and the phase shift is
g =0.

2) If the frequency ratio A is very large(p > k), A becomes very small. This case
is of special interest for the absorption of vibrations in structures, instruments, etc.
Assuming the resistance to be small and neglecting 2hA and 1 as compared with A2 in
Eq. (3.19), we obtain for computing A an approximate formula:

_%_h
a2 p2’

3) In all cases of practical interest 4 is very small. Then, from Eq. (3.19), if 1 is
almost unity the amplitude of forced vibrations becomes very large. This
phenomenon is called resonance.

At resonance we can assume A = 1 in Eq. (3.19), and then
8o T

A=t b= (3.20)

2
We see that when £ is small A, can become very large. When the damping

force, and with it 4, tends to zero, the limiting value of the amplitude A, as Eq. (3.20)
shows, tends to infinity. Thus, with no damping force the vibration amplification
process in resonance conditions is unlimited and the amplitude increases indefinitely.

29
29



A graph of resonance vibration is given in Fig. 18. When the damping forces are
very small the picture is similar.

-

r - General Properties of Forced Vibration. It
. follows from the results obtained above that forced

- ﬂ vibration has the following important properties,

9 which distinguish it from the natural vibration of a

= f
"U particle:
s 1) The amplitude of forced vibration does not

depend on the initial conditions.
S 2) Forced vibration does not die out in the
Fig. 18 presence of resistance.

3) The frequency of forced vibration is equal
to the frequency of the disturbing force and does not depend on the characteristics of
the vibrating system (the disturbing force "impresses" its own vibration frequency on
the system).

4) Even when the disturbing force Q is small, large forced vibration can be
induced if the resistance is small and the frequency p is almost equal to & (resonance).

5) Even if the disturbing force is large, forced vibration can be damped if the
frequency p is much larger than k.

Forced vibration, and resonance in particular, plays an important part in many
branches of physics and engineering. Lack of balance in working machines and
motors, for example, usually causes forced vibration to appear in the machine or its
foundation.

In radio engineering the reverse is true. Resonance is extremely useful and is
used to separate the signals of one radio station from those of all others (tuning).

3.4. Solution of Problems

Problem 8. Determine the periods of vibration of a load of weight P attached to
two springs of stiffness C; and C, as shown in Figs. 19 and 20.
Solution. a) In the first case, in the static position both springs are subJ ected to a

tensile force P. Therefore the static elongations are IR
P
O1st = C_l’ 825t = <)

and the total elongation is
P(C1+C3)
Ost = O15¢ + 025t = C1—C22’ and

_ GG Cz
Ceq = .
C1+Cy

where Cgq is the equivalent spring constant of the two
given springs. In particular, at C; = C, we have Fig. 19

1
Coq = 5C.

The period of vibration is
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T = 217 /ﬁ — 2 M_
g gciC;

b) In the second case the top spring is subjected to a tensile force P;, and the
bottom spring is subjected to a compressive force P,, such that P; + P, = P. For

these springs we have 6;4; = ?, Opst = ?. But obviously 8,5 = 6,5+ = O, and by
1 2

virtue of the property of proportions

Py P, P1+P; P
Cq Cy C1+C2 C1+C2

The equivalent stiffness ¢, = ¢; + ¢, and the period of vibration
T =2n /ﬁ = 2m |——.
g g(c1+cz)

Problem 9. The deflection caused in a beam by the weight of a motor mounted
as shown in Fig. 21 is §g; = 1 cm. At how many rpm of the shaft will resonance
appear?

Solution. The period of natural vibration of the beam is

T =2n /ﬁ
)

If the centre of gravity of the shaft is not
concentric with its axis, a centrifugal force Q,
will develop (Fig. 21). Its component Q, =
Qo sin wt (where w is the angular velocity of the
shaft) is the disturbing force acting on the beam;

its frequency is p = w. Hence, the period of the

forced vibration is Tf = %ﬂ

% Resonance will appear when Tf = T, 1.e., at

Fig. 21

Wey = Sist = 31.3 sec™ L.

Hence, the critical speed
__ 30wy

Nep =—— = 300 rpm.

The working speed of the motor should be much greater than n, .

Problem 10. Analyze the forced vibration of a load attached to a spring (see
example in p.3.1) if the upper end 4 of the spring oscillates vertically according to the
law ¢ = a, sinpt.

Solution. Draw axis Ox as in Fig. 13. If we imagine the upper end of the spring
displaced from point A downwards by a quantity ¢, the length of the spring will be
l=1y—&+ 64 +x. Then F, = —cAl =—c(8s +x— &), and the differential
equation of motion, neglecting the resistance of the air and taking into account that
P = ¢4, will be
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2
m%z—c(5st+x—€)+P=—cx+cE.

Introducing the notation% = k?,

we obtain
d?x 2 2 .
F-I_k x = k“ay sinpt.
Consequently, the load will experience forced vibration, since, if we assume
b = 0 and P, = k?a,, the equation coincides with Eq. (3.14). It can be seen from Eq.
(3.18) that in the present case 6, = a, , and h = 0. The amplitude of forced vibration
and the phase shift are determined by the Eq. (3.19).
If p <k (the top end of the spring oscillates very slowly), then 4 = 0 and
A = a; and the phase shift § = 0. The load will oscillate as if the spring were a rigid
rod, which physically corresponds to the condition k > p. At p=k resonance appears
and the amplitude increases sharply. If the frequency p becomes larger than £ (4 > 1)
the load will vibrate in such a way that it will move down when the end of the spring
moves up and vice versa (a phase shift of § = 180°), and the larger the value of p the
smaller the amplitude. Finally, when p is much greater than k£ (1> 1), the
amplitude A = 0. The load will remain in the position of static equilibrium (point O)
even though the top end of the spring will oscillate with amplitude a, (the frequency
of this vibration is so large that the load, as it were, is unable to keep up with it).

4. INTRODUCTION TO THE DYNAMICS OF A SYSTEM
4.1. Mechanical Systems. External and Internal Forces

A mechanical system is defined as such a collection of material points (particles)
or bodies in which the position or motion of each particle or body of the system
depends on the position and motion of all the other particles or bodies. We shall thus
regard a material body as a system of its particles.

A classical example of a mechanical system is the solar system, all the
component bodies of which are connected by the forces of their mutual attraction.

A collection of bodies not connected by interacting forces does not comprise a
mechanical system. In this summary we shall consider only mechanical systems,
calling them just "systems" for short.

The forces acting on the particles or bodies of a system can be subdivided into
external and internal forces.

External forces are defined as the forces exerted on the members of a system by
particles or bodies not belonging to the given system. Internal forces are defined as
the forces of interaction between the members of the same system. We shall denote
external forces by the symbol F¢, and internal forces by the symbol F'. Both external
and internal forces can be either active forces or the reactions of constraints. The
division of forces into external and internal is purely relative, and it depends on the
extent of the system whose motion is being investigated. In considering the motion of

32
32



the solar system as a whole, for example, the gravitational attraction of the sun acting
on the earth is an internal force; in investigating the earth's motion about the sun, the
same force is external.

Internal forces possess the following properties:

1. The geometrical sum (the principal vector) of all the internal forces of a
system is zero. This follows from the third law of
dynamics, which states that any two particles of a system
(Fig. 22) act on each other with equal and oppositely
directed forces Fi, and Fb,, the sum of which is zero.
Since the same is true for any pair of particles of a system,
then

i = 0. (4.1)

2. The sum of the moments (the principal moment) of

Fig. 22 all the internal forces of a system with respect to any

centre or axis is zero. For if we take an arbitrary centre 0,

it is apparent from Fig. 22 that m, (F 112) + m, (F ‘21) = 0. The same result holds
good for the moments about any axis. Hence, for the system as a whole we have

Y my(FL) =0or X m,(Fi) =0. (4.2)

It does not follow from the above, however, that the internal forces are mutually
balanced and do not affect the motion of the system, for they are applied to different
particles or bodies and may cause their mutual displacement. The internal forces will
be balanced only when a given system is a rigid body.

4.2. Mass of a System. Centre of Mass

The motion of a system depends, besides the acting forces, on its total mass and
the distribution of this mass. The mass of a system is equal to the arithmetical sum of
the masses of all the particles or bodies comprising it:

The distribution of mass is characterized primarily by the location of a point
called the centre of mass. The centre of mass or centre of inertia, of a system is

defined as a geometrical point C whose coordinates are given by the equations:

2 MyXg Y mpYi XMy Zg
Yo = T Ve =T e = T (44)
where my, is the mass of a particle of the system, and x;, yy, z; are its coordinates.

If the position of a centre of mass is defined by its radius vector r., we can

obtain from Eqgs. (4.4) the following expression

ro =200 (4.5)

where 1, 1s the radius vector of a particle of the system.

For a body in a uniform gravitational field, the centre of mass coincides with the
centre of gravity. The concepts of centre of gravity and centre of mass, however, are
not identical. The concept of centre of gravity, as the point through which the
resultant of the forces of gravity passes, has meaning only for a rigid body in a
uniform field of gravity. The concept of centre of mass, as a characteristic of the
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distribution of mass in a system, on the other hand, has meaning for any system of
particles or bodies, regardless of whether a given system is subjected to the action of
forces or not.

4.3. Moment of Inertia of a Body about an Axis. Radius of Gyration

The position of centre of mass does not characterize completely the distribution
of mass in a system. For if in the system in Fig. 23 the distance 4 of each of two
identical spheres 4 and B from the axis Oz is increased by the same quantity, the

location of the centre of mass will not

4 e
A —ie—h change, though the distribution of mass
ﬂ_m_ﬁ will change and influence the motion
: { of the system (all other conditions
' remaining the same, the rotation about
g i : :
4 ;EL axis Oz will be slower).
Fig. 23 Accordingly, another characteristic

of the distribution of mass, called the

moment of inertia, is introduced in mechanics. The moment of inertia of a body with

respect to a given axis Oz is defined as a scalar quantity equal to the sum of the

masses of the particles of the body, each multiplied by the square of its perpendicular
distance from the axis

J, = S mh. (4.6)

It will be shown further on that moment of inertia plays the same part in the
rotational motion of a body as mass does in translational motion, i.e., moment of
inertia is a measure of a body's inertia in rotational motion.

By Eq. (4.6), the moment of inertia of a body is equal to the sum of the moments
of inertia of all its parts with respect to the same axis. For a material point located at a
distance /# from an axis, J, = mh?. The dimension of moment of inertia in the
international system of units is [J] = kg - m?.

The concept of radius of gyration is often employed in calculations. The radius
of gyration of a body with respect to an axis Oz is a linear quantity p defined by the
equation

Jz = Mp?, 4.7)
where M is the mass of the body.

It follows from the definition that geometrically the radius of gyration is equal to
the distance from the axis Oz to a point, such that if the mass of the whole body were
concentrated in it the moment of inertia of the point would be equal to the moment of
inertia of the whole body. Knowing the radius of gyration, we can obtain the moment
of inertia of a body from Eq. (4.7) and vice versa.

4.4. Moments of Inertia of Some Homogeneous Bodies

If we divide a body into elements, in the limit the sum in Eq. (4.6) will become
an integral and we obtain
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= JIf h* dm, (4.8)
where the integration is over the whole volume of the body and depends on the
coordinates of the points of the body. Eq. (4.8) is convenient in

computing the moments of inertia of homogeneous bodies. Let us ¢
examine some examples.
1. Thin Homogeneous Rod of Length | and Mass M. Let us find its z

moment of inertia with respect to an axis Az perpendicular to the rod  ¢f. l
(Fig. 24). If we lay off an axis Ax along AB, for any line element of

length dx we have h = x and its mass dm = p; dx, where p; = M/l BE
is the mass of a unit length of the rod, and Eq. (4. 8) gives:

a1
]A—fx am = Plfx dx—p13 P
Substituting the expression for p;,we obtain finally
_ 1,3 Fig. 24
]A —_ ng . =

2. Thin Circular Homogeneous Ring of Radius R and Mass M. Let us find its
moment of inertia with respect to an axis Cz perpendicular to the plane of the ring
through its centre (Fig. 25). As all the points of the ring
are at a distance h;, = R from axis Cz, Eq. (4.6) gives

= kaRZ = (Z mk)Rz = MR2
Hence, for the ring
J. = MR?.
Fig. 25 It is evident that the same result is obtained for the
moment of inertia of a cylindrical shell of mass M
and radius R with respect to its axis.

3. Circular Homogeneous Disc or Cylinder of Radius R and Mass M. Let us
compute the moment of inertia of a circular disc with respect to an axis Cz
perpendicular to it through its centre (Fig. 26a). Consider an elemental ring of radius
r and width dr. Its area is 2nr dr, and its

x

mass dm = p,2nr dr, where p, = % is
the mass of a unit area of the disc. From
Eq.(4.8) we have for the elemental ring
dj, =r?dm = 2mp,r3dr
and for the whole disc
J. = 2mp, fOR r3dr = %nsz‘*.

Substituting the expression for p, we

obtain finally

1
J. = EM R2.
It is evident that the same formula is obtained for the moment of inertia J. of a

homogeneous circular cylinder of mass M and radius R with respect to its axis Cz
(Fig. 26b).

The moments of inertia of non-homogeneous and composite bodies can be
determined experimentally with the help of appropriate instruments.
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4.5. Moments of Inertia of a Body about Parallel Axes. The Parallel-Axis
(Huygens') Theorem

In the most general case, the moments of inertia of the same body with respect
to different axes are different. Let us see how to determine the moment of inertia of a
body with respect to any axis if its moment of inertia with respect to a parallel axis
through the body is known.

Draw an axis Cz through the centre of mass C of a body, and an axis Oz, parallel
to it (Fig.27), denoting the distance between the two axes by the symbol d. By
definition we have

]021 = kahlzci Jez = ka h;cz;
where /; is the distance of an arbitrary point B of the body from axis Oz;, and h,, is
the distance of the same point from axis Cz, It follows
from ABae that
hZ = h,” + d? — 2dh, cos ay.

Let us draw from point C, as the origin of a
coordinate system, axes x and y perpendicular to Cz,
such that x intersects with axis Oz;. It is evident that
Cx || ae. Denoting the coordinates of point B as xi, Vi,
Zr,We obtain

h; cos a, = x and h2 = h? + d? — 2dx,,.

Substituting this expression of hj into the
expression for J,, and taking the common factors d?
and 2d outside the summation signs, we have

2
Joz, = 2my by, + (X my)d? — 2d ¥ my, xy.

The first summation in the right side of the equation is equal to /., and the
second to the mass M of the body. Let us find the value of the third summation. From
Eq. (4.4) we know that, for the coordinates of the centre of mass, ), m,x, = Mx,.
But since in our case point C is the origin, x, = 0, and consequently Y, m; x;, = 0.
We finally obtain

]021 =Jez t+ Md?. (4.9)

Eq. (4.9) expresses the parallel-axis theorem enunciated by Huygens:

the moment of inertia of a body with respect to any axis is equal to the moment
of inertia of the body with respect to a parallel axis through the centre of mass of the
body plus the product of the mass of the body and the square of the distance between
the two axes.

It follows from Eq. (4.9) that J,, > J¢,. Consequently, of all the axes of same
direction, the moment of inertia is least with respect to the one through the centre of
mass.
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4.6. The Differential Equations of Motion of a System

Suppose we have a system of n particles. Choosing any particle of mass my
belonging to the system, let us denote the resultant of all the external forces acting on
the particle (both active forces and the forces of reaction) by the symbol Fj, and the
resultant of all the internal forces by F%. If the particle has an acceleration ay, then,
by the fundamental law of dynamics,

mya, = F¢ + FL,.

Similar results are obtained for any other particle, whence, for the whole system,

we have
m,a, = F¢ + F}

mpa, = F§ + F},
These equations, from which we can develop the law of motion of any particle

of the system, are called the differential equations of motion of a system in vector

dvy dzrk
— = . In the most general case
dt dt? g

the forces in the right side of the equations depend on the time, the coordinates of the
particles of the system, and their velocities.

By projecting Egs. (4.10) on coordinate axes, we can obtain the differential
equations of motion of a given system in terms of the projections on these axes.

The complete solution of the principal problem of dynamics for a system would
be to develop the equation of motion for each particle of the system from the given
forces by integrating the corresponding differential equations. For two reasons,
however, this solution is not usually employed.

Firstly, the solution is too involved and will almost inevitably lead into
insurmountable mathematical difficulties.

Secondly, in solving problems of mechanics it is usually sufficient to know
certain overall characteristics of the motion of a system without investigating the
motion of each particle. These overall characteristics can be found with the help of
the general theorems of systems dynamics, which we shall now study.

The main application of Eqs.(4.10) or their corollaries will be to develop the
respective general theorems.

form. Egs. (4.10) are differential because a; =
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5. GENERAL THEOREMS OF DYNAMICS

In solving many problems of dynamics it will be found that the so-called general
theorems, representing corollaries of the fundamental law of dynamics, are more
conveniently applied than the method of integration of differential equations of
motion.

The importance of the general theorems is that they establish visual relationships
between the principal dynamic characteristics of motion of material bodies, thereby
presenting broad possibilities for analyzing the mechanical motion widely employed
in practical engineering. Furthermore, the general theorems make it possible to study
for practical purposes specific aspects of a given phenomenon without investigating
the phenomenon as a whole. Finally, the use of the general theorems makes it un-
necessary to carry out for every problem the operations of integration performed once
and for all in proving the theorems, which simplifies the solution.

5.1. Momentum of a Particle and a System

One of the basic dynamic characteristics of particle motion is momentum (or
linear momentum).

The momentum of a particle is defined as a vector quantity mv equal to the
product of the mass of the particle and its velocity. The vector mv is directed in the
same direction as the velocity, i.e., tangent to the path of the particle.

The linear momentum, or simply the momentum, of a system is defined as the
vector quantity Q equal to the geometric sum (the principal vector) of the moments of
all the particles of the system (Fig 28):

Q = X My vy. (5.1)

It can be seen from the diagram that, irrespective of the velocities of the
particles (provided that they are not
parallel) the momentum vector can take
any value, or even be zero when the
polygon constructed with the vectors
m,v, as its sides is  closed.
Consequently, the quantity Q does not
characterize the motion of the system

Fig. 28 completely. Let us develop a formula
with which it is much more convenient to
compute Q and also to explain its meaning. It follows from Eq. (4.5) that
Z mgr, = M rc.
Differentiating both sides with respect to time, we obtain

ar ar
kad—t"z Md—tc or Y mv, = Mv,,
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whence we find that

Q = Mv,, (5.2)
1.e., the momentum of a system is equal to the product of the mass of the whole
system and the velocity of its center of mass. This equation is especially convenient
in computing the momentum of rigid bodies.

It follows from Eq. (5.2) that, if the motion of a body (or a system) is such that
the center of mass remains motionless, the momentum of the body is zero. Thus, the
momentum of a body rotating about a fixed axis through its center of mass is zero
(the polygon in Fig. 28 is closed).

If, on the other hand, a body has relative motion, the quantity Q will not
characterize the rotational component of the motion about the center of mass. Thus,
for a rolling wheel, Q = Mv_, regardless of how the wheel rotates about its center
of mass C.

We see, therefore, that momentum characterizes only the translational motion of
a system, which is why it is often called linear momentum. In relative motion, the
quantity Q characterizes only the translational component of the motion of a system
together with its center of mass.

5.2. Impulse of a Force

The concept of impulse (or linear impulse) of a force is used to characterize the
effect on a body of a force acting during a certain interval of time. First let us
introduce the concept of elementary impulse, i.e., impulse in an infinitesimal time
interval dt. Elementary impulse is defined as a vector quantity dS equal to the
product of the vector of the force F and the time element dt:

dS = F dt.
The elementary impulse is directed along the action line of the force. The
impulse S of any force F during a finite time interval ¢; is computed as the integral
sum of the respective elementary impulses:

S=[Fat. (5.3)

Thus, the impulse of a force in any time interval ¢; is equal to the integral of the
elementary impulse over the interval from zero to ¢;

In the special case when the force F is of constant magnitude and direction
(F = const.), we have § = Ft;. In the general case the magnitude of an impulse can
be computed from its projections. We can find the projections of an impulse on a set
of coordinate axes if we remember that an integral is the limit of a sum, and the
projection of a vector sum on an axis is equal to the sum of the projections of the
component vectors on the same axis. Hence,

t t t
Se=J,"Fdt, S, = ["Fdt, S, = ["F,dt.

With these projections we can construct the vector § and find its magnitude and

the angles it makes with the coordinate axes. The dimension of impulse in the
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international system of units is [S] = N - sec.

To solve the principal problem of dynamics, it is important to establish the
forces whose impulses can be computed without knowing the equation of motion of
the particle moving under the action of those forces. It is apparent that to these forces
belong only constant forces and forces depending on time.

5.3. Theorem of the Motion of Center of Mass

In many cases the nature of the motion of a system (especially of a rigid body) is
completely described by the law of motion of its center of mass. To develop this law,
let us take the equations of motion of a system (4.10) and add separately their left and
right sides. We obtain

Y myay = X F + L Fj. (5.4)

Let us transform the left side of the equation. For the radius vector of the center

of mass we have
Y. myr, = Mr.

Taking the second derivative of both sides of this equation with respect to time,

and noting that the derivative of a sum equals the sum of the derivatives, we find
'm d?ry _ d?ry
ka2 dt?

or
yYm,a, =Mag,
where a. is the acceleration of the center of mass of the system. As the internal
forces of a system give Y. F,, = 0, by substituting all the developed expressions into
Eq. (5.4), we obtain finally:
Ma, = ) F}. (5.5)
Eq. (5.5) states the theorem of the motion of the center of mass of a system. Its
form coincides with that of the equation of motion of a particle of mass m=M where
the acting forces are equal to Fj. We can therefore formulate the theorem of the
motion of the centre of mass as follows: the center of mass of a system moves as if it
were a particle of mass equal to the mass of the whole system to which are applied all
the external forces acting on the system. Projecting both sides of Eq. (5.5) on the
coordinate axes, we obtain

2 2 2
M = YR, M8 = Y Fg, M“ = = T Fe, (5.6)

These are the differential equations of motion of the center of mass in terms of
the projections on the coordinate axes. The theorem is valuable for the following
reasons:

1) It justifies the use of the methods of particle dynamics. It follows from Egs.
(5.6) that the solutions developed on the assumption that a given body is equivalent to
a particle define the law of motion of the center of mass of that body. Thus, these
solutions have a concrete meaning. In particular, if a body is being translated, its
motion is completely specified by the motion of its center of mass, and consequently,
a body in translational motion can always be treated as a particle of mass equal to the
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mass of the body. In all other cases, a body can be treated as a particle only when the
position of its center of mass is sufficient to specify the position of the body.

2) The theorem makes it possible, in developing the equation of motion for the
centre of mass of any system, to ignore all unknown internal forces. This is of special
practical value.

5.4. The Law of Conservation of Motion of Center of Mass

The following important corollaries arise from the theorem of the motion of
center of mass:

1) Let the sum of the external forces acting on a system be zero:

Y. F; =0.

It follows, then, from Eq. (5.5) that a. = 0 or v. = const. Thus, if the sum of
all the external forces acting on a system is zero, the center of mass of that system
moves with a velocity of constant magnitude and direction, i.e., uniformly and
rectilinearly. In particular, if the center of mass was initially at rest it will remain at
rest. The action of the internal forces, we see, does not affect the motion of the center
of mass.

2) Let the sum of the external forces acting on a system be other than zero, but
let the sum of their projections on one of the coordinate axes (the x- axis, for
instance), be zero:

Y F. =0.
The first of Egs. (5.6), then, gives
d?x, dx,
—=0o0or — = v, = const.
dt dt x

Thus, if the sum of the projections on an axis of all the external forces acting on
a system is zero, the projection of the velocity of the center of mass of the system on
that axis is a constant quantity. In particular, if at the initial moment v, = 0, it will
remain zero at any subsequent instant, i.e., the center of mass of the system will not
move along the x-axis (x, = const.).

The above results express the law of conservation of motion of the center of
mass of a system.

5.5. Theorem of the Change in the Momentum of a Particle

D : . d : :
As the mass of a particle is constant, and its acceleration a = d—: equation, which

expresses the fundamental law of dynamics, can be expressed in the form:
d(mv)

dt = Z F k- (57)

Let a particle of mass m moving under the action of a force R = ), Fj, have a
velocity v, at time t = 0, and at time ¢; let its velocity be v;. Now let us multiply
both sides of Eq. (5.7) by df and take definite integrals. On the right side, where we
integrate with respect to time, the limits of the integrals are zero and ¢;; on the left
side, where we integrate the velocity, the limits of the integral are the respective
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values of v and v,. As the integral of d (mv) is mv, we have
mv, — mvy, = ), fotl F, dt.

By Eq. (5.3), the integrals on the right side are the impulses of the acting forces.
Hence, we finally have
mv, —mv, = ), Sy. (5.8)
Eq. (5.8) states the theorem of the change in the linear momentum of a particle:
the change in the momentum of a particle during any time interval is equal to the
geometric sum of the impulses of all the forces acting on the particle during that
interval of time.
In problem solutions, projection equations are often used instead of the vector
equation (5.8). Projecting both sides of Eq. (5.8) on a set of coordinate axes, we have
MV1x — MVgy = 2, Six
Mvyy, — MVgy = X Sky (5.8")
mvy, — Mvgy, = Y Si,
In the case of rectilinear motion along the x- axis, the theorem is stated by the
first of these equations.

5.6. Theorem of the Change in Linear Momentum of the System

Consider a system of n particles. Writing the differential equations of motion
(4.10) for this system and adding them, we obtain

Y myay = Y F + Y Fj.
From the property of internal forces the last summation is zero. Furthermore,

d dQ
X myay = at QEmyvy) = P

and we finally have
aQ
E = Z F i. (59)
Eq. (5.9) states the theorem of the change in the linear momentum of a system in
differential form: the derivative of the linear momentum of a system with respect to
time is equal to the geometrical sum of all the external forces acting on the system. In
terms of projections on Cartesian axes we have
de aQ,
_Z kX’ ZFky’ dt _ZerZ (510)
Let us develop another expressmn for the theorem. Let the momentum of a
system be Q, at time t = 0, and at time ¢, let it be Q. Multiplying both sides of Eq.
(5.9) by dt and integrating, we obtain

Q:—Qo = Zf(leidt'

or
Q,— Qo =X S}, (5.11)
as the integrals to the right give the impulses of the external forces. Eq. (5.11) states
the theorem of the change in the linear momentum of a system in integral form: the
change in the linear momentum of a system during any time interval is equal to the
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sum of the impulses of the external forces acting on the system during the same
interval of time. In terms of projections on Cartesian axes we have
Q1x — Qox = X Six
Q1y — Qoy = X Sky (5.11")
Q1z — Qoz = ZS’?Z

Let us show the connection between this theorem and the theorem of the motion
of center of mass. As Q = Mv,, by substituting this expression into Eq. (5.9) and
taking into account that % = a, we obtain Ma, = ), F;,, i.e., Eq. (5.5).

Consequently, the theorem of the motion of center of mass and the theorem of
the change in the momentum of a system are, in fact, two forms of the same theorem.
Whenever the motion of a rigid body (or system of bodies) is being investigated, both
theorems may be used, though Eq. (5.5) is usually more convenient.

For a continuous medium (a fluid), however, the concept of center of mass of
the whole system 1is virtually meaningless, and the theorem of the change in the
momentum of a system is used in the solution of such problems.

The practical value of the theorem is that it enables us to exclude from
consideration the immediately unknown internal forces (for instance, the reciprocal
forces acting between the particles of a liquid).

5.7. The Law of Conservation of Linear Momentum

The following important corollaries arise from the theorem of the change in the
momentum of a system:

1) Let the sum of all the external forces acting on a system be zero:

Y. F; =0.

It follows from Eq. (5.9) that in this case Q = const. Thus, if the sum of all the
external forces acting on a system is zero, the momentum vector of the system is
constant in magnitude and direction.

2) Let the external forces acting on a system be such that the sum of their
projections on any axis Ox is zero:

S FE =0

It follows from Eqgs. (5.10) that in this case Q, = const. Thus, if the sum of the
projections on any axis of all the external forces acting on a system is zero, the
projection of the momentum of that system on that axis is a constant quantity.

These results express the law of conservation of the linear momentum of a
system.

5.8. Theorem of the Change in the Angular Momentum of a Particle

Often, in analyzing the motion of a particle, it is necessary to consider the
change not of the vector mvw itself, but of its moment. The moment of the vector mv
with respect to any center 0 or axis z is denoted by the symbol m,(mv) or m,(mv)
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and is called the moment of momentum or angular momentum with respect to that
center or axis. The moment of vector mv is calculated in the same way as the
moment of a force. Vector mv is considered to be applied to the moving particle. In
magnitude |my(mv)| = mvh, where & is the perpendicular distance from 0 to the
position line of the vector mv (see Fig. 29).

1. Principle of Moments About an Axis. Consider a particle of mass m moving
under the action of a force F. Let us establish the dependence between the moments
of the vectors mv and F with respect to any fixed
axis z.

It is well known that

m,(F) = xE, — yF,. (5.12)

Similarly, for m,(mwv), and taking m out of the

%° N parentheses, we have

el m,(mv) = m(xv, — yv,).
(5.13)
it Differentiating both sides of this equation with
Fig.29 respect to time, we obtain
% [m,(mv)] =m (% v, — %Ux) +
(xm Ly _ ym %).
dt dt

The expression in the first parentheses of the right side of the equation is zero,
d d .. :
as d—f = v, and d—i = v)y. From Eq. (5.12), the expression in the second pair of
parentheses is equal to m, (F), since, from the fundamental law of dynamics,

vy _ vy _
rral F.,m vl E,.
Finally, we have
d
= [m,(mv)] = m,(F). (5.14)

This equation states the principle of moments about an axis: the derivative of the
angular momentum of a particle about any axis with respect to time is equal to the
moment of the acting force about the same axis

2. Principle of Moments about a Center. Let us find for a particle moving under
the action of a force F (Fig. 29) the relation between the moments of vectors mv and
F with respect to any fixed center 0. It was shown that m,(F) = r X F. Similarly,

my(mv) = r X mv.

Vector my(F) is normal to the plane through 0 and vector F, while the vector
my(mv) is normal to the plane through the center 0 and vector mv. Differentiating
the expression m,(mwv) with respect to time, we obtain

d d d
E(rxrnv) = (d—zxmv)+(r><md—';) = (v X mv) + (r X ma).
But v X mv = 0, as the vector product of two parallel vectors, and ma = F.
Hence,
= (r xmv) =1 X F, or = [my(mv)] = m,(F). (5.15)
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This is the principle of moments about a center: the derivative of the angular
momentum of a particle about any fixed center with respect to time is equal to the
moment of the force acting on the particle about the same center. An analogous
theorem is true for the moments of vector mv and force F with respect to any axis z,
which is evident if we project both sides of Eq. (5.15) on that axis. This was proved
directly in item 1.

5.9. Total Angular Momentum of a System

The total angular momentum of a system with respect to any center 0 is
defined as the quantity K, equal to the geometrical sum of the angular momenta of
all the particles of the system with respect to that center:

Ko = X my(myvy). (5.16)

The angular moment of a system with respect to each of three rectangular coor-
dinate axes are found similarly:

Ky = 2m,(myvy) , K, = Xmy (o), K, = Xmy(my ). (5.17)

By the theorem proved in § 5.8, K, K,,, K, are the respective projections of
vector K, on the coordinate axes.

To understand the physical meaning of K, let us compute the angular
momentum of a rotating body with respect to its axis of
rotation. If a body rotates about a fixed axis Oz (Fig. 30),
the linear velocity of any particle of the body at a distance
h; from the axis is whj. Consequently, for that particle

m,(m,v,) = mv,h, = mywh?.

Then, taking the common multiplier w outside of the

parentheses, we obtain for the whole body
K, = ¥ m, (mvy) = (X mhi)w.

The quantity in the parentheses is the moment of
inertia of the body with respect to the z- axis (§ 4.3). We
finally obtain

K, = J,w. (5.18)

Thus, the angular momentum of a rotating body with respect to the axis of
rotation is equal to the product of the moment of inertia of the body and its angular
velocity.

If a system consists of several bodies rotating about the same axis, then,
apparently,

Fig. 30

K, =J1z01 + J2,02+. .. +]nz0n.

The analogy between Eqgs. (5.2) and (5.18) will be readily noticed: the
momentum of a body is the product of its mass (the quantity characterizing the body's
inertia in translational motion) and its velocity; the angular momentum of a body is
equal to the product of its moment of inertia (the quantity characterizing a body's
inertia in rotational motion) and its angular velocity.

Just as the momentum of a system is a characteristic of its translational motion,
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the total angular momentum of a system is a characteristic of its rotational motion.

5.10. Theorem of the Change in the Total Angular Momentum of a System

The principle of moments, which was proved for a single particle (§ 5.8), is
valid for all the particles of a system. If, therefore, we consider a particle of mass m;
and velocity v, belonging to a system, we have for that particle

d

dt [my(mv,)] = my(F;) + m, (Fﬁc)

where F¢ and FY, are the resultants of all the external and internal forces acting on the
particle.

Writing such equations for all the particles of the system and adding them, we
obtain

d .
EZ[mO(mkvk)] =Y my(F}) + X mO(F;().
But from the properties of the internal forces of a system, the last summation
vanishes. Hence, taking into account Eq. (5.16), we obtain finally

e = Zmo(FD). (5.19)

This equation states the following principle of moments for a system: The
derivative of the total angular momentum of a system about any fixed center with
respect to time is equal to the sum of the moments of all the external forces acting on
that system about that center.

Projecting both sides of Eq. (5.19) on a set of fixed axes Oxyz, we obtain

K, dK dK,
— = =Emy(Fp), —> =2Em,(Fp), — 2 =Xm,(Fp).  (5.20)

5.11. The Law of Conservation of the Total Angular Momentum

The following important corollaries can be derived from the principle of
moments.

1) Let the sum of the moments of all the external forces acting on a system with
respect to a center 0 be zero:

Y. my(Fp) = 0.

It follows, then, from Eq. (5.19) that K, = const. Thus, if the sum of the
moments of all external forces acting on a system taken with respect to any center is
zero, the total angular momentum of the system with respect to that center is constant
in magnitude and direction.

2) Let the external forces acting on a system be such that the sum of their
moments with respect to any fixed axis Oz is zero:

Zmz (Fi) = 0.
It follows, then, from Egs. (5.20) that K, = const. Thus, if the sum of the
moments of all the external forces acting on a system with respect to any axis is zero,
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the total angular momentum of the system with respect to that axis is constant.

These conclusions express the law of conservation of the total angular
momentum of a system. It follows from them that internal forces cannot change the
total angular momentum of a system.

5.12. Kinetic Energy of Particle and a System

The kinetic energy of a particle is a scalar quantity equal Emvz. The kinetic
energy of a system is defined as a scalar quantity T equal to the arithmetical sum of
the kinetic energies of all the particles of the system:

2
T = %%, (5.21)

If a system consists of several bodies, its kinetic energy is, evidently, equal to
the sum of the kinetic energies of all the bodies:

T =) T,.

Let us develop the equations for computing the kinetic energy of a body in
different types of motion.

Translational Motion. In this case all the points of a body have the same
velocity, which is equal to the velocity of the centre of mass. Therefore, for any point
v, = V., and Eq. (5.21) gives

2
Ttrans = Z% = %(Z mk)vczy
Tirans = %Mvcz (5.22)

Rotational Motion. The velocity of any point of a body rotating about an axis Oz
1S vy = why, where hy, is the distance of the point from the axis of rotation, and w is
the angular velocity of the body. Substituting this expression into Eq. (5.21) and
taking the common multipliers outside the parentheses we obtain

mw?hi 1
Trotation = X ‘ > £ = > x mkhlzc)a)z.

The term in the parentheses is the moment of inertia of the body with respect to
the axis z. Thus we finally obtain

Trotaion = %]zwz- (5.23)

Plane Motion. In plane motion, the velocities of all the
points of a body are at any instant directed as if the body
were rotating about an axis perpendicular to the plane of

motion and passing through the instantaneous centre of zero
velocity P (Fig. 31). Hence, by Eq. (5.23)

1 2
Tplane = E]pw .

where J, 1s the moment of inertia of the body with respect to
the instantaneous axis of rotation.
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The quantity J, is variable, as the position of the centre P continuously changes
with the motion of the body. Let us introduce instead of J, a constant moment of
inertia J. with respect to an axis through the centre of mass C of the body. By the
parallel-axis theorem, J,, = J. + M d?, where d=PC.

Substituting this expression for J, and taking into account that point P is the
instantaneous centre of zero velocity and therefore wd = w PC = v, where v, is the
velocity of the centre of mass, we obtain finally

1 1
Tplane = EMUCZ + E]sz' (524)
5.13. Work Done by a Force. Power

The concept of work is introduced as a measure of the action of a force on a
body in a given displacement, specifically that action which is represented by the
change in the magnitude of the velocity of a moving particle.

First let us introduce the concept of elementary work done by a force in infinitesimal
displacement ds. The elementary work done by a force F (Fig. 32) is defined as a
scalar quantity

dA = E, ds, (5.25)
where E; is the projection of the force on the tangent
to the path in the direction of the displacement, and
ds 1s an infinitesimal displacement of the particle
along that tangent.

This definition corresponds to the concept of
work as a characteristic of that action of a force
which tends to change the magnitude of velocity. For
if force F is resolved into components F, and F,,
only the component F, which imparts the particle its
tangential acceleration, will change the magnitude of
the velocity. Noting that F, = F cos a, we further Fig. 32
obtain from Eq. (5.25)

dA = Fdscosa. (5.26)

If angle a is acute, the work is of positive sense. In particular, at a« = 0, the
elementary work dA = F ds.

If angle a is obtuse, the work is of negative sense. In particular, at ¢ = 180°,
the elementary work dA = —F ds.

If angle a« = 90°, i.e., if a force is directed perpendicular to the displacement,
the elementary work done by the force is zero.

Let us now find an analytical expression for elementary work. For this we
resolve force F' into components F,, F,, F., parallel to the coordinate axes (Fig. 33).
The infinitesimal displacement MM'=ds is compounded of the displacements dx, dy,
dz parallel to the coordinate axes, where x, y, z are the coordinates of point M. The
work done by force F in the displacement ds can be calculated as the sum of the work
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done by its components F,, F,, F, in the displacements dx, dy, dz.
But the work in the displacement dx is done only by

Z 7 / component F, and is equal to F, dx. The work in the
y displacements dy and dz is calculated similarly. Thus,
L M_K—,—* we finally obtain
> y ' dA = Fydx + F,dy + F, dz. G2
0 ¢ Eq. (5.27) gives the analytical expression of the
/I’/ elementary work done by a force.
Fig. 33 The work done by a force in any finite

displacement M,M; (see Fig. 32) is calculated as the
integral sum of the corresponding elementary works and is equal to

)
Awomy) = Jou ) Fr (5.28)
Ay, = ((A’;’l))(F dx + F, dy + F, dz). (5.29)

The limits of the integral correspond to the values of the variables of integration
at points M, and M, (or, more exactly, the integral is taken along the curve M;M,,
1.e., it is curvilinear).

In order to solve the principal problem of dynamics, it is important to establish
the forces whose work can be calculated immediately without knowing the equation
of motion of the particle on which they are acting. It can be seen that to these forces
belong only constant forces or forces which depend on the position (coordinates) of a
moving particle.

Power. The term power is defined as the work done by a force in a unit of time
(the time rate of doing work). If work is done at a constant rate, the power

A
N=—,
t1
where t; is the time in which the work A4 is done. In the general case,
_dA FEds _
“dt de

It can be seen from the equation N= F,v that if a motor has a given power N, the
tractive force F; is inversely proportional to the velocity v. That is why, for instance,
on an upgrade or poor road a motor car goes into lower gear, thereby reducing the
speed and developing a greater tractive force with the same power.

5.14. Examples of Calculation of Work

The examples considered below give results which can be used immediately in
solving problems.

Work Done by a Gravitational Force. Let a particle M subjected to a
gravitational force P be moving from a point My(xyyezy) to a point M;(x;v.,z;).
Choose a coordinate system so that the axis Oz would point vertically up (Fig. 34).
Then P, =0, P, = 0, P, = —P. Substituting these expressions into Eq. (5.29) and
taking into account that the integration variable is z, we obtain
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(M1)
Ammy) = (Mol) (-=Pdz) = —P fZZOl dz = P(zq — zy).

If point M, is higher than M, thenz, —z, = h, where h is the vertical
displacement of the particle; if, on the other
- hand, M, is below M; then z;—2z =
-~ —(z; — zy) = —h. Finally we have
A(MOMl) = tPh.

The work is positive if the initial point is
higher than the final one and negative if it is
lower.

It follows from this that the work done by
gravity does not depend on the path along

Fig. 34 which the point of its application moves.
Forces possessing this property are called

-
a

conservative forces.

Work Done by an Elastic Force. Consider a weight M lying in a horizontal plane
and attached to the free end of a spring (Fig.
35). Let point O on the plane represent the
position of the end of the spring when it is not
in tension (A0 =[, is the length of the
unextended spring) and let it be the origin of
our coordinate system. : !

Now if we draw the weight from its Fl o A Ner,
position of equilibrium 0, stretching the spring ' é b
to length /, acting on the weight will be the =1, 5 *
elastic force of the spring F directed towards .

0. According to Hooke's Law, the magnitude Fig. 35

of this force is proportional to the extension of the spring Al =1 — [,.

As in our case Al = x, then in magnitude F = c|Al| = c|x|. The factor ¢ is
called the stiffness of the spring, or the spring constant. Let us find the work done by
the elastic force in the displacement of the weight from position M(x,) to position
Mi(x;). As in this case F, =—F = —cx,F, = F, =0, then, substituting these
expressions into Eq. (5.29), we obtain

M
Amgmy) = (Swol))(—cx) dx = —c f;:)lx dx = %(xg — x3).

In the obtained formula x, is the initial extension of the spring Al;,,, and x; is the
final extension 4/;,. Hence

c 2
Ay, = 5 [(Alin)z — (Alsin) ]
The work is positive if |Al;,| > |Alfin

towards the position of equilibrium, and negative when |Al;,| < |Alﬂn| i.e., when the

end of the spring moves away from the position of equilibrium.
It follows, therefore, that the work done by the force F depends only on the
quantities Al;, and Alg;, and does not depend on the actual path traveled by M.

, 1.e., when the end of the spring moves
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Consequently, an elastic force is also a conservative force.

Work Done by Friction. Consider a particle moving on a rough surface (Fig. 36)
or a rough curve. The magnitude of the frictional force acting on the particle is fN,
where f is the coefficient of friction and N is the
normal reaction of the surface.

Frictional force is directed opposite to the
displacement of the particle, whence Fr,., = —fN, and

from Eq. (5.28),

(M) . (M)
Awaorty) = = Jugy Frr dS = = Jqy FN ds.

e If the frictional force is constant, then Ay, u,) =
Fig. 36 —Fss where s is the length of the arc MyM; along
which the particle moves. Thus, the work done by
kinetic friction is always negative. It depends on the length of the arc MyM; and
consequently it is non-conservative.

Work Done by Gravitational Forces Acting on a System. The work done by a
gravitational force acting on a particle of weight p; will be py (zxo — Zx1), Where z,
and z;, are the coordinates of the initial and final positions of the particle . Then the
total work done by all the gravitational forces acting on a system will be

A = Y prZro — L PrZrr = P(Zco — Zc1) = tPh,.
where P is the weight of the system, and h, is the vertical displacement of the centre
of gravity (or centre of mass) of the system.

Work Done by Forces Applied to a Rotating Body. The elemental work done by
the force F apphed to the body in Fig. 37 will be

dA =FE ds = F,hdg
since ds = hdg, where dg is the angle of rotation of
the body.

But it is evident that E.h = m,(F). We shall call
the quantity M, = m,(F) the turning moment, or
torque. Thus we obtain

dA = M, do. (5.30)

Eq. (5.30) is valid when several forces are acting,
if it is assumed that M, = ), m,(F}). The work done
Fig. 37 in a turn through a finite angle ¢, will be

A= [""M,do. (5.31)

and, for a constant torque (M, = const.),
A= M,p,. (5.32)
If acting on a body is a force couple laying in a plane normal to Oz, then,
evidently, M, in Egs. (5.30)-(5.32) will denote the moment of that couple.

Let us see how power is determined in this case. From Eq. (5.30) we find
_dA  M,dy

T dt dt

= M,w.
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Work Done by Frictional Forces Acting on a Rolling Body. A wheel of radius R
rolling without slipping on a plane (surface) is subjected to the action of a frictional
force Fgy, which prevents the slipping of the point of contact B on the surface (Fig.
38).

The elemental work done by this force is
dA = —Fs dsg. But point B is the instantaneous
centre of zero velocity, and vy = 0. As dsg = vp dt,
dsg =0, and for every elemental displacement
dA = 0.

Thus, in rolling without slipping, the work done

F- by the frictional force preventing slipping is zero in
75 any displacement of the body. For the same reason, the
work done by the normal reaction N is also zero. The

Fig. 38 resistance to rolling is created by the couple (N, P) of

moment M = kN, where k is the coefficient of rolling

friction. Then by Eq.(5.30), and taking into account that the angle of rotation of a
rolling wheel is d¢ = %,

dAron = —kN dp = — <N ds, (5.33)
where ds., is the elemental displacement of the centre C of the wheel. If N = const.,

then the total work done by the forces resisting rolling will be
K
AT‘Oll = —kN(pl = —ENSC. (534)

5.15. Theorem of the Change in the Kinetic Energy of a Particle

Consider a particle of mass m displaced by acting forces from a position M,
where its velocity is vy, to position M; where its velocity is v;.

To obtain the required relation, consider the equation ma = ) F), which
expresses the fundamental law of dynamics. Projecting both parts of this equation on
the tangent Mt to the path of the particle in the direction of motion, we obtain

ma; = Y, Fy,.
The tangential acceleration in the left side of the equation can be written in the
form
g =@ _was_av,
dt ds dt ds
hence, we have mv % =Y Fpr.

Multiplying both sides of the equation by ds, bring mv under the differential
sign. Then, noting that F,, ds = dA;, where dAj, is the elementary work done by the
force Fj, we obtain an expression of the theorem of the change in kinetic energy in
differential form:

2
d (™) = X dAs. (5.35)
Integrating both sides of Eq. (5.35) in the limits between the corresponding
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values of the variables at points M, and M;, we finally obtain

2 2
mz”l m:O =, Ap. (5.36)
Eq. (5.36) states the theorem of the change in the kinetic energy of a particle in
the final form: the change in the kinetic energy of a particle in any displacement is
equal to the algebraic sum of the work done by all the forces acting on the particle in
the same displacement.

The Case of Constrained Motion. If the motion of a particle is constrained, then
the right side of Eq. (5.36) will include the work done by the given (active) forces Fy;
and the work done by the reaction of the constraint. Let us limit ourselves to the case
of a particle moving on a fixed smooth (frictionless) surface or curve. In this case the
reaction N is normal to the path of the particle, and N; = 0. Then by Eq. (5.28), the
work done by the reaction of a fixed smooth surface (or curve) in any displacement of
a particle is zero, and from Eq. (5.36) we obtain

2 2
L0 = 3 Alyomy: (5.36)
Thus, in a displacement of a particle on a fixed smooth surface (or curve) the
change in the kinetic energy of the particle is equal to the sum of the work done in
this displacement by the active forces applied to that particle.
If the surface, (curve) is not smooth, the work done by frictional force will be
added to the work done by the active forces.

5.16. Theorem of the Change in the Kinetic Energy of a System

The theorem proved in § 5.15 is valid for any point of a system. Therefore, if we
take any particle of mass m;, and velocity v, belonging to a system, we have for this
particle

Ml My i
2 2
where vy, and vy, denote the particle's velocity at the beginning and the end of the

displacement, and A% and A% are the sums of the work done by all the external and
internal forces acting on the particle through this displacement.

= AL + A},

If we write similar equations for all the particles of a system and add them up,

we obtain
2 2 . ,

Y T = § AR + T Al or Ty — Ty = L AL + Y A, (5.37)
where T; and T, denote the kinetic energy of the system at the beginning and the end
of the displacement.

This equation states the following theorem of the change in kinetic energy: The
change in the kinetic energy of a system during any displacement is equal to the sum
of the work done by all the external and internal forces acting on the system in that
displacement.
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For an infinitesimal displacement of a the system theorem takes the form
dT = dA® — dAY, (5.38)

where dA® and dA' denote the elemental work done by all the external and internal
forces acting on the system. Unlike the previously proved theorems, in Egs. (5.37)
and (5.38) the internal forces are not ignored. For, if Fi, and F}, are the forces of
interaction between points B, and B, of a system (see Fig. 39), then Fi, + F5, = 0,
but at the same time point B; may be moving towards B, and point B, towards B;.
The work done by each force is positive, and the total work will not be zero.

The Case of Non-Deformable Systems. A non-deformable system is defined as
one in which the distance between the points of application of the internal forces does
not change during the motion of the system.
Special cases of such systems are a rigid body
and an inextensible string. Let two points B;
and B, of a non-deformable system (Fig.39) be
acting on each other with forces Fi, and F},
(F L, =—F 121) and let their velocities at some
instant be v, and v, Their displacements in a Fig. 39
time interval dt will be ds; =v;dt and
ds, = v, dt directed along vectors v; and v,. But as line B;B, is non-deformable, it
follows from the laws of kinematics that the projections of vectors v; and v, and
consequently of the displacements ds; and ds, on the direction of B;B, will be equal,
i.e., B;B,' =B>B;. Then the elemental work done by forces Fi, and F},will be equal
in magnitude and opposite in sense, and their sum will be zero. This holds for all
internal forces in any displacement of a system.

We conclude from this that the sum of the work done by all the internal forces of
a non-deformable system is zero, and Eq. (5.37) takes the form

T, — Ty, = X A%. (5.39)

Both the external and internal forces in Egs. (5.37)-(5.39) include the reactions
of constraints. If the constraints on which the bodies of a system move are smooth,
then the work done by the reactions of these constraints in any displacement of the
system is zero and the reactions will not enter into Eqgs (5.37)-(5.39).

Thus in applying the theorem of the change in kinetic energy to frictionless
systems, all the immediately unknown reactions of the constraints will be excluded
from the problem. This is where its practical value lies.

5.17. Solution of Problems

Problem 11. The centre of gravity of the shaft of the motor in Fig. 40 is located
at a distance AB = a from the axis of rotation. The shaft is of weight p, and the
weight of all other parts of the motor is P. Deduce the law of motion of the motor on
a smooth horizontal surface if the shaft rotates with a uniform angular velocity w.
Also determine the maximum stress that will be developed in a bolt D fastening the
motor to the surface.
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Solution. In order to eliminate the forces rotating the shaft by making them
v internal, consider the motor with the shaft as a
single system.

1) For the motor standing freely on the
plane, all the forces acting on it are vertical and
the law of conservation of the motion of the
centre of mass parallel to axis Ox will apply.
Show the motor in an arbitrary position,
assuming as 1nitial the position in which points
B and A are on the same vertical (on the y axis).
Then in the arbitrary position {4, = x,&p = x +
asin ¢. Here {4, and &g perform projections of
absolute displacements on x axis. Hence, taking
into account the law of conservation of motion
of the center of mass of a system (x, = const.) and that ¢ = w,we find

P&, + pég = 0or Px + p(x + asinwt) = 0,

A

whence
pa . "
X =— sin wt.
P+p @
Thus, the motor will perform simple harmonic motion with an angular
frequency w.
2) When the motor is fastened, the horizontal reaction R, of the bolt, by the first
of Egs. (5.6), will be

d*x.

Pxa+px
R, = M —-, where x = ZATPEE

2
dat2’ Mg
In this case point A is fixed, and x4 = h (h = const.) and x5 = h + a sin wt.
Differentiating the expression of x, and multiplying it by M, where M is the mass of
the whole system, we obtain
d’xc pd’xsg  paw?
dt2 g dt? g
The pressure on the bolt is equal to |R, | in magnitude and opposite in direction.
Its maximum value will be

R, =M sin wt.

paw?
I

Problem 12. Crank AB of length r and weight p of the mechanism in Fig. 41
rotates with a constant angular velocity w and actuates the slotted bar and the piston
D connected to it. The total weight of the bar and piston is P. Acting on the piston
during the motion is a constant force Q. Neglecting friction, determine the maximum
horizontal pressure of the crank on its axle A.

Solution. In order to eliminate the forces rotating the crank and the pressure
exerted on it by the slotted bar, consider the motion of the system as a whole.
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Denoting the horizontal reaction of the axle 4 by R, we have from the first of Egs.
(5.6)

dZ

Xc
M dtz - Rx - QJ
where, by Egs. (4.4), Mx; = myx; + myx,.
In our case
YL Ll my = P X1 = Zcos wt;
g) 2 )
. (] — D P
B Lz . mzza, Xy = a+rcos wt,
1 Q as ¢ = wt. We finally obtain
! X daz
Ry=Q+M—F=Q~
Yo 2
fP : % (g + P) cos wt.
T The pressure on the shaft is equal
. in magnitude to|R,| and oppositely
Fig. 41 directed. The maximum pressure will

be at ¢ = 180° and will be equal to
2

rw? p
Q+7(E+P).

Problem 13. A load of weight p = 1N moves in a circle with a constant
velocity 2 m/sec . Determine the impulse and the work done by the force acting on
the load during the time the load takes to travel one quarter of the circle.

Solution. From the theorem of the change in momentum,

S = mvq — muy.

Constructing geometrically the M, Up
difference between these momenta (Fig. 42 ), mug
we find from the right-angled triangle:
S = m\/vi + vg. M, <
But from the conditions of the problem muvyg
U; = Uy = U,, consequently V4

S = va/f = 0.29 N - sec. _
N Fig. 42

Problem 14. A load of mass m lying on
a horizontal plane is pushed and imparted an initial velocity v,. The motion of the
load is then retarded by a constant force F. Determine the time it takes the load to
stop and how far it will have travelled.

Solution. Draw the load in an arbitrary position (Fig. 43), M, and M, being its
initial and final positions. Acting on the load are its weight P, the reaction of the
plane N, and the opposing force F. Pointing axis Ox in the direction of the motion,
we have from Eq. (5.8"):
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My, — MUy = X, Sy

N A In this case vy, = 0 (v; is the velocity at
i __;'-L the instant when the load stops) and vy, =
F vy. Force F is the only one projected on the x
"'"—; I axis. As it is constant, S, = F.t; = —Ft;,
M, z ™ X where t;is the 'decelejration time. Substituting
\ P these expressions into our equation, we
, obtain —mv, = —Ft; , whence the required
Fig. 43 time is
(, = ™o
1=

To determine the braking distance we use the theorem of the change in kinetic

energy:
mvi  mué
1_Mmvy _ 2 : A,.
2 2
Here again v; = 0 and only force F does the work: A(F) = —Fs, where s is the

braking distance. The work done by forces P and N is zero as they are perpendicular

2
to the displacement. Hence we obtain — mzvo = —F's;, and the braking distance is

mué
§ =0
2F

Problem 15. The resultant R of all the forces acting on the piston in Fig. 44
changes during a certain time-interval according to the equation R = 0.4P(1 — kt),
where P is the weight of the piston, t is the time in seconds, and k a factor equal to
1.6 sec™!. Determine the velocity of the piston at time t; = 0.5 sec, if at time
to = 0itwasvy, = 0.2 m/sec.

Solution. As the acting force
depends on the time and the given and
required quantities include t;, vy, and

U1, we make use of Eq. (5.8"): X
MU1, — MUgy = Sy .
In this case Fig. 44
ty ty

k
S, = j R,dt = 0.4P j (1 —-kt)dt =0.4Pt, (1 — Etl).
0 0 ,
Furthermore, vy, = 0, v, =v;and m = 7 Substituting these expressions, we

obtain
k
v; = vy + 049ty (1 — Etl) ~ 1.4 m/sec.

Problem 16. A bullet of weight p fired horizontally with a velocity u hits a box
of sand standing on a truck (Fig. 45). What velocity will the truck receive as a result
of the impact if its weight together with the box of sand 1s P?
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Solution. Consider the bullet and the truck as one system. This enables us to
exclude the forces generated when the bullet hits

N N the sand. The sum of the projections of the
e ] 1« . 31 external forces on the horizontal axis x is zero.
T Consequently, Q, = const., or Qy, = Q1,, Where
Ei; Ei; X  Qp is the momentum of the system before the
< > impact, and Q, after the impact. As the truck was

P motionless before the impact,

Fig. 45 oy = gu_

After the impact the truck and bullet are moving with the same velocity v. Then
Qix = ALE v,
g
and equating the right sides of the expressions for Q, and Q;,, we obtain
U= P u.
p+P

Problem 17. Determine the recoil of a gun if its barrel is horizontal, the weight
of the recoiling parts is P, the weight of the shell is p, and the muzzle velocity of the
shell is u.

Solution. To exclude the unknown forces developed by the pressure of the gases,
consider the shell and the gun as one system.

Neglecting the resistance to the recoil during the motion of the shell in the bore,

N we find that the sum of the projection
. 77; — of .the ap.phed extemal forces on the
- T Ty = axis X Is zero (Fig. 46). Hence,
T A e e "~ Q, = const. and, since before the shot
p P the system was motionless (Qy = 0),
, for any moment of time Q,, = 0.
Fig. 46 J O

If the velocity of the recoiling
parts at the final instant is v, then the absolute velocity of the shell at that moment is
u + v. Consequently,

p P
Qx = va +§(ux +v,) =0,
whence we find
p
Uy = —p_l_—Pux.
If we knew the absolute muzzle velocity u, of the shell, we could have
substituted u,, for u, + v,, whence

Uy = — Euax.
The minus sign in both cases means that v is in the opposite direction of u.
Note that in calculating the total momentum of a system the absolute velocity of
its parts should be considered.
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Problem 18. A jet of water of diameter d = 4 c¢m is discharger from a nozzle
with a velocity u = 10 m/sec and impinges normally against a fixed vertical wall
(Fig. 47). Neglecting the compression in the jet, determine the force of water on the
wall.

Solution. To exclude the internal forces of interaction of the water particles
between each other at the time of impact, apply the first of Egs. (5.11")

Qux — Qox = X Skx
to the part of the jet filling the volume abc at the
given instant. Let us calculate for this volume
the difference Qq, — Qy, for a certain time
interval t;. During this interval, the volume of
water will occupy configuration a,b;c;, and the
value of Q,, will decrease by mu, where m is the
mass of volume aa;. The liquid filling volumes
bb; and cc; moves normally to axis Ox and
therefore does not increase the value of Q,. As
we have only @, decreasing, Qi — Qpx =
—mu. Reaction R of the wall will be the only
external force acting on the given volume and

giving a projection on axis Ox. Assuming Fig. 47
R = const., we obtain
Y. Sky = Ryt; = —Rt;, and mu = Rt;. Now compute m. As the displacement
aa; = uty,
md?
m = —Tutl,

where y is the weight of a unit volume, and consequently,g is the mass of a unit

volume of the liquid. Substituting this value and taking into account that for water
¥y = 10000 N/m3, we finally obtain
md?
R=LI" 2= 128N
g 4

Problem 19. Two discs having moments of inertia J; and J, are mounted on a
shaft as shown in Fig. 48. If the shaft is twisted and then released, find the
dependence between the angular velocities and the angle of turn of the discs in the
ensuing torsional vibrations. Neglect the mass of the shaft.

Solution. To exclude the unknown elastic L )
forces which cause the discs to vibrate, consider ? — M
both discs and the shaft as a single system. The :H e e —
external forces (‘Ehe reactions of the bparmgs and — A=
the force of gravity) intersect with axis x, whence = é
Y. m,(F¢) =0, and K, = const. But since at the Fig, 48

initial moment K, = 0, during the whole of the
vibration we must have K, = J;w; + J,w, = 0 (the angular momentum of the system
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with respect to the x axis equals the sum of the angular momenta of each disc with
respect to the same axis). We find from this that

J J
w1 = fwz and ¢ = f‘/’z:

where ¢4, and ¢, are the angles through which the discs were twisted, measured
from the initial position (the latter result is obtained by integrating the first equation).

Thus, the vibrations will be in opposite directions, and the angular amplitudes
will be inversely proportional to the moments of inertia of the discs.

Problem 20. A governor AB with a moment of inertia J, consists of two
symmetrically placed weights of mass m, each attached to two springs as shown in
Fig. 49, and it rotates about a vertical axis 0Oz. At time t, = 0, the governor receives
an angular velocity wg, and each weight starts to oscillate in damped vibration about

its respective centre C at a distance [ Z
from axis Oz. Neglecting friction and
considering the weights as particles, 2

determine the dependence of the angular

velocity w of the governor on the 000 //// 000
position of the weights. A ///’/ W B
2

v
Solution. To exclude the unknown !/////4///// Y //////

elastic forces of the springs, consider the O A i

governor and the weights as one system.

Then Y m,(F$) = 0, and K, = const. Fig. 49

At time ty, = 0, the displacement x = 0

and K, = (J, + 2ml?)w,. At any arbitrary instant t, K, = [J, + 2m(l + x)?]w. As
K, = Kz,

J,4+2ml?
=22,
Jz+2ml(l+x)2

Consequently, when x > 0, w < wg , and when x < 0, w > w,, i.e., the angular
velocity changes about a mean value w,. When the vibrations of the weights dampen
with time, x tends to zero, and w to w.

Problem 21. A track is laid along the circumference of a disc of radius R and
weight P. Standing on the track is a toy spring- z
wound car of weight p. The disc rotates together g'a
with the car about a vertical axis z with an angular A
velocity wg (Fig. 50). Determine how the angular
velocity of the disc will change if at some instant
the car will start moving in the direction of the
rotation with a velocity u relative to the disc.

Solution. To exclude the unknown frictional
forces between the wheels of the car and the disc,
consider both as one system. The moments of the
external forces acting on the system with respect
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to the z axis are zero. Consequently, K, =const. Considering the disc to be
homogeneous (J, = 0.5MR?) and the car as a particle, we have

— Pp2,Pp2
K, = (O.SgR +ER ) wo.
When the car starts moving its absolute velocity will be v, = u + wR, where w

is the new angular velocity of the disc. The angular momentum of the car about the z
axis will be mv,R = m(uR + wR?), and for the whole system we have

K, = 0.5§R2w + g(uR + R?w).

As K, = const., K,; = K,,, whence
P u
" 05P+pR
The angular velocity of the disc, we see, decreases. If the car travels in the
opposite direction, w will increase.

Note that in calculating K, the absolute velocities of all moving points of the
system were taken.

C()=(UO

Problem 22. Wound on a drum of weight P and radius r (Fig. 51) is a string
carrying a load 4 of weight Q. Neglecting the mass of the string and friction,
determine the angular acceleration of the drum when the
load falls, if the radius of gyration of the drum with
respect to its axis is Q.
Solution. Applying the theorem of moments with
respect to axis O, we have

% = z mq (Fy).
Al ¢ l” The moving system consists of two bodies,
l consequently
Q Ko = Karum + Kioaa-

Fig. 51 The load is in translational motion, and we consider
” it as a particle. Its velocity isv = wr. The drum rotates
about a fixed axis, consequently,

Q
Kipaa = —vr = —rw; Kirum = Jow = EQZC‘)J
and
Ko = (Qr? + Pe*) <.
Substituting this expression for Ky , we obtain
Qr? + Po*dw
= Qr,
g dt
whence
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oo 99
Qr? + Pp?

Problem 23. A weight attached to a string of length / (Fig. 52b) is displaced
from the vertical at an angle ¢, and released from rest. Determine the velocity of the
weight at the instant when the thread makes an angle ¢ with the vertical.

4 Solution. As the conditions of the
problem include the displacement of the
weight, defined by the angle through which
the thread passes, and the velocities v, and
v;, we make use of the theorem of the
My change in kinetic energy:

, mv? mud
t 1 - 0 == ZAR
2 2

Acting on the weight is the force of
gravity P and the reaction of, the thread N.
The work done by force N is zero, as N; =
0. For force P we have A(P) = Ph = mgh.

2
.. mv
As vy = 0, we obtain — L = mgh, whence

v, =4/2gh.

Evidently, the result is the same for the velocity v of a freely falling weight
(Fig.52a).
In our problem h = [ cos ¢ — [ cos ¢, and finally

v = /2gl(cos @ — cos @,).

Fig. 52

Problem 24. The length [, of an uncompressed valve spring is 6 cm. When the
valve is completely open it is lifted to a height s = 0.6 cm and the length of the
compressed spring is | = 4 cm (Fig. 53).The stiffness of the springisc = 1 N/cm
and the weight of the valve 1s p = 4 N. Neglecting the
gravitational and resisting forces, determine the velocity
of the valve at the moment of its closure.

Solution. The elastic force F acting on the valve
depends on the displacement s of the valve, which is
given. Therefore we use Eq. (5.36):

{

g mv?  mvg
i — = = Ay.
= = 2 2
L a— :-" + According to the conditions of the problem, the only
force doing work is the elastic force of the spring. Hence,
we have
F ¢ 2 2
Ay = E [(Alin) - (Alfin) ]
Fig. 53 In our case Aly, =1l —1l=2cm, Alsp =1y — 1 —
s =14cm.
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P oL : :
Furthermore, vy = 0 and m = 7 Substituting these expression, we obtain

v, = %(Azin)z — (Algin)? ~ 0.22 m/sec.

Problem 25. An elastic beam supporting a weight at the centre of its span (Fig.
54) deflects by an amount &, (the static deflection of the beam). Neglecting the
weight of the beam, determine
its maximum deflection &4, if
the weight is dropped on it from
a height H.

Solution. As in the
previous problem, we apply Eq.
(5.36). The initial velocity
Up and the final velocity v, (at
the instant of the maximum
deflection of the beam) of the
weight are each zero, and Eq.
(5.36) takes the from

The forces doing work are the gravitational force P in the displacement MyM,
and the elastic force F of the beam in the deflection of the beam.

Also, A(P) = P(H + 8pgy), A(F) = %8,2,“1,(, as for the beam Al;, =
0, Alfin = Gmax- Substituting these expressions, we obtain

P(H + 6max) — %6‘rzrlax = 0.

When the weight on the beam is in equilibrium it is balanced by elastic force.

Consequently, P = c{;, and the last equation can be written in the form
Shax = 26max0se — 285 H = 0.

Solving this quadratic equation, and taking into account that according to the

conditions of the problem 6,,,,, > 0, we find

6max - 5St + 65?1: + ZH(SSt‘

Problem 26. A load of weight P attached to a string of length [ is displaced
through an angle a from the vertical to a position M, and released from rest (Fig. 55).
Determine the tension in the thread when the load is in its lowest position M;.

Solution. Draw the load in the position for which the tension in the string has to
be found, i.e., in position M;. Acting on the load is its weight P and the reaction of

the thread T. Draw the inward normal M;n and write Eq. (1.2), taking into account
2

thata = a, = % and in the present case p = [. We have:
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muv? n
l )

muv?

=T—PorT=P+

where v; is the velocity of the load at position M;. To
determine v;, we make use of Eq. (5.36"):

mv{ mv§

) 2 A(MoMl)'

On the section MyM; only force P does any work.

Therefore, A* = Ph = PI(1 — cos ). c\‘ .
As vy = 0, substituting the expression developed == "1

for the work, we obtain mvZ = 2PI(1 — cos a), and P
finally A
T = P(3 — 2cos a). Fig. 55
In the special case, when the initial angle of deflection is 90°, the tension in the
string when it is in vertical position will be 3P, i.e., treble the weight of the load. The
result shows that dynamic reactions can differ considerably from static reactions.

Problem 27. A grooved track makes two circular arcs AB and BD of radius R in
a vertical plane; the tangent BE through their
point of conjugation is horizontal (Fig. 56).

Neglecting friction, determine the height h
from BE at which a heavy ball should be placed
on the track so that it would shoot out of the
track at point M; lying at the same distance h
below BE.

Solution. The ball will leave the track at a
point M; such that its pressure on the track (or
the reaction N of the track) is zero.
Consequently, our problem is reduced to the
determination of N. Draw the ball at M;. Acting
on it are the force of gravity P and the reaction
of the track N. Writing Eq. (5.36") for the

projections on the inward normal M;n , we have

muv?

T=Pcos<p—N.

Since at the point of departure N = 0, and taking into account that R cos ¢ =
KC = R — h, for determining 4 we obtain equation

mv? = P(R — h).
The value of mv? can be found from the theorem of the change in kinetic
energy. As vy = 0, Eq. (5.36") gives

mu?

— a

2 (MoM1)*
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The only force that does work is P, and A(P) = P2h. Consequently, mv? =
4Ph . Substituting this expression of mvZ, we obtain 4h = R — h, whence h = 0.2R.

Problem 28. A load M is attached to a string of length [ (Fig. 57). What is the
least initial velocity v, perpendicular to the string that should be imparted to the load
for it to describe a complete circle?

Solution. The load will describe a complete circle if nowhere along its path
(except, possibly, point M’) will the tension in the string become zero, i.e., if the
string remains taut. If on the other hand, at any point M; where v; # 0 the tension
becomes zero, the string will no longer constrain the load, which will continue to
move as a free body.

To solve the problem we must determine the tension 7'
in the string at any point M defined by angle ¢ and then
require that T > 0 for any angle ¢ # 180°.

Acting on the load at point M are its weight P and the
tension of the thread T. Writing Eq. (1.2) for the
projections on the inward normal Mn, we obtain

mu?
l
where v is the velocity of the load at point M. To determine
v we apply the theorem of the change in kinetic energy:
mv?  mug

M."

=T—Pcosoy ,

_ a

2 2 A(MoMl)'
In our case A(y p,y = —Ph =—PI(1 - cos¢), and

consequently mv? = mvé — 2PI1(1 — cos ¢). Fig. 57
Substituting this expression of mv? and solving for T,
we obtain

_p(%_
T = P(gl 2+ 3cos<p).
The least value of T'is at ¢ = 180°:
_p(¥_
T... =P (gl 5).
The condition for T never to become zero (except, possibly, at point M') is that
Thin = 0. Hence,

2
%25 or vy =4/5gl.

Thus, the least initial velocity at which the load will describe a complete circle is

given by the equation
Vo min = +/ 591

Let us assume that the load is attached not to a thread but to a rigid light
(weightless) rod of length /. In this case (since, unlike a thread, a rod can work both
in tension and in compression) the load will describe a complete circle if the velocity
does not become zero anywhere (except, possibly, at point M’). Applying Eq. (5.36")
for the displacement MyM' and assuming v = 0 at point M’, we obtain
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—muvé

= —mg?2l.
Hence vy min = +/49L.

Problem 29. Find the kinetic energy of a uniform cylindrical wheel of mass M
rolling without slipping, if the velocity of its centre is
Uc-

Solution. The wheel is in plane motion. By Eq.
(5.24),

1 1

T = EMug + E]C“’Z'
As the body is an uniform cylinder, we have

J. = 0.5 MR?, where R is the radius of the wheel. On

. the other hand, since point B is the instantaneous centre
Fig. 58 of zero velocity of the wheel (Fig. 58), v, = wBC =

wR, whence w = v;/R.
Substituting these expressions, we find

1 1 vZ 3
_ 2 2 7C _ 2
T—EMUC +ZMR —RZ—ZMUC.

Problem 30. When body 4 in Fig. 59 translates with a velocity u, body B moves
in the slots of body 4 with a velocity v. If angle ¢ is known, determine the kinetic
energy of body B.

Solution. The absolute motion of body B is a translation with a velocity v, =

u + v. Then
1

T = EMvé = %M(u2 + v?% 4+ 2uv cos a).
Uiy A characteristic mistake in problems of
4 v Yz this type is to regard the kinetic energy of the
B body as the sum of the energies of the
. M relative and transport motions:

_ _lyp2 a2

%/F/;/%?//zfmf/f/:;f r= Trel T Ttr o 2 My t 2 Mu !
Fig. 59 and thus, it will be noticed, the component

Muv cos a drops out of the solution.

Thus, in the most general case of relative motion, the total kinetic energy of a
body does not equal the sum of the kinetic energies of its relative and transport
motions.

Problem 31. A mechanism consists of a part which is translated with a velocity
U, and a rod 4B of length / and mass M hinged at 4 (Fig. 60). The rod rotates about
axis A with an angular velocity w. Determine the kinetic energy of the rod if angle ¢
1s given.
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Solution. The rod performs plane motion, and by Eq. (5.24)
T =~MvZ +-Jcw?

The velocity of point C is compounded of the
velocities U and v,., where in magnitude v, = w é
Consequently, vZ = u? + v2 + 2uv, cos ¢.

The angular velocity of the rod about C is the

same as about 4, as w does not depend on the
location of the pole. Taking into account that

12 N .
Fio. 60 Jc = —1\/112 and substituting all these expressions, we
g.
obtain

1 2 2 12 1 3r12,.2
T=—M(u +w —+uwlcos<p)+—le =
2 4 24

= %Mu2 +§Ml2a)2 +%leu cos @.

Problem 32. A rod AB of length [ is hinged as shown at point A (Fig. 61).
Neglecting friction, determine the minimum velocity w, that must be imparted to the
rod so that it would swing into a horizontal
configuration.

Solution. The given and required quantities
include wy, w; =0, and the displacement of the
system as defined by angle B,AB;.Therefore, the
problem is best solved by applying Eq. (5.39):

T, — Ty = Y A%.

Denoting the weight of the rod by P, compute

all the quantities in equation. From Egs. (5.23) and

2
taking into account that /4, = %, we find
1 1P
Since in the final configuration the velocity of
the rod is zero, T; = 0. The work is done only by force P, and A® = —Ph, = —Pé.

Substituting these values, we obtain

1P l
@2 =—P—,
6g 0 2
39

whence wy = e

Problem 33. Two pulleys A and B are connected by a belt (Fig. 62). When the
motor is switched off, pulley 4 of radius R, has an angular velocity w,. The total
weight of the pulleys is P, and of the belt p. A brake shoe is applied to pulley 4 with
a force Q to stop the rotation; the coefficient of friction of the shoe on the pulley is f.
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Neglecting friction in the axles and considering the pulleys to be homogeneous discs,
determine how many revolutions pulley 4 will make before stopping.

Solution. We shall use Eq. (5.39) to determine the required number of
revolutions N:

T, — Ty, = X A%.

From the conditions of the
problem T; =0, and T, =Ty +
Ty + T,.Taking into account that
the initial velocities of all the
points of the belt v,y = woR =
w,T, where wg and 7 are the initial
angular velocity and the radius of pulley B, we find:

1/P 1/P 1P
T, =—<—AR2> w3, Tg =E<£r2> Wy =—?BR2(03,

Fig. 62

The last equation follows from the fact that all the points of the belt move with
the same speed. Finally, as P, + P = P, we obtain

_P+2p 5
= 0

2

T, wy-

Now compute the work done by the forces. In this case, the work done by
gravity is zero, as the centers of gravity of the pulleys and the belt do not change their
position during the motion. The force of friction Fr, = f@Q, and the work done by it is
found from Eq. (5.32):

Apr = =(fQR)9; = —fQR - 21N.
Substituting all the found values, we obtain finally

_ (P +2p)Rwj
- 8mgfQ

Problem 34. A cart is drawn with a constant force Q = 160 N up an inclined
plane making an angle @« = 30° with the horizontal (Fig. 63). The platform of the
cart weighs P =180 N, and each of its uniform wheels weighs p = 20 N.
Determine: 1) the linear velocity v, of the cart, when it has travelled a distance
[ = 4m,ifvy, = 0; 2) the acceleration of the cart. The wheels roll without slipping.
Neglect the rolling friction.

Solution. 1) Let us use Eq. (5.39) to determine v;:

Tl_TO ZZAi.
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In our case T,=0 and T,=
Toiatform + 4Twheer- The cart is in

translatory motion, and the kinetic energy
of a uniform rolling wheel was calculated
in Problem 29. Thus,

1P <3p 5

Work is done by force Q and the force
of gravity P, = P + 4p. The work done
by the frictional forces preventing slippage
and by the normal reactions 1s zero. Making the necessary computations, we find

A(Q) =Ql;, A(P,)=—({P +4p)h, = —(P + 4p)lsina.

Fig. 63

Substituting these expressions, we obtain

% (P + 6p)v? = [Q — (P + 4p) sina]l,

whence

= 2.8 m/sec.

_[29l[Q — (P + 4p) sina]
1= P+ 6p

2) To determine the acceleration a, let us consider the quantities v; and [ as
variables. Then, differentiating through with respect to time, we have

1 dv . dl
E(P + 6p)va =[Q — (P + 4p) sina] =

dl dv Co
But == U and - a and, eliminating v, we have

Q— (P+4p)sina
a =

P 1 6p g = 0.98 m/sec?.

Problem 35. One end of a string passing over a pulley O (Fig. 64) is wound on a
cylinder of radius R and weight P, attached to the other end is a load D of weight Q.
If veog = 0, determine the velocity v, of the centre C of the cylinder after it has
travelled a distance s, and the acceleration a. of the centre. The coefficient of rolling
friction of the cylinder is %, the radius of gyration of the cylinder with respect to its
axis is 0. Neglect the mass of the string and the pulley

Solution. 1) We use Eq. (5.39) to determine the velocity v:
T —T, =) A}.
Inourcase Ty = 0 and T = Ty, + Tp. From Egs. (4.7), (5.22), and (5.24),
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= 19,2 =122 1(22) 2
TD—ZgUD, Tcyl_ZgUC-I_Z( Q)(U
As point B is the instantaneous centre

of zero velocity,

— Y
W =75 and vp =v, = 2v.

Consequently,

2
T=o-|40+P(1+5)|02
The forces doing work are Q and the
couple (N, P). As wvp=2vthe
displacement of load D is h =2s, and
A(Q) = Q - 2s. The work done by the forces

opposing the rolling can be found from Eq.
(5.34),as N = P = const. Then,

Y AS = 2Qs — %PS.
Substituting the found expressions, we obtain
1 \2 = (20 -k
40 +P(1+5)|vE = (20-%P)s

whence

29(2QR — kP)Rs
Y¢ = |2QRZ + P(RZ + 0?)
2) As in the preceding problem, to determine a, differentiate both sides of the
last equation with respect to time. Taking into account that % = v., we finally obtain
(2QR — kP)R
TR + PR+ 00) Y

Problem 36. Referring to Fig. 65, a spiral spring is attached to gear / of radius r
and weight P and to crank OC of length [ and weight Q on which the gear is
mounted. Gear / rolls on a fixed gear 2 of radius R = [ —r. The moment of the
spring M,, = ca, where a is the angle of rotation of gear / with respect to the crank.
Neglecting friction, determine the period of vibration of the crank if it is disturbed
from its position of equilibrium. The mechanism works in a horizontal plane.

Solution. We shall define the position of the crank by the angle ¢ measured
from its equilibrium position. To exclude the unknown reaction of axis C from the
computation, consider gear / and the crank as a single system and develop the
differential equation of its motion from Eq. (5.38).
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First, compute the kinetic energy T of the system in terms of the angular velocity
w. of the crank (as we are developing the
law of motion of the crank). We have:

1
T =T, + Tgear = _]Ocrwczr +
1P 2 24

2 g ]Cgear gear:

Considering the crank as a
homogeneous rod and the gear as a
uniform disc, and taking into account that
the point of contact is the instantaneous
centre of zero velocity of gear /, we have

Joor = 10,2 Ji — 1P .2

Ocr_3g ’ Cgear_zg ,
Uc l

Ve = Werl,  Wgear = - = 7 %cr

Note again that Eq. (5.24) which is
used to compute Tg.q., contains the
absolute angular velocity of the gear, not its relative velocity of rotation with respect
to the crank. Substituting all the determined quantities, we finally obtain

T = %(ZQ +9P) 2wk,

Now let us compute the elemental work. In this case no external forces do any
work, therefore, dA® = 0. The elemental work done by the elastic force of the spring
(an internal force) in turning the gear through an angle a about the crank is dA' =
—Mg,da = —cada (the minus sign indicates that the moment is directed opposite the
direction through which the gear is turned). As we are seeking the law of motion of
the crank, let us express angle a in terms of ¢. As Rp = ra,

a_o _lLt JENC.;
R—T,a—r(panddA Qdo.

Writing now the equation dT = dA!, we have
a2
é (2Q + 9P) 2w,y - dwgy = —Cu(pdgo

r2
g o d d da?
Dividing through by dt and taking into account that d—f = wr and :t” = d—t(zp,
we finally obtain the differential equation of motion of the system in the form
e 2
Tl k“p =0,

where
2 6gc(l-1)?
T (2Q+9P)1272
This equation is a differential equation of harmonic motion. When moved from
its equilibrium position the crank will perform simple harmonic motion the period of
which will be

lr 2Q+9P
k l -r 6gc
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Problem 37. A wheel of radius R and weight P rotates on its axis O with an
angular velocity w, (Fig. 66). A brake shoe is applied to the wheel at some instant
with a force Q. The coefficient of friction of the shoe on the wheel is f. Neglecting
friction in the axle and the weight of the spokes, determine in how many seconds the
wheel will stop.

Solution. Taking into account Eqgs. (5.18), (5.20) and considering the moment
positive in the direction of the rotation, we have

dw
]0 E = _er;
as the force of friction Fr. = fQ. From this,
integrating, we obtain

]0(1) = —fQTt + Cl'
According to the initial conditions, at t =0,
W = Wy, consequently C; = Jow,, and finally
w = Wy — fﬂt.
Jo
At t=1t;, when the wheel stops, w =0.

Substituting this expression and taking into account

that for the rim (a ring) J, = STZ’ we obtain

__Jowo _ Prwg
fer  feg’
If we want to determine the number of revolutions of the wheel until it stops, it
1s more convenient to apply the theorem of the change in kinetic energy.

tq

Problem 38. A vertical cylindrical rotor whose moment of
inertia with respect to its axis is J, (Fig. 67) is made to revolve by
an applied torque M,;. Determine how the angular velocity w of
the rotor will change during the motion if wy =0 and the
moment of the resisting force of the air is proportional to w, i.e.,
Myes = pw.

Solution. The differential equation of the rotation of the rotor
has the form (assuming the moments in the direction of rotation to
be positive)

dw
]ZE = M, — pw.

Separating the variables and assuming £ = 5, we have

whence, integrating, we find
In(M; — uyw) = —nt + InC.

As,att =0, w = 0, then C = M;, and
M

or
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Mi—puw —
t =e nt

My
and finally we obtain
w = %(1 —e M),
The angular velocity of the rotor increases with time and tends towards the

L M
limiting value a;;,,, = f

Problem 39. A uniform circular cylinder rolls down an inclined plane without
slipping (Fig. 68). Neglecting rolling friction, determine the acceleration of the centre
of the cylinder and the limiting impending slip.

Solution. Let us introduce the following
notations: a for the angle of inclination of the
surface, P for the weight of the cylinder, R for
its radius, and F for the limiting friction of
impending slip. Let us also direct the x axis
along the inclined plane and the y axis
perpendicular to it.

As the centre of mass of the cylinder does
not move parallel to the y axis, ac, = 0, and the

sum of the projections of all the forces on the y Fig. 68
axis 1s also zero. Thus, N = P cos a.

Take into account that a., = a.. Neglecting rolling friction and taking the
direction of rotation of the cylinder as the positive direction of the moment of force,
we find

Ma. = Psina—F, J.&=FR.

These equations contain three unknown quantities /., € and F (we cannot
consider F = fN here, because this equality is valid only when the point of contact
slides on the surface; when there is no sliding it is possible for F < fN. We obtain an
additional relationship between the unknown quantities if we take into account that in
pure rolling v, = wR, whence, differentiating, we have a, = ¢R. For uniform
cylinder J. = 0,5MR?, then the second of equations takes the form

~Mag =F.
Substituting this expression of F into the first of equations, we obtain a, =
2 .
sgsina. 1
Now we find F = §P sina.

This is the friction force that must act on the rolling cylinder if it is not to slip. It
was pointed out before that F = fN. Conslequently, pure rolling takes place when
§P sina < fPcosa or f > %tana.
If the coefficient of friction is less than this, force F cannot attain the obtained

value, and the cylinder will slip. In this case v, and w are not related by the equality
v, = wR (the point of contact is not the instantaneous centre of zero velocity), but
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now F has a limiting value, i.e., fN = fP cos «, and equations take the form
1P
—a., = P(sina — , =——R%c¢=fPR ,
gac (sina — f cosa) 23 € =fPRcosa
whence

a. = g(sina—fcosa), €= %cos a.

In this case the centre of the cylinder moves with acceleration a., while the
cylinder itself rotates with an angular acceleration ¢.

Problem 40. Solve the previous problem taking into account the resistance to
rolling, assuming the coefficient of rolling friction to be k.

Solution. In order to give an example of another method of computation, let us
find a, with the help of the theorem of the change in kinetic energy, i.e., the equation
dT = dA°®.

In our case,
3 2
T = Z M Ve.
Only the force P and the resisting moment perform any work. The work done by

forces F and N in rolling is zero. Then, taking into account Eq. (5.33), we obtain (see
Fig. 68, but now with force N shifted by the value k in the direction of the motion):

k k
dA® = Psina -ds; — ENdSC =P (sin & — oS a) dSc.
Substituting the determined quantities and dividing through by dt, we have
3P dv, p ( _ k )dsc
ngc T sina — pcosa | — =

The last multiplier is equal to v, and we finally obtain

= 50(sina—geosa)
ac =3 g|sina—pcosa)
At k = 0 this formula gives the result of the previous problem.

The frictional force can now be found from the equation Ma, = Psina — F,

which does not change its form.

Problem 41. A uniform cylinder of weight P and radius r starts rolling from rest
without slipping from a point on a cylindrical surface of radius R defined by angle

0o (Fig.69).

Determine: 1) The pressure of the cylinder on the surface for any angle ¢; 2)
The law of motion of the cylinder when angle ¢, 1s small. Neglect rolling friction.

Solution. 1) Acting on the cylinder in any position is force P, the normal
reaction N, and the frictional force F, without which rolling is impossible. The path
of the centre C is known: a circle of radius R — 7. To determine N we make use of
equations (5.5). Directing the normal Cr inwards to the path and projecting all forces

on this normal, we obtain
2

M-=Z5 =N — P cos g.

R-r1
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The quantity v, in this equation can be found from the theorem of the
change in kinetic energy:
T —T, = A}.
In our case Ty,=0 and
T = ZMUE (see Problem 29). Only

force P does any work,
consequently,

YA = Ph = P(R —
r)(Ccos @ — cos ¢y),

and equation takes the form

Fig. 69
%Mvg = P(R —1)(cos @ — cos @y).

Computing from here Mv¢ , we obtain finally

N = §(7 cos @ — 4cos @,).

If, for example, ¢, = 60° and ¢ = 0°, then N = gP.
2) To determine the law of motion of point C, differentiate equation with respect
to time. We obtain

3P dvc . do
——v—=—P(R—r1r)sinp—.
29 € at ( ) P at

In our case angle ¢ decreases when the cylinder moves, and Z—‘f < 0. Then
d de d d?
ve=R-1|2 =-R-1; 2= -R-1L
Substituting these expressions into the previous equation, we obtain finally
d? 2
% 4= g
dt?> 3R-—r

If angle ¢, is small, then, as ¢ < ¢,, we can assume that sin ¢ = ¢, and the
equation takes the form

sing = 0.

2

P 2 _
e Te=0
where
2 g
k? =— )
3R—r

Consequently (see §3.1), the centre of the cylinder performs simple harmonic
motion, its period being
21 3(R—r
r=2" o gn PED
k 29
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Problem 42. The body in Fig. 70 rests at B on a piezoelectric sensor of an
instrument for measuring pressure, and at A it is attached to a string AD.

When the system is in equilibrium, AC is horizontal and the pressure at B is
Q = Qp. Determine the moment of inertia Jo 4.
of the body with respect to an axis through the p
centre of mass C, if at the instant when the 3

4]

and the distance / is known. "6‘:’

L ——
i B
, te| |
Solution. 1) In the equilibrium t K =
position Q,l = P (Il — a), whence
P—Q, P > B
: X

P
2) When the string is severed, the body Fig. 70
begins plane motion. Its displacement in the
initial time increment can be neglected. Then Egs. (5.6) and (5.19), which are valid
only for this initial time interval, will take the form
Mac, =P = Qy, ac, = 0, Jcge = Qqa.
As ac, = 0, point C starts moving vertically down and point B slides

£ ]

string is severed the pressure at B becomes Q, &

a =

horizontally (assuming the friction in the support to be very small). Erecting
perpendiculars to the directions of these displacements, we find that the instantaneous
centre of zero velocity is at point K. Consequently, v = wa. Assuming a = const.
for the elementary time interval, we obtain, after differentiating, a, = ae. Then the
first of equations gives

p
—as =P —Q,.
g

Determining ¢ from here, we obtain finally
Qla p Ql 2
c= = — a-.
€ gP—0

Problem 43. The weight of a motor car together with its wheels is P, the weight
of each wheel is p, and their radii are r (Fig. 71). Acting on the rear (driving) wheels
1s a turning moment M;. The car starts from rest and is subjected to the resistance of
the air, which is proportional to the square of the translational velocity: R= uv?. The
' _ ) frictional moment acting on the axle of
each wheel is Mg,.. Neglecting rolling
friction, determine 1) the maximum
velocity of the car; 2) the sliding friction
acting on the driving and driven wheels
during motion.

Solution. 1) To determine the
maximum velocity, write the equation of
motion from Eq. (5.38):

ﬁ_v
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dT = dA° + dA".

The kinetic energy of the car is equal to the energy of the body plus the energy
of the wheels. Taking into account that P is the weight of the whole car and v, =
wr, and denoting the radius of gyration of each wheel by the symbol g we obtain

T—lg 2+4<1 2)—1 P+4 ) 2
—ngc 2]00) _2g Prz Uc.

Of all the external forces, only the resistance of the air does work, as we have
neglected rolling resistance, and in this case the work done by the frictional forces F;
and F, of the wheels on the road is zero. Therefore,

dA® = —uvédse.
The work done by the internal forces (the torque and the friction in the axes) is

. ds
dAl = (M, — 4M,)dop = (M, — 4M;,.) TC

Substituting all these expressions and dividing through by dt we obtain

1 QZ dvc 1 dSC
5(“4”72) ve gy = 7 (Mo =AMy = prve) T

. . ds
from which, cancelling out v, = d—tc, we find

e* g
<P + 4p r_2> ac == (M, — 4My,. — prv).

When the velocity reaches its limiting value, the acceleration a; becomes zero.
Therefore v3™ can be found from the equation

M, — 4My, — prvé=o0,

vélm _ Mt - 4Mfr.
} ur

2) To determine the frictional forces acting on each wheel, we deduce the
equations of the rotation of the wheels about their axes. For the driving wheels,
taking into account that the frictional force F4 acting on each of them is directed
forward, we obtain

whence

ZSQZE = M, — 2Mg, — 2F;r.

Since in rolling a. = er, we obtain finally
0.5M; — My, 0%p
B r r2g
The frictional force F, acting on each of the driven wheels is directed
backwards. Therefore, for the driven wheels we have

Fy

p
EQZS = F,r — Mgy,
whence
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6. THE PRINCIPLES OF DYNAMICS

6.1. D’Alembert’s Principle for a Particle and a System

Consider a particle M moving along a given fixed curve or surface (Fig. 72). The
resultant of all the active forces applied to the particle is denoted by the symbol F¢. If
the action of the constraint is replaced by its reaction N, the particle can be
considered as a free one moving under the action of forces F* and N. Let us see what
force F' should be added to the forces F* and N to balance them. If the resultant of
the forces F* and N is R, then, obviously, the required
force F* = —R.

Let us express force F' in terms of the acceleration
of the moving particle. As, according to the
fundamental law of dynamics, R = ma, F L= —ma.

The force F', equal in magnitude to the product of
the mass of the particle and its acceleration and
Fig. 72 directed oppositely to the acceleration, is called the
inertia force of the particle.
Thus, if to the forces F® and N is added the inertia force F!, the forces will be
balanced, and we will have

F*+ N + F = 0. (6.1)

This equation states D'Alembert's principle for a particle: if at any given
moment to the active forces and the reactions of the constraints acting on a particle is
added the inertia force, the resultant force system will be in equilibrium and all the
equations of statics will apply to it.

D'Alembert’s principle provides a method of solving problems of dynamics by
developing equations of motion in the form of equations of equilibrium.

In applying D'Alembert's principle it should always be remembered that actually
only forces F* and N are acting on a particle and that the particle is in motion. The
inertia force does not act on a moving particle and the concept is introduced for the
sole purpose of developing equations of dynamics with the help of the simpler
methods of statics.

D'Alembert's Principle for a System. Consider a system of n particles. Let us
select any particle of mass my and denote the resultants of all the external and internal
forces applied to it by the symbols F&¢** and Fi*. If we add to these forces the inertia

force Ft. = —my,a, then according to D'Alembert's principle for a single particle the
force system FE*t Fi* | F! will be in equilibrium, and consequently,

F&t + F" + Ft = 0.
Reasoning similarly for all the particles of the system, we arrive at the following
result, which expresses D'Alembert's principle for a system: if at any moment of time
to the effective external and internal forces acting on every particle of a system are
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added the respective inertia forces, the resultant force system will be in equilibrium
and all the equations of statics will apply to it.

We know from statics that the geometrical sum of balanced forces and the sum
of their moments with respect to any centre O are zero; we know, further, from the
principle of solidification, that this holds good not only for forces acting on a rigid
body, but for any deformable system. Thus, according to D'Alembert's principle, we
must have

Y(FP¥* + Fi** + F;) =0,
Z[mo(FEF) + mo(Fi) + mo(F)] = 0.
Let us introduce the following notation:
R' =Y Fi,Mjy = L mq(Fy).

The quantities R'and M} are respectively the principal vector of the inertia
forces and their principal moment with respect to a centre 0. Taking into account that
the sum of the internal forces and the sum of their moments are each zero we obtain

Y F&t + RY = 0,Y my(F&*t) + M}, = 0. (6.2)

Use of Egs. (6.2), which follow from D'Alembert's principle, simplifies the
process of problem solution because the equations do not contain the internal forces.
Actually Egs. (6.2) are equivalent to the equations expressing the theorems of the
change in the momentum and the total angular momentum of a system, differing from
them only in form.

6.2. The Principal Vector and the Principal Moment of the Inertia Forces of
a Rigid Body

It follows from the Statics that a system of inertia forces applied to a rigid body
can be replaced by a single force equal to R* and applied at the centre 0, and a couple
of moment M. The principal vector of a system, it will be recalled, does not depend

on the centre of reduction and can be computed at once. As Fi = —mya,, then
taking into account §5.3, we will have:
R' = —Ymya, = —Ma,. (6.3)

Thus, the principal vector of the inertia forces of a moving body is equal to the
product of the mass of the body and the acceleration of its centre of mass, and is
opposite in direction to the acceleration.

Let us determine the principal moment of the
inertia forces for particular types of motion.

1. Translational Motion. In this case a body has
no rotation about its centre of mass C, from which we
conclude that Y m.(F§**) = 0, and Eq. (6.2) gives

v =0.

Thus, in translational motion, the inertia forces
of a rigid body can be reduced to a single resultant R*
through the centre of mass of the body.

y

Fig. 73
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2. Plane Motion. Let a body have a plane of symmetry, and let it be moving
parallel to the plane. By virtue of symmetry, the principal vector and the resultant
couple of inertia forces lie, together with the centre of mass C, in that plane.

Therefore, placing the centre of reduction in point C, we obtain from Eq. (6.2)
ME = =Y m (F&). On the other hand (see § 5.9, 5.10), ¥ m (F&*) = J . We
conclude from this that

ME = —J.e. (6.4)

Thus, in such motion a system of inertia forces can be reduced to a resultant
force R* (Eq. (6.3)) applied at the centre of mass C (Fig. 73) and a couple in the
plane of symmetry of the body whose moment is given by Eq. (6.4). The minus sign
shows that the moment M{ is in the opposite direction of the angular acceleration of
the body.

3. Rotation about an Axis through the Centre of Mass. Let a body have a plane
of symmetry, and let the axis of rotation Cz be normal to the plane through the centre
of mass. This case will thus be a particular case of the previous motion. But here
a. = 0, and consequently, R* = 0.

Thus, in this case a system of inertia forces can be reduced to a couple in the
plane of symmetry of the body of moment

M} = —Jce.

In applying Egs. (6.3) and (6.4) to problem solutions, the magnitudes of the

respective quantities are computed and the directions are shown in a diagram.

6.3. Virtual Displacements of a System. Degrees of Freedom

In determining the equilibrium conditions of a system by the methods of so-
called graphical statics we had to consider the equilibrium of every body separately,
replacing the action of all applied constraints by the unknown reaction forces. When
the number of bodies in a system is large, this method becomes cumbersome,
involving the solution of a large number of equations with many unknown quantities.

Now we shall make use of a number of kinematical and dynamical concepts to
investigate a more general method for the solution of problems of statics, which
makes it possible to determine at once, the equilibrium conditions for any mechanical
system. The basic difference between this method and the methods of geometrical
statics is that the action of constraints is taken into account not by introducing the
reaction forces but by investigating the
possible displacements of a system if its
equilibrium  were  disturbed. These
displacements are known in mechanics by
the name of virtual displacements.

Virtual displacements of the particles
of a system must satisfy two conditions: 1)
they must be infinitesimal, since if a
displacement is finite the system will
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occupy a new configuration in which the equilibrium conditions may be different; 2)
they must be consistent with the constraints of the system, as otherwise we should
change the character of the mechanical system under consideration. For instance, in
the crankshaft mechanism in Fig. 74, a displacement of the points of the crank OA
into configuration OA; cannot considered as a virtual displacement, as the
equilibrium conditions under the action of forces P and Q will be have changed. At
the same time, even an infinitesimal displacement of point B of the connecting rod
along BD would not be a virtual displacement: it would have been possible if the
slides at B were replaced by a rocker, i.e., if it were a different mechanism.

Thus, we shall define as a virtual displacement of a system the sum total of any
arbitrary infinitesimal displacements of the particles of the system consistent with all
the constraints acting on the system at the given instant. We shall denote the virtual
displacement of any point by an elementary vector s in the direction of the
displacement.

In the most general case, the particles and bodies of a system may have a
number of different virtual displacements (not considering s and — §s as being
different). For every system, however, depending on the type of constraints, we can
specify a certain number of independent virtual displacements such that any other
virtual displacements will be obtained as their geometrical sum. For example, a bead
lying on a horizontal plane can move in many directions on the plane. Nevertheless,
any virtual displacement 6s may be produced as the sum of two displacements §s;
and §s, along two mutual perpendicular horizontal axes (6s = §s; + J5,).

The number of possible mutually independent displacements of a system is
called the number of degrees of freedom of that system. Thus, a bead on a plane
(regarded as a particle) has two degrees of freedom. A crankshaft mechanism,
evidently, has one degree of freedom. A free particle has three degrees of freedom
(three independent displacements along mutually perpendicular axes). A free rigid
body has six degrees of freedom (three translational displacements along orthogonal
axes and three rotations about those axes).

Ideal Constraints. If a particle has for a constraint a smooth surface, the reaction
N of the constraint is normal to the surface and the elementary work done by the
force N in any virtual displacement of the particle is zero. It was shown that if we
neglect rolling friction, the sum of the work done by the reaction forces N and Fy, in
any virtual displacement of a rolling body is also zero. The internal forces of any
non-deformable system also possess this property.

Let us introduce the following notation: the elementary work done by an active
force F® in any virtual displacement s — the virtual work—shall be denoted by the
symbol §A% (§A* = F%§s cos a, where a is the angle between the directions of the
force and the displacement), and the virtual work done by the reaction N of a
constraint, by the symbol §AY. Then for all the constraints considered here,

Y S5AY = 0. (6.5)

Constraints, in which the sum of the virtual work produced by all the reaction
forces in any virtual displacement of a system is zero, are called ideal constraints.
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We have seen that to such constraints belong all frictionless constraints along
which a body slides and all rough constraints when a body rolls along them,
neglecting rolling friction.

6.4. The Principle of Virtual Work

Consider a system of material particles in equilibrium under the action of the
applied forces and constraints, assuming all the constraints imposed on the system to
be ideal. Let us take an arbitrary particle belonging to the system and denote the
resultant of all the applied active forces (both external and internal) by the symbol

%, and the resultant of all the reactions of the constraints (also external and internal)
by the symbol Nj,. Then, since this particle is in equilibrium together with the system,
F;+ N, =0o0r N, = —F}.

Consequently, in any virtual displacement of the particle the virtual work §A%
and §AY done by the forces F§ and N, are equal in magnitude and opposite in sense
and therefore vanish, i.e., we have:

S5A% + 5AY = 0.

Reasoning in the same way we obtain similar equations for all the particles of a

system, adding which we obtain
Y5AL + Y 5AY = 0.

But from the property of ideal constraints (6.5), the second summation is zero,

whence

Y. 0A% =0, (6.6)
or

Y.(Fgbsycosay) =0, (6.7)

We have thus proved that if a mechanical system with ideal constraints is in
equilibrium, the active forces applied to it satisfy the condition (6.6). The reverse is
also true, i.e., if the active forces satisfy the condition (6.6), the system is in
equilibrium. From this follows the principle of virtual work: the necessary and
sufficient conditions for the equilibrium of a system subjected to ideal constraints is
that the total virtual work done by all the active forces is equal to zero for any and all
virtual displacements consistent with the constraints. Mathematically the necessary
and sufficient condition for the equilibrium of any mechanical system is expressed by
Eq. (6.6).

In analytical form this condition can be expressed as follows:

Y (F&6xy + F&, 6y, + F&6z;) = 0. (6.8)

In Eq. (6.8) dxi, 8y, 6z are the projections of the virtual displacements §sj, of
point on the coordinate axes. They are equal to the infinitesimal increments to the
position coordinates of the point in its displacement and are computed in the same
way as the differentials of coordinates.

The principle of virtual work provides in general form the equilibrium
conditions of any mechanical system, whereas the methods of geometrical statics
require the consideration of the equilibrium of every body of the system separately.
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Furthermore, application of the principle of virtual work requires that only the active
forces be considered and makes it possible to ignore all the unknown reactions of
constraints, when the constraints are ideal.

6.5. The General Equation of Dynamics

The principle of virtual work gives a general method for solving problems of
statics. On the other hand, D'Alembert's principle makes it possible to employ the
methods of statics in solving dynamical problems. It seems obvious that by
combining both these principles we can develop a general method for the solution of
problems of dynamics.

Consider a system of material particles subjected to ideal constraints. If we add
to all the particles subjected to active forces Fj and the reaction forces Nj the
corresponding inertia forces F. = —ma,, then by D'Alembert's principle the
resulting force system will be in equilibrium. If we now apply the principle of virtual
work, we obtain

Y SAL + Y SAL + Y SAN = 0.
But from Eq. (6.5) the last summation is zero, and we finally obtain
Y 6AL + Y 5AL = 0. (6.9)

Equation (6.9) represents the general equation of dynamics. It states that in a
moving system with ideal constraints the total virtual work done by all the active
forces and all the inertia forces in any virtual displacement is zero at any instant.

In analytical form Eq. (6.9) gives

Y|(F& + Fix)ox + (F, + Fiy )6y + (F& + Fi, )82z, | = 0. (6.10)

Equation (6.9) and (6.10) make it possible to develop the equations of motion
for any mechanical system.

If a system consists of a number of rigid bodies, the relevant equations can be
developed if to the active forces applied to each body are added a force equal to the
principal vector of the inertia forces applied at any center, and a couple of moment
equal to the principal moment of the inertia forces with respect to that center. Then
the principle of virtual work can be used.

6.6. Solution of Problems

Problem 44. When a train accelerates, a
load attached to a string hanging
from the ceiling of a carriage deflects by an
angle a from the vertical (Fig. 75).Determine
the acceleration of the carriage.

Solution. Acting on the load is the force
of gravity P and the reaction of the thread T.
Applying D'Alembert's principle, add to these Fig. 75
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forces the inertia force F directed opposite to the acceleration a of the carriage. In
. - P ; .
magnitude F' =ma = Pl The forces P, T and F' are balanced. Constructing a

closed force triangle and taking into account that ¢ = «, we find
: P
F'=Ptana or ;4= Ptana.

Hence, the acceleration of the carriage is a = g tan a.

Problem 45. Neglecting the mass of all the rotating parts of the centrifugal-type
governor in Fig. 76 as compared with the mass of the balls B and D, determine the
angle « defining the position of relative -
equilibrium of rod AB of length [ if the governor A|¢
rotates with a constant angular velocity w.

Solution. In order to determine the position
of relative equilibrium (with respect to a set of
axes rotating together with the governor) add,
according to Eq. (6.1), to the force of gravity P
and the reaction N acting on ball B the transport
inertia force Fi. As w const, a, =ap} =
BCw? = lw? sina, whence F}. = mlw?sina.
Writing the equilibrium equation for the 0
projections on axis Bt, which is perpendicular to Fig. 76
AB, we have

—Psina + Ff, cosa = 0.

Hence, substituting F. for its expression and eliminating sin a (not considering
the solution for ¢ = 0), we obtain

—g +lw?cosa =0,

whence

cosax = L
lw?

As cosa <1, equilibium at a # 0 is possible only A

V
when w? > % B
. : - \M’ Fi.
Problem 46. The semicircle BCD of radius R in Fig. - - -

77 rotates about a vertical axis with a constant angular /?h
velocity w. A ring M starts slipping along it without O}

X
friction from a point B slightly off the axis of rotation. C
Determine the relative velocity vy of the ring at point C if (¥
its initial velocity vy = 0. @

Solution. The velocity v;, can be determined from the
theorem of the change in kinetic energy. In order to write D
Eq. (5.36), which expresses the theorem, compute the o
work done by forces P and Fi., where F}, = mw?x (the Fig. 77
84
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work done by the reaction N is zero). Assuming approximately xg = 0, we obtain

© R "
Ao (Fh) = J Fl. , dx = mw? f xdx = EmeRZ'
(B) 0

Furthermore, A(gc)(P) = PR. Substituting these expressions into Eq. (5.36) and
taking into account that vy, = 0, we have
mvi
2

1
= mR <g + §w2R>,

w?R
v = ZgR 1+E .

Problem 47.Two weights P; and P, are connected by a thread and move along a
horizontal plane under the action of a force Q applied to the first weight (Fig. 78a).
The coefficient of friction of the weights on the plane is f. Determine the
accelerations of the weights and the tension in the thread.

whence

Solution. Denote all the ‘ N, 1 . N

external forces acting on the Fz Fi Q F; T
- - — - —— —

system and add to them the - |
. . . f, RN o el o i A A
inertia forces of the weights. As "F; 5 F, 9 F- /I p
both weights are translated with z 1 i
the same acceleration a, then in a 5
magnitude Fig. 78

. P -
Fl =2a and F} =-2a.
g g

The forces are directed as shown. Then frictional forces are
Fy =[Py, F, = fP,.
According to D’Alembert’s principle, the force system must be in equilibrium.

Writing the equilibrium equation in terms of the projections on horizontal axis, we
find

1
Q—f(P1+P2)—§(P1+P2)a=O,

whence

Q
¢= <P1+P2 f>g'
Q
Pi+P,

In our force system the required tension in the thread is an internal force. To
determine it we divide the system and apply D’Alembert’s principle to one of the
weight, say the second (Fig. 78b). Acting on it is force P, the normal reaction N,
the frictional force F,, and tension T in the thread. Add to them the inertia force F4*
and write the equilibrium in terms of the projection on horizontal axis. We have

Evidently, the weights will move if f <
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T — fP B zo
— ——a=0.
g

Substituting the earlier found value of a, we obtain finally

r= %
P, + P,

It is interesting to note that the tension in the thread does not depend on the
friction and, given the same total weight of the system, it decreases with the reduction
of the second (rear) weight. That is why, for example, in making up a goods train it is
better to place the heavier vans closer to the locomotive.

Problem 48. Solve problem 22 with the help of D’ Alembert’s principle and also
determine the tension in the thread.

Solution.1) Considering the drum and the load as a single system, we add to the
bodies of the system inertia forces (Fig. 79). Load A is in translational motion and for

it R =§aA =§rs. The inertia forces of the

drum can be reduced to a couple of moment M
equal in magnitude to Jy& = SQZS and directed

opposite the rotation. Writing now for all the
forces the equilibrium conditions in the form

Y. my(F;) = 0, we obtain l 0
b

|M{| + R'r — @r =0, a 4|3

or

P

—QZS+QT2€—QT=0, \L

g 9

from which we find Fig. 79

_ Qgr
~ Po?+Qr?

2) Considering now load A separately and adding to the active forces Q and T
the inertia force RY, we obtain from the equilibrium conditions that the tension in the

thread
. re PQo?
T=Q-R= (1——>=—.
¢ ¢ g/ Po*+Qr?

&

Problem 49. Determine the forces acting on a spinning flywheel, assuming its
mass to be distributed along the rim. The weight of the flywheel is P, its radius r and
its angular velocity w.

Solution. The required force is an internal one. In order to determine it, cut the
rim into two and apply D'Alembert's principle to one portion (Fig. 80). We denote the
action of the separated half by two equal forces F' equal in magnitude to the required
force F. For each element of the rim, the inertia force (a centrifugal force) is directed
along the radius. These concurrent forces intersecting at O have a resultant equal to
the principal vector R® of the inertia forces directed, by virtue of symmetry, along
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axis Ox. By Eq. (6.3), Rt = ma, = mx,w?, where m is the mass of half the rim and
X 1s the coordinate of the mass centre of the

¥

Fig. 80

length [ and weight P is hinged at A

. . : 2r
semicircular arc, which is equal to —

Therefore,

Prw?

P .
m=—,R"= .
2g ng

The equilibrium conditions give 2F = R,

and finally

Prw?

2ng
This formula can be used to determine the

limiting angular velocity beyond which a
flywheel made of a specific material may be
torn apart.

Problem 50. A homogencous rod AB of
to a vertical shaft rotating with an angular

velocity w (Fig. 81). Determine the tension T in the horizontal thread securing the rod

at an angle «a to the shatft.

Solution. Applying D'Alembert's principle, we add to the external forces
P,T,X, and Y, acting on the rod the inertia forces. For each element of the rod of

Fig. 81

Tlcos a — Rth

mass Am the centrifugal inertia force
is Amw?x, where x is the distance of the
element from the axis of rotation Ay. The
resultant of these parallel forces distributed
according to a linear law passes through the
centre of gravity of triangle ABE, i.e., at a

distance h = gl cos a from the Ax axis. As

this resultant is equal to the principal vector
of the inertia forces, then, by Eq. (6.3),

R' = ma, = mw?x; = sz 1sina
=mac = c= 5
(here x. is the coordinate of the centre of

gravity of the rod).
Writing now the statics equation
Y. my(F;) = 0, we obtain

—P=sina = 0.
Zsmoc

Substituting the values of R and h into this equation, we obtain finally

lw? 1
T=P —Sma+§tana .

39
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Problem 51. A homogeneous rod AB of mass M and length [ rotates about an

axis perpendicular to it with an angular velocity w and an angular acceleration &
(Fig. 82). Determine the stresses generated by the rotation in a cross section of the
rod at a distance x from the axis.

Solution. The required forces are internal. To determine them, cut the rod into

i
-« ¢ f"'&ff R:':
m""“-, D B .
2} )1 B
ﬁ ]
e X ——fe—— @ ——— R;
Fig. 82 Fig. 83

two and consider the motion of portion DB of length a = 1 — x (Fig. 83). The action
of the removed portion AD is replaced by a force applied at the centre D of the cross
section, which we shall represent by its components P and Q, and a couple of
moment M. The quantities P, Q and My, will specify the required stresses in section
D of the rod, i.e., the forces with which portions AD and DB act on one another. To
compute these quantities we use D'Alembert's principle. First let us find the principal
vector RY of the inertia forces of portion DB, and their principal moment M with
respect to the centre of mass C of the portion. The mass of portion DB and the
coordinate x, = AC of its centre of mass are

1—x 1+x
m = m X
Then, form Egs. (6.3), we find magnitude of vectors R: and R%:
. 12 — x?
|er| = mylac| = myxcle| = mlel ST
. 12 — x?
R: =mya., = mxcw? = mw? 5]
. 2
Furthermore, from Eq. (6.4), M = —]c¢. As in this case . = "E , then
| — o @=0°
|MC| =m-— le].

The forces R. and R% and the moment M¢ are directed as shown in the Fig.83.

Thus, all the inertia forces of portion DB of the rod are replaced by a force
R! applied at C, whose components are R and R% and a couple of moment M.
Writing now the equilibrium conditions }; Fy,, = 0, X Fyy, = 0, X mp (Fy) = 0 for
the active forces and the inertia forces applied to portion DB, we obtain

, : . a
RE—P=0;Q— Rl =0; Mp — |M{| - |R;|§= 0.
From this we find finally that acting at section D of the rod are 1) a tensile force
P = R}, and 2) a transverse force Q = |R§'|, and 3) a couple with a bending moment

i i@ _ mlel 3 2
Mp = |[ME| + |R,|§=1—21[(1—x) + 3+ x)(1 —x)?],
or finally
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mle|

Mp=——(U- x)2(21 + x).

The value of forces P, Q and the bending moment will be greatest at the cross
section x = 0.

Problem 52. Two equal bars of length [ and weight p each are welded at right
angles to a vertical shaft of length b at istance h from each other (Fig. 84). Determine
the dynamical pressures acting on the shaft if it
rotates with a constant angular velocity w.

Solution. The centrifugal inertia forces in
each rod are equal in magnitude:

Fi _ Fi — El (1)2
1= =779
and they make a couple which, apparently, is
balanced by the couple X%, XB2. The moments of
these couples are equal in magnitude.
Consequently, X?b = F}h, whence

Fin plh
xP = yD =1 w?2.
AT =TT oY
The couple is continuously in the Axz plane,
Fio. 84 which rotates with the body.

Problem 53. Find the relation between the moment M of the couple acting on the
crankshaft mechanism in Fig. 85 and
the pressure P on the piston when the
system is in equilibrium. The crank is
of length OA = r and the connecting
rod is of length AB = .

Solution. Equilibrium conditions
(6.6) give

M&p — Pésg =0 or Mwgpy =
Pvg,
since 0@ = wpudt and Osp =
vpdt.The relation between vp and
wo4 can be found by the methods of kinematics:

7 COS @ _
Vg = Woul (1 + >Sm Q.
JIZ2—12sin2¢

Referring to this result, we find

T COS @

M = PT<1 +m>sin<p.
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Problem 54. For the reduction gear (fig. 86), find the relation between the torque
M, applied to the driving shaft A and the resistance moment Mg applied to the driven
shaft B when both shafts are rotating uniformly.

The number of teeth in the gears is: z; = 120,z, =
40,z5 = 30,2z, = 50.

Solution. The relation between M, and My will be the
same in uniform rotation as in equilibrium. Therefore, from
Eq. (6.6) we have

My — MgSpp = 00r Mywy = Mgwg,
as 0, = wydt, and ¢y = wgdt. Hence, referring to the

kinematic methods, we find
Wpg 7173 Wpg Z12Z3
_=1+_, MA=_MB=(1+_)MB=28MB
Wy ZyZy Wy ZyZy

Problem 55. Find the relation between forces P and
Q in the hoisting mechanism in Fig. 87, whose parts are
housed in the box K, if it 1s known that in one revolution of
the crank handle AB = [ the screw D moves out by h.

Solution. From Eq. (6.6) we have

Plé@psg — Q6sp = 0.

Assuming that when the handle is rotated uniformly
the screw also moves up uniformly, we have

5(5% = 6% or 8¢5 = Z%SSD.

Substituting this expression for 6@, p into the

foregoing equation, we obtain

K B 2ml
Q = T P.

Note that this simple problem could just not be
Kz p77727777%  solved by the methods of geometrical statics as the parts of

P A the mechanism are unknown.
Fig. 87 Problem 56. Two beams are hinged together at C

and loaded as shown in Fig.88a. Neglecting the weight of the beams, determine the
pressure on support B.
Solution. Replace the support at B by a force Ng, which is equal in magnitude
to the required pressure (Fig. 88b). For a virtual displacement of the system Eq. (6.6)
gives
Ngdsg — Pdsg = 0.

The relation between §sg and §sy is found from the proportions
Ss5 _ Ssc. 8se _ Ssc

a I, b l,'
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whence

So. = bly 5
°E = al, °B’
and consequently
N — bl, p
B7al,

If we used the methods of
geometrical statics we would have to
consider the equilibrium of each beam
separately, introduce the reactions of
the other supports, and then eliminate
them from the obtained set of
equilibrium equations.

Problem 57. The epicycles gear train in Fig. 89 consists of a gear 1 of radius 1y,
an arm AB mounted on axle A independently of the gear, and a gear 2 of radius 7,
mounted on the arm at B as shown. Acting on the arm is a torque M, and acting on
the gears are resistance moments M; and M,, respectively. Determine the values of
M; and M, at which the mechanism is in equilibrium.

Solution. The mechanism has two degrees of freedom, since it has two possible
independent displacements: the rotation of the arm AB when gear 1 is at rest, and the
rotation of gear 1 when the arm i1s at rest. First consider a virtual displacement of the
system in which gear 1 remains at rest (Fig. 89a). For this displacement Eq. (6.6)
gives

M&@psp — Ma8¢, = 0.

But when gear 1 is at rest the contact point
of the gears will be the instantaneous centre of
zero velocity of gear 2, and consequently
Ug = w,Ty. At the same time,

Up = wyp(ry +17).

Hence w,ry = wyp(ry + 1) or S@,r, =

S@ap(r, + 1y), and we obtain

2 .

2:
rn+nr

Now consider a virtual displacement in
which the arm AB remains at rest (Fig. 89b). For
this displacement Eq. (6.6) gives

M;6¢91 — M,5¢, = 0.

But when the arm is at rest

1) w r T
_(pz ==2=2 and M1 =_1M2
¢4 w1 T2 T2
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Problem 58. Determine the relation between forces Q and P at which the press
in Fig. 90 is in equilibrium if angles a and § are known. Neglect the weight of the
rods.

Solution. To give an example of the analytical method of solution, let us take

equilibrium condition (6.8). Placing the origin

of a coordinate system in the fixed point 4 and

drawing the x and y axes as shown, we obtain
Q1x0%1 + Q2x6x; + P3,6y3 = 0,

since all the other projections of the forces

vanish.

To find 6xq4,0x,, 6y; compute the
coordinates x;,x,,y3 of the points of
application of the forces, expressing them in
terms of the angles a and f. Denoting the Fig. 90
length of each rod by a, we obtain

X;=acosa, x, =acosa+2acosf,y; =a(sinf + sina),

At o o s A Ao

differentiating ~ which, we find J0x; = —asinada, §x, = —a(sinada +
2sinBéB),0y; = a(cos fSf + cos ada).

Substituting these expressions and taking into account that Q,,, = Q, Q,, = —Q,
and P3,, = —P, we have

2Q sin 6 — P(cos 6 + cos ada) = 0.

To find the relation between da and 6 we make use of the fact that AB =
const. Therefore, 2a(cos a + cos ) = const. Differentiating this equation, we
obtain

sinf8

sinada + sinBé6f =0 and da = — op.

sina
Substituting the expression for da, we have
2Q sinff — P(cos B —cotasinf) =0,

__ 20
~ cotf —cota’
At an angle f very close to « the pressure P will be very large.

whence

Problem 59. A centrifugal-type governor consists of two balls A; and A, of
weight P each (Fig. 91). The slide C;C, weighs Q, the governor rotates about the
vertical axis with a uniform angular velocity w. Neglecting the weight of the rods,
determine angle a, if 0A; = OA, = l,and OB; = OB, = B;C; = B,(, = a.

Solution. Adding to the active forces P;, P, and Q5 the centrifugal inertia forces
F} and F} (the inertia force of the slide will, evidently, be zero), we write the general
equation of dynamics in the form (6.10). Computing the projections of all the forces
on the coordinate axes, we have
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P16x1 + Pzde - F]I:é‘yl + ledyz + Q36x3 = O
We also have

Q:=Q Py=P,=P; Fl=Fj= G

P P

=—a, = —w?lsing.
g g

The coordinates of the points of application
of the forces are

X1 =x,=lcosp, y,=—-y, =lsing, x3=
= 2acos .

Differentiating these expressions, we find

6x1, = 6x, = —=lsinpdp; 6y, =—-0y, Fig. 01
=lcos pbdp; O6x3 =—2asinpdp.

Substituting all these expressions, we obtain
P
(—ZPl sing +2 7 12w? sin @ cos ¢ — 2Qa sin qo) 5 =0,

whence we finally have
Pl + Qa
PlZw?
As cos @ < 1, the balls will move apart when

Pl + Qa
piz 7
Angle ¢ increases with w and tends to 90° when w — oo.

cosa = g

(1)2

Problem 60. In the hoist mechanism in Fig. 92, a torque M is applied to gear 2
of weight P, and radius of gyration g,. Determine, the acceleration of the lifted load
A of weight Q, neglecting the weight of the string and the friction in the axles. The
drum on which the string winds and the gear 1 attached to it have a total weight P;
and a radius of gyration g4.The radii of the gears are r; and r,, and of the drum .

Solution. Draw the active force Q and torque M (forces P, and P, do no work)
and add to them the inertia force FY of the load and the couples of moments M} and

M} to which the inertia forces of the rotating bodies are reduced. In magnitude these
quantities are
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Bi=a,  |Mi|-Lete,
|M£| = %Q% €2-
The directions of all the vectors
are shown in the Fig 92. Eq. (6.9) for a
virtual displacement of the system, we

obtain
—(Q + Fi)ésy — Misp,+(M —

M%)&PZ = 0.
Expressing all the displacements in
z terms of d¢,, we have
FA _ 5, W _ T
Q 6SA—T'6(,01, 5_<P2_0)_2_Z
Fig. 92 and 6, = :—;&pl.

Finally the equation of motion takes the form
P P T
1+a—“‘)r+—1 fe, + 203,27 —M2=0.
Q ( g g Q181 T 702820
Now express the quantities &; and &, in terms of the required acceleration ay

Taking into account that &; and &, are related in the same way as w; and w,, we
obtain

__aa _n _Tnay
S = &= "8 ="
T T r, r
And finally we have
T
r—lM—rQ
_ 2
a, = 02 0212 9
1 2l
rQ+=P; + P
Q P

Problem 61. One end of a thread is wound on a uniform cylinder of weight P;
(Fig. 93). The thread passes over a pulley O,
and its other end is attached to a load A of

i weight P, which slides on a horizontal

1R1 plane, the coefficient of friction being f.

\Mé Neglecting the mass of the pulley, and the

string, determine the acceleration of the load

- }5@ and of the centre C of the cylinder.

Solution. If motion starts from rest, the

Fig. 93 Y p centre of the cylinder C will move vertically,
1 and the system has two degrees of freedom

(the rotation of the cylinder with respect to the thread when the load is at rest

and the displacement of the load when the cylinder does not rotate).

o)

=l
f
'

-
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Add to the acting forces Py, P;, and Fp, the inertia forces of the cylinder

reduced to a principal vector R} and a couple of moment M¢, and the inertia force FY
of the load. In magnitude

Ac — ay

Ff=—a,R: =iac |ME| = Jce =ﬂr2
9 g 29 r

The last equality follows from the fact that, if point C of the cylinder has a
velocity v, and point B (together with the string) a velocity vg = vy, then the

. . — ac—a
angular velocity of the cylinder w = %, and, consequently, &= Cr 4,

Furthermore, for the cylinder J¢ = 0.5mr?, where r is the radius of the cylinder.

Now consider a virtual displacement s, of the system in which the cylinder
does not rotate and is translated together with the load. The couple of moment M.
does no work in this displacement and from Eq. (6.9) we obtain

(—Fr —Ff— R+ P;)8s, =0,

whence, as Fr. = fP,, we find

Py P,
Ea(;"‘gaA =P1_fP2.
Consider the other independent virtual displacement in which the load A remains

at rest while the cylinder turns about point B (which in this displacement is the
instantaneous centre of rotation) through angle 6¢. For this displacement, Eq. (6.9)
gives

(Pl — Ri)r&p —MiSp =0

Substituting the expressions for R and M:we obtain

3ac - aA == 2g
Solving equations simultaneously, we obtain the required accelerations
4 =P1—3fP2 4 =P1+(2_f)P2
A= P +3p, T T P+ 3P,
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7. LAGRANGIAN DYNAMICS

7.1. Generalized Coordinates, Velocities and Accelerations

As the problems in dynamics become more complex it, naturally, becomes
increasingly difficult to work out the solutions. This difficulty is associated not only
with the solution of the equations of motion, but with their formulation as well. In
fact, the derivation of the basic differential equations of motion in a form suitable for
a particular complicated problem may well be the most difficult part of the
investigation. A number of methods, more powerful than those hitherto considered in
this manual, have been developed for deriving the equations for these more involved
situations. Perhaps the most generally useful of these more advanced methods for
engineering problems is that of Lagrange, who has put the basic equations of motion
in such a form that the simplifying features of a particular problem can be utilized
most advantageously. In the present chapter we shall derive Lagrange's equations.

One of the principal advantages of Lagrange's method is that one uses for each
problem that coordinate system which most conveniently describes the motion. We
have already seen that the position of a particle can be described in a large number of
different ways, and we have found in the problems already discussed that the choice
of a proper coordinate system may introduce a considerable simplification into the
solution of a problem. In general, the requirement for a system of coordinates is that
the specification of the coordinates must locate completely the position of each part
of the system. This means that there must be one coordinate associated with each
degree of freedom of the system. More exactly, there must be at least one coordinate
associated with each degree of freedom. So called non-holonomic systems exist, for
which, because of the particular geometrical constraints involved, more coordinates
are required than there are degrees of freedom. Such systems are not often
encountered and will not be considered here. We shall restrict the following treatment
to systems whose coordinates are independent, in the sense that a change can be
given to any one of the coordinates without changing any of the other coordinates. By
the generalized coordinates (qq,qs,...qs) we shall mean a set of independent
coordinates, equal in number to the s degrees of freedom of the system. We use the
word "generalized" to emphasize the fact that such coordinates are not necessarily of
the type of the simple (x,y,z) or (r, 6, @) systems and to indicate that they are not
necessarily lengths or angles, but may be any quantity appropriate to the description
of the position of the system.

The (xy, Vi, 2;) coordinates of a point k are expressible in terms of the
generalized coordinates (g, g5, ... g5) by functional relations:

X = %k (q1, G2, -+ Gs),
Vi = Yk(q1, 925 - Gs), (7.1)

z = 2k (q1, Gz, -+, Gs)-
For example, if (g4, q,, q3) are the cylindrical coordinates of a point  (r, 6, @),
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the foregoing equations become:
X =r1rcosO, y=rsinf, z =z

We have supposed that the relation between the coordinate systems does not
involve time. In the more general treatment in which x = x(q4, q5, ... q5, t) analysis
can proceed along essentially the same lines. The equations of motion in generalized
coordinates for any particular system could always be obtained by writing the
equations first in an (x,y,z) system, and then transforming to the ¢'s by Egs.(7.1).
This procedure usually leads to involved algebraic manipulations, and it is better to
make the transformation in general terms and to write the equations of motion
directly in generalized coordinates.

Thus, the parameters of any dimensions (qq,q5,..qs) describing the
configuration of the system in space are called generalized coordinates. Their first
derivatives with respect to time (g, 45, ... 45) are called generalized velocities and the
second derivatives (4, G5, ... §) are said to be generalized accelerations.

7.2. Generalized Forces

Let theq;, for i = 1,s,be a set of generalized coordinates which uniquely
specifies the instantaneous position of some dynamical system which has s degrees of
freedom. Here, it is assumed that each of q; can vary independently. Since the
generalized  coordinates are independent, their elemental increments
(691,89, ...0q,) are also independent. Each of these quantities defines a virtual
displacement of the system. Let the system be under the action of the active
forces Fq,F,,...,F,. Since the radius-vector of any point is a function of their
coordinates r, = xii + y;j + z,k, one can write

T = 1(q1, Q2. - Gs)- (7.2)

We now calculate the virtual (elementary) work in terms of displacements of the
n particles assumed to make up the system and the forces Fq, F5, ..., F,, acting on
them. The virtual work is

Z5Aa = ;{1.:1 Fk . 51‘k. (73)
Now, since 1, = xii + yij + z k , we can write:
0
81y = Xioa5.-00; (74)
for k=1,n.
Substituting (7.4) into (7.3), one can obtain
d
26 Ak = Xik=1 Fr f=1an’:5CIi-
The above expression can be rearranged to give
26 A =Xi-10Q;:-0q; (7.5)
where
d
Qi = Xk=1Fy anl:- (7.6)

Here the Q; are called generalized forces. Note that generalized forces do not
necessarily have the dimensions of force. However, the product- Q;5q; must have the
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dimension of work. Thus, if particular g; is a lineal parameter, then the associated Q;
is a force. Conversely, if g; is an angle, then Q; is a torque.

Formula (7.5) represents the elementary work of the acting forces in terms of
generalized coordinates. This definition of the @Q; indicates the way in which they can
be determined in specific problems. To find Q;, the total work done by all of external
forces during an infinitesimal displacement &6q; of one of the coordinates is
calculated, and Q; is then obtained by dividing this total work by §g;.

Thus, the generalized forces are coefficients of the increments of the generalized
coordinates in the expression for the total elementary work of all forces applied to the
system. It is obvious that the number of generalized forces is equal to the number of
degrees of freedom.

If the forces acting on the system are conservative, their total elementary work
can be written A = —4Il, where I1 is a potential energy of the system which is a
function of the coordinates xy, yi, Zz;. But these coordinates are the functions of
generalized coordinates. Thus, I1 = I1(q4, q3, ---, qs). Calculating a total differential
of this function, one can obtain

64 = =811 = = |Z28q) + 22 8qy + -+ 5284,

Comparing this expression with equation (7.5) we have
ol _on oI

Q1 =—5-,0 Qs = —5~ (7.7)

9, 2 " 0qy’ " 9ds
Therefore, when the forces applied to the system are conservative, generalized
forces are the partial derivatives of the potential energy of the system with respect to
correspondent generalized coordinates taken with sign minus.

7.3. Conditions of Equilibrium in Terms of Generalized Coordinates

In accordance with principle of virtual works the necessary and sufficient
conditions for the equilibrium of a system subjected to ideal constraints is that the
total virtual work done by all the active forces is equal to zero for any and all virtual
displacements consistent with the constraints, soY.p_; 64, =0. In terms of
generalized coordinates this condition, taking into account equation (7.5), can be
written

i=1Qi-6q; = 0.

Since §¢;, as independent variables, can not be equal to 0, the generalized forces
Q; must disappear in an equilibrium position, i.e., Q; = 0, i=1,2,...,s

Upon solving the above equations with respect to s unknown generalized
coordinates q; one may always obtain all possible system’s equilibrium positions.

Hence, a holonomic system with perfect constraints is in its equilibrium only if
all generalized forces corresponding to generalized coordinates are equal to zero.

For conservative systems, taking into account Eq (7.7), we have

A0 f=-9f=0
aq,  9qz aqs '
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7.4. Lagrange’s Equations of Motion

Let us consider the general equation of dynamics:
Y 5A% + ¥ SAI =0, (7.8)

where §A¢ and §AY™ are virtual works of applied impressed forces and inertial forces
respectively.

By analogy with Eq.(7.5) one can write

| S 6AT = X5, QI 84,

where Q;™are generalized forces of inertia which can be defined as
in a7‘k

= Fk . (7.9)
Then from Eq.(7.8) we have for i= 1
- Q; + Qm = . (7.10)
Let us express Q;" in terms of kinetic energy T. Since Fi* = —m, a;=
=—my, d" Eq.(7.9 ) yields
dvy 0
—Q" = Thaa mue A 5k (7.11)
Notice that
dvy ark d ark 6rk
“dt aq; dq;  dt (vk aql) Ykt dt (aql) (7.12)
Further,
aT‘k _ d ary avk
(aql) 0q; ( ) 0q;’ (7.13)

Any position vector assoc1ated with holonomic system has the form of Eq.(7.2).
Since the generalized coordinates are themselves functions of time, the first
derivative of the position vector with respect to time is

. ory .
i = i 284, (7.14)
o= e o A4
where 1, = 4= )
Since all position vectors do not depend on g;, the partial derivative an’f do not
9 (9K _
depend on ¢; either. Hence, 3 ( aql) = 0.
Therefore, dlfferentlatlon of Eq. (7.14) with respect to g; yields
Otk _ Ok _ vk (7.15)

dq; 0q;  9q;

Making use of formulas (7.13) and (7.15), expression (7. 12) can be written
dvg ark d ( avk) avk (1 avk) 16_17,2(
dt 9q; dt Uk 0q; Uk aq; 29q; 20q;

Taking into account that mass is constant, the Eq. (7 11) yields

Q G ( n mkv,i)]_i( n mkvi)_i(ar) ar
~ atlag, \&k=1"" ag; \“k=1"5") = a4t \aq;,)  aq;

(7.16)

where T = Y4
Hence, from Eq.(7.10) we have finally
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4(my_or_g, (7.17)

de \ag; 9q;
where i=1,...,s.

Eqgs. (7.17) are called Lagrange’s equations. They represent the differential
equations of motion of a system in terms of generalized coordinates. It is obvious that
their number is equal to the number of degrees of freedom of a system.

If all impressed forces acting on a system are conservative, one can obtain

taking into account formulas (7.7)
d (T 9T , am _ d (d(T-I)) _ a(T-T) _
dat (6ql) aq; aq; =0or dt( aq; ) aq; o (718)

The last equation is valid since a potential energy II depends only on

generalized coordinates and does not depend on generalized velocities. Hence,
)1
%, 0.
It is helpful to introduce a function L, called the Lagrangian, which is defined
as the difference between the kinetic and potential energies of the dynamical system

under investigation: L=T7-I1. Then, from (7.18), we have

wGe)—sc=0. (7.19)

7.5. Solution of Problems

Problem 62. Resolve problem 61 by means of Lagrange’s equations.

Solution. Mechanical system has two
degrees of freedom (the rotation of the
cylinder with respect to the thread, when
the load A is at rest, and the displacement
of the load when the cylinder does not
rotate, fig. 94).

Let wus choose as generalized
coordinates displacement of bodies with
thread S, and angle of rotation of
cylinderop. Then we have two
independent virtual displacements s,
and J&¢@. Now consider a virtual
displacement §s, of the system in which the cylinder does not rotate and is translated
together with the load. The force P, does no work in this displacement. There are
forces Pq and Fpg, which produce work on elemental displacement §s,. It equals

§A = (—Fp + Py)8sy,
whence, as Fr. = P,f, we find generalized force corresponding to generalized
coordinate Sy,

Fig. 94

QSA =P, — fP,.
Consider the other independent virtual displacement in which the load A remains
at rest while the cylinder turns about point B (which in this displacement is the
instantaneous centre of rotation) through angle §¢. For this displacement there is
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only one force of the weight of the cylinder which produces work on elemental
displacement §¢. It equals
0A = P;8s. = Pyréo,
where 71is the radius of the cylinder. So we have found generalized force
corresponding to generalized coordinate ¢,
Qp = Pyr.

Now determine kinetic energy of a system. It equals T = T; + T,, where T; is a
kinetic energy of a cylinder and T, is kinetic energy of a load.

Cylinder is in a resultant motion which consists of the transport motion (this is a
motion of a tread with velocity v,) and relative motion (this is a motion of a cylinder
with respect to the thread, i.e., plane motion). Therefore,

Pivé  lcw?
Ty = + )
29 2
where v 1s absolute velocity of the center C, /. 1s a moment of inertia of cylinder
and w is its relative angular velocity since transport motion is a translational one).

From the problem 61 we have J. = 0,5m,7r?. Calculate v:

V=V, + Tw.

Taking into account that v, = 54 and w = ¢, we have

T, = Pi(Sa+79)? + P17”2<P2‘
2g 49
Load 4 is in translational motion, then
P,v3  P,s3
, = =

29 29

Thus,

Pi(84 +T9)? Pir2¢g?  P,$2
T = 1(Sa ®) 1 §0+2A

29 4g 29
Motion of the system considered is governed by Lagrange’s equations of the
following form:

d <6T) oT _
dt\ds,) ds, 4
d (6T> oT B
dt\d¢/) d¢p Cy-
Therefore,
T P (S4+79) N P,s, 0T Py (S84 +rd)r N Pirtg
0S4 g g’ 09 g 29’
aT _ dT _ 0
ds, 0

Hence, we have following Lagrange’s equations:
Py (84 +7§) + P25y = g(Py — fPy),
25,4 + 3rp = 2g.
But 54 is acceleration of the load 4, i.e., ay. At the same time it is a transport
acceleration of the cylinder. The product r¢p = re represents relative acceleration of
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the point C. Since relative and transport accelerations have the same sense, §, +
r¢ = a.. Then we obtain
Piac + Pyay = g(Py — fP,),

3ac —ay = 2g9.
This set of equations gives
a4, = P1—=3fP, — P1+(2-f)P;
A~ p+3p, I’ € P, +3P,

Problem 63. An uniform and thin bar 2 of mass m and length [ is hinged to link
1 which rotates with a constant angular speed w (Fig. 95). Derive the differential

equation of motion of link 2 by means of Lagrange’s equations. Neglect the mass of
the link /.

Solution. Assume that [ is the generalized
coordinate. Absolute angular velocity of the link 2
is a sum of the transport angular velocity of the
link / w and the relative velocity of the link 2
with respect to the link /(Fig. 96).

w, =w+ i, =kio+i,p.

Since

k; = j,sin + k, cosf3,
the absolute angular velocity of the link 2 is

Fig. 95

w, = i, + j,wsin B + kyw cos B.
Its components are
Woy = B, W2y = wSinf, w,, = w cosf.
The link 2 performs rotational motion about point
O. The moment of inertia of the link 2 about z axis is
zero. Hence, its total kinetic energy is

1 1 .
T = El(ng +wd)) = El(ﬁz + w?sin? B).

There is only one force of the weight of the link 2
which produces work on elemental displacement 6. It

Y2

equals 64 = —%mgl sin 6. Hence, generelized
force is Qp = —émgl sin .
Motion of the system considered is governed by

Lagrange’s equations of the following form:

d (dT\ 9T
2 (a) 35 = %
where Fig. 96

d (0T _1p G_T_ 2
E(ﬁ)_l'g’ aﬁ—lw sin f§ cos f5.

Then one can obtain
I — Iw?sin B cos B + %mgl sinf = 0.
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Since I = %ml2 the final form of equation of motion is

f — w?sin B cos B +%gsinﬁ’ = 0.
Problem 64. The bead 1 which can be considered as a particle of mass m, may

slides without any friction along the slide 2.
The slide 2 rotates with the constant angular
velocity w about the vertical axis Z (Fig. 97).
By means of Lagrange’s equations derive
equation of motion of the bead / and
determine all possible equilibrium positions.

Givenare: R =25cm, w = 10rad/s.

Solution. The angle a can be considered
as the generalized coordinate.

In Fig. 98 the inertial system of
coordinates is denoted by XYZ. System of
coordinates xyz is rigidly attached to the slide
and rotates with the angular velocity w about

| Z

\®|/
ml\

Fig. 97

wt

axis Z. This is a transport angular velocity of
the bead. The relative velocity of the bead is
its velocity along slide. Vector of the absolute
velocity of the bead / is
Vo =V + Vyp,

where v, = Ra, v, = Rw sina . Since
v, L v, v2 = @?R? + w?R?sin? a.

Hence,

mv,% 1 <212 2p2 i.2
T = - =5m(aR + w“R* sin” a).

By analogy with problem 63 Q, =
—mgR sin a. Lagrange’s equations may be
taken in the following form:

d (aT) oT 0
at \oa) da %
where
oT . d (dT ..
— — = mRZ%q, —(—,) = mR?d,
2B Jda dt \da
“| % aT .
- = mR?w? sin a cos a.
Fig. 98. Hence, these expressions yield equation

of motion

mR?& — mw?R?sina cosa + mgR sina = 0.

Since for the static equilibrium position @ = & = 0, then, according to the last

equation, we have

w?Rsina cosa = gsina.

Hence, the possible equilibrium positions are
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_ _ 9.81
1.9 — (cos~t = +66.89°,
w2R 102.0.25

Problem 65. Fig. 99 shows an arm of a robot operating in the horizontal plane.
Motion of the arm is controlled by two actuators installed at joints 0; and 0,. The
actuators produce moments M; and M,. Derive differential equations of motion of the
robot’s arm.

Given are:

I, — moment of inertia of the link / about a vertical axis through its centre of
gravity G;.

I, — moment of inertia of the link 2 about a vertical axis through its centre of
gravity G,.

m;, m, — masses of the link / and 2 respectively.

ai, az, I, I, — dimensions shown in Fig. 99.

ap =0, ap =m, ag = cos

Fig. 99 Fig. 100
Solution. The system considered has 2 degrees of freedom and the angles a; and
a, may be considered as the generalized coordinates. Hence, Lagrange’s equations
for this case can be adopted in the following form:

d (0T oT
2(oe) ~ () = @
d (0T oT
2 o) ~ () = @2
The kinetic energy T is a sum of kinetic energy of the link 1 and kinetic energy
of the link 2.

Iy = %(11 +miai)af, T,= %(mzvgz + 1d3),
where v, is the absolute velocity of the centre of gravity G,.
The position vector of centre of gravity G, is (Fig. 100)
e, = i(lycosa; +a,cosay) + j(l; sina; + a, sina,).
Its first derivative yields the velocity of the centre of gravity G,
Vg = i(—lia; sina; — a,a, sina,) + j(lda, cosay + a,a, cos ay).
Squared magnitude of the velocity is
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vé, = (i, sina; — azdz sina,)? + (Iyd&, cos a; + a,d, cos a,)?

= 12a% + a3d3 + 2l,a,d, ¢, cos(a; — ay).
Upon introducing this expression, one can obtain
1
TZ - Emz(l%d% + a%d% + 2l1a2d1d2 COS(al - az)) + Elzd%.
Hence, the total kinetic energy is
T=T,+T, = —(11 +myai)ai + = mz(llcz1 + a3a3 + 2lya,d4a, cos(a; —

az)) + 3 12 @z,
Since the robot operates in the horizontal plane, the only non-conservative
forces acting on the system are the driving moments.
The virtual work produced by these forces is 64 = (M; + M,)da; — My6a,.
Therefore, the generalized forces are
Q1= M; + M,, Q; = —M,.

Then
aT Co aT Co.
Py —2mylia,aq ¢, sin(a; — ay), Py 2mylia,aqa, sin(ay — ay),
1 2
aT

: : : oT :
- = (b + myad)d; + my(lfds+layd; cos(ay — ay)),5— = my(ad, +
1 2

liaya, cos(a; — ay)) + La,.
Therefore, the final form of equations of motion is
[(I; + mya?) + myl2]d; + 2mylia,a,d, sin(a; — ay) = My + My,
(I, + mya3) — 2mylya,a,d, sin( a; — ay)=—M,.

Problem 66. The angle a locates the angular position of the stationary slide 4

Fig. 101
with respect to the vertical plane XY of the inertial system of coordinates XYZ (Fig.
101). The massless link 1 is free to move along this slide and is supported by the
spring 3 of stiffness k. The length of the uncompressed spring is /. The link 2 is
hinged to the link 1 at the point 4. The distance c locates the position of the centre of
gravity G of the link 2. The link 2 possesses mass m and its moment of inertia about
axis through the centre of gravity G is /.

Produce the equations of motion of the system and the expressions for the
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generalized coordinates corresponding to the possible equilibrium positions of the
system.

Solution. This system possesses two degrees of freedom and q; and g, stand for
the generalized independent coordinates. In fact g, is an angle of rotation of the link
2 about point A. Since the link / is massless, the total kinetic energy of the system is
associated with the link 2 only. The link 2 performs plane motion, hence its kinetic
energy 1s

T =-mvg + 143,
where v stands for the absolute linear velocity of the centre of gravity G of the link
2 and g, is its absolute angular velocity.
The velocity v; can be produced by differentiation of the following absolute
position vector
re =1(q cosa +asina + ccosq,) +J(q; sina —acosa + csinq,).
Hence, the wanted velocity is
v; =1 = I1(q; cosa — c q,sing,) + J(§, sina + ¢ ¢,cos q,).
Then
vE = (4, cosa — ¢ §,5in q;)? + (¢, sina + cq, sin q,)2.
Introduction of these expressions yields the wanted kinetic energy function
T = %m((ql cos a — ¢ §,sinq;)? + (¢; sina + ¢ g,cos q,)?) + %qu =
%mqlz + mcq, g, sin(a — q,) + %mczqg + %qu.
The elemental work of the force of weight and elastic force of the spring is
6A =mgcosadq, —kq;6q, —mgcsing, §q,.
Therefore, the generalized forces are
Q; =mgcosa — kq,,Q, = —mgcsingq,.
Since the system is of two degrees of freedom and the generalized coordinates

are q; and qg,, one can obtain the following Lagrange’s equations:
d (9T oT d (9T oT

2 53) ~ 50 = @ 5 53,) 30, = @

Taking into account the formulas obtained above, we have the equations of
motion

mé, + mcsin(a — q;) §, — mccos(a — q,)42 —mgcosa + kg, = 0,
(I + mc?)g, + mesin(a — q3) §; + mgc sing, = 0.

The above set of equations allows the equilibrium position of the system to be

determined. If ¢, and ¢, are constant,
mg cosa — kg, =0,
mgcsing, = 0.
mg cosa

Hence, q; = pa— q; =

Problem 67. The circular slide of radius R is free to rotate about the horizontal
axis Y of the inertial system of coordinates XYZ (Fig. 102). Its moment of inertia
about that axis is /. The body 2, which can be considered as a particle of mass m, can
move along the slide without friction. System of coordinates xyz, shown in Fig. 102,
1s rigidly attached to the slide /.
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By means of Lagrange equations derive the differential equations of motion of
Z  the system along the generalized
coordinates a and /.

Solution. The system considered
has 2 degrees of freedom and the
angles @ and f may be considered as
the generalized coordinates. Hence,
Lagrange’s equations for this case can
be adopted in the following form:

d (3T oT
g(g) B (g) = Qo
2 (3) ~ (55) = @
The kinetic energy T is a sum of
kinetic energy of the body (particle)

Fig. 102
and kinetic energy of the slide T =T; + T,, where T; is a kinetic energy of the
particle and T, is a kinetic energy of the slide.

mv?

Tl =
2
where v, is a reletive velocity and v, is a transport velocity of the particle.
Relative motion is a motion of the particle along the slide. Hence, v, = Rf.
Transport motion is a motion of the slide. Therefore, v, = Ra sin 5. But v, L v,

. 2,22 .2 o
sovZ = R?*(a?sin? B+ B?) and T; = mR*(« s;n B+B ).

, where v is an absolute velocity of a particle. Then v, = v, + vV,

Dy . . 1&?
Slide is in rotational motion, then T, = %

The total kinetic energy is
mR?(&?sin® B+p%) | 1a?

T = +—.
2 2

By derivation one can obtain
Z—Z = la+mR?a sin? B, Z—; = mR?p, Z—Z =0, Z—; = mR?d? sin B cos B.

Now determine the generalized forces. Considering elemental work done by a

gravity force in virtual displacement §a, we have
6A, = mgR sinasinf da.
The elemental work done by a gravity force in virtual displacement 60 is
8Ap = —mgR cos a cos 5.
Thus, Q,=mgR sin a sin f and Qg = —mgR cos a cos 5.
Finally we have the differential equations of motion of the system
(I + mR?sin? B)& + 2mR?af sin B cos f — mgR sina sin = 0,
mR?f — mR?a? sin 8 cos B + mgR cos a cos f = 0.
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8. PROBLEMS FOR SELF-STUDY TRAINING

8.1. Integration of Differential Equations of the Particle Motion under the
Action of Constant Forces

A body moves from the point 4 along a plane 4B of length / during 7 s. (Fig.
103). Its initial velocity is v4. Coefficient of sliding friction is f. At the point B the
body leaves a plane with a velocity v and then falls with a velocity v, at a point C
moving in the air 7's.

Determine specified quantities. Consider the body as a material particle
neglecting the resistance of the air.

Variants 1—5 (Fig. 103, scheme 1).

Variant 1. Given are: a=30%v,=0;f=02;,l=10m; f =
60°. Determine 7 and h.

Variant 2. Given are: a=15%v,=2m/s; f=02; h = 4m; f =
45°. Determine [ and equation of the path along BC.

Variant 3. Given are: a=30%v,=25m/s; f# 0;l=8m;d=
10 m; B = 60°. Determine vy and .

Variant 4. Given are: v, = 0; 7= 2s;1l =98m; §=60°%f=0.
Determine o and T.

Variant 5. Given are: a= 30%v,=0;1l= 98m; t= 3s; f=45°
Determine f and vg.

Variants 6—10 (Fig. 103, scheme 2).

Variant 6. Given are: a=20°% f=0,1,1t=0,2s; h=40m; = 30°.
Determine / and v,..

Variant 7. Given are: a =15% f=0,1; vy = 16m/s; l =5m;  =45°.
Determine vg and T.

Variant 8. Given are: vy =21m/s; f =0; t =0,3s; vg = 20m/c; f = 60°.
Determine a and d.

Variant 9. Given are:a = 15% t=0,3s; f =0,1; h = 30V2m; B = 45°,
Determine vg and v,.

Variant 10. Given are: a =15°% f =0; vy =12m/s; d =50m; [ = 60°.
Determine 7 and equation of the path along BC.

Variants 11—15 (Fig. 103, scheme 3, f = 0, M is a mass of a body).

Variant 11, Given are: a=30%P #0;[=40m; vy =0; vg =4,5m/
s; d = 3 m. Determine T and h.

Variant 12. Given are: ¢ = 30°% P =0; l =40m; vg =4,5m/s; h=15m.
Determine v, and d.

Variant 13. Given are: a =305 M =400kg; vy =0; 1=20s;d=
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3m; h = 1,5 m. Determine P and L.

Variant 14. Given are: a =30% M =400kg; P=22kN; vy, =0; |l =
40 m; d = 5 m. Determine vy and v,.

Variant 15. Given are: « =30% v, =0; P=2kN; l=50m; h=2m; d =
4 m. Determine T and M.

Variants 16—20 (Fig. 103, scheme 4).

Variant 16. Given are: « =30% vy =1m/s; l=3m; f =0,2; d =2,5m.
Determine h and T.

Variant 17. Given are: a =45%1l=6m; vg =2v,;, 7= 1s; h=6m.
Determine d and f.

Variant 18. Given are: a=30%1=2m; vy, =0; f=0,1;d=3m.
Determine h and 7.

Variant 19. Given are: « = 15°% =3 m; vy =3m/s;f # 0, t=15s; d =
2 m. Determine v, and h.

Variant 20. Given are: a=45%v,=0;f=03;d=2m; h=4m.
Determine [ and 7.

Variants 21—25 (Fig. 103, scheme 5).

Variant 21. Given are: « =30°% f = 0,1; vy, = 1m/s;t=15s; h=10m.
Determine vz and d.

Variant 22. Given are: v, = 0; « =45°% | =10m; t = 2 5. Determine f and
equation of the path along BC.

Variant 23. Given are: f=0;,v,=0;1=981m; t=2s; h=20m.
Determine o and T.

Variant 24. Given are: vy =0; a=30% f=02;l=10m; d =12m.
Determine 7 and h.

Variant 25. Given are: v,=0;, a=30%f=02;l=6m; h=45m.
Determine 7 and v,.

Variants 26—30 (Fig. 103, scheme 6).

Variant 26. Given are: v, = 7m/s; f = 0,2; |l = 8 m; h = 20 m. Determine d
and v..

Variant 27. Given are: vy =4m/s; f =0,1; t =25s; d = 2 m. Determine vg
and h.

Variant 28. Given are: vg = 3m/s; f =0,3; [ = 3m; h =5 m. Determine v,
and T.

Variant 29. Given are: vy =3m/s; vg=1m/s; | =2,5m;h =20m.
Determine f and d.

Variant 30. Given are: f = 0,25; l =4m; d =3 m; h = 5m. Determine v,
and .
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Example

In order to protect ditches from the slide-rocks there is a ledge DC in the railway

rocky cuttings. Taking into account the
possibility of the motion of a stone from the
highest point 4 and assuming its initial velocity ¥
to be v, = 0, determine the minimal width of N

B

-

the ledge b and falling velocity v.. The stone
moves along a slope 4B of length [ during 7 s.
The angle a is given. Coefficient of sliding Ug
friction f is constant. Neglect the resistance of -
the air. x,

Given are: vy =0;, a=60%1= ‘F r
4m;t=1s; f#+0;h=5m; f =75° A *,{;DE

Determine b and v, = 0.

Solution. Consider the motion of a stone
along AB. Assuming the stone as a material Fig. 104
particle, show all acting forces: weight G,

G
u_

A

Y

normal reaction N and a force of sliding friction F. Work out deferential equation of

motion of the stone on section AB (Fig. 104):

mx; = Y. Xi1; mx; = Gsina — F.
The force of friction is
F=fN,
where N = G cos a.
Therefore,
mx; = Gsina — fGcosa or X; = gsina — fgcosa.
Integrating this deferential equation twice, we obtain
X1 = g(sina — fcosa)t + Cy;
g(sina — f cosa)
2

X, = t2 + Cyt + C,.

In order to determine constants of integration, make use of initial conditions:

att =0, x;0 =0and x;, = 0"
Compose equations by integrating, for t = 0:
X10 = C1; X0 = Gy,
Determine constants:
c;=0, C,=0.
Then

g(sina — f cosa) .2
2
For instant 7, when the stone leaves rectilinear section,
le = UB; x1 = l,

X1 = g(sina — fcosa)t; x; =

1.e.,
vg = g(sina — f cos a)t;
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g(sina — fcosa)| ,
[ = T

> ,
whence
21
Vg = ?,
1.e.,
vy =22 =8Mm/.

1
Consider the motion of a stone on curvilinear section BC. There is only a force
of weight G acting on a stone here. Derive deferential equations of its motion:
mx =0; my = G.
Initial conditions of the problem: at t = 0,
Xg = O, Vo = O,
X9 = vgcosa; Y, = vg Sina.
Integrating these deferential equations twice, we obtain
x=0C3 y = gt + Cy
x = C3t + C; y = gt?/2 + Cut + Cq.
Write these equations for ¢t = O:
Xo = C3; Yo = Cy;
xo = Cs; yo = Ce.
Whence,
C; = vgcosa; C, = vgsina;
C;=0; Cq=0.
Equations for the projections of velocity of a stone are
X =vgcosa; y = gt + vp sing,
and equations of its motion have the following form:
X = vgtcosa; y = gt?/2 + vgt sina.

By excluding parameter ¢ from equations of motion one can derive equation of
the path of the stone. Determine ¢ from the first equation and then substitute its value
into the second one. We have

y = gx?/(2vicos?a) + xtga.

AtpointC,y=h=5m, x =d.

Determining d from equation of the path we have

d1 = 2,11 m, dz = _7,75 m.

Since equation of the path is a branch of parabola with positive abscissas of its
points, then d = 2,11 m. The minimal width CD is

b =d—-—ED = d-—h/tg75° orb = 0,77 m.
By making use of equation of motion x = vgt cosa, we determine the time 7 of
motion of the stone from the point B to the point C:
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T =0,53s.

Velocity of the stone at the point C may be determined by calculating their
projections on coordinate axes

X =vgcosa; y = gt + vg sina.

For instant, when the stone is at the point C, we have t = T = 0,53 s and

Finally we have

ve = +/(vgcosa)? + (gT + v sina)?, orve = 12,8 m/s.
* The constants of integration C; — C; can be determined by considering initial

conditions for the first and the second sections of the motion. Nevertheless,
sometimes it is easier to use boundary conditions for different instants.

8.2. Application of the Theorem of the Change in Kinetic Energy to Study
of the Motion of a System

Mechanical system starts moving from the state of rest under the action of the
forces of weight; initial state of the system is shown in Figs. 106-108. Determine
acceleration of a body / and its velocity when it has travelled a distance s. Take into
account a force of sliding friction (variants 1-3, 5, 6, 8-12, 17—23, 28-30) and the
rolling friction of a body 3 (variants 2, 4, 6-9, 11, 13-15, 20, 21, 24, 27, 29). Neglect
other forces of resistance and masses of the strings. Assume the strings as
inextensible. Make use of the following designations: m,, m,, ms, m, are the masses
of the bodies I, 2, 3, 4; R,, 1y, R3, 35— radii of respective circumferences; i,, i3—
radii of gyration of the bodies 2 and 3 with respect to axes perpendicular to the plane
of figure trough their centers of gravity; a, f— angles of inclination of planes to

horizon; f—coefticient of sliding friction; 6 — coefficient of rolling friction.

The necessary data are represented in tab.1. Assume pulleys and blocks for
which the radii of gyration are not given as homogeneous disks. Inclined strings are
parallel to respective inclined planes.

Example. Given are:myisa mass of the weight I, m, = 2my, my =
my, my = 0,5my, mg = 20my, R, = R; = 12cm,r, = 0,5R,, 13 =
0,75R3, Rs = 20cm, AB = l= 4R3, i, = 8cm, i3,= 10cm,a = 30° f =

0,1, 6 = 0,2cm, s = 0,06 m.

Neglect rolling friction of a body 2, masses of the link BC5 and the slide B.

Connecting rod 4 is a thin homogeneous rod. Roller 5 is a homogeneous solid
cylinder. Initial state of a system is shown in Fig. 105a.

Determine v; —velocity of the weight in a final position and its acceleration.

Solution. Apply the theorem of the change in kinetic energy of a system:

T—To =Y AF + X 4],
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a)

D)

Fig. 105

where T andT, are
kinetic energy of a
system in a final and
initial position; Y A¥
is a sum of the work
done by all the
external forces acting
on the system during
its displacement from
initial to final position;
ZA{ isa sum of the
work done by all the
internal forces in that
displacement.

For systems in
question which consist
of solids connected by
inextensible thread
and rods

YAl =o0.

Since the system
in initial position is in
a state of rest, Ty = 0.

Hence, we
have T = Y, A%,

In order to define kinetic energy T and the sum of the work done by all the
external forces, depict the system in a final position (Fig. 1055,c¢).

Write down relations between velocities and displacements of the points of a
system. Express all velocities and displacements through velocity and displacement

of the weight /.

Velocity of the center of mass of the roller 2 equals velocity of the weight

I:UCZ = 7.

The instantaneous center of zero velocity of the roller 2 is located at point P,. Its

angular velocity is

v v
(1)2 = cz or (,()2 = _1
CoP; Ry

Velocity of the point D is

VUp = (,Uszz, i.e,
V1 (Ry+r
vD — 1( 2 2).

R

It is obvious that vy = vj. But vy = w313, hence,

v
w373 = R_l(Rz + 13).

Since R, = 2r,, then
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3v
whence w4 = Er_l'
3

Taking into account that

__dgs ds
37 ac T ar
we have
a 3 ds
s = 22 or dp; = —ds
dt  2rzdt
By integrating one can obtain
_3s
P3 = 21y

When the weight / travels a distance s = 0,06 m, the pulley 3 turns trough the
angle @5:
_3s _ 3006r
T 27 2 0,09

@3

At this angle of rotation of the pulley 3 on 180° its point A, moves to the final
location A4, and connecting rod 4 moves from initial location AyByto the final
location AB.

The roller 5 moves to the left at the angle of rotation of the pulley 3 equal to g,

and it moves to the right at the angle of rotation equal to . Hence, the final location
of the roller 5 coincides with its initial location.

Thus, the final location of all the parts of a system is defined completely (Fig.
105b).

Determine kinetic energy of a system in the final position as a sum of kinetic
energy of the bodies /, 2, 3, 4, 5:

T - T1+T2+T3+T4+T5.
Kinetic energy of the load /, which is in translational motion, is

m1‘7%

T, = .

Kinetic energy of the roller 2, which is in a plane motion, is

2 2

myv Jo2ew3
TZ _ 2YC2 I 3
2 2

)

where J,¢ i1s a moment of inertia of the roller 2 with respect to its longitudinal central

axis Cyg:
_ )
]25 _— mzlz.
Then we find
2 :2 .2
myv myl 1 l
T, =22+ 22vi=-m, (1 +—22)v12.
2 2RZ 2 RZ

Kinetic energy of the body 3, which rotates around the axis Ox, is
1
Iy = 5] 3203,
where [, 1s a moment of inertia of the block 3 with respect to the axis Ox:
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Jax = mgis.
Then for the body 3 we obtain

-2 2 -2
msl 3v 9 L
2 2713 8 T3

Kinetic energy of the connecting rod 4, which is in a plane motion, is

T, = m4vé4 + ]456‘)‘%
4 — )
2 2

where v¢, is a velocity of the center of mass of the connecting rod 4; J,¢ is its
moment of inertia with respect to the central axis Cye.

In order to determine v , and w,, find location of the instantaneous center of
zero velocity of the connecting rod 4. Since points 4 and B at this instant are parallel,
the instantaneous center of zero velocity of the connecting rod 4 lies in infinity.
Hence, its angular velocity at the given instant is w, = 0, and velocities of all the

points are parallel and equal. Thus, kinetic energy of the connecting rod 4 is
— MyVE4

=77

where v, = vy.
Linear velocity of the point 4 of the body 3 is
V4 = w3R3,0r vy = %Rgvl/rg.
Since r; = 3/4R5, we have vy, = 2v;.
Butve, = vy, veog = 204
So, the expression for kinetic energy of the connecting rod 4 has the following
form:
T, = %m4(2v1)2 = 2m,v2.
Kinetic energy of the roller 5, which is in a plane motion, is

2 2
_ MsVgs Jsews
Ts = 2 T 2

)

where v¢s is a velocity of the center of mass Cs of the roller 5; Js¢ — its moment of

inertia (as a homogeneous solid cylinder) with respect to its longitudinal central axis

RZ . .
CseJse = mz 2 ws — its angular velocity.

Since the roller moves without slipping, its instantaneous center of zero velocity
is at point Ps. Then

Hence,

2 2.,2
MsVis + msR5ves _ 3

Ty = == Mgvi:.
5 2 2-2R2 4 THVCS

As far as the link BCs is in a plane motion, v = vg. But vy = vy = 2v;, then
Ve = 2171.
Therefore, kinetic energy of the roller 5 is
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Ts = Z ms(2v,)? = 3mgvi.
The total kinetic energy of the system will be
T = mlvl + my(1+ i2/RHv2/2 + 2 ~ M3Vy 2i2 /rZ + 2m,v? + 3mgvi.
Substltutlng values of the given masses, we obtain
T=myvi[1+2(1+ i3/R3)+ 2 i2/r{ + 2+ 120]/2,0r
T = 129m1v1 /2.

Define the sum of the work done by all the external forces acting on a system in
its specified displacement. Depict all the external forces (Fig. 105c¢).

Work done by the weight G, is

Ag, = G1hy = mygs sina.
Work done by frictional force Fy, is
AFfr Fpr
As faras Fr, = fN; = fG, cosa, then
Ap,, = —fm, gscosa.

Work done by the weight G, is

Az, = G, hep, = mygssina.

2

Work done by forces of traction F.,, F5 of the rollers 2 and 5 is zero since
these forces are applied at their instantaneous centers of zero velocity.

Work done by the weight G, is
AG4 = Gahca,
where h., is a vertical displacement of the center of gravity C, of the connecting rod
4 from initial location to its final position (Fig. 105d):
hca = Rs, Ag, = MmygRs.
Work done by the rolling friction of the roller 5 is

Ay, = —Mcos,

where M. = §N; = §G5 is a moment of a couple of the resisting forces to rolling of
the roller 5; @5 is an angle of its rotation.
Since roller 5 moves without slipping, angle of its rotation is

®s = Scs/Rs,
where s is a displacement of the center of gravity Cs of the roller 5.
In this example the work of the mentioned couple is calculated as a sum of the
work done by this couple at the rotation of the body 3 on the angle /2 to the left and
when the body 3 turns on angle /2 to the right once more.

The displacement of the center of gravity Cs of the roller 5 equals displacement
of the slider B to the left and to the right:

117



Scg = Z(B()B,)

Determine the displacement ByB' at the rotation of body 3 on angle /2. Choose
fixed point K of the plane as a reference (Fig. 105d). At this rotation of the body 3 the
connecting rod will move from position A,B, to position KB'. Then

B,B' = KBy, — KB’,

where KBy = KO + 0By = R; + /(AoBy)? — (4,0)2 = Ry + /12 — R,
KB' =1 = 4R,

Hence,
BoB' = R; + /12 — R2—1 = Ry + /(4R3)> — R? —4R; = 0,88R;.

The total angle of rotation of the roller 5 is
Qs = 1,76R3/R5
Then AMC = —5m5g . 1,76R3/R5

The total sum of the work done by all the external forces is

z Af = mygssina — fm,gscosa + m,gssina + mygR; — dmsg - 1,76R3/Rs.

By substituting the given values of masses we obtain
5-20-1,76R;3
RSS

)

Y A¥ = m,gs(sina — fcosa + 2sina + % —
or ¥ A¥ = 1,51m,gs.

According to the theorem of the change in kinetic energy of a system equate the
values Tand Y} A :

myv?

129 = 1,51m, gs,

whence
v, = 0,21 m/s.
In order to define acceleration of the weight, make use of the theorem in
differential form:

dT =Y d A%,
Therefore,
129 -%zmdvl = 1,51m, gds,
whence % = %g ora, = 0,115 m/sz'
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Fig. 106
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Fig. 108
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8.3. Application of Virtual Work Principle to the Static Problems

Mechanisms are in a state of equilibrium. Their schemas are shown in Fig. 111-
113. The necessary data are given in tab. 2. By making use of virtual work principle
determine quantity specified in table 2. Neglect the forces of resistance. Mechanisms

are located in a vertical plane for variants 3, 6, 10, 14, 16, 18, 19, 25 and 30, the rest
of mechanisms are in a horizontal plane.

Example. Given are: Q = 100 N; ¢ =5 N/cm; rn =20cm;nr, =

40cm; 3 = 10cm; OA =1 = 50cm; a = 30°% B = 90° (Fig. 109)

Determine deformation of the spring h in a state of equilibrium neglecting the
weight of the links OA4 and 4B.

Solution. Mechanism is under the action of the following balanced force system:
elastic force F, G, — weight of the shaft / with gear 2, G; — weight of the gear
3, G, — weight of the slider B, Q — ip
weight of the load, and the reactions of A0
constraints (supports) which are not
shown in Fig. 109.

Make up equation of virtual work
principle taking into account that all
constraints are ideal (6.6):

¥ 5A% = 0.

There are following virtual
displacements consistent with the
constraints of mechanism in this
problem: rotation of the shaft / with the
gear 2 on angle 6¢,, rotation of the
gear 3 on angled¢; and vertical
translation of the load §sq,. The slider B
has a virtual displacement 6sp (along Fig. 109
piston rod guide), and point 4 has a
displacement 654 (8, is perpendicular to OA4). Equation of the virtual work principle
has a form:

Q(SSQ - F6SB = O

Define virtual displacements relation. Since the load Q is fasten to inextensible
string and there is no sliding between the string and the shaft, the displacement of the
load Q equals the displacement of the points of the rim of the rod /. Therefore, the
angle of rotation of the shaft with gear 2 is

8¢, = 6sq/my.
The displacement of the point K is
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8s; = b, = (7”2/7"1)55Q-

Since there is no sliding between the rods 2 and 3, the virtual displacements of
their points of contact are equal and the angle of rotation of the gear 3 is

8¢3 = 8s1/r3 = [r2/(113)]65,.
The crankshaft O4 is rigidly connected with the gear 3 and so
6SA = 0146903 = [7‘2[/(7"17”3)]5SQ.
In order to determine  the dependency  between  virtual

displacements §sg and §sy, find the position of the instantaneous rotation center of
the link 4B, i.e., point P.

Then
6sg/ 6s, = PB/PA; 6sg = (PB/PA){Ssy.
From the AAPB
PB/PA = 1/cos30°.
Hence,

8sp = [ryl/(ry713 c0s30°)]8sg.

Elastic force of the spring is proportional to its deformation: F = ch. Then from
equation of the virtual work principle we have

Qbsg — ch[ryl/(r1r3c0830°)]6s, = 0,

whence

Qr;73€0830°

h = ;. h=1,74 cm.
cryl

Consequently the spring is compressed on 1,74 cm.
op Let us resolve this problem by
mmﬂ composing equation of power which
s expresses virtual velocities principle:
YP, -v,=0o0r
Y. Pv;cos(P,,v,) =0,
where P; are all the active forces
applied to a system, v; are velocities
of their points of application.

Give the shaft 7 with the gear 2 a
virtual angular velocity w;_, around
its axis of rotation, let it be clockwise
(Fig.110). Then the load Q gets
vertical velocity vy. The gear 3 with
rigidly connected crankshaft OA

acquires angular velocity w; around
0.

Fig.110

The link 4B will have angular
velocityw,g which can be represented around instantaneous velocity center P. This
center is located at point of intersection of perpendiculars erected to velocities v,
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and v 5 (velocity v, belonging to the crankshaft OA4 is perpendicular to OA, and
velocity v belonging to the slider is parallel to the piston rod guide).

Compose equation of virtual velocity principle:

—Qvg + Fvg = 0,0or—Qvy + chvg = 0.

There are three unknown quantities here: deformation of the spring h, velocities
Vg and vp.

Velocity of the load equals velocities of the points of the rim since the string is
inextensible, and so

UQ = wl_zrl.
Velocities of the point of contact K of the gears 2 and 3 are
Vg = W11, Vg = W3T3.

They are equal since there is no sliding between the gears.
As far as a point 4 belongs simultaneously to the crankshaft OA and to the link
AB, we have

UA=(1)3'0A; UAZ(I)AB’AP.
Velocity of the point B of the link 4B is
Vp = Wyp BP.

Therefore,
W12 = W3T3; w3 - OA = wyp + AP,
whence
w w127 . _ (1)3'014 _ (1)1_27"2'014
37 gy 7 TABT 4p T 4P
Then
_ . _ (J)l_zrz'oA'BP
VUp = Wyp BP = —T'3-AP .
From the AAPB
AP = BP - cos30°.
So
0)1_27'2 * OA
Vg = ——————.
B r3c0830°
Thus, equation of the virtual velocity principle acquires the following form:
_ wl_zrzl _
Qwq_,ry + ch—r3005300 = 0.
Dividing this equation by w;_,, we find deformation of the spring
Q1 1r3€0s30°
h =———
cryl
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Fig. 111
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Fig. 113
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Tab. 2

Forces, N
g g
. s S
. Z 2 <
2. = = 8
§ = =2 = 2! Notes
s — Linear dimensions 3 g & o
£ = Q | P 3 S 8 |8
8 <
s .20 G A g) g
> < 2 2l 2 |3
s | £l & |3
= n
=)
=
1 OA=10cm - — 20 — — P
2 0,A=20cm - | 100 — — — M
3 rn=20cmnr,=30cm, | — — 100 — —
3 =40cm
4 0C:0A=4:5 - | 200 - — 4 c
5 0A =100cm - - 10 - - P
6 rn=15cm,r, =50cm, | 200 | — — — — P Neglect
r3 =20cm,0,A =80cm the weight of
the handle 0, A
7 0C =04 - - - 10 3 P Spring is
compressed
8 ocC = AC — 1200 - 10 2 Q The same
9 0OA =20cm 200 | - - — — M
10 |, =15cm,r, =40cm, |2 — — — 4 c Neglect
r; = 20 cm, OA 103 the weight of
=100 cm the handle OA
11 0A =20cm - — 300 — - P
12 | 04D =60cm,0A - - 100 - - P
= 20cm
13 OA=40cm - - 200 - - P
14 OB =2 - 0A 20 | — - 25 3 P Neglect
the weight of
0OA and OB,
spring is
stretched
15 AC=0C=0D 3 — — 250 3 P
-103 Spring is
compressed
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Continuation of the tab. 2

g
Forces, N = § g
= | = < | 2
S 2 |g s |E
@ ™ Linear dimensions g 5 s |8 Notes
=N S 15} o | @
= s S |2 ] B°
= ’ S|E | 2
> & 5 |E€ g
E |3 )
S}
=
16 |dy =80cm,d, =25cm, | 5 - - 100 4 P Neglect the
l, = 100cm,l, = 50cm| - 103 weight of 0;A4 and
0,B. Spring is
compressed
17 0A =20cm - - 200 - - P
18 r, =20cm, 200 |200 - 100 - h P — weight
r, =30cm of the block of the
radius 7,
19 r, = 20cm, — — 100 — — P Neglect the
r, =30cm,0A =25 cm weight of the link
AB
20 |OA=AB=AC=50cm | 50 |100 — — — M
21 | OA=AB=AC=DC = — 1200 — — — M
=25cm
22 0OA=40cm — - 400 - -
23 0C =20A =100cm — (200 50 50 - h
24 AD = 0D = OBcm — |250 — 150 | 2,5 Spring is
compressed
25 OD = DB = 0,840 400 | — - 120 3 P Neglect the
weight of 40 and
BO. Spring s
stretched
26 0A = 25cm — |500| 120 — 2 c Spring is
stretched
27 OB = AB — — — 180 2 P
28 OB = (5/4)0A — 450 — — — Q
29 | AO =30cm,BD = 0,D - - 120 | 100 - h
30 | , =15cm,r, = 36.¢cm, — 1600 - - — Q
3 =10cm, 1, = 20cm
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8.4. Application of General Equation of Dynamics to Study of Motion of
Mechanical System with One Degree of Freedom

For the given mechanical system define accelerations of weights and a tension in
threads to which weights are attached. Neglect mass of threads, friction of a rolling
and force of resistance in bearings. The system moves from a state of rest.

Variants of mechanical systems are shown in Fig. 116-118, and the necessary
data are represented in tab.3. Radii of gyration are given with respect to central axes
perpendicular to the plane of figure.

Assume coefficient of friction identical both for body’s sliding along the plane
and for braking shoe (variants 9—12).

Assume pulleys and blocks for which the radii of gyration are not given as solid
homogeneous disks.

Example. 1t is given: G, = G, = 2G; G3 = G, =G; R = 2r; iy, =
rV2; f = 0,2.

The block 3 is solid homogeneous cylinder (Fig. 114). Define accelerations of
weights / and 4 and tension of branches of a thread /—2 and 3—4.

Solution. Let us apply to the problem solution the general equation of dynamics.
As the system starts moving from a state of rest, directions of accelerations of bodies
correspond to directions of their motion.

Whereas among the forces acting on bodies of system, there is a force of a
friction, it is expedient to find a true direction of motion according to initial data in
order to show correct direction of force of friction.

2 \\M?
{00
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G,
W
) [
3
ay @, rﬁ“\_' .-..-:
F ey
<N endAue
SN & TR
~ NG, 2
60° 4. 1‘1{
o,
\G,
Fig. 114

If the direction of motion of system is chosen wrongly, required acceleration

turns out with a sign«—>». In this case it is necessary to change directions of force of
friction and forces of inertia and to make corresponding corrections in the general
equation of dynamics.

In the given example motion of a system is that weight / falls.

Let's show force system: a gravity G;— load I, G,— the block 2, G;— the
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block 3 and G,— load 4, and also F— force of a sliding friction of load / on an
inclined plane (Fig. 114).
Let's apply forces of inertia. Force of inertia of load / making translational
motion with acceleration a, is expressed by a vector
D, = —ma,.

Inertial forces of the block 2 rotating around fixed axis with angular acceleration
&, are reduced to a couple. Its moment is

M3 = [
Inertial forces of the block 3 making a plane motion are reduced to a force

¢3 == _m3a3,
where a; — acceleration of the center of mass of the block 3, and to a couple of
forces, which moment is

M3 = J.&3,

where €3 — angular acceleration of the block.

Inertial force of a load 4 making translational motion with acceleration a, is

¢4_ - _m4a4.

Let's give the system a virtual displacement to a direction of its true motion (Fig.
114) (it is possible to give virtual displacement in the opposite direction).

Writing the general equation of dynamics, we obtain

615515in600 - F5$1 - ¢15$1 - M2q>6(p2 - G3653 - ¢3553 - M?(,D(S‘(p:; - 64654
- @4654 = 0,

where d ¢, and §p;— angles of rotation of blocks 2 and 3.

Relations between virtual displacements are the same, as for relations between
corresponding velocities.

Let's express velocities of the centers of mass and angular velocities of bodies of
system as a function of velocity of a body /.

As is shown in Fig. 114, the instantaneous center of zero velocity of the block 3
is on one vertical with the center of the block 2. Distance between the instantaneous
center of zero velocity and the center of the block 3 is

b 3r T
—2 T2
Now we find
w, = w3 =v;/R =v,/2r;
V3 =V, = w3b = v, /4. }
The same dependences are between virtual displacements
8¢, = 6¢3 = 551/(27”)}}
0s3 = 0s, = 0s, /4.
General equation taking into account these formulas becomes
G,sin60° — F — &, — M$/(2r) — G3/4 — ®3/4 — MP/(2r) — G, /4 —
®,/4 = 0.
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The same equation can be obtained, if to work out the equation of power, having
gave system virtual velocities. The relationships resulted for the real velocities of
bodies of system are the same, as for any virtual velocities.

Considering that
G, = G, = 2G = 2mg; Gz =G, = G = mg,

we have

( F = fGcos60° = fmg;
&, = mya; = 2may;
M3 = Jrx&; = Myisee, = 4mriey;
®; = myaz = mas;
MS = J3e5 = [m3(1,57)?/2]e; = Imr?e;/8;
\ D, = mua, = ma,.

Dependences between accelerations are
& =& = ‘11/(27");}
as; = a, = a, /4.
Then we will obtain
gV3—fg—2a,—a,—g/4— a,/16 —9a,/32 — g/4 —a,/16 = 0,
whence

_9(¥3-f-05)

“ 3,41 '
a;
Tsy Ay =5 a, = 0,74 m/sec?.

a, = 2,96 m/sec?;

i In order to define tension in a thread /—2,
i | |2 we will mentally cut this thread and replace its
D, action on a load 2 by reaction T, _, (Fig. 115).

G, Then general equation of dynamics will be
G,05,5in60° — Fds; — @651 — T;_,0s5; = 0,

Fig. 115 whence T;_, = G4sin60° — F — &; =

2Gsin60° — 2Gfcos60° — 2(G/g)ay; T, =

0,93G.

In order to define tension in a thread 3—¢, we will mentally cut this thread and
replace its action on a load 4 by reaction T5_, (Fig. 115).

Without making the general equation of dynamics, on the basis of D’ Alembert’s
principle we have

T3_4 = G4 + CD4 =G + (G/g)a4; T3_4 = 1.08G.
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Fig. 117
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Tab. 3

g _ R Radii of =
g g Gravity force r gyration g ‘; Supplementary data
ok P22
5 o Gy | G2 | G Gy Lox I3x g =
> & ©
1 G G | 3G — 2 | 2 — - -
2 G G G — 2 | 2 — - -
3 3G | G G — 2 | 2 — - 0,1
4 G G | 2G - - | - - - 0,2 T, =13
5 26 | G G G 3| 2r - - -
6 26 | G | 2G - 3| 2r - - 0,2
7 26 | G | 2G - 3| 2r - - 0,2
8 26 | G | 2G - 3| 2r - - 0,2
9 26 | G | 2G - 3| 2r - 0,26 | 0,2
10 26 | 26| G - 4 | - 2r G/3| 04
11 26 | G | 26 | 026G | 3| 2r - - 0,2
12 26 | G | 26 | 026G | 3| 2r - - 0,2
13 4G |26 | G 4G | — | V2| 213 - - T, = 213; Ry, = R3
14 - G G 4G | _ |2 | 213 8G _  |1mp =213 R3; =1,5R,
15 4G | G | 2G 4G 2| 273 - — |1, =213 R3; =1,5R,
16 - G | 2G 4G | — | V2| 213 4G — |1y, =213 R; =1,5R,
17 26 | G G - 2 | 2 - - 0,1
18 3¢ 10,2G6|0,1G | 0,5G | 2 | — - - 0,4
19 4G (0,3G|0,2G | 3G | 3 | 2r 1,2r - 0,1 |r3=1.2r; R3 =12nr;
20 4G 0,2G|0,1G | 3G | 2 | 1,6r | /2 - 02 |rp,=15r; R, =1.2r,
21 5¢ 10,1G| 0,26 | — 3| — 2 G —
22 G 10,2G|03G | — 2| - 2 G —
23 G (026|016 | - |[1,5|1.2r - 2G — |R3=12r
24 26 | G G 8¢ | — | — — — — Masses of the
wheels are equal
25 6G | 2G | 2G G - | - - - - T3 =1,
26 6G | G | 2G - - | - - - - T3 =T,
27 G G G 4G | 2 | 2 | V2 - -
28 3G | G G — 2 | 2 — - 0,1
29 6G |3G | G G 2| - 2 - - lay = i3y
30 8G | G G 26 | — | — - - 0,1
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8.5. Research of Free Vibrations of Mechanical Systems with One Degree
of Freedom

Define frequency and period of small free vibrations of mechanical system
with one degree of freedom neglecting forces of resistance and masses of threads.

Derive the equation of motion of a load /, y = y(t), having accepted for
origin position of rest of a load 7 (at a static elongation of springs). Determine also
amplitude of vibrations of a load /.

Schemes of systems are shown in Fig. 120—122 , and the necessary data are
represented in tab. 4.

In the problem following designations are accepted: / is a load of mass m;; 2
is a block of mass m, and radius r, (a solid homogeneous disk); 3 is a block of
mass mj and gyration radius i,; 4 is a solid homogeneous disk of mass m, and
radius r4; 5 is a disk of mass ms and gyration radius i,; 6 is a thin homogeneous
rod of mass mg and length /; 7 is a rod, which mass is neglected; c is a spring
stiffness factor; yy is an initial deflection of a load / on a vertical from position of
the rest corresponding to a static elongation of a spring; y, is a projection of initial
speed v of a load / on a vertical axis.

In Fig. 120—122 systems of bodies /—7 are represented in rest position (at a
static elongation of springs).

In variants 5, 6, 14 and 23 rod 6 is rigidly connected to a disk 4.

Example. 1t is given: my = 1kg; m, = 2kg; m, = 1lkg; mg = 3kg;

L=06m;c=20N/cm;y0=02cm; y, = 8cm/sec (Fig. 119).

Define cyclic frequency k, the period T of small free vibrations of system,
amplitude a and derive equation of motion of load /

Solution. We will take advantage of the Lagrange’s equations for conservative
systems. Having accepted for system generalized coordinate a vertical deflection y
of the weight / from the rest position, which corresponds to the static deflection of

a spring, we have
d <6T> (E)T) _ o on
dt \oy dy) oy’

where T is a system kinetic energy; I1 is a system potential energy.

Let's calculate kinetic energy T with the second order infinitesimal accuracy
relatively y, and potential energy Il define with the second order infinitesimal
accuracy relatively generalized coordinate y. Determine a kinetic energy of the
system as a sum of kinetic energy of bodies /, 2, 6 and 4:

T=T1+T2+T6+T4.

Let's express velocity of the centre of mass of a body 4 and angular velocities
of bodies 2, 4 and 6 as a function of the generalized velocity y:
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Fig. 119

v =Y, wy =Y/1y; We = Wy = Y/Ty.
As we consider small oscillations, then vy = v,. Disk 4 rolls without sliding,
so v = vy /2. Hence,
Ve = Va/2 = wel/2 = wyl/2 = yl/(21;) = 2y;
Wy =V /T = 2Y/7y.
Moment of inertia of the body 4 with respect to the central axis is
Jo = muri/2.
Moments of inertia of bodies 2 and 6 with respect to rotation axis are
Jo =my13/2; Jo = mgl?/3.
Kinetic energy of bodies /, 2, 4 and 6 is:

T, — myvi _ myy? . T — Jow5 _ myy? .
1 — - ) 2 - )
2 2 2 4
_ mgvé | Jowi .2 _ Jews _ 8mgy?
T, = . +—2 = 3myuy*; Ty = T,

Thus, kinetic energy of a system is
T =T, +Ty,+Tg+ T, =my?/2 +myy?/4 + 8/3mgy? + 3m,y?
=1/2[m; + m,/2 + 16/3m¢ + 6m,] y2.

Let's calculate a potential energy of a system which equals work of its gravity
force and work of elastic force of a spring on a displacement from a deflected
location, when load has coordinate y, to zero position which is a position of rest of
a system:

I1 = HI + HII'
Potential energy corresponding to gravity forces on mentioned displacement
is
[, = -G,y — Ggh,
where / is a vertical displacement of a center of mass of rod 6, which is computed
with the second order infinitesimal accuracy relatively generalized coordinate y.
It follows from Fig. 119
h =1/2—-(l/2)cosp = (1/2)(1 — cos ¢).
Decomposition formula for cos ¢ is
cosp =1—@?/2! + @*/4! — -
Restricting this formula by the two first members and considering that
¢ =y/r,=4y/l,
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we have
M = -Gy — G- 4y*/L.
The potential energy of the deformed spring is
My =c(fse + Ag)?/2 — Cfszt/zJ
where f; is a static deflection of a spring; Ax is a displacement of a point of an

attachment of a spring K corresponding to coordinate .
As, (Fig. 119),

Ay 3/4l
y  1/4l
1.e., Ay = 3y, then
c(fse +A)*  cf 9
= > - 25t=3fstJ’+§Cy2-

System potential energy is
M =T+ 1y = -Gy — (4Ge/Dy* + 3cfsey +9/2cy?.
Since in the position of rest corresponding to a static elongation of a spring
(an/ay)y=0 =0,
then
—G; + 3cfer = 0.
This equation can be obtained also having worked out the equation of
moments of forces for the state of static equilibrium of system (Fig. 119):

ZMI:OZ = PO . 3/4l—G17’2 = O,
or
cfsr - 3/4l— G1l/4 =0, i.e.,3cf — G; = 0.
Thus, potential energy of considered mechanical systems is
G

4 8G
I =9/2cy* ——~y* = 1/2 (9C —76)3;2.

d (0T m, 16 .

dt
oT oIl ( 806)

Further,

dy dy
The Lagrange’s equation takes a form

m, 16 . 8G
(ml +7+?m6+6m4>y+ (96 —T>y =0,

or
. 9C —8Gg/1
y+
my +m,/2 +16mg/3 + 6m,
Let's introduce designation
12 = 9C —8Gy/1 |
my +m,/2 +16mg/3 + 6m,
Then we shall have the following equation:
y + k?y = 0.
Hence, cyclic frequency of free vibrations is

y = 0.
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. 9C —8G,/l 71 coet
= my +my/2 + 16mg/3 + 6m,’ T ennsec

The period of vibrations is
T =2n/k=2-3,14/27,1 = 0,23sec.
Integrating the differential equation, we obtain the law of motion of a load /
y = Cj coskt + C, sin kt.
In order to define constants C; and C,, determine the equation of velocity of a
load
y = —kC; sinkt + kC, cos kt.
Use initial conditions of problem. From the equations y = y(t) and y = y(t)
at t = 0 we have
Yo = C1; ¥y = k(y,
whence,
Cr =Yo; G2 =Yo/k.
Hence,
y =y, coskt+ (y/k)sinkt,
y =0,2cos 27,1t + 0,3sin27,1t.

It is possible to obtain this equation in other form if introduce constants of
integration a a and f having designated
C; = asinf; C, = acosp.
Then
y = asin(kt + B),

where a =/C} + C, B =tan(C,/C,), or
@ = 38+ Go/K)% B = tanlkya/ o)

Let's calculate numerical values a and f: a = 3,6 - 107?m, f = tan 0,68.
Assinff > 0(C; > 0),then 8 = 34°12' = 0,597 radian.
Finally y = 3,6 -1072%sin(27,1t + 0,597) m.
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Tab. 4

Variant ms, Initial
number | [ | i, iy T |my|m,|my, | mg| c | conditions
(Fig. ms (t =0)
120- o | Vo,
122) m kg NVem i'}m m);;) ec
1 0,5 - - - 1 2] - 13| 40 |01 50
2 0,5 - - 021122 [3] 40 | 0] 60
3 0,5]3/2r - - 1 | -14 ]3] 20 (02] 7,0
4 0,6 - - - 1 2] 3 [2] 36 (02 0
5 0,6 - - 0,15/ 1| -] 3 |3 16 | 0 | 80
6 0,6 - - 0,15 1 | - 1 1 | 40 [03] 7,0
7 - - - - 1 | -12 2] 4 (04| O
8 - - - - 1 | 3] 2| -140 | 0] 60
9 0,6 - - - 1 | 2] - 13 ] 38 05| 50
10 (0,6 - - - 1 | 2] - 131]32]0] 60
11 - - - - 1 2] - 1313 [04] 7,0
12 0,5 - - - 1 2] - 13|20 (02| 0
13 03] - - - 1 |1 1 | 232 | 0| 80
14 04| - - o1 | 1| -121]13]20]0] 7,0
15 0,4 | rV3 - - 1| -12 (220 (01| O
16 - - - - 1 2] 3 - | 32 03] 6,0
17 - - - - 1 | 2] - 12120 ] 0] 50
18 - - - - 112 |1 - | 40 | 0] 6,0
19 02| - - - 1 |1 - 1 | 32 [0,1] O
20 |05 - - - 1 2] - 13|20 (04| 70
21 - | 2r - - 1 | -] 23] 32 ]0] 80
22 - - rv2 - 1|24 | -1]40 (01| 7,0
23 04| - - 021122 ]3] 40 |03] O
24 - - /3 - 1| -] 3214 | 0] 60
25 03] - - 0,1 | 1 2| 2 | 1] 40 |02] 5,0
26 - 2 - - 1| -12|-140 (03| O
27 - - 3r/2 - 1 2|3 - | 40 | 0] 60
28 - - /3 - 1213 - | 40 [02] O
29 - - 4r/3 - 1 2] 3 -1 40 | 0] 7,0
30 - - V2 - 1213 - | 40 [03]| 7,0
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8.6. Application of the Lagrange’s Equations to Research of Motion of
Mechanical System with Two Degrees of Freedom

The mechanical system of bodies (Fig. 127—129) moves under the action of
constant forces P and couples with the moments M or only under the gravity forces.

Make up the equations of motion of system in generalized coordinates g; and g,
at the specified initial conditions. The necessary data are reduced in tab. 5; in the
same place recommended generalized coordinates are specified (x and ¢ are
generalized coordinates for absolute motion, and ¢ is for relative motion).

Neglect masses of the threads. Take into consideration that the rolling of wheels
occurs without a slippage. Neglect rolling friction and forces of resistance in
bearings. Wheels for which in the table 5 inertia radii are not specified, consider as
solid homogeneous disks. Consider cages (cranks) as thin homogeneous rods. Accept
that in variants 6, 9, 11, 20, 22 and 30 mechanism is located in a horizontal plane.

Radii of gyration of bodies 2 and 3 are defined with respect to the central axis
perpendicular to the figure. Coefficient of viscosity is a quantity b in expression R =
—bv, where v is a relative velocity of bodies 1 and 2

Example 1t 1s given: masses of bodies of mechanical system (Fig. 123) m; =
3m; m, = 8m; my; = my = mg = 2m; my = 4m; m, = m; P is a constant
force applied to a body 2; M is a constant moment applied to a block 6, b is a
coefficient of proportionality in expression for force of resistance to motion of a body

5: R = — bvs(vs 1s a velocity of a body 5); L is a length of a thread 3; r is a radius
of the blocks 4 and 6. Here the thread 3 is accepted ponderable. This is a
complicating in comparison with the
common condition of the problem.
Thread sagging is not considered.
Consider all wheels as solid
homogeneous disks. Neglect sliding
friction of a body 2.
Make up the equations of motion
Fig. 123 of system in generalized coordinates
41 = X1, 42 = Xa.
Initial conditions: q;o = 0 (initial distance on a vertical from the lower end of a
thread 3 to its horizontal site equals ly), 20 = 0, G190 = 0, G20 = X30-
In Fig. 123 system is figured in initial position.
Solution. In order to resolve problem, we will apply the Lagrange’s equations

d T 9T
dtdx, 0x; i
d oT oT _

dtdx, 0x, Q2
where T is a kinetic energy of a system; Q; and Q, are generalized forces
corresponding to generalized coordinates x; and x,.
For the given system T = ».7_, T;.
Let's express velocities of the centers of mass of rigid bodies of system through
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generalized velocities:
V4 = VUg = xl,
vz = v6 = xz,
Gty + %)
vZ =
4
Taking into account that « = 30°,
v2 = 0,25[%;% + (5 — 2V3)2x,% — 2(V3 — 1)xy%,].

It was considered that (x; + x,)/2 is a velocity of the centre of mass of a body

7 concerning a body 2, i.e., relative velocity and X, is its transport velocity (Fig. 124).
Angular velocities of bodies (Fig. 123—125)

+ XZZ - (x1 + XZ)XZ COoS a,

XFx,
. X, _ %1,
x;+.£2 h w‘l- —
7 X2 T
X1 + Xy
) We = @7 =7
Moments of inertia of wheels
with respect to the central axes are
Fig. 124 Fig. 125 2mr?
5 = Jo = J6 = n;r = mr? ], =
(m/2)(r/2)? = mr?/s.
Kinetic energy of bodies 7, 2, 4—7 is
T, = myv?/2 = 3mx;%/2; T, = myv3/2 = 4mx,>;
Jaw} mx'12 mgvs .
BT T T = 2ma
mgv W
T6 - 62 6 ]62 6 - O,Sm(xlz + 3.X:22 + 2.92:1.72:2);
m,vs w3
T, = — 97 (m/16)[3%2 + (11 — 4V3)x2 — 2(2V3 — 3)iy%,).

2 2
Taking into account that all points of a thread 3 have equal velocities v3; =

v3 = X,and that Y my; = m, wehave T3 = m3v3/2 = mx2.
Substituting all these magnitudes, one can obtain

T = (72)[754F + (99 - 4V3)i3 + 2(11 — 2V3)iysy]

And now let’s define generalized forces Q4 and @, corresponding to generalized
coordinates x; and x,. Consider virtual work of all forces on virtual displacements

6x1 and 6x5.

Define virtual work of all the forces done in a virtual displacement &x;. It
should be born in mind that now éx, = 0. We have

0A; = 6A(m,g) + SA(R) + SA(M) + §A(m,g) + 6A(m5g).

Calculate all of these members:

148



5A(m,g) = myg6x;, SA(R) = —bvsbx; = —bx,6x;, SA(M) = —= 6%y,

§A(m,g) = — m;g sin 30°6x;.

Let's notice that work of a gravity force m- g of a thread 3 from position a’b’ to
position ab, at which x; = 0, is equal to the work of a gravity force of a site of a
thread bb' at its displacement to position aa’ (Fig. 126).

Thus,
§A(mzg) = ng (2 + %0)5951- 4..8
I -3
Then, taking into account the data of the problem, we - o
receive = 32
. M 2mg Lo b
64, =12,75mg — bx; ——+———(x1 + =) | 6x4. o !
T L 2 1 ;-b'
Hence, Fig. 126
Q1 = 275mg — by — = + 7L (x, + ).

Define virtual work of all the forces done in a virtual displacement &x,. It
should be born in mind that now dx; = 0. So we have

54, = SA(P) + §A(m,g) + SA(M).

Determine all of these members:

SA(P) = Pdx,, 6A(m,g) = —%sin 30°6x,, 6A(M) = —%&cz.

Thus,
mg M
o4, = (P =77 ) om
whence
_p_mg_M
Q: = PR

Substituting all results in the Lagrange’s equations, we receive the differential
equations of motion of a system:

75 11-2v3 X4 21, M

mel +me2 = ngf+mg (2,75 +T> - bx1 —7;
99 —4v/3 = 11-2vV3 _ mg
mez—l_mel:_T-l_P_?.

Expressing X, from the second equation and substituting in the first one, we
obtain

X, + 2nxy — cxq = q,

where
0,0538b
n=————:c
m L

02159

)
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a=g(0,298 + 0,215(,/L) — 0,099M/(rm) — 0,0088P /m.
Let's define the solution of this linear non-uniform differential equation. Its
characteristic equation is
z> + 2nz—c = 0.
Its equation roots are
Zl,2 = _ni le + c.

Then the general solution of the differential equation has a form:

X, = et (Clemt N Cze-mt) _%
In order to define constantsC; and C,, differentiate this solution

X, = e ™ [(—n+\/n2 + c) CeVm et (n+\/n2 + c) Cze‘mt].

Using initial conditions: att = 0, x; = 0;x; = 0, we have
C1 + Cz - a/C = 0,
(—n+ n2+c)C1—(n+ n2+c)C2=0,

whence
a
C, = n+yn? + c);
! Zc+Vn2+c( )
a
C, = —n++n? + c).
2 2C+\/Tl2+C( )

Thus, we have equation of motion of the system describing change of the first
generalized coordinate. To receive the second equation of motion, we find

. 8 g . P M ) 11-2v3 .. . .
X, = — X,,0rX%, = k—0,0818%,,
2 99—4\/5( 4 m mr 9944371 2 1

where k = 0,0869 | (P —¥) -]
m T 4
Integrating, we obtain
%, = kt— 0,0818x; + C3; x, = kt?/2 — 0,0818x; + C5t + C,.

Using initial conditions: att = 0, x; = 0; x, =0; x; = 0; X, = X9, We
find C3 =5C20; C4 = 0.
Finally we have

2
x, === 0,0818|e ™ (CreV Wt 4 e W) 8|y e

This is the second equation of motion of a system.
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Acceleration 11

of free fall 12

of gravity 12

of a particle 11,12
Amplitude of vibration 24, 29
Angular momentum 43, 45

Calculation of work 49
Centre

of gravity 33

of inertia 33

of mass 33

of oscillation 25

Circular frequency of vibrations 24

Conditions of equilibrium 98

Conservation of angular momentum 46

Conservative force 50
Constrained motion 13,53
Constraints, 1deal 81
Curvilinear motion 17

D’ Alembert’s principle 78
Damped forced vibration 27
Damped vibration 25
period of 26
Damping decrement 27
Degrees of freedom 81
Displacement virtual 80
Disturbing force 27
Dynamical pressures 89
Dynamics 10
first law of 11
first problem of 12
fundamental law of 11
general equation of 83
general theorem of particle 38
general theorem of system 38
laws of 11
principal problem of 12
second law of 11
second problem of 12
third law of 12
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Elastic force, work done by 50
Elementary impulse 39
Elementary work 48
Energy
kinetic 47
potential 98
Equation
general of dynamics 83
of motion of a system 37
of rotational motion 46,80
External forces 32

Fall free 12
Field uniform gravitational 17
First law of dynamics 11
First problem of dynamics 12
Fixed frame of reference 11
Fixed system 11
Force 10, 11
conservative 50
disturbing 27
elastic 50
external 32
gravity 12
Inertia 78
internal 32
non-conservative 51
periodic 27
reaction 13, 53, 89
restoring 23
variable 10
work done by 48
Forced vibrations 27
damped 27
steady-state 28
Frame of reference 11
fixed 11
mertial 11
Free fall 12
Free harmonic motion 23
Free vibrations 23
Frequency of vibrations 24



Frequency ratio 28
Fundamental law of dynamics 11
Generalized

accelerations 97

coordinates 96

forces 97

velocities 97
General equation of dynamics 83
General theorem of dynamics 38
Gravity work, done by 49
Harmonic motion 23
Ideal constraints 81

Impulse, elementary 39
Inertia 10
centre of 33
moment of 34
Inertial reference system 11, 12
Initial
conditions 15
displacement 16
velocity 16
Internal force 32
Kinematics 10
Kinetic energy 47
change in 53

Lagrangian dynamics 96
Lagrange’s equations 100
Law
of action and reaction 12
of conservation of momentum 43
of dynamics, first 11
of dynamics, second 11
of dynamics, third 12
inertia 11
Laws of dynamics 11
Linear momentum 42
change in 42
conservation of 43
Logarithmic decrement 27
Mass 10, 11, 33
centre of 33
of a system 33
Material
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body 11

point 10
Mechanical

interaction 32

system 32
Moment of angular momentum 44
Momentum

angular 45

change in 42

linear 38

moment of 43, 45
Motion

constrained 13, 53

curvilinear 17

equations of 14, 37

free harmonic 23

inertia 11

law of 11, 12

plane 47, 80

rectilinear 15

rotational 47, 80

simple harmonic 24

under no forces 11

Natural vibrations 28
Non-conservative force 51
Non-deformable system 54

Particle 10, 11
acceleration of 11, 12
freely falling 12
motion of 10, 11

Period of vibration 24, 26

Periodic force 27

Phase 24

Plane motion 47, 80

Power 49

Principal problem of dynamics 12

Principle
of moments 44
of virtual work 82

Radius of gyration 34

Reaction
of constraints 13
of supports 13, 53



Recoil 58 Torque 51
Rectilinear motion 14 Transient period 28
Reference system 11 Translation 47
Resonance 29 Turning moment 51

Rest 11
Restoring force 23 Uniform gravitational field 17
Rigid body 54 Unit system 34, 40

Variable force 10

Second law of dynamics 11 Vibration 23

Second problem of dynamics 12, 13
Simple harmonic motion 24
Smooth constraints 81

Smooth surface 81

amplitude of 24, 29
angular frequency of 24
centre of 24

circular frequency of 24

Spring 24 damped 25, 26
static elongation of 25 forced 27, 28, 30
stiffness of 28 free 23

Static frequency of 24
deflection 63 natural 28
elongation 25 period of 24, 26

Steady-state forced vibration 28 phase of 24

Stiffness of spring 30 steady state forced 28

Supports, reactions 13, 53 damped forced 27

System of units 34, 40 Virtual

displacement 80

Theorem work, principle 82

of the change in angular momentum 46

of the change in kinetic energy 52, 54 Weight 12

of the change in linear momentum 41,43  Work, done by 48

of the motion of center of mass 40 a conservative force 50

parallel-axis 36 an elastic force 50
Theoretical mechanics 10 a force 48
Third law of dynamics 12 a force of friction 51
Time initial 16 gravity force 12
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