УДК 622.831

Халимендик А.В., к.т.н., доц. каф. СГГМ, Халимендик А.В., асп. каф. СГГМ, Каргаполов Ю.В., асп. каф. СГГМ, Выстороп Е.С., студ. гр. ПБм-13-1, Государственный ВУЗ «НГУ», Днепропетровск, Украина

АНАЛИЗ ОСНОВНЫХ ФАКТОРОВ ВЛИЯЮЩИХ НА УСТОЙЧИВОСТЬ ГОРНЫХ ВЫРАБОТОК НА ПРИМЕРЕ ОП «ШАХТА «РОССИЯ» ГП «СЕЛИЛОВУГОЛЬ»

В связи с острой необходимостью повышения конкурентоспособности продукции национальной угледобывающей отрасли, одним из приоритетных направлений является минимизация капитальных и эксплуатационных затрат на сооружение и поддержание сети горных выработок, как существенной составляющей себестоимости угля. При этом в вопросе обоснования эффективных средств охраны горных выработок основным ограничивающим фактором являются финансовые возможности и время [1]. Таким образом, при решении проблемы устойчивости горных выработок возникает противоречие, которое заключается в необходимости максимального снижения первоначальных затрат при исключении возможных издержек связанных с последующими ремонтными работами.

Решение данной проблемы требует комплексного подхода [2, 3], который помимо прочего должен включать предварительный анализ основных факторов влияющих на устойчивость горнотехнических объектов в зависимости от конкретных горно-геологических условий, а также накопление и обработку соответствующей статистической информации, чего невозможно достичь без применения непрерывной системы геомониторинга [4]. Результатом такого подхода является последующая разработка эффективных охранных систем, включающих обоснование рациональных параметров и мероприятий по созданию оптимальных условий работы системы «горная выработка-крепьпородный массив».

В данной работе приведены результаты анализа горно-геологических и горнотехнических условий эксплуатации горных выработок шахты «Россия» (рис. 1), которая является одной из наиболее характерных и показательных в плане технологии и организации выполнения горных работ для данного угледобывающего региона.

Поле шахты «Россия» расположено в юго-восточной части Красноармейского района Донецкой области Украины. В промышленном отношении шахта подчинена ГП «Селидовуголь» и относится к Красноармейскому горнопромышленному району Донбасса.

В настоящее время шахтой разрабатываются сближенные пласты l_2^{I} и l_1 .

Вскрытие шахтного поля осуществлено двумя вертикальными стволами (клетевым и скиповым) пройденными до гор. 210 м, у верхней границы на

гор. 210 м все пласты вскрыты горизонтальными квершлагами. Вторые ступени северной и южной панелей пластов I_1 и $I_2{}^I$ вскрываются соответственно на гор. 420 м (отметка -213 м) и 360 м (отметка -156 м) северными и южными грузовыми, людскими конвейерными квершлагами с гор. 210 м.

Для целей вентиляции и обеспечения отрабатываемых панелей запасными выходами пройдены шурфы №1 и №7 (оборудованы вентиляторными установками и аварийными подъемами).

Рис. 1. ОП «Шахта «Россия» ГП «Селидовуголь»

Породы кровли почти всех пластов, представленные преимущественно аргиллитами и алевролитами, являются неустойчивыми, что при наличии тонких угольных прослоев в непосредственной кровле иногда приводит к необходимости оставления верхней пачки угля.

Почвой пластов служат аргиллиты и алевролиты, местами вспучивающиеся.

В угольных пластах наблюдаются две системы кливажа: основная почти меридионального простирания, вторая – перпендикулярна к основной и менее выражена.

На устойчивость горного массива в значительной степени влияет тектоническое строение поля шахты. Наличие крупных тектонических нарушений обуславливает интенсивное развитие мелких нарушений трещиноватость горных Мелкие тектонические пород. нарушения представлены преимущественно сбросами и надвигами с амплитудой смещения от 0,2 до 4,0 м. Зачастую мелкие тектонические нарушения образуют зоны смятия пород шириной 30-100 м. Очистные работы в таких зонах не ведутся, а прохождение подготовительных выработок связано с большими трудностями, так как в них происходят вывалы высотой до 8,0 и более метров, что значительно усложняет работу и снижает темпы проведения.

Пласты l_2^I и l_1 южной части шахтного поля относятся к категории сближенных надрабатываемых. Ширина междупластья составляет 28-30 м.

Отработка запасов ведется по одновременной схеме с опережением пласта I_2 по падению и простиранию на одно поле лавы.

С увеличением глубины, выработки испытывают существенное влияние горного давления. Это влияние проявляется в уменьшении сечения выработок за счет вертикального давления, изменения формы арочной крепи при боковом давлении, разрывах деревянных и ж/б затяжек, уменьшении податливости крепи, срабатывании и отдельных разрывах замковой части крепи, пучении почвы, местами до 1,0 м, деформировании рельсовых путей (рис. 2).

Рис. 2. Пример негативного проявления горного давления в протяженных выработках южного крыла шахты «Россия»

Вскрытие пласта l_1 в северной части шахтного поля не производилось, поэтому пласты l_2 и l_1 северной панели относятся к категории сближенных неподрабатываемых (ширина междупластья 30-32 м).

С глубины 500 м в почве выработок преимущественно залегает крепкий песчаник, что обуславливает отсутствие интенсивного пучения пород почвы по основной трассе исследуемых выработок.

До глубины 450 м в почве выработок преимущественно залегает аргиллит и алевролит, крепостью 2-4, которые склонны к пучению и поддутию при размокании (рис. 3).

В целом, горно-геологические и горнотехнические условия отработки угольных пластов можно охарактеризовать как сложные, что обусловлено повсеместным наличием слабоустойчивых вмещающих пород, склонных к резкой потере несущей способности при размокании, наличием зон влияния тектонических нарушений, зон распространения ложной кровли, размывов пластов и т.д. В гидрогеологическом отношении условия отработки пластов также сложные. Шахтное поле относится ко II группе сложности.


Рис. 3. Пример негативного проявления горного давления в протяженных выработках северного крыла шахты «Россия»

В качестве примера, на рис. 4-5 приведены данные по основным видам ремонтно-восстановительных работ, а именно перекреплению и подрывке пород почвы основных выработок южного и северного крыла шахты соответственно. Общая протяженность участков выработок не соответствующих минимальным требованиям ПБ, приведена на рис. 6.

Таким образом, на основании анализа горно-геологических и горнотехнических условий эксплуатации, результатов геологических изысканий, данных маркшейдерской службы шахты, а также данных про объемы ремонтных работ, к основным осложняющим факторам, которые в значительной мере влияют на условия проведения и поддержание горных выработок, в первую очередь следует отнести:

- 1. Наличие слабых вмещающих пород склонных к обрушению и пучению, а также к резкой потере устойчивости при размокании, в особенности для условий южного крыла шахты;
- 2. Увеличение глубины разработки, провоцирующей для данных горногеологических условий нелинейное ухудшение устойчивости горнотехнических объектов в не зависимости от их пространственной ориентации;
- 3. Относительно большое количество непрогнозируемых мелкоамплитудных геологических нарушений в окрестности исследуемых выработок;
- 4. Одновременную отработку сближенных пластов $l_2{}^{l}$ и l_1 южной части шахтного поля;
 - 5. Относительно высокую степень концентрации горных работ;
- 6. Неполное соответствие режима работы применяемых в настоящее время крепей условиям их эксплуатации, в т.ч. и за счет нарушения технологии возведения.

Ремонтные работы по перекреплению

Ремонтные работы по перекреплению

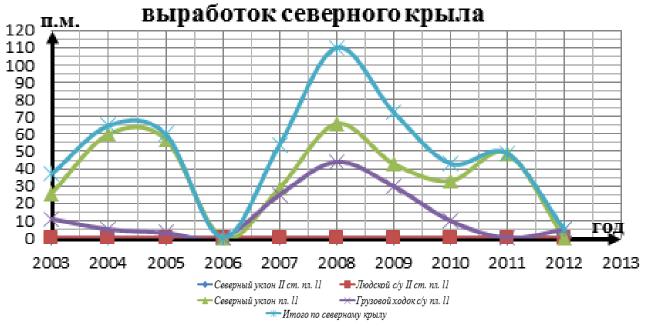
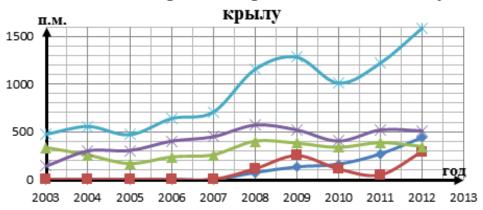



Рис. 4. Проведения ремонтных работ по перекреплению выработок ии. «Россия»

Объемы подрывки пород почвы по южному

Объемы подрывки пород почвы по северному

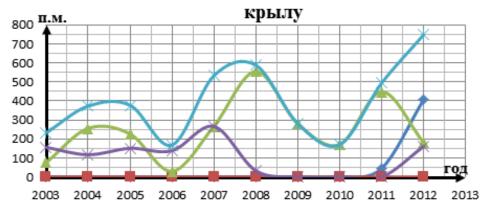


Рис. 5. Проведения ремонтных работ по подрывке пород почвы ш. «Россия»

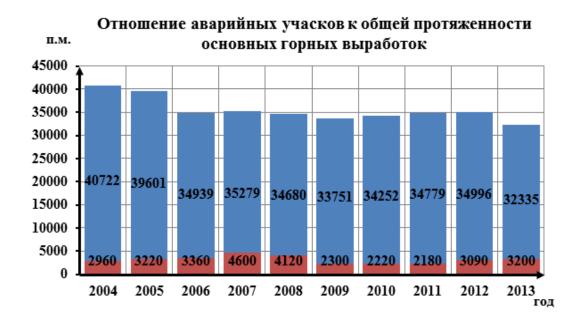


Рис. 6. Общая протяженность участков основных выработок, не coomветствующих ПБ

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Солодянкин А.В., Халимендик А.В. Современное состояние и перспективы развития шахтного строительства и угольной промышленности Украины. Материалы 3-й Международной конференции. «Перспективы освоения подземного пространства» Днепр.: НГУ, 2009 С 102-108.
- 2. Сдвижкова Е.А., Кравченко К.В., Халимендик А.В., Халимендиков Е.Н., проявлений давления Янжула А.С. Анализ горного при проведении протяженных выработок районе мелкоамплитудных геологических В нарушений на примере уклона блока №10 ШУ «Покровское». Наукові праці УКРНДМІ НАН України. Випуск 9 (частина 1). – Донецьк, УкрНДМІ НАН України, 2011. – С. 269-281.
- 3. Халимендик А.В. До обгрунтування комплексу заходів з підвищення тривалої стійкості підземних виробок шахт Донбасу. Материалы 6-й Международной конференции. «Перспективы освоения подземного пространства» Днепр.: НГУ, 2012 С 86-88.
- 4. Солодянкин А.В. Геомеханические модели в системе геомониторинга глубоких угольных шахт и способы обеспечения устойчивости выработок. Дис. ... д–ра техн. наук: 05.15.04., 05.15.09. Днепропетровск. 2009. 426 с.