Repository logo
  • English
  • Yкраї́нська
Log In
New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Матеріали конференцій
  3. Молодь: наука та інновації
  4. «Молодь: наука та інновації» 2024 : матеріали XII Міжнародної науково-технічної конференції студентів, аспірантів та молодих вчених, Дніпро, 13–15 листопада 2024 року (у 3-х томах)
  5. Т. 2
  6. Секція «Інформаційні технології та телекомунікації»
  7. Analysis of the results of application of machine learning аlgorithms in network traffic anomalies detection systems
 
  • Details

Analysis of the results of application of machine learning аlgorithms in network traffic anomalies detection systems

Date Issued
2024
Author(s)
Dziadek M. I.
Editor(s)
Olishevskyi I. H.
Кафедра безпеки інформації та телекомунікацій  
Abstract
As of today, the detection of network traffic anomalies is an urgent task of ensuring
the information security of any enterprise. The value of the information that is processed and
stored in the ICS of enterprises increases, thereby increasing the motivation of criminals to
obtain NSD for this information. Therefore, there is a need to implement a solution that will
minimize the risk of attacks on information via the Internet. A modern and effective solution
for an enterprise against threats of this type is the implementation of network traffic
monitoring based on a machine learning algorithm.
There are many machine learning algorithms, so the information security specialist is
faced with the task of deciding on an algorithm that will demonstrate the highest results of
correct response to threats. As part of the study, a comparative analysis of the results of the
application of seven machine learning algorithms in SBA - Naive Bayes, QDA, Random
Forest, Decision Trees, AdaBoost, MLP, KNN was performed.
Subjects

мереживий трафік

інформаційні технолог...

алгоритм машинного на...

File(s)
Loading...
Thumbnail Image
Name

molod-2024-vol2-101-103.pdf

Size

737.71 KB

Format

Adobe PDF

Checksum

(MD5):c6e5cb19506d02933406b2162b0f4e94

.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • End User Agreement
  • Send Feedback
Repository logo COAR Notify